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Abstract. For integers k ≥ 2, we study two differential operators on harmonic weak
Maass forms of weight 2 − k. The operator ξ2−k (resp. Dk−1) defines a map to the
space of weight k cusp forms (resp. weakly holomorphic modular forms). We leverage
these operators to study coefficients of harmonic weak Maass forms. Although generic
harmonic weak Maass forms are expected to have transcendental coefficients, we show
that those forms which are “dual” under ξ2−k to newforms with vanishing Hecke eigen-
values (such as CM forms) have algebraic coefficients. Using regularized inner products,
we also characterize the image of Dk−1.

1. Introduction and Statement of Results

Let M !
k(Γ0(N), χ) denote the space of integer weight k weakly holomorphic modular

forms on Γ0(N) with Nebentypus χ. Recall that a weakly holomorphic modular form is
any meromorphic modular form whose poles (if any) are supported at cusps. Weakly
holomorphic modular forms naturally sit in spaces of harmonic weak Maass forms (see
Section 2 for definitions), more general automorphic forms which have been a source of
recent interest due to their connection to Ramanujan’s mock theta functions, Borcherds
products, derivatives of modular L-functions, and traces of singular moduli (see [2, 3, 4,
5, 6, 7, 8, 20, 21]).

In view of these applications, it is natural to investigate the arithmeticity of the Fourier
coefficients of such Maass forms, and to also investigate their nontrivial interplay with
holomorphic and weakly holomorphic modular forms. In the works above, one such non-
trivial relationship (see Prop. 3.2 of [7]), involving the differential operator

ξw := 2iyw · ∂

∂z
,

plays a central role. It is the fact that

(1.1) ξ2−k : H2−k(Γ0(N), χ) −→ Sk(Γ0(N), χ).

Here Hw(Γ0(N), χ) denotes the space of weight w harmonic weak Maass forms on Γ0(N)
with Nebentypus χ, and Sw(Γ0(N), χ) denotes the subspace of cusp forms. It is not
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difficult to make this more precise using Fourier expansions. In particular, every weight
2− k harmonic weak Maass form f(z) has a Fourier expansion of the form

(1.2) f(z) =
∑

n�−∞

c+
f (n)qn +

∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn,

where Γ(a, x) is the incomplete Gamma-function, z = x + iy ∈ H, with x, y ∈ R, and
q := e2πiz. A straightforward calculation shows that ξ2−k(f) has the Fourier expansion

(1.3) ξ2−k(f) = −(4π)k−1

∞∑
n=1

c−f (−n)nk−1qn.

As (1.2) reveals, f(z) naturally decomposes into two summands

f+(z) :=
∑

n�−∞ c+
f (n)qn,(1.4)

f−(z) :=
∑

n<0 c−f (n)Γ(k − 1, 4π|n|y)qn.(1.5)

Therefore, ξ2−k(f) is given simply in terms of f−(z), the non-holomorphic part of f .
Here we show that f+(z), the holomorphic part of f , is also intimately related to weakly

holomorphic modular forms. We require the differential operator

(1.6) D :=
1

2πi
· d

dz
.

Theorem 1.1. If 2 ≤ k ∈ Z and f ∈ H2−k(Γ0(N), χ), then

Dk−1(f) ∈ M !
k(Γ0(N), χ).

Moreover, assuming the notation in (1.2), we have

Dk−1f = Dk−1f+ =
∑

n�−∞

c+
f (n)nk−1qn.

Remark 1. Theorem 1.1 is related to classical results on weakly holomorphic modular
forms and Eichler integrals. Theorem 1.1 is a generalization of the classical result on
weakly holomorphic modular forms to the context of harmonic weak Maass forms.

Theorem 1.1 implies that the coefficients c+
f (n), for non-zero n, are obtained by dividing

the nth coefficient of some fixed weakly holomorphic modular form by nk−1. Therefore
we are compelled to determine the image of the map

Dk−1 : H2−k(Γ0(N), χ) −→ M !
k(Γ0(N), χ).

It is not difficult to see that this map is not generally surjective. Our next result determines
the image of Dk−1 in terms of “regularized” inner products (see Section 4).

Theorem 1.2. If 2 ≤ k ∈ Z, then the image of the map

Dk−1 : H2−k(Γ0(N), χ) −→ M !
k(Γ0(N), χ)

consists of those h ∈ M !
k(Γ0(N), χ) which are orthogonal to cusp forms (see Section 4)

which also have constant term 0 at all cusps of Γ0(N).
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Although these results for Dk−1 suggest that one has complete information concerning
the Fourier coefficients of f+, it turns out that some of the most basic questions remain
open. Here we consider algebraicity. Despite the fact that we have a fairly complete
theory of algebraicity for forms in M !

k(Γ0(N), χ), thanks to the q-expansion principle, the
theory of Eisenstein series and newforms, this question remains open for harmonic weak
Maass forms. In view of the theory of newforms, it is natural to restrict our attention
to those f ∈ H2−k(Γ0(N), χ) for which ξ2−k(f) ∈ Sk(Γ0(N), χ) is a Hecke eigenform. For
reasons which will become apparent, we shall concentrate on those forms for which

(1.7) ξ2−k(f) =
g

‖g‖2
,

where g is a normalized newform and ‖g‖ denotes its usual Petersson norm.
To illustrate the nature of this problem, we consider two examples of Maass-Poincaré

series which are not weakly holomorphic modular forms. The Maass-Poincaré series (see
Section 6) f := Q(−1, 12, 1; z) ∈ H−10(SL2(Z)) (note. If a Nebentypus character is
not indicated, then it is assumed to be trivial) satisfies (1.7) for g = ∆(z), the unique
normalized weight 12 cusp form on the full modular group. The first few coefficients of
its holomorphic part are

Q+(−1, 12, 1; z) ∼ q−1 − 0.04629− 1842.89472q− 23274.07545q2 − 225028.75877q3 − · · · .

