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Abstra
t. In this paper we study the distribution of the 
oeÆ
ients a(n) of half integral

weight modular forms modulo odd integers M . As a 
onsequen
e we obtain improvements of

indivisibility results for the 
entral 
riti
al values of quadrati
 twists of L-fun
tions asso
iated

with integral weight newforms established in [O-S℄. Moreover, we �nd a simple 
riterion for

proving 
ases of Newman's 
onje
ture for the partition fun
tion.

1. Introdu
tion and Statement of Results

Suppose that w 2

1

2

Z, that N is a positive integer (with 4 j N if w 62 Z), and that � is

a Diri
hlet 
hara
ter whose 
ondu
tor divides N . Let S

w

(N;�) denote the spa
e of weight

w 
usp forms with respe
t to the 
ongruen
e subgroup �

0

(N) with Nebentypus 
hara
ter

� ([K, Sh℄ are standard referen
es). As usual, we shall identify every su
h 
usp form f(z)

with its Fourier expansion (where q = e

2�iz

throughout)

f(z) =

1

X

n=1

a(n)q

n

:

Inspired by Kolyvagin's work on the Bir
h and Swinnerton-Dyer Conje
ture and works

of Kohnen, Zagier and Waldspurger relating the 
oeÆ
ients of half-integral weight He
ke

eigenforms to values of modular L-fun
tions, there have been a number of works on the

indivisiblity of the 
oeÆ
ients of half-integral weight 
usp forms. For example, works by

Bruinier, Jo
hnowitz, M
Graw, and Ono and Skinner [Br, J, M, O-S℄ imply that if f(z) =

P

1

n=1

a(n)q

n

2 S

�+

1

2

(N;�) \ Z[[q℄℄ is an eigenform whi
h is not a single variable theta

series, then every suÆ
iently large prime ` has the property that there are in�nitely many
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2 JAN H. BRUINIER AND KEN ONO

square-free integers n for whi
h a(n) 6� 0 (mod `). Although this result is satisfying, many

questions remain. For example, it is natural to ask for a pre
ise and natural arithmeti


des
ription of these primes `.

Mu
h more is known about the 
oeÆ
ients of integer weight 
usp forms. The arithmeti


of Galois representations and the 
ombinatori
s of He
ke operators di
tate their behavior.

For example, these arguments are very useful for studying the distribution of the 
oeÆ
ients

moduloM . Using Galois representations and a delightfully simple argument, Serre observed

[6.4, S℄ that there is a set of primes p with positive density with the property that

(1.1) a(np

r

) � (r + 1)a(n) (mod M)

for every pair of positive integers r and n. Obviously, (1.1) implies that ea
h residue


lass modulo M 
ontains in�nitely many 
oeÆ
ients provided that there is an n for whi
h

g
d(a(n);M) = 1.

Half-integral weight 
usp forms do not ne
essarily enjoy this property. To see this, noti
e

that Dedekind's fun
tion �(24z) := q

Q

1

n=1

(1� q

24n

) 2 S

1

2

(576; �

12

) (here �

12

=

�

12

�

�

) has

the q-expansion

�(24z) =

1

X

n=1

�

12

(n)q

n

2

= q � q

25

� q

49

+ q

121

+ q

169

� � � � :

We begin by determining 
onditions whi
h guarantee that a half-integral weight 
usp form

possesses this property modulo an odd integer M .

Theorem 1. Let f(z) =

P

1

n=1

a(n)q

n

2 S

�+

1

2

(N;�) \ Z[[q℄℄ be a half-integral weight 
usp

form, and let � be a real Diri
hlet 
hara
ter. If M is an odd integer and there is a positive

integer n for whi
h g
d(a(n);M) = 1, then at least one of the following is true:

(1) If 0 � r < M , then

#f0 � n � X : a(n) � r (mod M)g �

r;M

�

p

X
= logX if 1 � r < M;

X if r = 0:

(2) There are �nitely many square-free integers, say n

1

; n

2

; : : : ; n

t

, for whi
h

f(z) �

t

X

i=1

1

X

m=1

a(n

i

m

2

)q

n

i

m

2

(mod M):

Moreover if g
d(M;N) = 1, � 2 f�1g and p - NM is a prime with

�

n

i

p

�

2 f0; �g

for ea
h 1 � i � t, then (p � 1)f(z) is an eigenform modulo M of the half-integral

weight He
ke operator T (p

2

; �; �). In parti
ular, we have

(p� 1)f(z) j T (p

2

; �; �) � ��(p)

�

(�1)

�

p

�

(p

�

+ p

��1

)(p� 1)f(z) (mod M):
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Remarks.

