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ABSTRACT. In this paper we study the distribution of the coefficients a(n) of half integral
weight modular forms modulo odd integers M. As a consequence we obtain improvements of
indivisibility results for the central critical values of quadratic twists of L-functions associated
with integral weight newforms established in [O-S]. Moreover, we find a simple criterion for
proving cases of Newman’s conjecture for the partition function.

1. INTRODUCTION AND STATEMENT OF RESULTS

Suppose that w € %Z, that N is a positive integer (with 4 | N if w ¢ Z), and that x is
a Dirichlet character whose conductor divides N. Let S, (N, x) denote the space of weight
w cusp forms with respect to the congruence subgroup I'g(/N) with Nebentypus character
x ([K, Sh] are standard references). As usual, we shall identify every such cusp form f(z)
with its Fourier expansion (where ¢ = e2™** throughout)

1) =Y an)g™

Inspired by Kolyvagin’s work on the Birch and Swinnerton-Dyer Conjecture and works
of Kohnen, Zagier and Waldspurger relating the coefficients of half-integral weight Hecke
eigenforms to values of modular L-functions, there have been a number of works on the
indivisiblity of the coefficients of half-integral weight cusp forms. For example, works by
Bruinier, Jochnowitz, McGraw, and Ono and Skinner [Br, J, M, O-S] imply that if f(z) =
S a(n)g" € Sx+1(N,x) N Z[[g]] is an eigenform which is not a single variable theta
series, then every sufficiently large prime ¢ has the property that there are infinitely many
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square-free integers n for which a(n) Z 0 (mod £). Although this result is satisfying, many
questions remain. For example, it is natural to ask for a precise and natural arithmetic
description of these primes /.

Much more is known about the coefficients of integer weight cusp forms. The arithmetic
of Galois representations and the combinatorics of Hecke operators dictate their behavior.
For example, these arguments are very useful for studying the distribution of the coefficients
modulo M. Using Galois representations and a delightfully simple argument, Serre observed
[6.4, S] that there is a set of primes p with positive density with the property that

(1.1) a(np”) = (r + 1)a(n) (mod M)

for every pair of positive integers r and n. Obviously, (1.1) implies that each residue
class modulo M contains infinitely many coefficients provided that there is an n for which
ged(a(n), M) = 1.

Half-integral weight cusp forms do not necessarily enjoy this property. To see this, notice
that Dedekind’s function n(24z) := q[[.2,(1 — ¢**") € S1(576, x12) (here x12 = (2)) has

the g-expansion
1(242) ZX12 n g — g — M 10

We begin by determining conditions which guarantee that a half-integral weight cusp form
possesses this property modulo an odd integer M.

Theorem 1. Let f(z) =Y a(n)g™ € Sx+1 (N, x) NZ[[g]] be a half-integral weight cusp
form, and let x be a real Dirichlet character. If M is an odd integer and there is a positive
integer n for which ged(a(n), M) =1, then at least one of the following is true:

(1) If0 <r < M, then

X/ log X f1<r<M
#{O<n<X :a(n)=r (modM)}>>,q,M{\/_/0g nlsr<M,

if r =0.

(2) There are finitely many square-free integers, say ny,na,...,ns, for which

ZZa grim (mod M).

i=1 m=1

Moreover if ged(M,N) = 1, ¢ € {£1} and p { NM is a prime with ("1) € {0,¢}
for each 1 < i <'t, then (p — 1)f(2) is an eigenform modulo M of the half-integral
weight Hecke operator T'(p?, X, x). In particular, we have

(=D*

p

(- V() | T A x) = X(p)< )<pk+pk—1><p—1)f<z) (mod A1),
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Remarks.

(1) For simplicity, the results here are stated for cusp forms with integer coefficients and
real Nebentypus character. However, we stress that Theorem 1 (2), and Corollaries 2 and
3 apply for any half-integral weight cusp form with algebraic integer coefficients. Theorem
1 (1) requires a minor modification. If « is a suitable algebraic integer and 9 is a suitable
ideal, then one obtains the frequency that a(n) = ra (mod 9), for every odd number r.