There is little reason to believe that these coefficients are rational or algebraic. On the
other hand, we shall prove that the Maass-Poincaré series Q(−1, 4, 9; z) ∈ H−2(Γ0(9)) has
the property that Q+(−1, 4, 9; z) has rational coefficients. Its first few terms are

(1.8) Q+(−1, 4, 9; z) = q−1 − 1

4
q2 +

49

125
q5 − 48

512
q8 − 771

1331
q11 + · · · ,

and f := Q(−1, 4, 9; z) satisfies (1.7) for the unique normalized newform in S4(Γ0(9)).
Our next result explains the distinction between these two cases. To make this pre-

cise, let g ∈ Sk(Γ0(N), χ) be a normalized newform, and let Fg be the number field
obtained by adjoining the coefficients of g to Q. We say that a harmonic weak Maass
form f ∈ H2−k(Γ0(N), χ) is good for g if it satisfies the following properties (Section 2 for
definitions):

(i) The principal part of f at the cusp ∞ belongs to Fg[q
−1].

(ii) The principal parts of f at the other cusps of Γ0(N) are constant.
(iii) We have that ξ2−k(f) = ‖g‖−2g.

Remark 2. For every such g, Proposition 5.1 will show that there is an f which is good
for g. Moreover, such an f is unique up to a weakly holomorphic form in M !

2−k(Γ0(N), χ)
with coefficients in Fg. Such f can be constructed explicitly using Poincaré series (for
example, see Section 6 for even k ≥ 2 and trivial Nebentypus).

Theorem 1.3. Let g ∈ Sk(Γ0(N), χ) be a normalized newform with complex multipli-
cation. If f ∈ H2−k(Γ0(N), χ) is good for g, then all coefficients of f+ are in Fg(ζM),
where ζM := e2πi/M , and M = ND where D is the discriminant of the field of complex
multiplication.
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Remark 3.
i) The rationality of Q+(−1, 4, 9; z) in (1.8) is an example of Theorem 1.3. In this case
Q(−1, 4, 9; z) is good for the unique CM newform in S4(Γ0(9)). We shall discuss this
example in detail in the last section.

ii) The field Fg in Theorem 1.3 is explicit (see the discussion in Section 5).

iii) Suppose that g ∈ Sk(Γ0(N), χ) is a normalized newform. If f ∈ H2−k(Γ0(N), χ) is
good for g, then the proof of Theorem 1.3 implies that all of the coefficients of f+ belong
to Fg(c

+
f (1)). It would be interesting to describe this field in terms of intrinsic invariants

associated to g.

iv) It is interesting to compare Theorem 1.3, which concerns integer weights 2− k, with
the results in [8] which pertain to weight 1/2 harmonic weak Maass forms. The first two
authors proved that if g is a newform of weight 3/2 which is orthogonal to all elementary
theta series, and if f is defined analogously as above, then

#{n ∈ N : c+
f (n) transcendental} = +∞,

#{n ∈ N : c+
f (n) algebraic} = +∞.

In fact, estimates are obtained for these quantities. These results are related to the
vanishing of derivatives of quadratic twists of weight 2 modular L-functions at s = 1.

v) It would be interesting to find an explicit construction of good harmonic weak Maass
forms for CM newforms. Perhaps there is a construction which is analogous to the case
of the mock theta functions [2, 3, 5, 20, 21].

vi) In the examples we know, it turns out that the coefficients of f+ are actually contained
in Fg. It seems natural to ask whether this is true in general.

The proof of Theorem 1.3 relies on the fact that some Hecke eigenvalues of g vanish.
A simple generalization of the proof of Theorem 1.3 can be used to detect the vanishing
of the Fourier coefficients of a newform.

Theorem 1.4. Suppose that g =
∑∞

n=1 cg(n)qn ∈ Sk(Γ0(N), χ) is a normalized newform,
and suppose that f ∈ H2−k(Γ0(N), χ) is good for g. If p - N is a prime for which cg(p) = 0,
then c+

f (n) is algebraic when ordp(n) is odd.

Remark 4. The proof of Theorem 1.4 shows that the coefficients of f+ are in an explicit
abelian extension of Fg when cg(p) = 0. It seems possible that the coefficients of f+ are
always in Fg when there are any vanishing Hecke eigenvalues. As the next example will
show, this is the case when N = 1.

Example. Here we consider Lehmer’s Conjecture on the nonvanishing of Ramanujan’s
τ -function, where

∆(z) =
∞∑

n=1

τ(n)qn.

This example generalizes easily to all level 1 Hecke eigenforms.
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Although Theorem 1.4 relates Lehmer’s Conjecture to the alleged transcendence of the
coefficients, say a∆(n), of Q+(−1, 12, 1; z), it turns out that much more is true. Lehmer’s
Conjecture is implied by the mere irrationality of any these coefficients.

We make use of explicit formulas. Using the classical Eisenstein series E4 and E6 and
the classical j-function j(z), we define polynomials Jm(x) by

(1.9)
∞∑

m=0

Jm(x)qm :=
E4(z)2E6(z)

∆(z)
· 1

j(z)− x
= 1 + (x− 744)q + · · · .

