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1. Introduction

The purpose of the present note is to report on recent joint work with T. Yang on
Faltings heights of CM cycles and derivatives of L-functions [BY]. In this work we study
the Faltings height pairing of arithmetic special divisors and CM cycles on Shimura varieties
associated to orthogonal groups. We compute the archimedean contribution to the height
pairing and derive a conjecture relating the total pairing to the central derivative of a
Rankin L-function. We prove the conjecture in certain cases where the Shimura variety
has dimension 0, 1, or 2. In particular, this leads to a new proof of the Gross-Zagier
formula.

2. The Gross-Zagier formula

Let E be an elliptic curve over Q, say, given by a Weierstrass equation

E : y2 = x3 + ax + b

with a, b ∈ Q. The rational points of E, that is, in the solutions to the Weierstrass equation
over Q, form an abelian group E(Q). By the Mordell-Weil theorem, this group is finitely
generated. Therefore

E(Q) ∼= Zr ⊕ E(Q)tors,

where r ∈ Z≥0 is the rank of E and E(Q)tors is the finite subgroup of points of finite order
in E(Q). By a theorem of Mazur it is known which abelian groups can occur as E(Q)tors.
It is a list of fifteen groups, all of order ≤ 12. However, the rank r is still very mysterious.
The Birch and Swinnerton-Dyer conjecture predicts that r can be computed by means of
the Hasse-Weil L-function L(E, s) of E. In view of the celebrated modularity theorem
of Wiles et al. [Wi], [BCDT], the L-function has a holomorphic continuation to C and
satisfies a functional equation relating the value at s to the value at 2− s. The Birch and
Swinnerton-Dyer conjecture states that

r = ords=1 L(E, s).

Not much is known in general regarding the conjecture. By the work of Gross-Zagier and
Kolyvagin we know that it is true when the analytic rank of E, the quantity ords=1 L(E, s),
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is equal to 0 or 1. Here the contribution of Gross and Zagier is an explicit construction of
a point of infinite order on elliptic curves with analytic rank 1. It can be deduced from the
Gross-Zagier formula, which be briefly recall in a formulation which is convenient for the
present note.

Assume that the L-function L(E, s) of E has an odd functional equation so that the cen-
tral critical value L(E, 1) vanishes. In this case the Birch and Swinnerton-Dyer conjecture
predicts the existence of a rational point of infinite order on E. Let N be the conductor of
E, and let X0(N) be the moduli space of cyclic isogenies of degree N of generalized elliptic
curves. Let K be an imaginary quadratic field such that N is the norm of an integral ideal
of K, and write D for the discriminant of K. We may consider the divisor Z(D) on X0(N)
given by elliptic curves with complex multiplication by the maximal order of K. By the
theory of complex multiplication, this divisor is defined over K, and its degree h is given
by the class number of K. Hence the divisor y(D) = trK/Q(Z(D) − h · (∞)) has degree
zero and is defined over Q. Using a modular parametrization X0(N) → E, we obtain a
rational point yE(D) on E. The Gross-Zagier formula [GZ] states that the canonical height
of yE(D) is given by the derivative of the L-function of E over K at s = 1, more precisely

〈yE(D), yE(D)〉NT = C
√
|D|L′(E, 1)L(E, χD, 1).

Here C is an explicit non-zero constant which is independent of K, and L(E, χD, s) denotes
the quadratic twist of L(E, s) by the quadratic Dirichlet character χD corresponding to
K/Q. It is always possible to choose K such that L(E, χD, 1) is non-vanishing. So, in this
case, yE(D) has infinite order if and only if L′(E, 1) 6= 0. In particular, if E has analytic
rank 1, we see that r ≥ 1. The inequality r ≤ 1 follows from Kolyvagin’s work. Besides its
importance in the context of the Birch and Swinnerton-Dyer conjecture, the Gross-Zagier
formula has a striking application to the Gauss class number problem. It can be used
to find elliptic curves over Q whose analytic rank is at least 3, leading to effective lower
bounds for class numbers by a result of Goldfeld.

