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1 Introdu
tion

In the present paper we study 
ertain ve
tor valued Eisenstein series on the metaple
ti



over Mp

2

(R) of SL

2

(R).

Let L be an even latti
e of signature (b

+

; b

�

), equipped with a quadrati
 form q, and

write L

0

for its dual. Re
all that the Weil representation �

�

L

atta
hed to the quadrati


module (L

0

=L; q) is a unitary representation of the integral metaple
ti
 group Mp

2

(Z) on

the group algebra C [L

0

=L℄ (
f. [No℄, [Bo2℄). Let k 2

1

2

Z and k > 2. We 
onsider the spa
e

M

k;L

of C [L

0

=L℄-valued holomorphi
 modular forms of weight k with respe
t to Mp

2

(Z)

and �

�

L

. It is easily seen that M

k;L

= f0g, if 2k is not 
ongruent to b

�

� b

+

modulo 2.

Thus, if the rank m = b

+

+b

�

of L is even, any non-zero modular form inM

�;L

has integral

weight. If m is odd, then any non-zero modular form in M

�;L

has half-integral weight.

We de�ne Eisenstein series in the spa
e M

k;L

in the usual way. The main purpose of the

present paper is to 
ompute their Fourier expansion expli
itly. For simpli
ity we restri
t

ourselves to the 
ase 2k�b

�

+b

+

� 0 (mod 4) and to one parti
ular Eisenstein series E(�)

in M

k;L

. This is suÆ
ient for our later appli
ations. The more general 
ase 
an be treated

similarly.

By a standard 
omputation the (
; n)-th Fourier 
oeÆ
ient q(
; n) of E(�) 
an be

expressed in terms of a rather 
ompli
ated in�nite series (
 2 L

0

=L and n 2 Z � q(
)).

This was done in 
hapter 1.2.3 of [Br1℄. The resulting formula was suÆ
ient for the

purposes of [Br1℄ but is not very satisfying. For instan
e, it does not even show that the

q(
; n) are algebrai
 (or better rational) numbers. In se
tion 4 we use Shintani's formula

for the 
oeÆ
ients of the Weil representation [Sh℄ and results of Siegel on representation

numbers of quadrati
 forms modulo prime powers [Si℄, to 
ompute the series for q(
; n)
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more expli
itly. We obtain a �nite formula involving spe
ial values of Diri
hlet L-series

and �nitely many representation numbers modulo prime powers atta
hed to the latti
e L

(Theorem 4.6, Theorem 4.8). One pleasant property of the above 
lass of Eisenstein series

is that it in
ludes both, the 
lassi
al Eisenstein series of integral weight for SL

2

(Z), and

the half-integral weight Cohen-Eisenstein series for �

0

(4), as easy spe
ial 
ases.

In se
tion 5 we 
onsider the 
ase that L has signature (2; l) with l � 3. Let �(L)

be the subgroup of the orthogonal group of L that a
ts identi
ally on the dis
riminant

group L

0

=L. The Eisenstein series E(�) of weight 1 + l=2 atta
hed to L 
an be used to

prove some results on automorphi
 forms on the orthogonal group O(2; l). This is the

main appli
ation of Theorem 4.8 and motivated the present paper. Re
all that for any

� 2 L

0

=L and any t 2 Z + q(�) with t < 0 there is a �(L)-invariant divisor H(�; t) on

the Hermitean symmetri
 spa
e H = O

0

(2; l)=K atta
hed to O

0

(2; l). Here K denotes

a maximal 
ompa
t subgroup (see se
tion 5 for pre
ise de�nitions). Following Bor
herds

we 
all H(�; t) Heegner divisor of dis
riminant (�; t). These divisors generalize the usual

Heegner points on the upper 
omplex half plane.

In the 
ontext of Bor
herds' theory of automorphi
 produ
ts (
f. [Bo1, Bo2, Bo3℄) it

was shown in [Br1℄ that the 
oeÆ
ients q(
; n) of E(�) en
ode the weights of automorphi


forms for �(L), whose divisors are linear 
ombinations of Heegner divisors. Hen
e, if we

know the weight of su
h an automorphi
 form, we obtain some information on its divisor

by means of Theorem 4.8.