For each m we then let jm(z) = Jm(j(z)). If p is prime, then define the modular functions

Ap(z) :=
24

B12

(1 + p11) + jp(z)− 264

p∑
m=1

σ9(m)jp−m(z),(1.10)

Bp(z) := −τ(p)

(
−264 +

24

B12

+ j1(z)

)
.(1.11)

Here B12 = −691/2730 is the 12th Bernoulli number, and σ9(n) :=
∑

d|n d9. Using the

principal part of Q(−1, 12, 1; z) combined with the fact that ∆(z) is an eigenform of the
Hecke algebra, one can show (for example, see [14]), for primes p, that

∞∑
n=−p

(
p11a∆(pn)− τ(p)a∆(n) + a∆(n/p)

)
qn =

Ap(z) + Bp(z)

E4(z)E6(z)
.

These weight −10 modular forms have integer coefficients. Now suppose that τ(p) = 0
for a prime p. Then a∆(np) is rational for every n coprime to p. Under this assumption,
the proof of Theorem 1.3 then implies that a∆(n) is rational when ordp(n) is odd.

Due to Theorems 1.3 and 1.4, it is natural to consider the arithmetic properties of
harmonic weak Maass forms. For brevity, we will be content with the following result for
certain forms with prime power level and trivial Nebentypus.

Theorem 1.5. Suppose that p is prime, and that f(z) ∈ H2−k(Γ0(p
t)) is good for a

newform g ∈ Sk(Γ0(p
t)) with complex multiplication. If we let

a := min{d ≥ 0 : c+
f (pdn) = 0 for all n < 0},

then the following are true:

1) The formal q-series

f ∗ :=
∞∑

n=0

c+
f (pan)nk−1qn

is a p-adic modular form on SL2(Z) of weight k.

2) For every positive integer b, we have that

lim
X→+∞

#{n ≤ X : c+
f (pan)nk−1 6≡ 0 (mod pb)}

X
= 0.
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3) If p ≤ 7, or p ≥ 11 and k ≡ 4, 6, 8, 10, 14 (mod p−1), then as p-adic numbers we have

lim
n→+∞

c+
f (pa+n)pn(k−1) = 0.

Remark 5. Theorem 1.5 (2) says that “almost every” c+
f (pan) is a multiple of pb. Theo-

rem 1.5 (3) is not a trivial statement since the coefficients c+
f (pa+n) tend to have unbounded

denominators involving increasing powers of p.

In Section 2 we recall definitions and facts about harmonic weak Maass forms and
their behavior under certain differential operators. In Section 3 we prove Theorem 1.1. In
Section 4 we recall facts about the regularized inner product, which generalizes Petersson’s
inner product, and we prove Theorem 1.2. In Section 5 we prove Theorems 1.3, 1.4 and
1.5, and in Section 6 we illustrate Theorems 1.1 and 1.2 using Poincaré series. In the last
section, we examine example (1.8) in the context of all of the results above.

Acknowledgements

The authors thank the referee for several helpful suggestions and corrections.

2. Harmonic weak Maass forms

Here we recall definitions and facts about harmonic weak Maass forms. Throughout,
let z = x + iy ∈ H, the upper-half of the complex plane, with x, y ∈ R. Also, throughout
suppose that k ∈ N. We define the weight k hyperbolic Laplacian by

(2.1) ∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

Suppose that χ is a Dirichlet character modulo N . Then a harmonic weak Maass form
of weight k on Γ0(N) with Nebentypus χ is any smooth function on H satisfying:

(i) f
(

az+b
cz+d

)
= χ(d)(cz + d)kf(z) for all

(
a b
c d

)
∈ Γ0(N);

(ii) ∆kf = 0;
(iii) There is a polynomial Pf =

∑
n≤0 c+

f (n)qn ∈ C[q−1] such that f(z) − Pf (z) =

O(e−εy) as y →∞ for some ε > 0. Analogous conditions are required at all cusps.

The polynomial Pf ∈ C[q−1] is called the principal part of f at the corresponding cusp.
We denote the vector space of these harmonic weak Maass forms by Hk(Γ0(N), χ)

Remark 6. Note that our definition slightly differs from the one of [7], since we assume
that the singularities of f at the cusps are supported on the holomorphic parts of the
corresponding Fourier expansions. This space is denoted by H+

k in [7].
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Recall the Maass raising and lowering operators (see [7, 9]) Rk and Lk on functions
f : H → C which are defined by

Rk = 2i
∂

∂z
+ ky−1 = i

(
∂

∂x
− i

∂

∂y

)
+ ky−1,

Lk = −2iy2 ∂

∂z̄
= −iy2

(
∂

∂x
+ i

∂

∂y

)
.

With respect to the Petersson slash operator (see (6.2)), these operators satisfy the inter-
twining properties

Rk(f |k γ) = (Rkf) |k+2 γ,

Lk(f |k γ) = (Lkf) |k−2 γ,

for any γ ∈ SL2(R). The Laplacian ∆k can be expressed in terms of Rk and Lk by

(2.2) −∆k = Lk+2Rk + k = Rk−2Lk.

If f is an eigenfunction of ∆k satisfying ∆kf = λf , then

∆k+2Rkf = (λ + k)Rkf,(2.3)

∆k−2Lkf = (λ− k + 2)Lkf.(2.4)

For any positive integer n we put

Rn
k := Rk+2(n−1) ◦ · · · ◦Rk+2 ◦Rk.

