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CONES OF HEEGNER DIVISORS

JAN HENDRIK BRUINIER AND MARTIN MÖLLER

Abstract

We show that the cone of primitive Heegner divisors is finitely generated
for many orthogonal Shimura varieties, including the moduli space of
polarized K3-surfaces. The proof relies on the growth of coefficients of
modular forms.
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1. Introduction

Let X be a projective algebraic variety. Both the pseudo-effective cone

of X (the closure of the cone Eff(X) of effective divisors) and dually (by

[BDPP13]) the cone of movable curves are important geometric invariants

of X that are notoriously hard to compute. The same claim can be made for

the cone of curves, or dually for the cone of nef divisors. The pseudo-effective

cone plays an important role in the computation of the Kodaira dimension of

moduli spaces; see, e.g., [HM82] or [FP05] for the moduli space of curves and

[GHS07] or [Pet15] for the moduli space of K3-surfaces.
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Mori’s cone theorem is the most important result implying that extremal

rays in the cone of curves in the half-space where KX is negative can accu-

mulate at most towards the plane K⊥
X . On the other hand, abelian surfaces

provide examples where all these cones are round. For varieties of general

type the knowledge about these cones is very limited and the existing poly-

hedrality results (for example [KKL16]) have hypotheses that are restrictive

or hard to verify. For example, it was shown recently by Mullane ([Mul17])

that the effective cone Eff(Mg,n) of the moduli space of curves is not finitely

generated for g ≥ 2 and n ≥ g + 1.

In this note we deduce from properties of modular forms the polyhedrality

of a natural subcone of the pseudo-effective cone on the Baily-Borel compact-

ification of orthogonal Shimura varieties. For concreteness, we work in the

introduction with the coarse moduli space F2d of quasi-polarized K3-surfaces

of degree 2d. For every integer d this space is the quotient F2d = Õ
+
(L)\D2d

of a 19-dimensional complex domain D2d by an arithmetic lattice Õ
+
(L); see

Section 2 for the background on lattices and this quotient. These moduli

spaces carry an infinite collection of divisors, the Noether-Lefschetz divisors,

geometrically defined as the loci ofK3-surfaces with Picard group of rank ≥ 2.

These divisors are also called Heegner divisors. They are not irreducible in

general. We recall the structure of the irreducible components, called primi-

tive Heegner divisors, in Section 4.

The structure of the Picard group Pic(F2d) up to torsion is now completely

understood. It is shown in [BLMM17] to be generated by Noether-Lefschetz

divisors and the rank has been computed in [Bru02b]. A next step towards

understanding the geometry of F2d would be to compute the natural cones in

Pic(F2d), the ample cone and the pseudo-effective cone. The latter contains

as a subcone the cone EffNL(F2d) generated by the primitive Heegner divisors.

The theorem of [BLMM17] implies in this language that EffNL(F2d) is full-

dimensional, but it does not imply that the two cones coincide. The following

theorem answers a question raised by Peterson in [Pet15].

Theorem 1.1. The cone EffNL(F2d) generated by the primitive Heegner

divisors is rational polyhedral. In particular it is finitely generated.

The methods can be applied to the more general situation where the lat-

tice L is an even lattice of signature (b+, 2) with b+ ≥ 3. If L splits off a

hyperbolic plane we show in Theorem 4.1 that the cone of Heegner divisors

on the hermitian symmetric space FL associated with L is rational polyhedral.

If the lattice L splits off two hyperbolic planes, we show in Theorem 4.4

generalizing Theorem 1.1 that the cone EffH(FL) generated by primitive Heeg-

ner divisors is rational polyhedral. To some extent the results carry over to
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the case b+ = 2 of Hilbert modular surfaces. The details are summarized in

Section 5.

It is an interesting question whether rational polyhedrality also holds for

the cone Eff(FL), or for which L the two cones differ at all. Even if they do,

the cone EffH(FL) is possibly at least as important. E.g., for moduli spaces of

hyperkähler manifolds the ring generated by Noether-Lefschetz cycles is shown

to coincide with the tautological subring of cohomology ([BL17], [PY16]).

2. Vector-valued modular forms and orthogonal Shimura varieties

This section gathers background material and notation on vector-valued

modular forms associated with a lattice and on orthogonal Shimura varieties.

It is well known that there are close connections between Heegner divisors on

orthogonal Shimura varieties and such vector-valued modular forms. Some of

these connections will be discussed and used in Section 4.

Vector-valued modular forms associated to a lattice. Suppose that

(L, (·, ·)) is an even lattice of signature (b+, b−) with quadratic form Q(x) =
1
2 (x, x). We denote by L∨ the dual lattice of L and by DL = L∨/L the

discriminant group. The order of DL is given by the absolute value of the

Gram determinant det(L), which is the determinant of any Gram matrix of

the bilinear form (·, ·). We let N be the level of L, i.e., the smallest integer

such that NQ(x) ∈ Z for every x ∈ L∨. We denote by (χμ)μ∈DL
the standard

basis of the group ring C[DL]. We realize the metaplectic group Mp2(Z) as the

group of pairs (g, σ) where g =
(
a b
c d

)
∈ SL2(Z) and σ is a holomorphic square

root of the automorphy factor j(g, τ ) = cτ + d on H. Here the multiplication

is defined as usual by

(g1, σ1(τ ))(g2, σ2(τ )) = (g1g2, σ1(g2τ )σ2(τ )).

Recall that there is a Weil representation ρL of Mp2(Z) on C[DL]; see, e.g.,

[Bor98], [Bru02a].