(1) For simpli
ity, the results here are stated for 
usp forms with integer 
oeÆ
ients and

real Nebentypus 
hara
ter. However, we stress that Theorem 1 (2), and Corollaries 2 and

3 apply for any half-integral weight 
usp form with algebrai
 integer 
oeÆ
ients. Theorem

1 (1) requires a minor modi�
ation. If � is a suitable algebrai
 integer and M is a suitable

ideal, then one obtains the frequen
y that a(n) � r� (mod M), for every odd number r.

(2) In view of the single variable theta series and those forms 
ongruent to su
h series, it

turns out that the estimates in Theorem 1 (1) are nearly optimal. However, apart from

su
h forms, it is plausible that ea
h residue 
lass r 
ontains a positive proportion of a(n)

(mod M).

(3) Con
lusions (1) and (2) in Theorem 1 are not ne
essarily mutually ex
lusive. In fa
t,

one may often employ Theorem 1 (2) to prove Theorem 1 (1) (see Theorem 4).

(4) Suppose that f(z) is a He
ke eigenform whi
h is not a single variable theta series. If

f(z) satis�es Theorem 1 (2) and g
d(p�1;M) = 1, then Deligne's theorem bounding He
ke

eigenvalues requires that M � 2p

��

1

2

.

Theorem 1 has a variety of number theoreti
 appli
ations, and we begin with the arith-

meti
 of the Shimura 
orresponden
e. If f(z) =

P

1

n=1

a(n)q

n

2 S

�+

1

2

(N;�) \ Z[[q℄℄ is a

He
ke eigenform, then we address the problem des
ribed at the outset (i.e. that of obtaining

a pre
ise and purely arithmeti
 des
ription of those primes ` for whi
h there are only �nitely

many square-free n with a(n) 6� 0 (mod `)).

To motivate our result, we re
all an example of Kohnen and Zagier [K-Z℄. If �(z) =

P

1

n=1

�(n)q

n

= q�24q

2

+ � � � 2 S

12

(1; �

0

), then Kohnen and Zagier proved that the fun
tion

f

�

(z) 2 S

13=2

(4; �

0

) de�ned by

f

�

(z) =

1

X

n=1

a(n)q

n

=

60

2�i

(2G

4

(4z)�

0

(z)�G

0

4

(4z)�(z)) = q � 56q

4

+ 120q

5

� : : :

(throughout �

0

denotes the trivial 
hara
ter) is a preimage of �(z) under the Shimura


orresponden
e. Here G

4

(z) is the usual weight 4 Eisenstein series on SL

2

(Z) and �(z) =

1 + 2

P

1

n=1

q

n

2

. It turns out that

(1.2) f

�

(z) =

1

X

n=1

a(n)q

n

�

1

X

n=1

�

n

5

�

q

n

2

(mod 5):

Obviously n = 1 is the only square-free integer for whi
h a(n) 6� 0 (mod 5). Ramanujan

proved that if p is prime, then

(1.3) �(p) � p+ p

2

(mod 5):

In view of Theorem 1 (2), it is natural to suspe
t a strong relationship between 
ongruen
es

(1.2) and (1.3).
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In the late 1960s and early 1970s, Serre and Swinnerton-Dyer [SwD℄ employed Deligne's

theory of Galois representations to `explain' 
ongruen
es su
h as (1.3). Suppose that F (z) =

P

1

n=1

A(n)q

n

2 S

2�

(N

1

; �

0

) \ Z[[q℄℄ is a normalized He
ke eigenform. If ` is prime, then

Deligne proved that there is a Galois representation

(1.4) �

`;F

: Gal(Q =Q) ! GL

2

(Z=`Z)

su
h that for every prime p - N

1

` we have

Tr(�

`;F

(Frob

p

)) � A(p) (mod `);

det(�

`;F

(Frob

p

)) � p

2��1

(mod `):

A prime ` � 5 is 
alled ex
eptional if Im(�

`;F

(Gal(Q =Q)) does not 
ontain SL

2

(Z=`Z). The

Serre and Swinnerton-Dyer theory [SwD, R1, R2, R3℄ implies that 
ongruen
es like (1.3)

hold pre
isely for ex
eptional primes `. Combining these ideas with Theorem 1, we obtain:

Corollary 2. Suppose that f(z) =

P

1

n=1

a(n)q

n

2 S

�+

1

2

(N

0

; �)\Z[[q℄℄ is an eigenform that

is a preimage of a newform F (z) =

P

1

n=1

A(n)q

n

2 S

2�

(N

1

; �

0

) \ Z[[q℄℄ under the Shimura


orresponden
e.