We also let R0
k be the identity. The differential operator

D :=
1

2πi

d

dz
= q

d

dq
.

satisfies the following relation

Rk = −4πD + k/y.

The next lemma is often referred to as Bol’s identity.

Lemma 2.1. Assuming the notation and hypotheses above, we have

Dk−1 =
1

(−4π)k−1
Rk−1

2−k.

Proof. This is a special case of the identity (4.15) in [12]. �

3. Proof of Theorem 1.1

By Lemma 2.1, we see that Dk−1 defines a linear map from

Dk−1 : M !
2−k(Γ0(N), χ) −→ M !

k(Γ0(N), χ).

Theorem 1.1 asserts that this map may be extended to harmonic weak Maass forms.
Moreover, the theorem provides a simple description of the images.
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Proof of Theorem 1.1. Suppose that k ≥ 2, and that f ∈ H2−k(Γ0(N), χ). In view of
Lemma 2.1, it is clear that Dk−1f has the transformation behavior of a modular form of
weight k.

We now show that LkD
k−1f = 0. This implies that Dk−1f is holomorphic on H. By

Lemma 2.1, it suffices to show that LkR
k−1
2−kf = 0. Since ∆2−kf = 0, it follows from (2.3)

by induction that

∆k−2R
k−2
2−kf = (2− k)Rk−2

2−kf.

Using (2.2), we obtain

LkR
k−1
2−kf = (LkRk−2)R

k−2
2−kf = (−∆k−2 − (k − 2))Rk−2

2−kf = 0.

Finally, the growth behavior of f at the cusps implies that Dk−1f is meromorphic at
the cusps. Therefore, Dk−1 indeed extends to H2−k(Γ0(N), χ).

To complete the proof, we compute the Fourier expansion of Dk−1f . Assuming the
notation in (1.2), a straightforward calculation gives

Rk−2
2−kf(z) =

∑
n�−∞

c+
f (n)Γ(k − 1, 4πny)(−y)2−ke2πinz̄ + (k − 2)!2

∑
n<0

c−f (n)(−y)2−ke2πinz̄.

Moreover, Rk−1
2−kf has the Fourier expansion

Rk−1
2−kf(z) =

∑
n�−∞

c+
f (n)(−4πn)k−1qn.

In particular, we have

Dk−1f = Dk−1f+ =
∑

n�−∞

c+
f (n)nk−1qn.

The first two formulas follow from the Fourier expansion of f and the differential equations
∆k−2R

k−2
2−kf = (2− k)Rk−2

2−kf and ∆kR
k−1
2−kf = 0. The third formula is a consequence of the

second and Lemma 2.1. �

Remark 7. Note that g := yk−2Rk−2
2−kf is a harmonic weak Maass form of weight 2−k in the

(slightly more general) sense of Section 3 of [7]. Moreover, ξ2−kg = y−kL2−kg = Rk−1
2−kf .

This can also be used to compute the Fourier expansions in the proof of Theorem 1.1.

4. The regularized inner product and the proof of Theorem 1.2

Here we recall the regularized inner product, and we prove Theorem 1.2. We consider
slightly more general situations, with earlier definitions modified in the obvious way.

Let k be an integer, and let Γ be a subgroup of finite index of Γ(1) = SL2(Z). We
define a regularized inner product of g ∈ Mk(Γ) and h ∈ M !

k(Γ) as follows. For T > 0 we
denote by FT (Γ(1)) the truncated fundamental domain

FT (Γ(1)) = {z ∈ H : |x| ≤ 1/2, |z| ≥ 1, and y ≤ T}
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for Γ(1). Moreover, we define the truncated fundamental domain for Γ by

FT (Γ) =
⋃

γ∈Γ\Γ(1)

γFT (Γ(1)).

Following [1], we define the regularized inner product (g, h)reg as the constant term in the
Laurent expansion at s = 0 of the meromorphic continuation in s of the function

1

[Γ(1) : Γ]
lim

T→∞

∫
FT (Γ)

g(z)h(z)yk−s dx dy

y2
.

Using the same argument as in Section 6 of [1], it can be shown that (g, h)reg exists for any
g ∈ Mk(Γ) and h ∈ M !

k(Γ). (It also exists for g ∈ Mk(Γ) and h ∈ Hk(Γ). But note that
it does not exist in general if g and h are both weakly holomorphic with honest poles at
the cusps.) It is clear, for cusp forms g and h, that the regularized inner product reduces
to the classical Petersson inner product (g, h).

Remark 8. If h ∈ M !
k(Γ) has vanishing constant term at every cusp of Γ, then

(g, h)reg =
1

[Γ(1) : Γ]
lim

T→∞

∫
FT (Γ)

g(z)h(z)yk dx dy

y2
.

For the rest of this section we assume that k ≥ 2.

Theorem 4.1. If g ∈ Mk(Γ) and f ∈ H2−k(Γ), then

(g,Rk−1
2−kf)reg =

(−1)k

[Γ(1) : Γ]

∑
κ∈Γ\P 1(Q)

wκ · cg(0, κ)c+
f (0, κ),

where cg(0, κ) (resp. c+
f (0, κ)) denotes the constant term of the Fourier expansion of g

(resp. f) at the cusp κ ∈ P 1(Q), and wκ is the width of the cusp κ.