A vector-valued modular form of weight k ∈ 1
2Z for Mp2(Z) and the Weil

representation ρL is a holomorphic function f : H → C[DL] that satisfies the

transformation law

f(γτ ) = σ(τ )2kρL(γ)f(τ )

for all γ = (g, σ) ∈ Mp2(Z) and that is holomorphic at ∞. The vector space

of such modular forms is denoted by Mk,L. Every f ∈ Mk,L has a Fourier
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expansion

f(τ ) =
∑

μ∈DL

∑
m∈Q(μ)+Z

m≥0

a(m,μ) qm χμ, where q = e2πiτ .

We suppose throughout that 2k ≡ b+ − b− (mod 4). Let Γ′
∞ ⊂ Mp2(Z) be

the stabilizer of the cusp ∞. For every half-integer k > 2 the Eisenstein series

(1) Ek,L(τ ) =
∑

(g,σ)∈Γ′
∞\Mp2(Z)

σ(τ )−2k · ρL(g, σ)−1χ0

is a vector-valued modular form in Mk,L. There are two subspaces

Sk,L ⊂ M0
k,L ⊂ Mk,L

of the space of modular forms that are relevant in what follows, namely, the

subspace of cusp forms Sk,L and the intermediate space M0
k,L of forms whose

constant term is supported at the trivial element ofDL only. Following [Pet15]

we refer to this space as almost cusp forms. Obviously

(2) M0
k,L = Sk,L ⊕ 〈Ek,L〉 .

Eisenstein series. The coefficients of the Fourier expansion of the Eisen-

stein series

(3) Ek,L(τ ) =
∑

μ∈DL

∑
m≥0

ek,L(m,μ)qmχμ

have been computed explicitly in [BK01]. First, the ek,L are rational numbers

and (compare [Bru17, Proposition 2.1] or [BK01, Theorem 4.6])

(4) (−1)(2k−b++b−)/4 ek,L(m,μ) ≥ 0 if (m,μ) �= (0, 0) .

The constant term of Ek,L is given by χ0 ∈ C[DL].

We now specialize to the case k = (b+ + b−)/2 = rank(L)/2, which is

the relevant case for the geometric application. In this case, the Fourier

coefficients of the Eisenstein series are given by the following formulas (see

[BK01, Theorem 4.6]). For a discriminant D ∈ Z \ {0} we define the Dirichlet

character χD =
(
D
a

)
and the divisor sums with character

σs(a, χ) =
∑
d|a

χ(d)ds .

For μ ∈ DL we let dμ = min{b ∈ Z>0 : bμ = 0} be the order of μ. For

m ∈ Z+Q(μ) we denote by NL
m,μ(a) the mod-a representation number

NL
m,μ(a) = |{r ∈ L/aL : Q(r + μ) ≡ m (mod a)}| .
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We will frequently drop the superscript L if it is clear from the context.

Moreover, we define

wp = wp(m,μ) = 1 + 2 ordp(2dμm) .

The reason for introducing this is that the normalized representation numbers

pν(1−2k)Nm,μ(p
ν) are independent of ν if ν ≥ wp (see Hilfssatz 13 in [Sie35]).

Suppose that b++b− is even. Then, for μ ∈ DL and m ∈ Z+Q(μ) positive,

the coefficients are given by

(5) ek,L(m,μ) =
(2π)kmk−1(−1)b

−/2√
|DL|Γ(k)

· 1

L(k, χ4D)
· εm,μ,

where D denotes the discriminant D = (−1)(b
++b−)/2det(L) and where

εm,μ =
∏

p prime
p|2mN

pwp(1−2k)Nm,μ(p
wp)

1− χD(p)p−k
(6)

= σ1−k(d
2
μm,χ4D)

∏
p prime
p|2N

Nm,μ(p
wp)

p(2k−1)wp
.(7)

Suppose that b++b− is odd. We write md2μ = m0f
2 for positive integers m0

and f with (f, 2N) = 1 and ordp(m0) ∈ {0, 1} for all primes p coprime to 2N .

In this case

(8) ek,L(m,μ) =
(2π)kmk−1(−1)b

−/2√
|DL|Γ(k)

· L(k − 1/2, χD′)

ζ(2k − 1)
· εm,μ,

where D′ now denotes the discriminant D′ = 2(−1)(b
++b−+1)/2m0det(L) and

μ(·) the Möbius function, and where

εm,μ =
∏

p prime
p|2mN

1− χD′(p)p1/2−k

1− p1−2k
pwp(1−2k)Nm,μ(p

wp)(9)

=
∑
g|f

μ(g)χD′(g)g1/2−kσ2−2k(f/g)
∏

p prime
p|2N

Nm,μ(p
wp)

(1− p1−2k)p(2k−1)wp
.(10)

Estimates for representation numbers. The following lemmas are used

to give lower and upper bounds for the coefficients ek,L. Note that the repre-

sentation numbers Nm,μ(a) are weakly multiplicative in a.

We let U be the even unimodular lattice of signature (1, 1), realized as Z2

with the quadratic form Q((x, y)) = xy (a hyperbolic plane). The following

lemma is well known.
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Lemma 2.1. Let m ∈ Z and ν ∈ Z≥0. Then

NU
m,0(p

ν) =

{
(ordp(m) + 1)(1− 1/p)pν if ordp(m) < ν,

ν(1− 1/p)pν + pν if ordp(m) ≥ ν.

Corollary 2.2. We have

1− 1/p ≤ p−νNU
m,0(p

ν) ≤ ν + 1.

Lemma 2.3. Suppose that L = L1⊕U for an even lattice L1 with rank(L1)

= rank(L)− 2. Let μ ∈ DL and m ∈ Z+Q(μ). Then

(11) 1− 1/p ≤ p(1−2k)νNL
m,μ(p

ν) ≤ ν + 1 .