(1) If ` � 5 is a non-ex
eptional prime for whi
h ` - N

0

and f(z) 6� 0 (mod `), then

there are in�nitely many square-free integers n for whi
h a(n) 6� 0 (mod `).

(2) If F (z) has 
omplex multipli
ation and ` - N

0

is a prime for whi
h f(z) 6� 0 (mod `),

then there are in�nitely many square-free integers n for whi
h a(n) 6� 0 (mod `).

Remark. Every F (z) without 
omplex multipli
ation has at most �nitely many ex
eptional

primes `, and they are easily determined (see [SwD℄, [Th. 2.1, R3℄).

By Kolyvagin's 
elebrated work on the Bir
h and Swinnerton-Dyer Conje
ture, it is well

known that results like Corollary 2 have many 
onsequen
es for ellipti
 
urves. For example,

re
ent similar works [Br, J, O-S℄ 
ontain, for suÆ
iently large primes `, results regarding the

frequen
y of quadrati
 twists of ellipti
 
urves with analyti
 rank 0 whose Tate-Shafarevi
h

groups la
k `-torsion, as well as e�e
tive upper bounds for the order of the `-part of the

Tate-Shafarevi
h group of ellipti
 
urves with analyti
 rank 1. Corollary 2 in the present

work yields more pre
ise versions of these results by 
larifying what is meant for a prime `

to be suÆ
iently large. Sin
e the 
onsequen
es (i.e. [Cor. 2-5, O-S℄) follow from [Cor. 1,

O-S℄ in a straightforward way, here we 
ontent ourselves by stating its improvement.

We begin with some notation. Suppose that F (z) =

P

1

n=1

A(n)q

n

2 S

2k

(N;�

0

) is an

even integer weight newform. If D is the fundamental dis
riminant of a quadrati
 �eld whi
h

is 
oprime to N , then let (F 
 �

D

)(z) denote the quadrati
 twist of F (z) de�ned by

(1.5) (F 
 �

D

)(z) =

1

X

n=1

�

D

n

�

A(n)q

n

:



COEFFICIENTS OF HALF-INTEGRAL WEIGHT MODULAR FORMS 5

Moreover, let D

0

be de�ned by

(1.6) D

0

:=

�

jDj if D is odd;

jDj=4 if D is even:

A non-zero 
omplex number 
 2 C

�

is a ni
e period for F (z) if

(1.7)

L(F 
 �

D

; k)D

k�

1

2

0




; �D > 0;

is always an algebrai
 integer. Here L(F 
�

D

; s) denotes the L-fun
tion of (F 
�

D

)(z), and

� 2 f�1g denotes the sign of the fun
tional equation of L(F; s), the L-fun
tion of F (z). If `

is prime and j � j

`

denotes the usual multipli
ative valuation at ` extended to the algebrai



losure of Q , then we obtain the following improvement of [Cor. 1, O-S℄:

Corollary 3. Let F (z) =

P

1

n=1

A(n)q

n

2 S

2k

(N;�

0

) \ Z[[q℄℄ be an even integer weight

newform, and let � be the sign of the fun
tional equation for L(F; s). There is a ni
e period


 for F (z) with the property that every non-ex
eptional prime ` � 5 with ` - N has in�nitely

many fundamental dis
riminants D for whi
h

�D > 0 and

�

�

�

�

�

L(F 
 �

D

; k)D

k�

1

2




�

�

�

�

�

`

= 1:

Theorem 1 also applies to a 
lassi
al 
onje
ture in additive number theory. A partition of

a positive integer n is any non-in
reasing sequen
e of positive integers whose sum is n. Let

p(n) denote the number of partitions of n (as usual, we adopt the 
onvention that p(0) = 1

and p(�) = 0 if � 62 N). If ` � 5 is prime, then de�ne 1 � 


`

< 24 by the 
ondition

(1.8) 24


`

� 1 (mod `):

If ` = 5; 7 or 11, then Ramanujan proved for every non-negative integer n that

(1.9) p(`n+ 


`

) � 0 (mod `):

Re
ently we have learned that similar, but more 
ompli
ated 
ongruen
es, are quite 
ommon

(see [A, O℄). For example if M is 
oprime to 6, then there are integers A and B su
h that

for every n we have

p(An+ B) � 0 (mod M):

The 
ongruen
e

p(59

4

� 13n+ 111247) � 0 (mod 13)

is a typi
al example. Although there are many 
ongruen
es, numeri
al eviden
e suggests

that 
ongruen
es of the spe
ial form (1.9) only hold for ` = 5; 7 and 11.
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Conje
ture R. If ` � 13 is prime, then there are in�nitely many integers n for whi
h

p(`n+ 


`

) 6� 0 (mod `):

The following 
lassi
al 
onje
ture of Newman [N℄ 
on
erns the distribution of the partition

fun
tion among the 
omplete set of residue 
lasses modulo an integer M .