Proof. For simplicity, we carry out the proof only in the special case Γ = Γ(1). The general

case is completely analogous. We put H := yk−2Rk−2
2−kf . Then h := Rk−1

2−kf = y−kL2−kH.
Since the constant terms at all cusps of h vanish, we have

(g,Rk−1
2−kf)reg = lim

T→∞

∫
FT (Γ)

g(z)h(z)yk dx dy

y2

= lim
T→∞

∫
FT (Γ)

g(z)(L2−kH)
dx dy

y2

= lim
T→∞

∫
FT (Γ)

g(z)(
∂

∂z̄
H) dz dz̄

= − lim
T→∞

∫
FT (Γ)

(∂̄H) ∧ g(z) dz.
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Using the holomorphy of g, we obtain, by Stokes’ theorem, the expression

(g,Rk−1
2−kf)reg = − lim

T→∞

∫
FT (Γ)

d(H(z)g(z) dz)

= − lim
T→∞

∫
∂FT (Γ)

H(z)g(z) dz

= lim
T→∞

∫ 1/2

x=−1/2

H(x + iT )g(x + iT ) dx.

The integral over x gives the constant term in the Fourier expansion of H(x+iT )g(x+iT ).
It can be computed using the Fourier expansion

H(z) = (−1)k
∑

n�−∞

c+
f (n)Γ(k − 1, 4πny)e−2πinz + (−1)k(k − 2)!2

∑
n<0

c−f (n)e−2πinz

of H (see the proof of Theorem 1.1) and the Fourier expansion of g. It turns out that

under the limit T → ∞ only the contribution (−1)kcg(0)c
+
f (0) coming from the product

of the individual constant terms survives. This concludes the proof. �

Corollary 4.2. If g ∈ Sk(Γ), then (g,Rk−1
2−kf)reg = 0.

Proof. This is a direct consequence of Theorem 4.1. �

The next corollary implies Theorem 1.2.

Corollary 4.3. The image of the map Dk−1 : H2−k(Γ) → M !
k(Γ) is given by those h ∈

M !
k(Γ) which are orthogonal to cusp forms and whose constant term at any cusp of Γ

vanishes.

Proof. If f ∈ H2−k(Γ), it follows from Theorem 4.1 and Theorem 1.1 that Dk−1f satisfies
the stated conditions.

Conversely, assume that h ∈ M !
k(Γ) is orthogonal to cusp forms and has vanishing

constant term at any cusp of Γ. According to Lemma 3.11 of [7], we may chose f ∈
H2−k(Γ) such that the principal parts of Dk−1f and h at the cusps agree up to the
constant terms. Since the constant terms of h and Dk−1f vanish, they trivially agree as
well. Consequently,

h−Dk−1f ∈ Sk(Γ).

In view of Theorem 4.1 and the hypothesis on h, we find that h−Dk−1f is orthogonal to
cusp forms. Hence it vanishes identically. �

Remark 9. It suffices to specialize Γ = Γ1(N) in the previous Corollary in order to derive
Theorem 1.2.

5. Proof of Theorems 1.3, 1.4, and 1.5

Here we prove Theorem 1.3 by combining facts about ξ2−k, with Hecke theory and the
theory of complex multiplication. We first begin with an important proposition.
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Proposition 5.1. Let g =
∑∞

n=1 b(n)qn ∈ Sk(Γ0(N), χ) be a normalized newform with
integer weight k ≥ 2, and let Fg be the number field obtained by adjoining the coefficients
of g to Q. Then there is a harmonic weak Maass form f ∈ H2−k(Γ0(N), χ) which satisfies:

(i) The principal part of f at the cusp ∞ belongs to Fg[q
−1].

(ii) The principal parts of f at the other cusps of Γ0(N) are constant.
(iii) We have that ξ2−k(f) = ‖g‖−2g.

Proof. Let H2−k,∞(Γ0(N), χ) be the subspace of those f ∈ H2−k(Γ0(N), χ) whose principal
parts at the cusps other than ∞ are constant. Note that

H2−k(Γ0(N), χ) = H2−k,∞(Γ0(N), χ) + M !
2−k(Γ0(N), χ).

Arguing as in Section 3 of [7], the restriction of ξ2−k to H2−k,∞(Γ0(N), χ) defines a sur-
jective map to Sk(Γ0(N), χ). One now argues as in the proof of Lemma 7.3 of [8] using
the pairing {g, f} = (g, ξ2−k(f)), where f ∈ H2−k,∞(Γ0(N), χ) and g ∈ Sk(Γ0(N), χ). �

Remark 10. The harmonic weak Maass form f satisfying (i)–(iii) above is unique up to
the addition of a weakly holomorphic form in M !

2−k(Γ0(N), χ) with coefficients in Fg and
a pole possibly at infinity and constant principal part at all other cusps.

For completeness, here we briefly recall the notion of a newform with complex multi-
plication (for example, see Chapter 12 of [11] or Section 1.2 of [13]). Let D < 0 be the

fundamental discriminant of an imaginary quadratic field K = Q(
√

D). Let OK be the
ring of integers of K, and let χK :=

(
D
•

)
be the usual Kronecker character associated to

K. Let k ≥ 2, and let c be a Hecke character of K with exponent k− 1 and conductor fc,
a non-zero ideal of OK . By definition, this means that

c : I(fc) −→ C×

is a homomorphism, where I(fc) denotes the group of fractional ideals of K prime to fc.
In particular, this means that

c(αOK) = αk−1

for α ∈ K× for which α ≡ 1 mod×fc. To c we naturally associate a Dirichlet character ωc

defined, for every integer n coprime to fc, by

ωc(n) :=
c(nOK)

nk−1
.