Proof. Any lattice element λ ∈ L can be written in the basis of L1 ⊕ U as

λ = (λ1, x, y) with λ1 ∈ L1 and x, y ∈ Z. Then Q(λ) = Q(λ1) + xy, and we

may suppose that μ = (μ1, 0, 0) since U is self-dual. We have

NL
m,μ(p

ν) = |{λ1∈L1/p
νL1, (x, y)∈U/pνU | Q(λ1+μ1)+xy ≡ m (mod pν)}|

=
∑

λ1∈L1/pνL1

NU
m−Q(λ1+μ1),0

(pν).

Hence the claimed bounds follow directly from Corollary 2.2. �
We now derive similar results for lattices which split two hyperbolic planes

over Z. It turns out that we get slightly stronger bounds in this case.

Lemma 2.4. Let m ∈ Z and ν ∈ Z≥0. Then

NU⊕U
m,0 (pν) =

{
p3ν(1 + p−1)(1− p− ordp(m)−1) if ordp(m) < ν,

p3ν(1 + p−1 − p−ν−1) if ordp(m) ≥ ν.

Proof. For the proof we briefly put M = U ⊕ U . The statement for

ordp(m) < ν follows from a result of Siegel; see, e.g., [BK01, Theorem 4.5].

The second statement can be deduced from the first, since

NM
0,0(p

ν) = #(M/pνM)−
∑

a∈Z/pνZ
a 	=0

NM
a,0(p

ν)

= p4ν −
ν−1∑
j=0

∑
b∈(Z/pν−jZ)×

NM
pjb,0(p

ν)

= p4ν −
ν−1∑
j=0

(pν−j − pν−j−1)p3ν(1 + p−1)(1− p−j−1).

Computing the latter sum, we obtain the assertion. �
Corollary 2.5. We have

1− p−2 ≤ p−3νNU⊕U
m,0 (pν) ≤ 1 + p−1.
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Lemma 2.6. Let L be an even lattice of rank 2k = b+ + b−. Suppose that

L = L0 ⊕ U ⊕ U for an even lattice L0 of rank 2k − 4. Let μ ∈ DL and

m ∈ Z+Q(μ). Then for all primes p and all ν ∈ Z≥0 we have

(12) 1− p−2 ≤ p(1−2k)νNL
m,μ(p

ν) ≤ 1 + p−1 .

Proof. Any lattice element λ ∈ L can be uniquely written as λ = λ0 + λ1

with λ0 ∈ L0 and λ1 ∈ U ⊕ U . Then Q(λ) = Q(λ0) +Q(λ1) and

NL
m,μ(p

ν) =
∑

λ0∈L0/pνL0

NU⊕U
m−Q(λ0+μ),0(p

ν).

Hence the claimed bounds follow directly from Corollary 2.2. �
The period domain of orthogonal Shimura varieties and Heegner

divisors. Let L be an even lattice of signature (b+, 2). The Hermitian sym-

metric domain DL of the orthogonal group of this lattice can be realized as

one of the two connected components of

DL ∪ DL = {z ∈ LC : Q(z) = 0 and (z, z) < 0}/C× .

Following [GHS07], we let O+(L) be the index two subgroup of the orthogonal

group O(L) which preserves the components, that is, the subgroup of elements

of O(L) of positive spinor norm. We let Õ(L) be the discriminant kernel of

O(L), that is, the kernel of the natural homomorphism O(L) → Aut(DL),

and we put

Õ
+
(L) = Õ(L) ∩O+(L).

The moduli spaces we are interested in are the locally symmetric spaces

FL(Γ) = Γ\DL for Γ ⊆ Õ
+
(L),

a subgroup of finite index. We abbreviate FL = FL(Õ
+
(L)).

For any vector v ∈ L∨ with Q(v) > 0 the hyperplane Hv ⊂ DL consists of

the points z orthogonal to v. For μ ∈ DL and m ∈ Q(μ) + Z positive, the

group Õ
+
(L) acts on vectors in μ + L of norm m with finitely many orbits.

Consequently, for any Γ ⊆ Õ
+
(L) the (reducible) Heegner divisors, defined as

Hm,μ = Γ \
( ∑

v∈μ+L
Q(v)=m

Hv

)
,

are well-defined in FL(Γ). These are in general neither reduced nor irreducible.

In particular for Γ ⊆ Õ
+
(L) of large index, Hm,μ may have many components.

Moreover, all the components have multiplicity two if μ = −μ and they all

have multiplicity one otherwise (see Lemma 4.2 below). We will discuss the

passage to irreducible components in Section 4.
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The tautological line bundle O(−1) on DL descends to a line bundle λ on

FL, called the Hodge bundle. (Thus λ is anti-ample in our notation.) The

Hodge bundle plays no role in our calculation, but the intersection numbers

with λ arise as coefficient extraction functionals, similar to the intersection

numbers with Heegner divisors; see the proof of Theorem 4.1.

Moduli spaces of K3-surfaces and Noether-Lefschetz divisors. In

the special case of the lattice L = L2d of signature (19, 2) given by

(13) L2d = 〈2d〉 ⊕ U⊕2 ⊕ E⊕2
8

the discriminant group is DL
∼= Z/2d. The modular variety

F2d
∼= Õ

+
(L)\DL

is closely related to the coarse moduli space of 2d-polarized K3-surfaces. More

precisely, an open subset F◦
2d of F2d, the complement of some Heegner divisors,

is the coarse moduli space of polarized K3-surfaces of degree 2d, while F2d is

the moduli space of quasi-polarized K3-surfaces. See [PSS71] and [Mor83] for

the quasi-polarized case and see, e.g., [GHS13] for a survey.