(2) In view of the single variable theta series and those forms congruent to such series, it
turns out that the estimates in Theorem 1 (1) are nearly optimal. However, apart from

such forms, it is plausible that each residue class r contains a positive proportion of a(n)
(mod M).

(3) Conclusions (1) and (2) in Theorem 1 are not necessarily mutually exclusive. In fact,
one may often employ Theorem 1 (2) to prove Theorem 1 (1) (see Theorem 4).

(4) Suppose that f(z) is a Hecke eigenform which is not a single variable theta series. If
f(z) satisfies Theorem 1 (2) and ged(p— 1, M) = 1, then Deligne’s theorem bounding Hecke

1

eigenvalues requires that M < 2p*~3.

Theorem 1 has a variety of number theoretic applications, and we begin with the arith-
metic of the Shimura correspondence. If f(z) = Y7 a(n)¢™ € Sx+1 (N, x) NZ[[q] is a
Hecke eigenform, then we address the problem described at the outset (i.e. that of obtaining
a precise and purely arithmetic description of those primes £ for which there are only finitely
many square-free n with a(n) Z 0 (mod £)).

To motivate our result, we recall an example of Kohnen and Zagier [K-Z]. If A(z) =
Yoo T(n)g" = q—24¢%+- - - € S12(1, x0), then Kohnen and Zagier proved that the function
fa(z) € Si3/2(4, xo) defined by

fa(2) = 3 am)g" = 22 (264420 (2) — G4 (42)6(2)) = ¢ — 56q* +120¢° — ...

271

(throughout xo denotes the trivial character) is a preimage of A(z) under the Shimura
correspondence. Here G4(z) is the usual weight 4 Eisenstein series on SLy(Z) and O(z) =

14+23%°  ¢™. Tt turns out that

(1.2) fa(z)=> am)"=>_ (g) g*  (mod 5).

Obviously n = 1 is the only square-free integer for which a(n) # 0 (mod 5). Ramanujan
proved that if p is prime, then

(1.3) (p) =p+p> (mod 5).

In view of Theorem 1 (2), it is natural to suspect a strong relationship between congruences
(1.2) and (1.3).



4 JAN H. BRUINIER AND KEN ONO

In the late 1960s and early 1970s, Serre and Swinnerton-Dyer [SwD] employed Deligne’s
theory of Galois representations to ‘explain’ congruences such as (1.3). Suppose that F'(z) =
oo L A(n)g"™ € Saa(N1,x0) N Z[[q]] is a normalized Hecke eigenform. If £ is prime, then
Deligne proved that there is a Galois representation

(1.4) pur : Gal(Q/Q) — GLs(Z/42)

such that for every prime p { N1/ we have

Tr(py,(Froby)) = A(p) (mod ),
det(pg,r(Froby)) = p**~! (mod ¢).

A prime £ > 5 is called exceptional if Tm(p, r(Gal(Q/Q)) does not contain SLy(Z/¢Z). The
Serre and Swinnerton-Dyer theory [SwD, R1, R2, R3] implies that congruences like (1.3)
hold precisely for exceptional primes /. Combining these ideas with Theorem 1, we obtain:

Corollary 2. Suppose that f(z) =Y .. a(n)q" € Sx+1 (No, X)NZ[[g]] is an eigenform that

is a preimage of a newform F(z) =377 A(n)q™ € Sax(N1, x0) N Z[[q]] under the Shimura
correspondence.

(1) If £ > 5 is a non-exceptional prime for which £ {1 Ny and f(z) Z 0 (mod £), then
there are infinitely many square-free integers n for which a(n) £ 0 (mod £).

(2) If F(2) has complex multiplication and £t Ny is a prime for which f(z) Z 0 (mod £),
then there are infinitely many square-free integers n. for which a(n) Z 0 (mod £).

Remark. Every F'(z) without complex multiplication has at most finitely many exceptional
primes ¢, and they are easily determined (see [SwD], [Th. 2.1, R3]).