Given this data, we let

(5.1) ΦK,c(z) :=
∑

a

c(a)qN(a),

where a varies over the ideals of OK prime to fc, and where N(a) is the usual ideal norm.
It is well known that ΦK,c(z) ∈ Sk(Γ0(|D| ·N(fc)), χK ·ωc) is a normalized newform. These
are newforms with complex multiplication. By construction, if we let

ΦK,c(z) =
∞∑

n=1

b(n)qn,
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then

(5.2) b(n) = 0 whenever χK(n) = −1.

This follows since every prime p for which χK(p) = −1 is inert.

Proof of Theorem 1.3. Suppose that f is good for a CM form g =
∑∞

n=1 b(n)qn, and let
D = Dg be the fundamental discriminant of the associated imaginary quadratic field

K = Q(
√

D). By (1.3) (correcting a typographical error in Lemma 3.1 of [7]), we then
have that

ξ2−k(f) = ‖g‖−2g = −(4π)k−1

∞∑
n=1

c−f (−n)nk−1qn.

Since g has complex multiplication, (5.2) implies that c−f (n) = 0 when χK(−n) = −1.
Because D < 0, this means that

c−f (n) = 0 when χK(n) = 1.(5.3)

Let M = ND. We write χ0 for the trivial character modulo |D|. Since D | N , a
standard argument shows that the sum of character twists

u := f ⊗ χ0 + f ⊗ χK

is in H2−k(Γ0(M), χ). The Fourier expansion of u = u+ + u− is given by

u+(z) = 2
∑

n�−∞
χK(n)=1

c+
f (n)qn,

u−(z) = 2
∑
n<0

χK(n)=1

c−f (n)Γ(k − 1, 4π|n|y)qn.

Consequently, by (5.3), the non-holomorphic part u− vanishes, and u is actually weakly
holomorphic.

We now claim that for any integer b, f(z + b/D) has principal parts at all cusps in
Fg(ζM)[q−1]. To see this, we let γ ∈ Γ(1) and consider the cusp γ∞. There exists a
γ̃ ∈ Γ(1) and α, β, δ ∈ Z such that(

D b
0 D

)
γ = γ̃

(
α β
0 δ

)
.

Hence, the Fourier expansion of f(z + b/D) at the cusp γ∞ is given by

f | γ̃ |
(

α β
0 δ

)
.

By the assumption of f , it is holomorphic at the cusp ∞, unless γ̃ ∈ Γ0(N), in which case
it is equal to

f |
(

α β
0 δ

)
.
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Since δ | D2 | M , the principal part at∞ of this modular form is contained in Fg(ζM)[q−1],
proving the claim. This implies that the twists f ⊗χ0, f ⊗χD, have principal parts at all
cusps in Fg(ζM)[q−1]. Therefore, the same is true for u.

Now we recall the fact that the action of Aut(C/Q(ζN)) commutes with the action
of SL2(Z) on modular functions for Γ(N) (for example, see Theorem 6.6 in Chapter
6.2 and the diagram before Remark 6.7 in Shimura’s book [19]). Using the action of
Aut(C/Fg(ζM)) on weakly holomorphic modular forms, we see that uσ has the same
properties for any σ ∈ Aut(C/Fg(ζM)). Moreover, uσ has the same principal parts as u
at all cusps. Hence the difference u − uσ is a holomorphic modular form which vanishes
at the cusp ∞. Since 2− k ≤ 0, this implies that u = uσ. Consequently, u is defined over
Fg(ζM). So for all n ∈ Z with χK(n) = 1, we have that c+

f (n) ∈ Fg(ζM). In particular,

c+
f (1) ∈ Fg(ζM).
We now use the Hecke action on f and g. Let T (m) be the m-th Hecke operator for

Γ0(N). Using the same argument as in Lemma 7.4 of [8], we have that

f |2−k T (m) = m1−kb(m)f + f ′,

where f ′ ∈ M !
2−k(Γ0(N), χ) is a weakly holomorphic form with coefficients in Fg. In view

of the formula for the action of the Hecke operators on the Fourier expansion, we obtain
for any prime p that

c+
f (pn) + χ(p)p1−kc+

f (n/p) = p1−kb(p)c+
f (n) + c+

f ′(n),

where c+
f ′(n) ∈ Fg. Hence an inductive argument shows that all coefficients c+

f (n) are

contained in the extension Fg(c
+
f (1)). This concludes the proof of the theorem since we

have already established that c+
f (1) is in Fg(ζM). �

The proof of Theorem 1.4 is similar to the proof of Theorem 1.3, and so we give only
a sketch of the set-up.

Sketch proof of Theorem 1.4. If p - N is a prime, then for every positive integer m we
have that

cg(p)cg(p
m) = cg(p

m+1) + χ(p)pk−1cg(p
m−1).

Therefore, if p - N is a prime for which cg(p) = 0, then we have that

cg(p
m+1) = −χ(p)pk−1cg(p

m−1),

which in turn implies that

cg(p
m) =


(
−χ(p)pk−1

)m
2

if m is even,

0 otherwise.

Therefore, by arguing with the usual U(p), V (p), U(p2) and V (p2) operators, we can obtain
a harmonic weak Maass form whose Fourier coefficients are supported on terms whose
exponents n have the property that p exactly divides n. By the multiplicativity of the
Fourier coefficients of newforms, it then follows by the observation above that the non-
holomorphic part of this form is identically zero. In other words, this particular harmonic
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weak Maass form is a weakly holomorphic modular form with suitable principal parts at
cusps. The proof now follows mutatis mutandis as in the proof of Theorem 1.3. �

5.1. Proof of Theorem 1.5. Theorem 1.5 follows easily from the seminal work of Serre
[17, 18] on p-adic modular forms. We now apply his works to prove the theorem.