Conje
ture N. (Newman) If M is a positive integer, then for every integer 0 � r < M

there are in�nitely many non-negative integers n for whi
h p(n) � r (mod M).

Works by Atkin, Kolberg and Newman [At, Ko, N℄ veri�ed the 
onje
ture for M = 2; 5; 7

and 13 (note: the M = 11 
ase follows similarly). More re
ently, the se
ond author and

Ahlgren [A, O℄ obtained an algorithm whi
h presumably proves the truth of the 
onje
ture

for any given M 
oprime to 6.

Theorem 1 leads to an interesting 
onne
tion between Conje
tures R and N, one whi
h

produ
es a simpler algorithm for testing Newman's Conje
ture for prime moduli.

Theorem 4. If ` � 5 is prime, then at least one of the following is true:

(1) Newman's Conje
ture is true for M = `, and

#f0 � n � X : p(n) � r (mod `)g �

r;`

�

p

X= logX if 1 � r < `;

X if r = 0:

(2) For every integer n we have

p(`n+ 


`

) � 0 (mod `):

In view of this result, Newman's Conje
ture for a prime modulus M = ` � 5 follows from

the existen
e of a single n for whi
h p(`n+ 


`

) 6� 0 (mod `).

Corollary 5. Conje
tures N and R are true for every prime 13 �M < 2� 10

5

.

The proof of Theorem 1 requires Shimura's theory of half-integral weight modular forms,

a result of Serre on the 
oeÆ
ients of integer weight 
usp forms, and some 
ommutation

relations for half-integral weight He
ke operators. In x2 we make some preliminary redu
tions

for the proof of Theorem 1, and in x3 we 
on
lude the proof with an analysis of the a
tion

of the half-integral weight He
ke operators modulo M . In x4 we prove Theorem 4 and

Corollaries 2, 3 and 5.

2. Preliminary redu
tions

Throughout this se
tion let M denote an odd integer, and let

(2.1) f(z) =

1

X

n=1

a(n)q

n

2 S

�+

1

2

(N;�) \ Z[[q℄℄
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be a half-integral weight 
usp form with integer 
oeÆ
ients and real Diri
hlet 
hara
ter

�. If p - N is prime, then the half-integral weight He
ke operator T (p

2

; �; �) is a linear

endomorphism on the spa
e S

�+

1

2

(N;�) whi
h is de�ned by

(2.2) f(z) j T (p

2

; �; �) :=

1

X

n=1

�

a(p

2

n) + �

�

(p)

�

n

p

�

p

��1

a(n) + �

�

(p

2

)p

2��1

a(n=p

2

)

�

q

n

:

Here �

�

is the Diri
hlet de�ned by �

�

(n) :=

�

(�1)

�

n

�

�(n).

Lemma 2.1. Suppose thatM is an odd integer and p

0

� 1 (mod NM) is a prime for whi
h

f(z) j T (p

2

; �; �) � 2f(z) (mod M):

If there is a positive integer n

0

for whi
h

�

n

0

p

0

�

= �1 and g
d(a(n

0

);M) = 1, then for every

0 � r < M there are in�nitely many integers n with a(n) � r (mod M).

Proof. By hypothesis, we see that �(p

0

) = 1 and p

0

� 1 (mod 4). Therefore (2.2) implies,

for every positive integer n, that

(2.3) a(np

2

0

) �

�

2�

�

n

p

0

��

a(n)� a(n=p

2

0

) (mod M):

Therefore we �nd that

(2.4) a(n

0

p

2

0

) � 3a(n

0

) (mod M):

Sin
e

�

n

p

0

�

= 0 if p

0

j n, (2.3) and (2.4) imply that

a(n

0

p

4

0

) � 2a(n

0

p

2

0

)� a(n

0

) � 5a(n

0

) (mod M);

a(n

0

p

6

0

) � 2a(n

0

p

4

0

)� a(n

0

p

2

) � 7a(n

0

) (mod M);

Generally, if k is a positive integer, then

a(n

0

p

2k

0

) � (2k + 1)a(n

0

) (mod M):

Sin
e g
d(a(n

0

);M) = 1, the result follows by varying k.