By Kolyvagin’s celebrated work on the Birch and Swinnerton-Dyer Conjecture, it is well
known that results like Corollary 2 have many consequences for elliptic curves. For example,
recent similar works [Br, J, O-S] contain, for sufficiently large primes /£, results regarding the
frequency of quadratic twists of elliptic curves with analytic rank 0 whose Tate-Shafarevich
groups lack /-torsion, as well as effective upper bounds for the order of the /-part of the
Tate-Shafarevich group of elliptic curves with analytic rank 1. Corollary 2 in the present
work yields more precise versions of these results by clarifying what is meant for a prime /
to be sufficiently large. Since the consequences (i.e. [Cor. 2-5, O-S]) follow from [Cor. 1,
O-S] in a straightforward way, here we content ourselves by stating its improvement.

We begin with some notation. Suppose that F(z) = 3.7 A(n)q™ € Saor(N,xo0) is an
even integer weight newform. If D is the fundamental discriminant of a quadratic field which
is coprime to N, then let (F' ® xp)(2) denote the quadratic twist of F'(z) defined by

(15) o)) =3 (2) At

n=1
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Moreover, let Dy be defined by

|D| if D is odd,
(16) DO =

|D|/4 if D is even.

A non-zero complex number Q € C* is a nice period for F(z) if

N|=

L(F® xp, k)DL~

(1.7) O ,

eD >0,

is always an algebraic integer. Here L(F' ® xp, s) denotes the L-function of (F® xp)(z), and
e € {1} denotes the sign of the functional equation of L(F,s), the L-function of F(z). If £
is prime and | - |, denotes the usual multiplicative valuation at £ extended to the algebraic
closure of Q, then we obtain the following improvement of [Cor. 1, O-S]:

Corollary 3. Let F(z) = Y ... A(n)q" € Sax(N,x0) N Z[[q]] be an even integer weight
newform, and let € be the sign of the functional equation for L(F,s). There is a nice period
Q for F(z) with the property that every non-exceptional prime £ > 5 with £4 N has infinitely
many fundamental discriminants D for which

L(F ® xp, k)D¥2
Q

eD >0 and =1.

L

Theorem 1 also applies to a classical conjecture in additive number theory. A partition of
a positive integer n is any non-increasing sequence of positive integers whose sum is n. Let
p(n) denote the number of partitions of n (as usual, we adopt the convention that p(0) =1
and p(a) =0 if a € N). If £ > 5 is prime, then define 1 < v, < 24 by the condition

(1.8) 24y, =1 (mod £).
If £=5,7 or 11, then Ramanujan proved for every non-negative integer n that
(1.9) p(ln+v) =0 (mod £).

Recently we have learned that similar, but more complicated congruences, are quite common
(see [A, O]). For example if M is coprime to 6, then there are integers A and B such that
for every n we have

p(An+ B)=0 (mod M).

The congruence
p(59* - 13n 4+ 111247) =0 (mod 13)

is a typical example. Although there are many congruences, numerical evidence suggests
that congruences of the special form (1.9) only hold for £ = 5,7 and 11.
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Conjecture R. If ¢ > 13 is prime, then there are infinitely many integers n for which
p(fn +v) Z0 (mod £).

The following classical conjecture of Newman [N] concerns the distribution of the partition
function among the complete set of residue classes modulo an integer M.

Conjecture N. (Newman) If M is a positive integer, then for every integer 0 < r < M
there are infinitely many non-negative integers n for which p(n) =r (mod M).

Works by Atkin, Kolberg and Newman [At, Ko, N] verified the conjecture for M = 2,5,7
and 13 (note: the M = 11 case follows similarly). More recently, the second author and
Ahlgren [A, O] obtained an algorithm which presumably proves the truth of the conjecture
for any given M coprime to 6.

Theorem 1 leads to an interesting connection between Conjectures R and N, one which
produces a simpler algorithm for testing Newman’s Conjecture for prime moduli.
Theorem 4. If ¢ > 5 is prime, then at least one of the following is true:

(1) Newman’s Conjecture is true for M = ¢, and

X/log X if 1 < 14
#0<n<X : ph)=r (modf)}>>r,z{\/_/ o8 pisrst

if r=0.
(2) For every integer n we have

p(fn+v) =0 (mod ¥).

In view of this result, Newman’s Conjecture for a prime modulus M = ¢ > 5 follows from
the existence of a single n for which p(¢n + v,) Z 0 (mod ¢).

Corollary 5. Conjectures N and R are true for every prime 13 < M < 2 x 10°.