Note that in our definition L is isomorphic to the orthogonal complement

of the polarization class H with Q(H) = d in middle cohomology lattice

LK3 = U⊕3 ⊕ E⊕2
8

of the K3-surface with the negative of the intersection pairing. We let ω be a

fixed generator of the first summand of L in (13). Hence, DL is generated by

ω/2d.

The generic algebraic K3-surface has a Picard group of rank one. The

(reducible) Noether-Lefschetz divisors Dh,a are the closures in F2d of the loci

where the Picard group of the polarized K3-surfaces (S,H) have a class β not

in the linear space of H with Q(β) = h− 1 and (β,H) = a. We may assume

that 0 ≤ a < 2d. These are also the images in F2d of certain hyperplanes in

D2d (see, e.g., [MP13, Section 4.4]). More precisely, the projection onto H⊥

given by v �→ β − a
2dH induces a bijection of the Noether-Lefschetz divisors

Dh,a and the Heegner divisor Hm,μ with invariants related by

(14) m =
a2

4d
− (h− 1) μ = a · ω/2d mod L .

(The positivity of m is guaranteed by the Hodge index theorem.) We thus use

the terms Heegner divisors and Noether-Lefschetz divisors interchangeably in

the K3 case.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CONES OF HEEGNER DIVISORS 505

3. Cones of coefficients of modular forms

Our goal in this section is to show (in Theorem 3.4 below) that the cone

generated by the coefficient functionals of Fourier expansions of vector-valued

modular forms for a lattice L is rational polyhedral on the space of almost-

cusp forms. Our main criterion for rational polyhedrality is the following

geometric observation.

Lemma 3.1. Suppose that V is a finite-dimensional Q-vector space and

consider the cone

C =
{∑
n≥0

λncn | all λn ∈ R≥0, and almost all λn vanish
}

⊆ VR = V ⊗ R

generated by a countable collection of non-zero vectors (cn) ⊂ V . Suppose

that there exists a codimension one subspace S ⊂ V and an element e ∈ V \S
with the following properties:

(i) Writing cn = γne + s with s ∈ S, the coefficient γn is positive for all

n.

(ii) The vectors cn converge R>0-projectively to e, i.e., cn/γn − e → 0 ∈
SR.

(iii) Among the cn there exist elements cn1
, . . . , cns

such that a linear com-

bination
∑s

i=1 λicni
with all λi ∈ R>0 strictly positive lies in 〈e〉 and

such that the classes of cni
∈ V/〈e〉 ∼= S span S.

Then the cone C is rational polyhedral.

Proof. Due to the first condition the cone lies in the half-space of V where

to e-coefficient is positive. It thus suffices to show that the convex body CS
defined as the intersection of C with the affine hyperplane e + SR is rational

polyhedron. We view CS ⊂ SR by projection along e. Condition iii) now

implies immediately that this polyhedron CS contains an open neighborhood

of zero. Condition ii) implies that the projections of cn to CS converge to zero

in SR, which is an interior point of CS . Consequently, CS is the convex hull of

finitely many points R>0 · cn ∩ (e + SR). Since these are rational, the claim

follows. �
We suppose in the remainder of this section that k ≥ 2, with 2k−b++b− ≡ 4

(mod 8), and that L = L1 ⊕ U splits off a hyperbolic plane U . Here we want

to apply Lemma 3.1 to V = (M0
k,L(Q))∨, the dual of the space of almost-cusp

forms of half-integral weight k with rational coefficients. This rationality

statement and the rationality hypothesis in Lemma 3.1 is a restatement of

the fact ([McG03]) that Mk,L has a basis with rational coefficients.

The direct sum decomposition (2) implies that V decomposes as

V = 〈e〉 ⊕ S ,
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where e is defined by e(Ek,L) = −1 and e(Sk,L) = 0, and where S is the

subspace of functionals that are zero on Ek,L. We want to apply this lemma

to the vectors cn being the coefficient extraction functionals

cm,μ : M0
k,L(Q) → Q, f =

∑
μ∈DL

∑
n≥0

am,μq
meμ �→ cm,μ(f) = am,μ

for μ ∈ DL and m ∈ (Q(μ) + Z) ∩ Q>0; i.e., the index set consists of pairs

n = (m,μ).

Condition i) of the lemma is simply a restatement of (4). Note that the

strict positivity follows from the fact that L splits off a hyperbolic plane over

Z. Condition ii) of this lemma is a consequence of the following proposition.

Proposition 3.2. Assume k ≥ 5/2. For μ ∈ DL and m ∈ Q(μ) + Z

positive, the coefficients ek,L(m,μ) of the Eisenstein series Ek,L are negative

and satisfy

−ek,L(m,μ) ≥ Ck,L ·mk−1

for some positive constant Ck,L depending on the weight and the lattice.

If k = 2 coefficients ek,L(m,μ) of the Eisenstein series Ek,L are negative

and for every ε > 0 there is a positive constant CL,ε depending on the lattice

such that

−e2,L(m,μ) ≥ CL,ε ·m1−ε.

For any k ≥ 2 the coefficients am,μ of any cusp form f =
∑

am,μq
mχμ ∈

Sk,L are bounded above in absolute value by

(15) |am,μ| ≤ Cf,ε m
k
2−

1
4+ε

for some positive constant Cf,ε depending on f and ε.

Proof. The last statement is the Weil bound for the coefficients of cusp

forms, see, e.g., [Sar90, Propositions 1.5.3 and 1.5.5].