�

We now turn to the existen
e of su
h primes p

0

. The next result, whi
h follows from an

observation of Serre and the arithmeti
 of the Shimura 
orresponden
e, proves that there is

a vast supply of su
h primes.
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Lemma 2.2. A positive proportion of the primes p � 1 (mod NM) have the property that

f(z) j T (p

2

; �; �) � 2f(z) (mod M):

Proof. By repla
ing f(z) by any 
ongruent form modulo M , we may assume that f(z) is

not a linear 
ombination of single variable theta series. Hen
e its image, say F (z), under

the Shimura 
orresponden
e (see [K, Sh℄) is an even integral weight 
usp form in the spa
e

S

2�

(N;�

0

) \ Z[[q℄℄. Serre observed [6.4, S℄ that a subset of primes p � 1 (mod NM) with

positive density have the property that

(2.5) F (z) j T

p

(2�; �

0

) � 2F (z) (mod M):

Here T

p

(2�; �

0

) denotes the usual pth He
ke operator on the spa
e S

2�

(N;�

0

). Denote this

set of primes by S(f;M). Sin
e the Shimura 
orresponden
e 
ommutes with the He
ke

operators for the spa
es S

�+

1

2

(N;�) and S

2�

(N;�

0

), if p 2 S(f;M), then (2.5) implies that

f(z) j T (p

2

; �; �

12

) � 2f(z) (mod M):

�

Using Lemma 2.2 and Lemma 2.1, we now make an important observation.

Theorem 2.3. If there is a positive integer n for whi
h g
d(a(n);M) = 1, then at least one

of the following is true:

(1) If 0 � r < M , then there are in�nitely many integers n for whi
h a(n) � r (mod M).

(2) There are �nitely many square-free integers, say n

1

< n

2

< � � � < n

t

, for whi
h

f(z) �

t

X

i=1

1

X

m=1

a(n

i

m

2

)q

n

i

m

2

(mod M):

Proof. As in the proof of Lemma 2.2, let S(f;M) denote the set of primes p � 1 (mod NM)

for whi
h

f(z) j T (p

2

; �; �) � 2f(z) (mod M):

Suppose that (1) is false. If p 2 S(f;M), then Lemma 2.1 implies that every n 2 Z

+

with

g
d(a(n);M) = 1 has the property that

(2.6)

�

n

p

�

2 f0; 1g:

Let n

1

< n

2

< : : : denote the sequen
e of square-free positive integers with the property

there is an integer m

i

for whi
h a(n

i

m

2

i

) 6� 0 (mod M). By (2.6), ea
h n

i

has the property

that

�

n

i

p

�

2 f0; 1g for every prime p 2 S(f;M). By quadrati
 re
ipro
ity, S(f;M) 
annot


ontain a positive proportion of the prime numbers if there are in�nitely many su
h n

i

's.

Therefore there are �nitely many square-free integers, say n

1

< n

2

< � � � < n

t

, su
h that

f(z) �

t

X

i=1

1

X

m=1

a(n

i

m

2

)q

n

i

m

2

(mod M):

�
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3. He
ke eigenvalues modulo M and the proof of Theorem 1

Here we 
onsider the arithmeti
 of those modular forms f(z) satisfying Theorem 2.3 (2).

To do so, we prove a general statement regarding the eigenvalues of the half-integral weight

He
ke operators moduloM . As in the last se
tion, throughout we assume thatM is an odd

integer, and that

(3.1) f(z) =

1

X

n=1

a(n)q

n

2 S

�+

1

2

(N;�) \ Z[[q℄℄

is a half-integral weight 
usp form with integer 
oeÆ
ients and real 
hara
ter �.

First we re
all some operators on the spa
e S

�+

1

2

(N;�) (see [S-St, Br℄). The Fri
ke

involution W

N

: S

�+

1

2

(N;�)! S

�+

1

2

(N; (

N

�

)�) is de�ned by

(3.2) f(z) jW

N

= (�i

p

Nz)

���1=2

f(�1=Nz):

If m is a positive integer, then let B

m

: S

�+

1

2

(N;�) ! S

�+

1

2

(Nm

2

; �) be the proje
tion

de�ned by

(3.3) f(z) j B

m

=

1

X

n=1

a(mn)q

mn

:

Finally, if  is a Diri
hlet 
hara
ter with 
ondu
torm and d(z) =

P

1

n=1


(n)q

n

2 S

�+

1

2

(N;�),

then let d

 

(z) 2 S

�+

1

2

(Nm

2

; � 

2

) denote the twist of d(z) by  :

(3.4) d

 

(z) =

1

X

n=1

 (n)
(n)q

n

:

These operators satisfy various 
ommutation relations (see [S-St℄, [Br℄). For instan
e, if

p - N is prime, then the twist by the quadrati
 
hara
ter ' =

�

�

p

�

and the Fri
ke involution

W

Np

2

satisfy [(3), Br℄

(3.5) f

'

jW

Np

2

= �

�

(p)

�

p

1=2

f jW

N

j B

p

� p

�1=2

f jW

N

�

:

Theorem 3.1. Let M be a positive integer that is 
oprime to N , and let p - NM be prime.