The work of Gross and Zagier triggered a lot of further research on height pairings of
algebraic cycles on Shimura varieties. For instance, Gross and Keating computed the inter-
section numbers of three Hecke correspondences on the product of two copies of the modular
curve X(1) over Z [GK]. Zhang considered heights of Heegner type cycles on Kuga-Sato
fiber varieties over modular curves in [Zh1], and the heights of Heegner points on compact
Shimura curves over totally real fields in [Zh2]. Kudla, Rapoport and Yang investigated
Arakelov intersection numbers of special cycles on Shimura varieties of orthogonal type
and related them to derivatives of Siegel Eisenstein series and modular L-functions, see
e.g. [Ku1], [Ku4], [KRY2]. In most of this work, the connection between a height pairing
and the derivative of an automorphic L-function comes up in a rather indirect way.

In our joint work with T. Yang [BY], we consider a different approach to obtain identities
between certain height pairings on Shimura varieties of orthogonal type and derivatives of
automorphic L-functions. It is based on the Borcherds lift [Bo1] and its generalization in
[Br], [BF]. We propose a conjecture for the Faltings height pairing of arithmetic special
divisors and CM cycles. We compute the archimedean contribution to the height pairing.
Using this result we prove the conjecture in certain low dimensional cases.



THE GROSS-ZAGIER FORMULA AND THE BORCHERDS LIFT 3

3. Shimura varieties associated to orthogonal groups

Let (V, Q) be a quadratic space over Q of signature (n, 2), and let H = GSpin(V ). We
realize the hermitian symmetric space corresponding to H(R) as the Grassmannian

D = {z ⊂ V (R); dim(z) = 2 and Q |z< 0}

of oriented negative definite two-dimensional subspaces of V (R). For a compact open
subgroup K ⊂ H(Af ) we consider the Shimura variety

XK = H(Q)\
(
D×H(Af )/K

)
.

It is a quasi-projective variety of dimension n, which is defined over Q, see [Ku2]. Note
that for small n there are exceptional isomorphisms relating H to other classical groups.
For instance GSpin(1, 2) ∼= GL2(R), so in the n = 1 case we are essentially looking at
modular curves. Hilbert modular surfaces can be viewed as a particular n = 2 case and
Siegel modular threefolds as a n = 3 case.

Let L ⊂ V be an even lattice, and write L′ for the dual of L. The discriminant group
L′/L is finite. Throughout we assume that K ⊂ H(Af ) stabilizes L̂ = L ⊗Z Ẑ and that
K acts trivially on L′/L. This is no loss of generality, since we can always fulfil this
assumption by choosing K sufficiently small.

It is an important feature of such Shimura varieties that they come with natural families
of algebraic cycles in all codimensions, see e.g. [Ku2]. These special cycles arise from
embeddings of rational quadratic subspaces V ′ ⊂ V of signature (n′, 2) with 0 ≤ n′ ≤ n. It
is an interesting problem to consider height pairings of arithmetic versions of special cycles
in complementary codimension, see [Ku4]. In the present paper we study this problem for
special divisors (where n′ = n− 1) and special 0-cycles (where n′ = 0). The latter are also
called CM cycles since they are associated to CM number fields.

We define CM cycles on XK following [Scho]. Let U ⊂ V be a negative definite two-
dimensional rational subspace of V . It determines a two point subset {z±U } ⊂ D given
by U(R) with the two possible choices of orientation. Let V+ ⊂ V be the orthogonal
complement of U . Then V+ is a positive definite subspace of dimension n, and we have the
rational splitting

V = V+ ⊕ U.

Let T = GSpin(U), which we view as a subgroup of H acting trivially on V+, and put
KT = K ∩ T (Af ). We obtain the CM cycle

Z(U) = T (Q)\
(
{z±U } × T (Af )/KT

)
−→ XK .

The cycle Z(U) is defined over Q. It can be viewed as a generalization of CM points on
modular curves.

Next we define special divisors on XK (cf. [Bo1], [Br], [Ku3]). We follow the description
in [Ku3, pp. 304]. Let x ∈ V (Q) be a vector of positive norm. We write Vx for the
orthogonal complement of x in V and Hx for the stabilizer of x in H. So Hx

∼= GSpin(Vx).
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The sub-Grassmannian

Dx = {z ∈ D; z ⊥ x}

defines an analytic divisor on D. For h ∈ H(Af ) we consider the natural map

Hx(Q)\Dx ×Hx(Af )/(Hx(Af ) ∩ hKh−1) −→ XK , (z, h1) 7→ (z, h1h).