The negativity in the first statement is a consequence of (4) and our con-

gruence condition on k. To prove the lower bound, given the factor mk−1

in both (5) and (8), we have to bound the other terms that depend on m

uniformly from below.

In the case b+ odd we use the expression in (10). Lemma 2.3 gives a lower

bound for Nm,μ(p
wp)/p(2k−1)wp for the finitely many primes dividing 2N . For

the remaining terms we use the estimate that for k ≥ 5/2,∑
g|f

μ(g)χD′(g)g1/2−kσ2−2k(f/g) ≥ 1−
∑
g|f
g>1

g1/2−kσ2−2k(f/g)

≥ 1− (ζ(2)− 1)ζ(3) ≥ 1/5.
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In the case b+ even and k ≥ 3 we use the expression (7). Again, Lemma 2.3

gives a lower bound for the normalized representation numbers and together

with

σ1−k(d
2
μm,χ4D) ≥ 1− (ζ(2)− 1) > 0

we obtain a uniform lower bound for εm,μ. Finally, in the case k = 2 we split

off the contribution of the divisor 1 to σ1−k(d
2
μm,χ4D) and use the estimate

σ1−k(d
2
μm,χ4D) ≤ σ1(d

2
μm) = O(log(m))

for the remaining terms. �
Because of the direct sum decomposition V = 〈e〉 ⊕ S provided by the

conditions in Lemma 3.1, its condition iii) can be formulated equivalently in

terms of the restriction of the coefficient functionals

c̄m,μ = cm,μ|Sk,L(Q) : Sk,L(Q) → Q

to the subspace of cusp forms with rational coefficients. The statement is

precisely the content of the following proposition.

Proposition 3.3. There exist indices ((mi, μi))
s
i=1 and real numbers λi >

0 such that
s∑

i=1

λi c̄mi,μi
= 0

in Sk,L(R)
∨ and such that the functionals (c̄mi,μi

)si=1 span Sk,L(R)
∨.

Proof. As in [Bru17] we write L− for the lattice (L,−Q). We identify the

Weil representation ρL− with the dual representation of ρL. The product of

a weakly holomorphic modular form h of weight 2− k for the representation

ρL− and any element g ∈ Sk,L is a weakly holomorphic modular form of

weight 2 for Mp2(Z), i.e., a meromorphic differential form on the modular

curve X(1). The residue at the cusp ∞ of hg vanishes by the residue theorem.

The idea is to construct a weakly holomorphic modular form h for ρL− whose

principal part at ∞ has non-negative coefficients only and whose principal

part has sufficiently many non-vanishing terms (that will be the λi of the

proposition) so that the residue pairing g �→ Res(hg) involves a spanning

system of Sk,L(R)
∨.

This follows from [Bru17, Lemma 3.5 and Proposition 3.2]. In fact, let

tμ = min{−Q(λ) | λ ∈ μ+ L, −Q(λ) > 0} ∈ 1
NZ>0 for μ ∈ DL,

and let T = max{tμ | μ ∈ DL}. Choose B ∈ Z>0 sufficiently large such

that the weight k′ := 2 − k + 12B > 2 and such that the functionals c̄μ,� for

� < B − T generate Sk,L(R)
∨.

We claim that the weakly holomorphic modular form

h(τ ) = Δ(τ )−BEk′,L−(τ ) ∈ M !
2−k,L−
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has non-negative Fourier coefficients cμ,�(h) and moreover

c�,μ(h) > 0 for all μ ∈ DL, � ∈ Z−Q(μ), � ≥ T −B .

To see this, note that the Fourier expansion of Δ(τ )−B is q−B times a positive

power of the generating function
∏

j≥1(1 − qj)−1 of the partition function.

Consequently, the coefficient extraction cj(Δ
−B) is positive for integral j ≥

−B and zero otherwise. If μ ∈ DL and � ∈ Z−Q(μ), then

c�,μ(h) = c�−tμ(Δ
−B) · ek′,L−(tμ, μ) +

∑
�−tμ<j∈Z

cj(Δ
−B) · ek′,L−(�− j, μ) .

The congruence hypothesis on k implies that

2k′ − b+(L−) + b−(L−) = 2k′ − b− + b+ ≡ 0 (8)

and hence that by (4) all the coefficients ek′,L−(· , ·) are positive. Conse-

quently, the first summand of the right hand side is positive by the definition

of tμ and the hypothesis on �, and the other summands are non-negative. This

implies the claim.

Let ((mi, μi))
s
i=1 be some enumeration of the pairs (m,μ) for μ ∈ DL and

m ∈ Z+Q(μ) with 0 < m < B−T . By our choice of B, the functionals c̄mi,μi

span Sk,L(R)
∨. If we let λi = c−mi,μi

(h), then the residue theorem applied

to gh implies that
s∑

i=1

λi c̄mi,μi
(g) = 0

for any g ∈ Sk,L. �
Not only does this proof break down if the congruence hypothesis on k is

violated but also the statement is wrong in this case, as pairing the weakly

holomorphic form h with the Eisenstein series Ek,L shows. In fact, all its

coefficients are positive, including the constant term.

We summarize the results of this section in the following statement.

Theorem 3.4. Let L be a lattice of signature (b+, b−) that splits off a

hyperbolic plane. We suppose that k ≥ 2 and 2k − b+ + b− ≡ 4 (mod 8).

Then the cone C generated by the coefficient functionals cm,μ on the space

of weight k almost-cusp forms M0
k,L for the lattice L (where μ ∈ DL and

m ∈ (Z+Q(μ))∩Q>0) is a rational polyhedral cone. In particular, the cone C
is finitely generated.