If there is an � 2 f�1g for whi
h

f(z) �

X

(

n

p

)

2f0;�g

a(n)q

n

(mod M);

then

(p� 1)f(z) j T (p

2

; �; �) � ��

�

(p)(p

�

+ p

��1

)(p� 1)f(z) (mod M):
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Proof of Theorem 3.1. We argue in a similar way as in the proof of [Th. 1, Br℄. Without

loss of generality we may assume that N is a square. Let g(z) 2 S

�+

1

2

(N;�) be the 
usp

form de�ned by

(3.6) g(z) =

1

X

n=1

b(n)q

n

= f(z) jW

N

:

Let ' =

�

�

p

�

and de�ne

(3.7) h(z) = f � f j B

p

� �f

'

= 2

X

'(n)=��

a(n)q

n

:

By hypothesis, we have that h(z) � 0 (mod M).

We 
onsider the twist of g(z) with the Diri
hlet 
hara
ter '. The 
ommutation relation

(3.5) implies that

g

'

jW

Np

2

= �

�

(p)

�

p

1=2

f j B

p

� p

�1=2

f

�

= �

�

(p)

�

p

1=2

� p

�1=2

�

f � ��

�

(p)p

1=2

f

'

� �

�

(p)p

1=2

h:

If we apply W

Np

2

on
e again and use (3.5) for f

'

(z), we get

g

'

= �

�

(p)

�

p

1=2

� p

�1=2

�

f jW

Np

2

+ �g � �pg j B

p

� �

�

(p)p

1=2

h jW

Np

2

:

We substitute

(f jW

Np

2

)(z) = p

�+1=2

(f jW

N

)(p

2

z) = p

�+1=2

g(p

2

z)

and obtain the power series identity

1

X

n=1

'(n)b(n)q

n

= �

�

(p)

�

p

�+1

� p

�

�

1

X

n=1

b(n)q

p

2

n

� �(p� 1)

1

X

n=1

b(n)q

n

+ �p

X

g
d(n;p)=1

b(n)q

n

� �

�

(p)p

1=2

h jW

Np

2

:

Sin
e f(z) has 
oeÆ
ients in Z, the q-expansion prin
iple on the modular 
urve X

0

(N)

implies that the 
oeÆ
ients b(n) of g(z) are 
ontained in Z[1=N; �

N

℄. Here �

N

denotes a

primitive N -th root of unity. Be
ause h(z) � 0 (mod M), we �nd in the same way that

the 
oeÆ
ients of h j W

Np

2

are 
ontained in the prin
ipal ideal MA of the ring A :=

Z[1=Np

2

; �

Np

2

℄ (see also [Lemma 1, Br℄). Noti
e that the assumption g
d(M;Np) = 1 is

needed here.

For b 2 A we write b � 0 (mod M), if b 2 MA. >From the identity (3.7) we obtain the

following 
ongruen
es for the 
oeÆ
ients b(n) modulo M :

(1) If p does not divide n, then b(n) � �'(n)b(n) (mod M).

(2) If pjn and p

2

does not divide n, then (p� 1)b(n) � 0 (mod M).

(3) If p

2

jn, then (p� 1)b(n) � ��

�

(p)p

�

(p� 1)b(n=p

2

) (mod M).
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Inserting these 
ongruen
es into (2.2), the formula for g(z) j T (p

2

; �; �), we �nd that

(p� 1)g(z) j T (p

2

; �; �) � ��

�

(p)(p

�

+ p

��1

)(p� 1)g(z) (mod M):

The theorem now follows from the fa
t that the Fri
ke involution W

N


ommutes with the

He
ke operator T (p

2

; �; �).