Its image defines a divisor Z(x, h) on XK , which is rational over Q. For m ∈ Q>0 let

Ωm = {x ∈ V ; Q(x) = m}

be the corresponding quadric in V . If Ωm(Q) is non-empty, then by Witt’s theorem, we
have Ωm(Q) = H(Q)x0 and Ωm(Af ) = H(Af )x0 for a fixed element x0 ∈ Ωm(Q). For
µ ∈ L′/L we may write

(µ + L̂) ∩ Ωm(Af ) =
∐

j

Kξ−1
j x0

as a finite disjoint union, where ξj ∈ H(Af ). This follows from the fact that µ + L̂ is
compact and Ωm(Af ) is a closed subset of V (Af ). We define a composite special divisor
by putting

Z(m,µ) =
∑

j

Z(x0, ξj).

The definition is independent of the choice of x0 and the representatives ξj. These divisors
generalize Heegner divisors on modular curves.

4. Harmonic weak Maass forms and automorphic Green functions

For the divisors Z(m, µ) we obtain Arakelov Green functions by means of a regularized
theta lift of harmonic weak Maass forms. We now describe this construction.

We consider the space SL of Schwartz functions on V (Af ) which are supported on L̂′

and which are constant on cosets of L̂. The characteristic functions

φµ = char(µ + L̂)

of the cosets µ ∈ L′/L form a basis of SL. We write Γ′ = Mp2(Z) for the full inverse
image of SL2(Z) in the two fold metaplectic covering of SL2(R). Recall that there is a Weil
representation ρL of Γ′ on SL, see e.g. [Bo1], [BY].

Let k ∈ 1
2
Z. We write M !

k,ρL
for the space of SL-valued weakly holomorphic modular

forms of weight k for Γ′ with representation ρL. Recall that weakly holomorphic modular
forms are those meromorphic modular forms whose poles are supported at the cusps. The
space of weakly holomorphic modular forms is contained in the space Hk,ρL

of harmonic
weak Maass forms of weight k for Γ′ with representation ρL. Recall that harmonic weak
Maass forms are real analytic modular forms which are annihilated by the weight k Lapla-
cian and which may have poles at the cusps. An element f ∈ Hk,ρL

has a Fourier expansion
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of the form

f(τ) =
∑

µ∈L′/L

∑
n∈Q

n�−∞

c+(n, µ)qnφµ +
∑

µ∈L′/L

∑
n∈Q
n<0

c−(n, µ)Γ(1− k, 4π|n|v)qnφµ,

where Γ(a, t) denotes the incomplete Gamma function, and v is the imaginary part of
τ ∈ H. Note that c±(n, µ) = 0 unless n ∈ Q(µ) + Z, and that there are only finitely
many n < 0 for which c+(n, µ) is non-zero. There is an antilinear differential operator
ξ : Hk,ρL

→ S2−k,ρ̄L
to the space of cusp forms of weight 2− k with dual representation. It

is surjective and gives rise to an exact sequence

0 // M !
k,ρL

// Hk,ρL

ξ // S2−k,ρ̄L
// 0 .

For τ ∈ H, z ∈ D and h ∈ H(Af ), let θL(τ, z, h) be the Siegel theta function associated
to the lattice L. Let f ∈ H1−n/2,ρ̄L

be a harmonic weak Maass form of weight 1−n/2, and
denote its Fourier expansion as above. We consider the regularized theta integral

Φ(z, h, f) =

∫ reg

F
〈f(τ), θL(τ, z, h)〉 dµ(τ).

This theta lift was studied in [Br], [BF], generalizing the Borcherds lift of weakly holomor-
phic modular forms [Bo1]. The following theorem is proved in [Br], [BF].

Theorem 4.1. The function Φ(z, h, f) is a logarithmic Green function for the divisor

Z(f) =
∑

µ∈L′/L

∑
m>0

c+(−m, µ)Z(m, µ)

in the sense of Arakelov geometry.

This means that Φ(z, h, f) is smooth on XK\Z(f) with a logarithmic singularity along
the divisor −2Z(f). The (1, 1)-form ddcΦ(z, h, f) can be continued to a smooth form on
all of XK , and we have the Green current equation

ddc[Φ(z, h, f)] + δZ(f) = [ddcΦ(z, h, f)],

where δZ denotes the Dirac current of a divisor Z (cf. [SABK]). Note that the Green
function Φ(z, h, f) is harmonic when c+(0, 0) = 0.