By Theorem 1.1, we have that ∑
n�−∞

c+
f (n)nk−1qn

is a weight k weakly holomorphic modular form on Γ0(p
t) with rational coefficients. By

standard facts involving the U(p)-operator(∑
a(n)qn

)
| U(p) :=

∑
a(np)qn,

the integer a has the property that

(5.4) f ∗(z) :=
∞∑

n=0

c+
f (pan)nk−1qn

is a weight k weakly holomorphic modular form on Γ0(p
t∗), where t∗ = 1 if t = 0, and is

t otherwise. This modular form has trivial principal part at the cusp infinity. Therefore,
we may apply a theorem of Serre (see Th. 5.4 of [18]), and the conclusion is that f ∗(z) is
a p-adic modular form on SL2(Z) of weight k. This proves (1).

Claim (2) follows from the definition of a p-adic modular form. Indeed, p-adic mod-
ular forms are p-adic limits of the Fourier expansions of classical holomorphic modular
forms, and these forms, by a theorem of Serre, have the property that almost all of their
coefficients are multiples of any fixed power of p (see Th. 4.7 of [18]). This implies (2).

Claim (3) is a consequence of the fact that the U(p)-operator acts locally nilpotently
on certain p-adic modular forms. In this situation, Serre proved that the constant term of
a p-adic modular form is a limit, in the p-adic sense, of certain Fourier coefficients. This
result (see Th. 7 and the following remark in [17]) implies (3).

6. Poincaré series and Theorems 1.1, 1.2, and 1.3

Here we consider natural examples of the results of both Theorems 1.1, 1.2 and 1.3.
Our results depend on the explicit Fourier expansions of two classes of Poincaré series (for
example, see [4, 6, 11]).

6.1. Definitions and Fourier expansions. For A = ( a b
c d ) ∈ SL2(Z), define j(A, z) by

(6.1) j(A, z) := (cz + d).

As usual, for such A and functions f : H → C, we let

(6.2) (f |k A)(z) := j(A, z)−kf(Az).

Let m be an integer, and let ϕm : R+ → C be a function which satisfies ϕm(y) = O(yα),
as y → 0, for some α ∈ R. If e(α) := e2πiα as before, then let

(6.3) ϕ∗m(z) := ϕm(y)e(mx).
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Such functions are fixed by the translations Γ∞ := {± ( 1 n
0 1 ) : n ∈ Z}.

Given this data, for integers N ≥ 1, we define the generic Poincaré series

P(m, k, ϕm, N ; z) :=
∑

A∈Γ∞\Γ0(N)

(ϕ∗m |k A)(z).(6.4)

We shall be interested in two families of such series.
The first family is classical. We let

(6.5) P (m, k, N ; z) = qm +
∞∑

n=1

a(m, k, N ; n)qn := P(m, k, e(imy), N ; z).

These series are modular, and their Fourier expansions are given in terms of the I-Bessel
and J-Bessel functions, and the Kloosterman sums

(6.6) K(m, n, c) :=
∑
v(c)×

e

(
mv + nv

c

)
.

Here v runs through the primitive residue classes modulo c, and vv ≡ 1 (mod c). The
following is well known (for example, see [11, 15]).

Proposition 6.1. If k ∈ 2N, and m,N ≥ 1, then the following are true.

1) We have that P (m, k, N ; z) ∈ Sk(Γ0(N)), and for positive integers n we have

a(m, k, N ; n) = 2π(−1)
k
2

( n

m

) k−1
2 ·

∑
c>0

c≡0 (mod N)

K(m, n, c)

c
· Jk−1

(
4π
√

mn

c

)
.

2) We have that P (−m, k, N ; z) ∈ M !
k(Γ0(N)), and for positive integers n we have

a(−m, k, N ; n) = 2π(−1)
k
2

( n

m

) k−1
2 ·

∑
c>0

c≡0 (mod N)

K(−m, n, c)

c
· Ik−1

(
4π
√
|mn|
c

)
.

Now we recall the second family of Poincaré series, the Maass-Poincaré series of Hejhal
(see [10]). Let Mν, µ(z) be the usual M -Whittaker function. For complex s, let

Ms(y) := |y|−
k
2 M k

2
sgn(y), s− 1

2
(|y|),

and for m ≥ 1 let ϕ−m(z) := M1− k
2
(−4πmy). For k ∈ 2N and integers N ≥ 1, we let

(6.7) Q(−m, k, N ; z) :=
1

(k − 1)!
· P(−m, 2− k, ϕ−m, N ; z).

To determine the Fourier expansions of these series, we also require the incomplete
Gamma-function Γ(a, x). We have the following proposition (for example, see [4, 6, 10]).