In parti
ular, if there are no 
usp forms in M

k;L

, then the q(
; n) determine 
ompletely

the positions of the Heegner divisors H(
;�n) in the se
ond 
ohomology of H=�(L). This

generalizes van der Geer's result on Siegel modular threefolds [Ge℄.

We shall show that the q(
; n) are non-positive rational numbers. Moreover, q(
; n)

is negative, if and only if H(
;�n) is non-trivial. As a 
onsequen
e the main result

(Theorem 5.2) of se
tion 5 
an be dedu
ed. It roughly states: Let F be a holomorphi


modular form of weight r for �(L), whose divisor (F ) is a linear 
ombination of Heegner

divisors. Let D =

1

2

P

�;t


(�; t)H(�; t) be another linear 
ombination of Heegner divisors

with non-negative integral 
oeÆ
ients 
(�; t) su
h that D � (F ). Then the 
orresponding

sum �

1

4

P

�;t


(�; t)q(�;�t) of the 
oeÆ
ients of E(�) is � r. It equals r, if and only if

D = (F ).

A
knowledgments. We would like to thank M. Bunds
huh, E. Freitag and W. Kohnen for

their help.

2 Notation

Let N = f1; 2; : : :g be the set of positive integers. As usual, we denote by H = f� 2

C ; =(�) > 0g the 
omplex upper half plane. Throughout we will use � as a standard

variable on H and write x for its real part and y for its imaginary part, respe
tively. For

z 2 C we put e(z) = e

2�iz

, and denote by

p

z = z

1=2

the prin
ipal bran
h of the square root,

so that arg(

p

z) 2 (��=2; �=2℄. For any integer k we put z

k=2

= (z

1=2

)

k

. Moreover, if x is

a real number, we let [x℄ = maxfn 2 Z; n � xg. If x is non-zero we write sgn(x) = x=jxj.
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Let D be a dis
riminant, i.e. a non-zero integer 
ongruent to 0 or 1 modulo 4. Then we

write �

D

for the Diri
hlet 
hara
ter modulo jDj, whi
h is given by the Krone
ker symbol:

�

D

(a) =

�

D

a

�

. The 
orresponding Diri
hlet series is denoted by L(s; �

D

).

Let n 2 N and � be a Diri
hlet 
hara
ter. We de�ne the twisted divisor sum �

s

(n; �)

by

�

s

(n; �) =

X

djn

�(d)d

s

;

where the sum runs through all positive divisors of n. For x 2 R � N we understand

�

s

(x; �) = 0. As usual, if � = �

1

is the trivial 
hara
ter modulo 1, we brie
y write �

s

(n)

instead of �

s

(n; �

1

).

For any prime p we denote by v

p

the (additive) p-adi
 valuation on Q .

3 Modular forms and the Weil representation

In this se
tion we brie
y re
all from [Br1℄ and [Bo2℄ some fa
ts about the Weil represen-

tation and 
ertain ve
tor valued modular forms.

Let Mp

2

(R) be the metaple
ti
 
over of SL

2

(R), realized as the group of pairs (M;�(�)),

where M = (

a b


 d

) 2 SL

2

(R), and � is a holomorphi
 square root of � 7! 
� + d. The

assignment

(

a b


 d

) 7!

℄

(

a b


 d

) =

�

(

a b


 d

) ;

p


� + d

�

(3.1)

de�nes a lo
ally isomorphi
 embedding of SL

2

(R) into Mp

2

(R).

We denote by Mp

2

(Z) the inverse image of SL

2

(Z) under the 
overing map Mp

2

(R) !

SL

2

(R). It is well known that Mp

2

(Z) is generated by the two elements

T =

��

1 1

0 1

�

; 1

�

and S =

��

0 �1

1 0

�

;

p

�

�

:

One has the relations S

2

= (ST )

3

= Z, where Z =

��

�1 0

0 �1

�

; i

�

is the standard generator

of the 
enter of Mp

2

(Z). We put �

1

:= SL

2

(Z) and write �

1

resp.

e

�

1

for the subgroup of

�

1

resp. Mp

2

(Z) generated by (

1 n

0 1

) resp. T .