The proof of Theorem 1 requires Shimura’s theory of half-integral weight modular forms,
a result of Serre on the coefficients of integer weight cusp forms, and some commutation
relations for half-integral weight Hecke operators. In §2 we make some preliminary reductions
for the proof of Theorem 1, and in §3 we conclude the proof with an analysis of the action
of the half-integral weight Hecke operators modulo M. In §4 we prove Theorem 4 and
Corollaries 2, 3 and 5.

2. PRELIMINARY REDUCTIONS

Throughout this section let M denote an odd integer, and let

(2.1) f(z) = a(n)g" € Sy, 1 (N, x) N Z[[q]

n=1
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be a half-integral weight cusp form with integer coefficients and real Dirichlet character
x- If pt N is prime, then the half-integral weight Hecke operator T'(p?, A, x) is a linear
endomorphism on the space S, +1 (N, x) which is defined by

oo

22) f) TG Ax) =Y (a<p2n) x(p) (g)p*—lam) e <p2>p”—1a<n/p2>) .

n=1

Here x* is the Dirichlet defined by x*(n) := (%)X(n)

Lemma 2.1. Suppose that M is an odd integer and pg =1 (mod NM) is a prime for which

F(2) [ T(®* X x) =2f(2) (mod M).
If there is a positive integer ng for which (Z—g) = —1 and ged(a(ng), M) = 1, then for every
0 <r < M there are infinitely many integers n with a(n) =r (mod M).

Proof. By hypothesis, we see that x(pg) = 1 and pgp = 1 (mod 4). Therefore (2.2) implies,
for every positive integer n, that

(2.3) a(np?) = (2 - (p%)) a(n) — a(n/p?) (mod M).
Therefore we find that
(2.4) a(nop?) = 3a(ng) (mod M).

Since (1%) =0if po | n, (2.3) and (2.4) imply that

5a(ng) (mod M),

(nopg) — a(no) = Sa(n
nop?) = 7a(ng) (mod M),

a(nopé) = a
8 (nopé) —a(

2a
a(nopg) = 2a
Generally, if k£ is a positive integer, then

a(nop®) = (2k 4+ 1)a(ng) (mod M).

Since ged(a(ng), M) = 1, the result follows by varying k.
0

We now turn to the existence of such primes py. The next result, which follows from an
observation of Serre and the arithmetic of the Shimura correspondence, proves that there is
a vast supply of such primes.
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Lemma 2.2. A positive proportion of the primes p =1 (mod NM) have the property that
F(2) [ T(®* X x) =2f(2) (mod M).

Proof. By replacing f(z) by any congruent form modulo M, we may assume that f(z) is
not a linear combination of single variable theta series. Hence its image, say F'(z), under
the Shimura correspondence (see [K, Sh]) is an even integral weight cusp form in the space
Sax(N, xo0) N Z[[q]]. Serre observed [6.4, S| that a subset of primes p =1 (mod NM) with
positive density have the property that

(2.5) F(z) | Tp(2\, x0) =2F(2) (mod M).

Here T}, (2, x0) denotes the usual pth Hecke operator on the space S2x (N, xp). Denote this
set of primes by S(f, M). Since the Shimura correspondence commutes with the Hecke
operators for the spaces S)\Jr%(N, x) and Sax (N, xo), if p € S(f, M), then (2.5) implies that

f(2) | T(0* X, x12) = 2f(2)  (mod M).

O

Using Lemma 2.2 and Lemma 2.1, we now make an important observation.

Theorem 2.3. If there is a positive integer n. for which ged(a(n), M) = 1, then at least one
of the following is true:
(1) If0 < r < M, then there are infinitely many integers n for which a(n) = r (mod M).
(2) There are finitely many square-free integers, say ny < ng < --- < ny, for which

f(z) = Z Z a(n,-mQ)q"im2 (mod M).

i=1 m=1

Proof. As in the proof of Lemma 2.2, let S(f, M) denote the set of primes p =1 (mod NM)
for which

F(2) | T, X x) =2f(2) (mod M).
Suppose that (1) is false. If p € S(f, M), then Lemma 2.1 implies that every n € Z* with
ged(a(n), M) =1 has the property that

(2.6) <g> e {0,1}.