Proposition 6.2. If k ∈ 2N, and m, N ≥ 1, then Q(−m, k, N ; z) ∈ H2−k(Γ0(N)), and
has a Fourier expansion of the form

Q(−m, k, N ; z) = Q+(−m, k, N ; z) + Q−(−m, k, N ; z),
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where

Q−(−m, k, N ; z) = −Γ(k − 1, 4πmy)

(k − 2)!
q−m +

∑
n<0

b(−m, k, N ; n) · Γ(k − 1, 4π|n|y)qn,

and where for negative integers n we have

b(−m, k, N ; n) = −2π(−1)
k
2

(k − 2)!
·
∣∣∣m
n

∣∣∣ k−1
2

∑
c>0

c≡0 (mod N)

K(−m, n, c)

c
· Jk−1

(
4π
√
|mn|
c

)
,

and

Q+(−m, k, N ; z) = q−m +
∞∑

n=0

b(−m, k, N ; n)qn,

where

b(−m, k, N ; 0) = −2kπk(−1)
k
2 mk−1

(k − 1)!
·

∑
c>0

c≡0 (mod N)

K(−m, 0, c)

ck
,

and where for positive integers n we have

b(−m, k, N ; n) = −2π(−1)
k
2 ·

∑
c>0

c≡0 (mod N)

(m

n

) k−1
2 K(−m, n, c)

c
· Ik−1

(
4π
√
|mn|
c

)
.

Remark 11. Obviously, we have that Q+(−m, k, N ; z) (resp. Q−(−m, k, N ; z)) is the
holomorphic part (resp. non-holomorphic part) of the weak Maass form Q(−m, k, N ; z).

Remark 12. Propositions 6.1 and 6.2 are well known for 2 < k ∈ 2N. That they hold for
k = 2 follows by arguing by analytic continuation in k with Fourier expansions.

6.2. Poincaré series in the context of Theorems 1.1 and 1.2. If k ≥ 2 is even, and
m, N ≥ 1, then Theorem 1.1, and Propositions 6.1 and 6.2, imply that

Dk−1Q(−m, k, N ; z) = Dk−1Q+(−m, k, N ; z) =

= (−m)k−1q−m − 2π(−1)
k
2 ·

∞∑
n=1

∑
c>0

c≡0 (mod N)

(mn)
k−1
2

K(−m, n, c)

c
· Ik−1

(
4π
√
|mn|
c

)

= −mk−1P (−m, k, N ; z).

In other words, we have

(6.8) Dk−1Q(−m, k, N ; z) = −mk−1P (−m, k, N ; z).

By (1.3), we also have that

ξ2−k(Q(−m, k, N ; z)) =
(4π)k−1mk−1

(k − 2)!
· P (m, k, N ; z).
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For one dimensional spaces Sk(Γ0(N)), say generated by a newform g, this last relation
relates Maass-Poincaré series to newforms g. This follows from standard facts about
Petersson inner products and Poincaré series (for example, see Chapter 3 of [11]).

7. A good example

Correspondence (6.8) can be useful for computing Fourier coefficients of holomorphic
parts of certain harmonic weak Maass forms. Here we consider example (1.8) from the
introduction. Using Proposition 6.2, we summed the first 150 terms to obtain

−D3Q(−1,4, 9; z) = P (−1, 4, 9; z)

∼ q−1 + 1.9999q2 − 48.9999q5 + 47.9999q8 + 770.9999q11 + · · · .

On the other hand, we have the weight 4 weakly holomorphic modular form

m(z) :=

(
η(z)3

η(9z)3
+ 3

)2

· η(3z)8 = q−1 + 2q2 − 49q5 + 48q8 + 771q11 − · · · ,

where η(z) := q
1
24

∏∞
n=1(1 − qn) is Dedekind’s eta-function. These two modular forms

are equal, and so the coefficients are obviously rational (in fact, integral). To deduce
this, one may use the “circle method” to get asymptotics for the coefficients of m(z) (for
example, see the detailed discussion in [16]). The circle method gives the same asymptotic
expressions for the coefficients of m(z) and P (−1, 4, 9; z). This follows from the fact that
they have the same principal parts at cusps. The circle method then shows that these
approximations for the nth coefficients of m(z) and P (−1, 4, 9; z) agree up to a power of n.
This follows from a standard calculation involving bounds for Kloosterman sums and the
asymptotic properties of I-Bessel functions. Therefore, it follows that P (−1, 4, 9; z)−m(z)
is a holomorphic modular form. This form vanishes at all cusps, and so it must be a cusp
form. The space S4(Γ0(9)) is one dimensional, and is spanned by the CM form

g(z) = η(3z)8 = q − 8q4 + 20q7 − 70q13 + 64q16 + 56q19 + · · · .

The non-zero coefficients of this cusp form have exponents n in the arithmetic progression
n ≡ 1 (mod 3). However, since K(−1, n, 9c) = 0 for integers n ≡ 1 (mod 3), Proposi-
tion 6.1 (2) then implies that P (−1, 4, 9; z) −m(z) is identically zero. Combining these
facts, we find that the coefficients of Q+(−1, 4, 9; z) are rational, and its first few terms
are

Q+(−1, 4, 9; z) = q−1 − 1

4
q2 +

49

125
q5 − 48

512
q8 − 771

1331
q11 + · · · .

In the context of Theorem 1.3, the algebraicity of Q+(−1, 4, 9; z) follows from the
fact that Q(−1, 4, 9; z) is good for the CM form g(z). To see this one observes that
ξ−2(Q(−1, 4, 9; z)) = ‖g‖−2g. This follows from Petersson’s theory, combined with the
fact that S4(Γ0(9)) is one dimensional, and is spanned by both g(z) and P (1, 4, 9; z).

Theorem 1.5 is also easily described in this example. We have that a = 1 in Theo-
rem 1.5, and so the q-series f ∗ in Theorem 1.5 (1) is −m(z) |U(3). Theorem 1.5 (2) then
implies that almost every coefficient of m(z) |U(3) is a multiple of any fixed power of 3.
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Theorem 1.5 (3) follows trivially in this case since the coefficients of m(z) for exponents
which are powers of 3 obviously vanish.
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