Let L be an even latti
e, i.e. a free Z-module of �nite rank, equipped with a symmetri


Z-valued bilinear form (�; �) su
h that the asso
iated quadrati
 form q(x) =

1

2

(x; x) takes

its values in Z. We assume that L is non-degenerated and denote its signature by (b

+

; b

�

)

and its rank by m = b

+

+ b

�

. We write L

0

for the dual latti
e of L. The modulo 1

redu
tion of q(�) is a Q=Z-valued quadrati
 form on the (�nite) dis
riminant group L

0

=L,

whose asso
iated bilinear form is the modulo 1 redu
tion of the bilinear form (�; �) on L

0

.

Re
all that there is a parti
ular unitary representation �

L

of Mp

2

(Z) on the group

algebra C [L

0

=L℄. If we denote the standard basis of C [L

0

=L℄ by (e




)


2L

0

=L

then �

L


an be
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de�ned by the a
tion of the generators S; T 2 Mp

2

(Z) as follows:

�

L

(T )e




= e(q(
))e




(3.2)

�

L

(S)e




=

p

i

b

�

�b

+

p

jL

0

=Lj

X

Æ2L

0

=L

e(�(
; Æ))e

Æ

(3.3)

(
p. [Bo2℄). We denote by �

�

L

the dual representation of �

L

.

The representation �

L

is essentially the Weil representation asso
iated to the quadrati


module (L

0

=L; q) (see [No℄). It fa
tors through a �nite quotient of Mp

2

(Z). Observe that

�

L

(Z)e




= i

b

�

�b

+

e

�


.

Let h�; �i be the standard s
alar produ
t on C [L

0

=L℄, whi
h is linear in the �rst vari-

able and anti-linear in the se
ond. For �; 
 2 L

0

=L and (M;�) 2 Mp

2

(Z) we de�ne the


oeÆ
ient �

�


(M;�) of the representation �

L

by

�

�


(M;�) = h�

L

(M;�)e




; e

�

i:

The following result due to Shintani will be of fundamental importan
e to us (
f. [Sh℄,

Prop. 1.6).

Proposition 3.1 (Shintani). Let �; 
 2 L

0

=L and M = (

a b


 d

) 2 SL

2

(Z). Then the


oeÆ
ient �

�


(

f

M) is given by

p

i

(b

�

�b

+

)(1�sgn(d))

Æ

�;a


e(abq(�)); (3.4)

if 
 = 0, and by

p

i

(b

�

�b

+

) sgn(
)

j
j

(b

�

+b

+

)=2

p

jL

0

=Lj

X

r2L=
L

e

�

a(� + r; � + r)� 2(
; � + r) + d(
; 
)

2


�

; (3.5)

if 
 6= 0. Here, Æ

�;�

denotes the Krone
ker-delta.

Let k 2

1

2

Z and f be a C [L

0

=L℄-valued fun
tion on H . We de�ne the Petersson slash

operator by

(f j

�

k

(M;�)) (�) = �(�)

�2k

�

�

L

(M;�)

�1

f(M�) (3.6)

for (M;�) 2 Mp

2

(Z).

Any holomorphi
 fun
tion f : H ! C [L

0

=L℄, whi
h is invariant under the j

�

k

-operation

of T 2 Mp

2

(Z), has a Fourier expansion

f(�) =

X


2L

0

=L

X

n2Z�q(
)


(
; n)e




(n�); (3.7)

where e




(�) := e




e(�).

Let k 2

1

2

Z. We 
all a holomorphi
 fun
tion f : H ! C [L

0

=L℄ a modular form of weight

k with respe
t to �

�

L

and Mp

2

(Z) if
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i) f j

�

k

(M;�) = f for all (M;�) 2 Mp

2

(Z) and

ii) f is holomorphi
 in 1.