4. Cones of primitive Heegner divisors

We now translate the results of the previous section into geometric state-

ments. We suppose for the rest of this paper that b− = 2 and put k = 1+b+/2.
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Our motivation for studying cones of coefficient functionals in spaces of mod-

ular forms comes from the following transport of structure to the rational

Picard group of orthogonal Shimura varieties. By [Bor99] or [Bru02a, Theo-

rem 0.4] and [Pet15, Theorem 4.3.2] the map

(16) ψ : M0
k,L(Q)∨ → PicQ(FL(Γ)), cm,μ �→ Hm,μ ,

sending the coefficient extraction functional cm,μ to the Heegner divisor Hm,μ

and the coefficient extraction functional −c0,0 to the Hodge class λ, is a ho-

momorphism. We use this to show the following.

Theorem 4.1. Let Γ ⊆ Õ
+
(L) be a finite index subgroup. Suppose that

b+ ≥ 3 and that L splits off a hyperbolic plane. Then the cone generated by

the (reducible) Heegner divisors Hm,μ on FL(Γ) is rational polyhedral.

Proof. Since b− = 2 and k = 1 + b+/2, the congruence condition for k in

Theorem 3.4 holds. The claim follows from this theorem and the fact that

the image of a rational polyhedral cone under a linear map is still rational

polyhedral. �
The map ψ is injective in many situations (e.g., if L splits off two hyper-

bolic planes, [Bru02a]), and we will use this below. It is moreover surjective

([BLMM17]) under the hypotheses made here. This implies that the image

cone is full-dimensional.

The second goal of this section is to discuss the passage from primitive to

(reducible) Heegner divisors and to prove Theorem 1.1 stated in the introduc-

tion, and the generalization Theorem 4.4 below.

Primitive Heegner divisors. The Heegner divisors are in general not

irreducible. The divisibility of the defining lattice element v ∈ L∨ with

Q(v) = m and v ≡ μ mod DL is an obvious invariant distinguishing irre-

ducible components. Since divisibility is preserved by the action of Õ
+
(L),

the definition

PΔ,δ = Õ
+
(L) \

( ∑
L+δ�v primitive,

Q(v)=Δ

Hv

)

for δ ∈ DL and Δ ∈ Z+Q(δ) gives well-defined divisors in FL, called primitive

Heegner divisors. By definition (and the fact that any lattice vector can be

written uniquely as a positive multiple of a primitive lattice vector)

(17) Hm,μ =
∑

r∈Z>0

r2|m

∑
δ∈DL
rδ=μ

Pm/r2,δ .

Here and in what follows we say that r2 | m with m ∈ Q(μ)+Z if there exists

δ ∈ DL with m/r2 ∈ Q(δ)+Z. We could drop this condition, since Pm/r2,δ is

empty otherwise.
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The converse to (17) follows from a variant of Möbius inversion.

Lemma 4.2. The primitive divisors PΔ,δ can be written in terms of the

Heegner divisors Hm,σ as

(18) PΔ,δ =
∑

r∈Z>0

r2|Δ

μ(r)
∑

σ∈DL
rσ=δ

HΔ/r2,σ .

Proof. The statement for Δ without quadratic divisors is obvious and from

the definition in (17) and induction on the number of quadratic divisors we

obtain

(19)

PΔ,δ = HΔ,δ −
∑
s 	=1
s2|Δ

∑
τs=δ

( ∑
t∈Z

t2|Δ/s2

μ(t)
∑
σt=τ

HΔ/s2t2,σ

)

= HΔ,δ −
∑
s 	=1
s2|Δ

( ∑
t∈Z

t2|Δ/s2

μ(t)
∑
τs=δ

∑
σt=τ

HΔ/s2t2,σ

)
.

We can group the interior double sum as a single sum over all σ with σ ·st = δ.

We let r = st and consider the summands contributing to HΔ/r2,σ. It remains

to show that for given r the exterior double sum including the factor μ(t) adds

up to μ(r). If some prime divides r more than once, the claimed contribution

follows since
∑

I⊆P (−1)|I| = 0 = μ(h) for any finite set (of primes) P . In the

remaining cases, one summand is missing in the subset summation since 1 �= s,

and with the global minus sign we obtain the coefficient μ(h) we want. �
Primitive Noether-Lefschetz divisors. In the case of K3-lattice L =

L2d the decomposition of Heegner divisors into irreducible components can

also be described by a geometric decomposition of Noether-Lefschetz divisors.

The Picard group of a generic member of the Noether-Lefschetz divisors con-

tains a rank two lattice Λ with signature (1, 1). Conversely, the intersection

matrix Λ with respect to some basis {H, β} starting with the polarization

class H with Q(H) = 2d has the form

MΛ =

(
2d y

y 2x

)
.

The discriminant Δ(Λ) = det(MΛ) ∈ Z and the coset δ = y mod 2d are

invariants of such a lattice and it is easy to show that the pair (Δ, δ) is a

classifying invariant of such rank two lattices. We now define the primitive

Noether-Lefschetz divisors PΔ,δ to be the closure of the locus of K3-surfaces

that have a sublattice Λ ⊂ LK3 of signature (1, 1), containing H and we pro-

vide them with multiplicity one or two depending on 2δ �= 0 or not modulo 2d.
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The similarity in notation to primitive Heegner divisors is intentional, since

we claim that

(20) PΔ,δ = PΔ/4d,δ(ω/2d) .

This can be seen from the definitions, tracing the definitions along the bi-

jection v �→ β − 1
2dH between Heegner and Noether-Lefschetz divisors given

along with equation (14).