The pair Ẑ(f) = (Z(f), Φ(·, f)) defines an arithmetic divisor on XK . We obtain a linear
map

H1−n/2,ρ̄L
−→ Ẑ1(XK)C, f 7→ Ẑ(f)

to the group of arithmetic divisors on XK . It gives rise to a commutative diagram with
exact rows

0 // M !
1−n/2,ρ̄L,0

��

// H1−n/2,ρ̄L,0

��

ξ // S1+n/2,ρL

��

// 0

0 // R̂at(XK)C
// Ẑ

1
(XK)C

// ĈH
1
(XK)C

// 0

.
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Here H1−n/2,ρ̄L,0 denotes the subspace of H1−n/2,ρ̄L
consisting of those weak Maass forms

with vanishing constant term c+(0, 0), and M !
1−n/2,ρ̄L,0 denotes the corresponding space

of weakly holomorphic modular forms. Moreover, R̂at(XK) is the group of arithmetic

divisors given by (div(r),− log |r|2) for a rational function r on XK , and ĈH
1
(XK) is the

first arithmetic Chow group. The left vertical arrow in the above diagram is the Borcherds
lift of weakly holomorphic modular forms, see [Bo1].

5. CM values of Green functions

We aim to compute the Faltings height pairing of the arithmetic special divisor Ẑ(f)
and the CM cycle Z(U). The pairing is a sum of an archimedean and a non-archimedean
contribution. We begin by computing the archimedean part. It is given by the evaluation

1

2
Φ(Z(U), f) =

1

2

∑
(z,h)∈Z(U)

Φ(z, h, f)(5.1)

of the Green function of Ẑ(f) at the cycle Z(U). We now describe the quantities that
enter in the formula for (5.1).

By means of the splitting V = V+ ⊕ U , we obtain definite lattices N = L ∩ U and
P = L ∩ V+. Let

θP (τ) =
∑
λ∈P ′

qQ(λ)φλ =
∑

µ∈P ′/P

∑
m≥0

r(m,µ)qmφµ

be the theta series in Mn/2,ρP
associated to the positive definite lattice P . The Fourier

coefficients r(m,µ) are the representation numbers of m by the coset µ + P . For to the
negative definite 2-dimensional lattice N there is a similar theta series. The corresponding
genus theta series is related to an incoherent Eisenstein series EN(τ, s; 1) of weight 1 via
the Siegel Weil formula. The central derivative

EN(τ) =
d

ds
EN(τ, s; 1) |s=0

is a harmonic weak Maass form in H1,ρN
.

For a cusp form g ∈ S1+n/2,ρL
with Fourier expansion g =

∑
µ

∑
m>0 b(m, µ)qmφµ, we

consider the Rankin type L-function

L(g, U, s) = (4π)−(s+n)/2Γ
(

s+n
2

) ∑
m>0

∑
µ∈P ′/P

r(m,µ)b(m, µ)m−(s+n)/2.(5.2)

This L-function can be written as a Rankin-Selberg convolution against the Eisenstein
series EN(τ, s; 1). Under mild assumptions on U , the completed L-function L∗(g, U, s) :=
Λ(χD, s + 1)L(g, U, s) satisfies the functional equation

L∗(g, U, s) = −L∗(g, U,−s).

Consequently, it vanishes at s = 0, the center of symmetry, and it is of interest to describe
the derivative L′(g, U, 0).
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Theorem 5.1. Let f ∈ H1−n/2,ρ̄L
, and assume that the constant term c+(0, 0) of f vanishes.

We have

Φ(Z(U), f) = deg(Z(U)) ·
(
CT

(
〈f+, θP ⊗ E+

N 〉
)

+ L′(ξ(f), U, 0)
)
.(5.3)

Here f+ and E+
N denote the holomorphic parts of the harmonic weak Maass forms f and

EN . Moreover, CT(S) denotes the constant term of a q-series S.

The first summand on the right hand side is an explicit (rational) linear combination of
the coefficients κ(m, µ) of E+

N . Each of these coefficients is a rational linear combination of
log(p) for primes p, which can be computed explicitly.