Here, the se
ond 
ondition means that all 
oeÆ
ients 
(
; n) with n < 0 vanish in the

Fourier expansion (3.7) of f . The C -ve
tor spa
e of modular forms of weight k with respe
t

to �

�

L

and Mp

2

(Z) is denoted by M

k;L

. It is easily seen that M

k;L

is �nite dimensional. The

transformation behavior under Z

2

implies that M

k;L

= f0g, if 2k 6� b

�

� b

+

(mod 2).

4 Eisenstein series

We now 
onstru
t Eisenstein series E

�

(�) for the spa
e M

k;L

and determine their Fourier


oeÆ
ients q

�

(
; n). Throughout we assume that k 2

1

2

Z and k > 2. For simpli
ity we

only 
onsider the 
ase 2k � b

�

+ b

+

� 0 (mod 4), the 
ase 2k � b

�

+ b

+

� 2 (mod 4) 
an

be treated similarly.

Let � 2 L

0

=L with q(�) 2 Z. Then the ve
tor e

�

2 C [L

0

=L℄, 
onsidered as a 
onstant

fun
tion H ! C [L

0

=L℄, is invariant under the j

�

k

-a
tion of T; Z

2

2 Mp

2

(Z). The Eisenstein

series

E

�

(�) =

1

2

X

(M;�)2

e

�

1

nMp

2

(Z)

e

�

j

�

k

(M;�) (4.1)

of weight k 
onverges normally on H and therefore de�nes a Mp

2

(Z)-invariant holomorphi


fun
tion on H .

The following proposition 
an be proved in the standard way (see [Br1℄ 
hapter 1.2.3).

We omit the proof.

Proposition 4.1. The Eisenstein series E

�

has the Fourier expansion

E

�

(�) =

X


2L

0

=L

X

n2Z�q(
)

n�0

q

�

(
; n)e




(n�)

with

q

�

(
; n) =

8

>

>

<

>

>

:

Æ

�;


+ Æ

��;


; if n = 0,

(2�)

k

n

k�1

�(k)

X


2Z�f0g

j
j

1�k

H

�




(�; 0; 
; n); if n > 0.

(4.2)

Here, H

�




(�;m; 
; n) denotes the generalized Kloosterman sum

H

�




(�;m; 
; n) =

e

��i sgn(
)k=2

j
j

X

d(
)

�

(

a b


 d

)

2�

1

n�

1

=�

1

�

�


^

�

a b


 d

�

e

�

ma + nd




�

(4.3)

(�; 
 2 L

0

=L and m 2 Z� q(�), n 2 Z� q(
)). In parti
ular E

�

is an element of M

k;L

.
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The sum in (4.3) runs over all primitive residues dmodulo 
 and (

a b


 d

) is a representative

for the double 
oset in �

1

n�

1

=�

1

with lower row (
 d

0

) and d

0

� d (mod 
). Observe that

the expression �

�


℄

(

a b


 d

) e

�

ma+nd




�

does not depend on the 
hoi
e of the 
oset representative.

The 
oeÆ
ients �

�


℄

(

a b


 d

) are universally bounded, sin
e �

L

fa
tors through a �nite

group. Hen
e there is a 
onstant C > 0 su
h that H

�




(�;m; 
; n) < C for all 
 2 L

0

=L,

n 2 Z� q(
), and 
 2 Z� f0g. This implies that the series (4.2) 
onverges absolutely.

We will mainly be interested in the Eisenstein series E

0

(�) whi
h we simply denote by

E(�). In the same way we write q(
; n) for the Fourier 
oeÆ
ients q

0

(
; n) of E(�).

The rest of this se
tion is devoted to �nding a more expli
it formula for the 
oeÆ
ients

q(
; n) of E(�). Note that the 
oeÆ
ients of the more general Eisenstein series E

�

(�) 
an

be 
omputed analogously.

Proposition 4.2. The generalized Kloosterman sum H

�




(0; 0; 
; n) equals

(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Lj

j
j

�1+m=2

X

aj


a

1�m

�(j
j=a)N


;n

(a):

Here � denotes the Moebius fun
tion and

N


;n

(a) = #fr 2 L=aL; q(r � 
) + n � 0 (mod a)g: (4.4)

Noti
e that the left hand side of the 
ongruen
e in (4.4) is always integral, be
ause

n 2 Z� q(
).