�

Proof of Theorem 1. In view of Theorems 2.3 and 3.1, it suÆ
es to prove the estimates in

Theorem 1 (1). By Theorem 2.3, for ea
h 0 � r < M , there is a positive integer n

r

for whi
h

(3.8) a(n

r

) � r (mod M):

Obviously, we have f(z) 2 S

�+

1

2

(2N

Q

r

n

r

; �). Hen
e arguing as before, [6.4, S℄ and the


ommutativity of Shimura's 
orresponden
e implies that a positive proportion of the primes

p � �1 (mod 2MN

Q

r

n

r

) have the property that

f(z) j T (p

2

; �; �) � 0 (mod M):

Call this set of primes Z(f;M). If p 2 Z(f;M), then (2.2) implies for ea
h n

r

that

(3.9) a(p

2

n

r

) � (�1)

�

�

�

(�1)

�

n

r

p

�

r (mod M):

Suppose that n

r

has the prime fa
torization n

r

= 2

e(r)

Q

i

p

i;r

, where ea
h p

i;r

is odd.

Sin
e every p 2 Z(f;M) satis�es p � �1 (mod 8) and p � �1 (mod p

i;r

), by quadrati


re
ipro
ity we have

�

n

r

p

�

=

�

2

p

�

e(r)

Y

i

�

p

i;r

p

�

=

�

2

p

�

e(r)

Y

i

�

p

p

i;r

��

�1

p

i;r

�

=

Y

i

�

1

p

i;r

�

= 1:

Therefore for every p 2 Z(f;M), (3.9) implies that

a(p

2

n

r

) � (�1)

�

�

�

(�1)r (mod M):

For ea
h p these values 
onstitute a 
omplete set of representatives for the residue 
lasses

modulo M . By varying p, we �nd that

#f0 � n � X : a(n) � r (mod M)g �

p

X= logX:

For the r = 0 estimate, noti
e that if p 2 Z(f;M), then for all n (2.2) implies that

a(p

2

n) � ��

�

(p)

�

n

p

�

p

��1

a(n)� p

2��1

a(n=p

2

) (mod M):

By repla
ing n by np where p - n, this be
omes

a(p

3

n) � �p

2��1

a(n=p) � 0 (mod M):

This immediately implies that a proportion of n have a(n) � 0 (mod M).

�
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4. Number Theoreti
 Appli
ations

Here we 
onsider the number theoreti
 
onsequen
es of Theorem 1 des
ribed in x1.

Proof of Corollary 2. Begin by observing that if f(z) is an eigenform, then (2.2) implies

that for square-free n we have a(n) j a(nm

2

) for all m. Therefore, if a(nm

2

) 6� 0 (mod `),

then a(n) 6� 0 (mod `).

Suppose that there are �nitely many square-free integers, say n

1

; n

2

; : : : ; n

t

, for whi
h

f(z) �

t

X

i=1

1

X

m=1

a(n

i

m

2

)q

n

i

m

2

(mod `):

By Theorem 1 (2), there are arithmeti
 progressions of primes r

j

(mod TN

0

`), for some

positive integer T , with the property that

f(z) j T (p

2

; �; �) � ��

�

(r

j

)(r

�

j

+ r

��1

j

)f(z) (mod `)

for every prime p � r

j

(mod `). Moreover, these residue 
lasses r

j

(mod TN

0

`) 
over at

least (`� 3)=2 many residue 
lasses modulo ` (note. this depends on whether ` divides any

n

i

).

Sin
e the 
oeÆ
ient A(p) is the eigenvalue of f(z) with respe
t to the He
ke operator

T (p

2

; �; �) (by the de�nition of Shimura's 
orresponden
e), for primes p � r

j

(mod TN

0

`)

we obtain the 
ongruen
e

(4.1) A(p) � ��

�

(r

j

)(r

�

j

+ r

��1

j

) (mod `):

Case (1). If ` is non-ex
eptional, the Chebotarev Density Theorem, the uniform distribution

of Frob

p

in the Galois group, and an an easy generalization of [Lemma 7, SwD℄ implies that

the A(p) do not satisfy any 
ongruen
es like (4.1). Therefore there are in�nitely many

square-free integers n with a(n) 6� 0 (mod `).

Case (2). Suppose that F (z) has 
omplex multipli
ation. By (4.1), it is easy to see that

A(p) � 0 (mod `) only for those primes p above for whi
h p � �1 (mod `). However, sin
e

` - N

0

, every residue 
lass r (mod N

0

) with g
d(r;N

0

)=1 
ontains some su
h primes p with

p 6� �1 (mod `). In parti
ular, ea
h 
lass 
ontains primes p for whi
h A(p) 6� 0 (mod `).

However this is a 
ontradi
tion; for if F (z) had 
omplex multipli
ation, then there would

be a dis
riminant D dividing N

0

with the property that A(p) = 0 for every prime p with

�

D

p

�

= �1. Hen
e there are in�nitely many square-free n for whi
h a(n) 6� 0 (mod `).