Let n1 < ng < ... denote the sequence of square-free positive integers with the property
there is an integer m; for which a(n;m?) # 0 (mod M). By (2.6), each n; has the property
that (%) € {0,1} for every prime p € S(f, M). By quadratic reciprocity, S(f, M) cannot
contain a positive proportion of the prime numbers if there are infinitely many such n;’s.

Therefore there are finitely many square-free integers, say n; < ns < --- < ng, such that

f(z) = Z a(n,-mz)q""""”2 (mod M).
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3. HECKE EIGENVALUES MODULO M AND THE PROOF OF THEOREM 1

Here we consider the arithmetic of those modular forms f(z) satisfying Theorem 2.3 (2).
To do so, we prove a general statement regarding the eigenvalues of the half-integral weight
Hecke operators modulo M. As in the last section, throughout we assume that M is an odd
integer, and that

(3.1) Z n)q" € Sxy1(N,x) N Z[[q]]

is a half-integral weight cusp form with integer coefficients and real character y.
First we recall some operators on the space Sy, 1(N,x) (see [S-St, Br]). The Fricke

involution Wi : Sy 1 (N, x) = Sxy1 (N, (X)x) is defined by

(3.2) f(2) | Wi = (=iVN2) 2 f(=1/N2).

If m is a positive integer, then let B,, : S)\Jr%(N, X) — S)\+%(Nm2,x) be the projection
defined by

(3-3) f(2) | B =) a(mn)q

Finally, if ¢ is a Dirichlet character with conductor m and d(z) = Z pe(n)g™ € Sy, 1 (N, x),
then let dy(2) € Syyz 1 (Nm?2, x1)?) denote the twist of d(z) by

(3-4) dy(z) =Y $(n)e(n)g

These operators satisfy various commutation relations (see [S-St], [Br]). For instance, if
p 1 N is prime, then the twist by the quadratic character ¢ = (5) and the Fricke involution
Wipe satisfy [(3), Br]

(3.5) fo | Wape =" 0) (9727 | Wi | By =7 2F | W) .

Theorem 3.1. Let M be a positive integer that is coprime to N, and let pt NM be prime.
If there is an € € {£1} for which

f= Y ag® (mod M),
(3)et0e)

then
P-DfR) I TEAX) =" @)@+ D -1 f(2) (mod M).
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Proof of Theorem 3.1. We argue in a similar way as in the proof of [Th. 1, Br]. Without
loss of generality we may assume that N is a square. Let g(z) € SH_%(N, X) be the cusp
form defined by

(3.6) Z b(n z) | Wy
Let ¢ = (5) and define

(3.7) Wz)=f—f|By—efp=2 )
p(n)=—¢
By hypothesis, we have that h(z) =0 (mod M).
We consider the twist of g(z) with the Dirichlet character ¢. The commutation relation
(3.5) implies that

9o | Wiz = x*(p) (pl/zf | By, —p_1/2f>
= x*(p) (pl/ 2_p 2) f—ex*®)p'*f, — x*(p)p"*h.

If we apply Wi,z once again and use (3.5) for f,(z), we get

9o = X" (p) (p1/2 1/2> f 1 Wz +eg —epg | By — x*(0)p*%h | Wipe.

We substitute
(f | Wap2)(2) = pPMT2(F | Wa) (9%2) = p*T2g(p%2)

and obtain the power series identity

> em)b(n)g" = x*(p) (P —p*) D b(n)g” ™ —e(p—1) Z b(n)q

e S be - X @ | W,
ged(n,p)=1

Since f(z) has coefficients in Z, the g-expansion principle on the modular curve Xo(IV)
implies that the coefficients b(n) of g(z) are contained in Z[1/N,(n]. Here (x denotes a
primitive N-th root of unity. Because h(z) = 0 (mod M), we find in the same way that
the coefficients of h | Wy, are contained in the principal ideal M A of the ring A :=
Z[1/Np? (np2] (see also [Lemma 1, Br]). Notice that the assumption ged(M, Np) = 1 is
needed here.