The theorem can be proved by combining the approach of Kudla and Schofer to evaluate
regularized theta integrals on special cycles (see [Ku3], [Scho]) with results on harmonic
weak Maass forms and automorphic Green functions obtained in [BF]. The basic idea is
to view the evaluation of Φ(z, h, f) on Z(U) as an integral over T (Q)\T (Af )/KT . Then
the CM value Φ(Z(U), f) can be computed using the see-saw dual pair

SL2× SL2

RRRRRRRRRRRRR
SO(V )

SL2

llllllllllllllll
SO(V +)× SO(U),

the Siegel-Weil formula (see [We], [KR1], [KR2]), and the properties of the Maass lowering
and raising operators on Eisenstein series and harmonic weak Maass forms.

When f is actually weakly holomorphic then ξ(f) = 0. So the second summand on
the right hand side of (5.3) vanishes. Moreover, Φ(z, h, f) = −2 log |Ψ(z, h, f)|2 where
Ψ(z, h, f) is a rational function on XK , namely the Borcherds lift of f , see [Bo1]. Hence
Theorem 5.1 says that

log |Ψ(Z(U), f)| = −deg(Z(U))

4
CT

(
〈f+, θP ⊗ E+

N 〉
)
.

One obtains an explicit formula for the prime factorization of Ψ(Z(U), f), see [Scho]. It
generalizes the formula of Gross and Zagier on singular moduli, that is, CM values of the
j-function.

6. Faltings heights

In this section we give a conjectural interpretation of the central derivative of the L-
function L(g, U, s) occuring in Theorem 5.1 as a height pairing. We are quite vague here
and ignore various difficult technical problems regarding regular models.

Let X → Spec(Z) be a regular scheme which is projective and flat over Z, of relative
dimension n. An arithmetic divisor on X is a pair (x, gx) of a divisor x on X and a
logarithmic Green function gx for the divisor x(C) induced by x on the complex variety
X (C), see [SABK]. Recall from [BGS] that there is a height pairing

ĈH
1
(X )× Zn(X ) −→ R
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between the first arithmetic Chow group of X and the group of codimension n cycles.

When x̂ = (x, gx) ∈ ĈH
1
(X ) and y ∈ Zn(X ) such that x and y intersect properly, it is

defined by

〈x̂, y〉Fal = 〈x, y〉fin + 〈x̂, y〉∞,

where 〈x̂, y〉∞ = 1
2
gx(y(C)), and 〈x, y〉fin denotes the intersection pairing at the finite

places. The quantity 〈x̂, y〉Fal is called the Faltings height of y with respect to x̂.
Assume that there is a regular scheme XK → Spec Z, projective and flat over Z,

whose associated complex variety is a smooth compactification of XK . Let Z(m, µ) and
Z(U) be suitable extensions to XK of the cycles Z(m, µ) and Z(U), respectively. Such
extensions can be found in many cases using a moduli interpretation of XK , see e.g.
[Ku4], [KRY2], or by taking flat closures as in [BBK]. For an f ∈ H1−n/2,ρ̄L

, we set
Z(f) =

∑
µ

∑
m>0 c+(−m,µ)Z(m,µ). Then the pair

Ẑ(f) = (Z(f), Φ(·, f))

defines an arithmetic divisor in ĈH
1
(XK)C.

Conjecture 6.1. Let f ∈ H1−n/2,ρ̄L
, and assume that the constant term c+(0, 0) of f

vanishes. Then

〈Ẑ(f),Z(U)〉Fal =
deg(Z(U))

2
L′(ξ(f), U, 0).

When f is actually weakly holomorphic then ξ(f) = 0 and the right hand side of the
equality in Conjecture 6.1 vanishes. On the other hand, the Borcherds lift of f gives rise
to a relation in the arithmetic Chow group which shows that the arithmetic divisor Ẑ(f)
is rationally equivalent to zero. Hence the Faltings height on the left hand side vanishes as
well. Moreover, the archimedean contribution to the height pairing must equal the negative
of the contribution from the finite places. This leads to a general conjecture for the finite
intersection pairing of Z(m,µ) and Z(U) which motivates Conjecture 6.1:

Conjecture 6.2. Let µ ∈ L′/L, and let m ∈ Q(µ)+Z be positive. Then 〈Z(m, µ),Z(U)〉fin

is equal to −deg(Z(U))
2

times the (m,µ)-th Fourier coefficient of θP ⊗ E+
N .