The main result on EffH(FL). We suppose in the remainder of this

section that b+ ≥ 3 and that L = L0⊕U⊕2 splits off two copies of a hyperbolic

plane U . We put k = 1 + b+/2 and Γ = Õ
+
(L); i.e., we work on the Shimura

varieties FL.

Lemma 4.3. Under these conditions the primitive Heegner divisors PΔ,δ

are irreducible if 2δ �= 0 ∈ DL. If 2δ = 0 ∈ DL, then PΔ,δ is (if non-empty)

an irreducible divisor with multiplicity two.

Proof. The multiplicity two stems from the fact that v and −v give the

same divisor if 2δ = 0 ∈ DL. It remains to show that any two primitive

elements in L∨ with the same norm and the same DL-coset lie in the same

Õ
+
(L)-orbit. This can be done using Eichler transformations; see Lemma 4.4

in [FH00]. �
The primitive Heegner divisors in our main result are thus irreducible.

Theorem 4.4. The cone EffH(FL) generated by the primitive Heegner

divisors PΔ,δ is rational polyhedral. In particular it is finitely generated.

We prove this theorem in the same way as Theorem 3.4, using a refinement

of the estimate in Proposition 3.2. Together with the main observation of

the proof of Lemma 3.1, the following proposition implies that the vectors

corresponding to primitive Heegner divisors still converge to an interior point

of the cone C = EffH(FL). Theorems 1.1 and 4.4 follow immediately from the

following statement. Let ϕ = ψ−1 be the inverse of the map ψ defined in (16).

Proposition 4.5. Under the identification ϕ any infinite sequence of pair-

wise different primitive Heegner divisor PΔ,δ converges R>0-projectively to the

functional e.

Proof. As in Proposition 3.2, we show that there is a constant C > 0 and

for any ε > 0 and any cusp form f of weight k there is a constant Cf,ε > 0

such that the bounds

ϕ(PΔ,δ)(Ek,L) ≥ C ·Δk−1

for the coefficients functional evaluated at Eisenstein series, and

|ϕ(PΔ,δ)(f)| ≤ Cf,ε ·Δ
k
2−

1
4+ε if k ∈ Z

hold for any δ ∈ DL and any positive Δ ∈ Q(δ) + Z.
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The claim about cusp forms follows immediately from (15), since the num-

ber of summands in (18) contributing to PΔ,δ is at most DL times the number

of square divisors of Δ, which is O(Δε) for any ε.

In order to estimate the Eisenstein series contribution,we define Kr ⊆ DL

to be the kernel of the multiplication by r and we observe that 1 ≤ |Kr| ≤
r2k−4, since the lattice L0 is of rank 2k − 4.

In the case b+ odd, we deduce from (18) and the formula (8) for the coeffi-

cients that ϕ(PΔ,δ) evaluated at the Eisenstein series is equal to Δk−1 times

some constants independent of Δ times

(21) Q(Δ, δ) =
∑

r:r2|Δ
μ(r)

∑
μr=δ

1

r2(k−1)
εΔ/r2,μ ,

where εm,μ was defined in (9). We want to show that there is some C > 0

such that Q(Δ, δ) > C for all Δ. By definition of the Möbius function,

Q(Δ, δ) is greater than or equal to εΔ,δ (stemming from r = 1) minus the

sum over subsets P of odd cardinality of the set of prime divisors of Δ. In

order to estimate these negative contributions from above, we compare εΔ,δ

with εΔ/r2,μ using (9). First we remark that we can arbitrarily enlarge (by

Theorem 7 in [BK01]) the set of primes over which the product runs. Hence we

can suppose that the product runs over the same set of primes when computing

εΔ,δ and εΔ/r2,μ. The terms 1−p1−2k obviously cancel and we claim that the

same holds for the terms 1−χD′(p)p1/2−k. HereD′ = 2(−1)(b
++b−+1)/2Δ|DL|

and the corresponding discriminant associated with Δ/r2 is by definition D̃′ =

D′/r20 , where we have written r = r0r1 with r1 the largest factor in r coprime

to 2N . Said differently, D̃′ and D′ differ only in prime factors p dividing 2N

and for those χD′(p) = 0 = χ
˜D′(p) since 2|DL| divides D̃′.

As a quotient of the remaining factors we obtain

(22)

εΔ/r2,μ

εΔ,δ
=

∏
p|r

pwp(Δ/r2,μ)(1−2k)NΔ/r2,μ(p
wp(Δ/r2,μ))

pwp(Δ,δ)(1−2k)NΔ,δ(pwp(Δ,δ))

=
∏
p|r

pwp(Δ,δ)(1−2k)NΔ/r2,μ(p
wp(Δ,δ))

pwp(Δ,δ)(1−2k)NΔ,δ(pwp(Δ,δ))
.

According to Lemma 2.6, we get the bound

(23)
εΔ/r2,μ

εΔ,δ
≤

∏
p|r

1 + p−1

1− p−2
=

∏
p|r

1

1− p−1
.
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Using |Kr| ≤ r2k−4, we obtain

(24)

Q(Δ, δ)

εΔ,δ
≥ 1 −

∑
|P | odd

∏
p∈P

1

p(p− 1)

≥ 1− 1

2

( ∏
p prime

(
1 +

1

p(p− 1)

)
−

∏
p prime

(
1− 1

p(p− 1)

))
.

The first Euler product appearing on the right hand side is known as Landau’s

totient constant∏
p prime

(
1 +

1

p(p− 1)

)
=

315

2π4
ζ(3) = 1.943596 . . . .

Inserting the numerical values, we see that

(25)
Q(Δ, δ)

εΔ,δ
≥ 0.02820178 . . . > 0,

which can be rigorously proven to be positive by standard remainder term es-

timates for zeta-functions. (The estimate can even be improved using Artin’s

constant
∏

p prime

(
1− 1

p(p−1)

)
= 0.373955 . . . .)