For b € A we write b =0 (mod M), if b € M A. ;From the identity (3.7) we obtain the
following congruences for the coefficients b(n) modulo M:

(1) If p does not divide n, then b(n) = ep(n)b(n) (mod M).
(2) If p|n and p? does not divide n, then (p — 1)b(n) =0 (mod M).
(3) Tf p*In, then (p — 1)b(n) = ex*(p)p*(p — 1)b(n/p?) (mod M).



COEFFICIENTS OF HALF-INTEGRAL WEIGHT MODULAR FORMS 11

Inserting these congruences into (2.2), the formula for g(z) | T'(p?, ), x), we find that

(p—Dg(z) | T®> A\ x) =ex* @)@+ D (p—1g(2) (mod M).

The theorem now follows from the fact that the Fricke involution W commutes with the
Hecke operator T'(p?, \, x).

O

Proof of Theorem 1. In view of Theorems 2.3 and 3.1, it suffices to prove the estimates in
Theorem 1 (1). By Theorem 2.3, for each 0 < r < M, there is a positive integer n,. for which

(3.8) a(ny,) =r (mod M).

Obviously, we have f(z) € S\, 1(2N]], n,,x). Hence arguing as before, [6.4, S] and the

commutativity of Shimura’s correspondence implies that a positive proportion of the primes
p = —1 (mod 2M N [], n,) have the property that

f(z) | T(P*, A\, x) =0 (mod M).
Call this set of primes Z(f, M). If p € Z(f, M), then (2.2) implies for each n, that
(3.9) a(p®n.) = (~1) " (~1) <%>r (mod M).

Suppose that n, has the prime factorization n, = 2°(") L pi,r, where each p;, is odd.
Since every p € Z(f, M) satisfies p = —1 (mod 8) and p = —1 (mod p;,), by quadratic
reciprocity we have

(-0 e () )6 1)

7 A

Therefore for every p € Z(f, M), (3.9) implies that
a(p’ny) = (=D x*(=1)r  (mod M).

For each p these values constitute a complete set of representatives for the residue classes
modulo M. By varying p, we find that

#{0<n<X :an)=r (modM)}>VX/logX.
For the r = 0 estimate, notice that if p € Z(f, M), then for all n (2.2) implies that

a(p’n) = —x"(v) (g)p*—lam) P la(nfp?) (mod M),

By replacing n by np where p { n, this becomes
a(p®n) = —p**"ta(n/p) =0 (mod M).
This immediately implies that a proportion of n have a(n) =0 (mod M).
0
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4. NUMBER THEORETIC APPLICATIONS
Here we consider the number theoretic consequences of Theorem 1 described in §1.

Proof of Corollary 2. Begin by observing that if f(z) is an eigenform, then (2.2) implies
that for square-free n we have a(n) | a(nm?) for all m. Therefore, if a(nm?) # 0 (mod £),
then a(n) Z 0 (mod ¢).

Suppose that there are finitely many square-free integers, say ni, ns, ..., ns, for which

f(z) = Z Z a(nimz)q”im2 (mod ¢).

i=1 m=1

By Theorem 1 (2), there are arithmetic progressions of primes r; (mod T'Nyf), for some
positive integer T', with the property that

f(2) | T(P* N\ x) = ex*(rj)(rg-\ + r;-‘_l)f(z) (mod ¢)

for every prime p = r; (mod £). Moreover, these residue classes r; (mod T'Ny/) cover at
least (¢ — 3)/2 many residue classes modulo £ (note. this depends on whether £ divides any

Since the coefficient A(p) is the eigenvalue of f(z) with respect to the Hecke operator
T(p?, A, x) (by the definition of Shimura’s correspondence), for primes p = r; (mod T Ny)
we obtain the congruence

(4.1) A(p) = ex”* (rj)(rg-\ + r;-‘_l) (mod ¢).

Case (1). If £ is non-exceptional, the Chebotarev Density Theorem, the uniform distribution
of Frob,, in the Galois group, and an an easy generalization of [Lemma 7, SwD] implies that
the A(p) do not satisfy any congruences like (4.1). Therefore there are infinitely many
square-free integers n with a(n) Z 0 (mod ¢).