�

Proof of Corollary 3. There is a twist F

�

; �(�1) = (�1)

k

�, satisfying Hypotheses H1 and H2

of [pp. 377-378 , Wal℄. By [Th�eor�eme 1, Wal℄ there is an integer N

0

, a non-zero eigenform

f(z) =

P

1

n=1

a(n)q

n

2 S

k+

1

2

(N

0

) su
h that N jN

0

, and a period 
 su
h that for ea
h

fundamental dis
riminant D for whi
h �D > 0

a(D

0

)

2

=

(

"

D

L(F
�

D

;k)D

k�

1

2

0




if D

0

is relatively prime to 4N

0

;

0; otherwise,
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where "

D

is an algebrai
 integer with j"

D

j

`

= 1. The result now follows from Corollary 2 by

s
aling 
 appropriately.

�

Proof of Theorem 4. By [Th. 8, O℄, there is a half-integral weight 
usp form F

`

(z) =

P

1

n=1

a

`

(n)q

n

2 S

�

`

+

1

2

(576`; �

12

) \ Z[[q℄℄ for whi
h

(4.2) F

`

(z) �

X

n�0;

`n��1 (mod 24)

p

�

`n+ 1

24

�

q

n

(mod `):

Here �

`

= (`

2

� `�2)=2 and �

12

:=

�

12

�

�

. This is the k = 1 
ase of [Th. 8, O℄. Although this

theorem asserts that these forms are on the 
ongruen
e subgroup �

0

(576`), the proof shows

that they are indeed on �

0

(576). To see this, observe that the U(`) operator modulo ` is the

`th He
ke operator for modular forms on SL

2

(Z), and that �(24`z) � �(24z)

`

(mod `). Now

observe that the 
oeÆ
ients of F

`

(z) (mod `) are pre
isely the values p(`n + 


`

) (mod `).

Moreover, observe that if a

`

(n) 6� 0 (mod `), then g
d(n; 24) = 1.

If Theorem 1 (1) is false for F

`

(z), then by Theorem 1 (2) there are �nitely many square-

free integers, say n

1

; n

2

; : : : ; n

t

, for whi
h

(4.3) F

`

(z) �

t

X

i=1

1

X

m=1

a

`

(n

i

m

2

)q

n

i

m

2

(mod `):

Without loss of generality, we may assume that

(4.4) 0 6� F

`

(z) �

1

X

m=1

a

`

(n

1

m

2

)q

n

1

m

2

(mod `):

This is easily a

omplished by re
ursively repla
ing F

`

(z) by a suitable linear 
ombination

of trivial and quadrati
 twists.

Fix an integer n

0

for whi
h a

`

(n

0

) 6� 0 (mod `). As before, we have that g
d(n

0

; 24) = 1.

If P

`

denotes the set of primes that are primitive roots modulo `, then for all but �nitely

many primes p 2 P

`

we may apply Theorem 1 (2) with � =

�

n

0

p

�

.

If p

0

- n

0

is su
h a prime, then we have

a

`

(p

2

0

n

0

) � �

�

n

0

p

0

�

�

�

12

(p

0

)p

�1

a

`

(n

0

) (mod `);

a

`

(p

4

0

n

0

) � p

�2

a

`

(n

0

) (mod `):

This follows from (2.2), Theorem 1 (2), the fa
t p

0

is a quadrati
 non-residue modulo `, and

the fa
t that �

`

= `(`� 1)=2� 1. More generally, for every positive integer k we have

(4.5) a

`

(p

2k

0

n

0

) �

(

�

�

n

0

p

0

�

�

�

12

(p

0

)p

�k

0

a

`

(n

0

) (mod `) if k is odd;

p

�k

0

a

`

(n

0

) (mod `) if k is even.
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Sin
e g
d(n

0

; 24) = 1, we may sele
t su
h a prime p

0

with the additional property that

�

�

n

0

p

0

�

�

�

12

(p

0

) = 1. Sin
e p

0

is a primitive root modulo `, (4.5) then implies that ea
h non-

zero residue 
lass r (mod `) 
ontains in�nitely many a

`

(n). One obtains estimates in these


ases by arguing as in the proof of Theorem 1. Similarly, one obtains the r � 0 (mod `)


ase by arguing again in the proof of Theorem 1.

�

Proof of Corollary 5. By Theorem 4, if there is a single n for whi
h p(`n+ 


`

) 6� 0 mod `,

then Newman's Conje
ture is true for `. Moreover, sin
e F

`

(z) (mod `) 
annot be a non-zero

polynomial, there must be in�nitely many n for whi
h p(`n + 


`

) 6� 0 (mod `). A simple

program yields this result.

�
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