In view of Theorem 5.1, this conjecture is essentially equivalent to Conjecture 6.1.

7. The n = 0 case

Here we discuss Conjecture 6.1 in the case n = 0 where V is negative definite of dimension
2. Then we have U = V . The even Clifford algebra of V is an imaginary quadratic field
k = Q(

√
D), and H = GSpin(V ) = k∗. For simplicity we assume that the lattice L is

isomorphic to a fractional ideal a ⊂ k with the scaled norm −N(·)/ N(a) as the quadratic

form. We take K = Ô∗
k, which acts on L′/L trivially. Then XK is the union of two copies

of the ideal class group Cl(k). An integral model over Z can be found by slightly varying
the setup of [KRY1]. It is given as the moduli stack C over Z of elliptic curves with complex
multiplication by the ring of integers of k. The special divisors can be defined on C by
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considering CM elliptic curves whose endomorphism ring is larger, and therefore equal to
an order of a quaternion algebra. They are supported in finite characteristic.

In this case the lattice P is zero-dimensional and the L-function L(ξ(f), U, s) vanishes
identically. Therefore Conjecture 6.1 reduces to the statement that the arithmetic degree
of the special divisor Z(f) on C should be given by the negative of the average of the
regularized theta lift of f . This identity is proved in [BY] using Theorem 5.1 and the
results obtained in [KRY1], respectively their generalization in [KY]. More precisely the
following theorem is proved:

Theorem 7.1. Let f ∈ H1,ρ̄L
and assume that the constant term of f vanishes. Then

d̂eg(Z(f)) = −1

2

∑
(z,h)∈XK

Φ(z, h, f).

8. The n = 1 case

Finally, we consider the case n = 1. We let V be the rational quadratic space of signature
(1, 2) given by the trace zero 2 × 2 matrices with the quadratic form Q(x) = N det(x),
where N is a fixed positive integer. In this case H ∼= GL2. We chose the lattice L ⊂ V
and the compact open subgroup K ⊂ H(Af ) such that XK is isomorphic to the modular
curve Γ0(N)\H. The special divisors Z(m, µ) and the CM cycles Z(U) are both supported
on CM points and therefore closely related.

The space S3/2,ρL
can be identified with the space of Jacobi cusp forms of weight 2 and

index N . Recall that there is a Shimura lifting from this space to cusp forms of weight 2
for Γ0(N), see [GKZ]. Let G be a normalized newform of weight 2 for Γ0(N) whose Hecke
L-function L(G, s) satisfies an odd functional equation. There exists a newform g ∈ S3/2,ρL

corresponding to G under the Shimura correspondence. It turns out that the L-function
L(g, U, s) is proportional to L(G, s + 1).

We may choose f ∈ H1/2,ρ̄L
with vanishing constant term such that ξ(f) = ‖g‖−2g and

such that the principal part of f has coefficients in the number field generated by the
eigenvalues of G. Then Z(f) defines an explicit point in the Jacobian of X0(N), which
lies in the G isotypical component. In this case Conjecture 6.1 essentially reduces to the
following Gross-Zagier type formula for the Neron-Tate height of Z(f).

Theorem 8.1. The Neron-Tate height of Z(f) is given by

〈Z(f), Z(f)〉NT =
2
√

N

π‖g‖2
L′

(
G, 1).

The proof of this result which we give in [BY] is quite different from the original proof
of Gross and Zagier and uses minimal information on finite intersections between special
divisors. Instead, we derive it from Theorem 5.1, modularity of the generating series of
special divisors (Borcherds’ approach to the Gross-Kohnen-Zagier theorem [Bo2], [BrO]),
and multiplicity one for the subspace of newforms in S3/2,ρL

[SZ]. Another crucial ingre-
dient is the non-vanishing result for coefficients of weight 2 Jacobi cusp forms by Bump,
Friedberg, and Hoffstein [BFH]. Employing in addition the Waldspurger type formula
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for the coefficients of g [GKZ], we also obtain the Gross-Zagier formula as stated at the
beginning.
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