Case (2). Suppose that F'(z) has complex multiplication. By (4.1), it is easy to see that
A(p) =0 (mod ¢) only for those primes p above for which p = —1 (mod ¢). However, since
21 Ny, every residue class r (mod Ny) with ged(r, Ng)=1 contains some such primes p with
p #Z —1 (mod ¢). In particular, each class contains primes p for which A(p) # 0 (mod ¢).
However this is a contradiction; for if F'(z) had complex multiplication, then there would
be a discriminant D dividing Ny with the property that A(p) = 0 for every prime p with
(%) = —1. Hence there are infinitely many square-free n for which a(n) Z 0 (mod ?).
0

Proof of Corollary 3. There is a twist Fy, x(—1) = (—1)"e¢, satisfying Hypotheses H1 and H2
of [pp. 377-378 , Wal]. By [Théoreme 1, Wal] there is an integer N’, a non-zero eigenform
f(z) = Y02 a(n)g™ € Sk41(N') such that N[N’ , and a period Q such that for each
fundamental discriminant D for which eD > 0

if Dy is relatively prime to 4N,

a(D0)2 = Q

L(F&xp. k)DL~ ?
€D XD, 0
0, otherwise,
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where ep is an algebraic integer with |ep|, = 1. The result now follows from Corollary 2 by
scaling €2 appropriately.

O

Proof of Theorem 4. By [Th. 8, O], there is a half-integral weight cusp form Fy(z) =
D ome1 ae(n)q™ € Sy, 41 (576¢, x12) N Z[[q]] for which

(4.2) Fo(z) = Yo <€” i 1) ¢*  (mod £).

24
n>0,
In=—1 (mod 24)

theorem asserts that these forms are on the congruence subgroup I'g(576¢), the proof shows
that they are indeed on I'g(576). To see this, observe that the U(£) operator modulo £ is the
¢th Hecke operator for modular forms on SLo(Z), and that 1(24£2) = n(24z)* (mod /). Now
observe that the coefficients of Fy(z) (mod £) are precisely the values p(4n + v,) (mod £).
Moreover, observe that if ay(n) # 0 (mod /), then ged(n,24) = 1.

If Theorem 1 (1) is false for Fy(z), then by Theorem 1 (2) there are finitely many square-
free integers, say ny,ns, ..., ns, for which

Here Ay = (£ — £ —2)/2 and x12 := (£2). This is the k = 1 case of [Th. 8, O]. Although this

ay (77,,~m2)q”im2 (mod ¢).

I
M@
NE

(4.3) Fg(z)

'&
3
ﬂ‘

i

Without loss of generality, we may assume that

(4.4) 0# Fy(z) = Z ag(nlmz)q"”””2 (mod ¢).

m=

[y

This is easily accomplished by recursively replacing Fy(z) by a suitable linear combination
of trivial and quadratic twists.

Fix an integer ng for which as(ng) Z 0 (mod £). As before, we have that gcd(ng, 24) = 1.
If P, denotes the set of primes that are primitive roots modulo ¢, then for all but finitely
many primes p € P, we may apply Theorem 1 (2) with € = (%)

If pg 1 no is such a prime, then we have

ar(pono) = — <%> Xi2(Po)p~tas(no) (mod £),

as(pano) = p~2ag(no) (mod £).

This follows from (2.2), Theorem 1 (2), the fact pg is a quadratic non-residue modulo ¢, and
the fact that Ay = £(£ — 1)/2 — 1. More generally, for every positive integer k we have

—(22) x72 (po)py Fas(no) (mod £) if & is odd,

Py Fag(ng) (mod £) if k is even.

(4.5) a,g(pgkno) = {
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Since ged(ng,24) = 1, we may select such a prime py with the additional property that
—(%)X’{z (po) = 1. Since pg is a primitive root modulo ¢, (4.5) then implies that each non-
zero residue class r (mod /) contains infinitely many ays(n). One obtains estimates in these
cases by arguing as in the proof of Theorem 1. Similarly, one obtains the » = 0 (mod /)
case by arguing again in the proof of Theorem 1.

O

Proof of Corollary 5. By Theorem 4, if there is a single n for which p(¢n + ;) Z0 mod Z,
then Newman’s Conjecture is true for £. Moreover, since Fy(z) (mod £) cannot be a non-zero
polynomial, there must be infinitely many n for which p(¢n + v,) Z 0 (mod £). A simple
program yields this result.
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