The case b+ even is similar, but easier. Again we need to estimate
εΔ/r2,μ

εΔ,δ

from (6) uniformly from below. By Theorem 7 in [BK01] we may again

suppose that the product runs over the same set of primes for Δ and Δ/r2.

This time, the discriminant involved in 1− χD(p)p−k does not depend on m.

Hence the corresponding factors cancel. The remaining expression is the same

as in (22) and can be estimated as in (23) above. �
Algorithmic aspects. The proof of Theorem 4.4 is effective and can be

turned into an algorithm to compute extremal rays of EffH(FL) for any L as

follows.

The first step is the computation of functionals that span Sk,L(R)
∨ and

whose convex combination contains zero (Proposition 3.3). The bound in this

proof is effective, as it depends on the dimension of Sk,L(R)
∨ and the values

of the quadratic form on DL. For practical purposes one computes a ball Br

around zero that is contained in the span of these functionals.

The second step consists of computing m0 such that for m ≥ m0 the func-

tionals cm,μ belong to the tubeBr+〈e〉. This requires us to make the constants

Cf,ε and CL,ε of Proposition 3.2 effective, which is possible as an inspection of

the corresponding proofs shows. So far, we have made Theorem 3.4 effective.

In order to do the same for Theorem 4.4, one has to use the slightly worse

bound for the Eisenstein series given in the proof of Proposition 4.5.

Finally, EffH(FL) can be computed among the functional cm,μ for m ≤ m0

by linear programming.
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5. The case of Hilbert modular surfaces

Let F = Q(
√
D) be a real quadratic field of discriminant D > 0 with

ring of integers OF . Denote the conjugation in F by ν �→ ν′. The Hilbert

modular surface associated with F and an ideal b ⊂ OF is the quotientXF,b =

SL(OF ⊕b)\H2; see, e.g., [vdG88] for a textbook reference. In this section we

show that the results of the preceding sections partially also apply to Hilbert

modular surfaces.

We first remark that the cone generated by Heegner divisors (also called

Hirzebruch-Zagier cycles in this case) is no longer full-dimensional on XF,b,

contrary to the case of b+ ≥ 3 (see [BLMM17]). First, the two foliations on

Hilbert modular surfaces define two line bundles L1 and L2 on XF,b. Heegner

divisors always lie in the subspace whose intersection with L1 ⊗ L−1
2 is zero.

Second, even in this subspace, the cone is not always full-dimensional; see

[HLR86].

Hilbert modular surfaces nevertheless fall into the scope of the preceding

sections. In fact, let B = N(b), and consider the lattice

Lb =

{(
x ν′

ν y

)
: x ∈ Z, y ∈ BZ, ν ∈ b

}
with the integral quadratic form Q(X) = − 1

B det(X). The dual lattice of Lb

is given by

L∨
b =

{(
x ν′

ν y

)
: x ∈ Z, y ∈ BZ, ν ∈ d

−1
F b

}
,

where dF ⊂ OF is the different ideal. In particular, we have L∨
b /Lb

∼=
d
−1
F /OF . The Hilbert modular group SL(OF ⊕ b) acts on Lb by

(g,X) �→ gX tg′

for g ∈ SL(OF ⊕ b) and X ∈ Lb. This action preserves the quadratic form Q,

and according to [Bru08, Section 2.7] it induces an isomorphism

SL(OF ⊕ b) ∼= Spin(Lb).

On the other hand, according to [MP16, Lemma 2.6], the image of the spin

group of a lattice in the orthogonal group is given by the intersection of the

stable special orthogonal group with the subgroup of elements with positive

spinor norm, that is,

Spin(Lb)/{±1} ∼= S̃O
+
(Lb).

Consequently, we have SL(OF ⊕ b)/{±1} ∼= S̃O
+
(Lb), and

XF,b
∼= FLb

(S̃O
+
(Lb)).
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The explicit identification of XF,b with the orthogonal Shimura variety on the

right hand side is given by [Bru08, Equation (2.33)]. The Heegner divisors on

the right hand side can be identified with Hirzebruch-Zagier divisors on XF,b.

To describe the symmetric Hilbert modular group, we consider the vector

λ =
(
1 0
0 −B

)
∈ Lb with Q(λ) = 1. The reflection τλ ∈ O(Lb) taking λ to

its negative and fixing its orthogonal complement belongs to Õ
+
(Lb) and has

determinant −1. On H×H it induces the transformation

(z1, z2) �→
(
− 1

Bz2
,− 1

Bz1

)
.(26)

Hence, the projective symmetric Hilbert modular group is isomorphic to

Õ
+
(Lb), and the corresponding symmetric Hilbert modular surface is given

by

Xsymm
F,b

∼= FLb
(Õ

+
(Lb)).

Since Lb splits one hyperbolic plane over Z, we may apply Theorem 4.1 in

this situation.

Corollary 5.1. The cone generated by the (reducible) Hirzebruch-Zagier

cycles on the Hilbert modular surface XF,b is rational polyhedral. The same

statement holds on the symmetric Hilbert modular surface Xsymm
F,b .

It seems quite plausible that the rational polyhedrality can be extended in

the case of Hilbert modular surfaces to the cone generated by the irreducible

components of Hirzebruch-Zagier cycles. The description is more complicated

than in the case when L splits off two hyperbolic planes. It has been given in

many cases by Hirzebruch, Franke, and Hausmann; see, e.g., the survey and

references in [MZ16, Section 5.2] or [vdG88, Section 5.3].
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