Proof. If we insert the formula for the 
oeÆ
ients of the representation �

L

(Proposition

3.1) into the de�nition of H

�




(0; 0; 
; n), we obtain

H

�




(0; 0; 
; n) =

e

��i sgn(
)(2k�b

�

+b

+

)=4

p

jL

0

=Ljj
j

1+m=2

X

d (
)

�

ad�1 (
)

X

r2L=
L

e

�

aq(r)� (
; r) + dq(
) + nd




�

=

(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Ljj
j

1+m=2

X

r2L=
L

X

d (
)

�

e

�

d(q(r � 
) + n)




�

;

where the sums

P

d (
)

�

run through all primitive residues dmodulo 
. We use the evaluation

of the Ramanujan sum

X

d (
)

�

e

�

dn




�

=

X

aj(
;n)

�(j
j=a)a

by means of the Moebius fun
tion ([Ap℄ Chapter 8.3). We get

H

�




(0; 0; 
; n) =

(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Ljj
j

1+m=2

X

aj


�(j
j=a)a

X

r2L=
L

q(r�
)+n�0 (a)

1:
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The 
ondition q(r � 
) + n � 0 (mod a) in the inner sum depends only on r modulo aL.

Thus

H

�




(0; 0; 
; n) =

(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Ljj
j

1+m=2

X

aj


�(j
j=a)a(j
j=a)

m

X

r2L=aL

q(r�
)+n�0 (a)

1

=

(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Lj

j
j

�1+m=2

X

aj


�(j
j=a)a

1�m

N


;n

(a):

Proposition 4.3. Let 
 2 L

0

and n 2 Z� q(
) with n > 0. The 
oeÆ
ient q(
; n) equals

the value at s = k of the analyti
 
ontinuation in s of

2

k+1

�

k

n

k�1

(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Lj�(k)�(s�m=2)

L


;n

(s):

Here �(s) denotes the Riemann zeta fun
tion and L


;n

(s) the L-series

L


;n

(s) =

X

a�1

N


;n

(a)a

1�m=2�s

: (4.5)

Proof. We 
onsider the L-series

e

L


;n

(s) =

X


2Z�f0g

j
j

1�s

H

�




(0; 0; 
; n): (4.6)

It 
onverges normally for <(s) > 2. A

ording to Proposition 4.2 one has

e

L


;n

(s) =

2(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Lj

X


�1




m=2�s

X

aj


�(
=a)a

1�m

N


;n

(a):

Substituting d = 
=a in the above sums we �nd

e

L


;n

(s) =

2(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Lj

X

a�1

N


;n

(a)a

1�m=2�s

X

d�1

�(d)d

m=2�s

=

2(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Lj�(s�m=2)

L


;n

(s): (4.7)

If we insert this into the formula for q(
; n) given in Proposition 4.1, we obtain the assertion.

Note that the L-series L


;n

(s) only 
onverges for <(s) > 1 + m=2. Using the equality

of (4.6) and (4.7), and the properties of the Riemann zeta fun
tion, we see that it has a

meromorphi
 
ontinuation to <(s) > 2 and a simple pole at s = 1 +m=2.
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Let S denote the Gram matrix of the latti
e L with respe
t to a �xed basis. Then

jL

0

=Lj = j det(S)j. We use the 
ommon abbreviation S[x℄ = x

t

Sx, whenever the matrix

produ
t makes sense. We may obviously write

N


;n

(a) = #

�

r 2 (Z=aZ)

m

;

1

2

S[r � 
℄ + n � 0 (mod a)

	

;

where we have identi�ed 
 2 L

0

with its 
oordinate ve
tor.

Let d




= minfb 2 N ; b
 2 Lg be the level of 
 and put

~
 = d





; (4.8)

~n = d

2




n: (4.9)

Then ~n is integral, and d




divides det(S) and 2~n. If a is 
oprime to det(S), then d




is

invertible modulo a. Hen
e

N


;n

(a) = #

�

r 2 (Z=aZ)

m

;

1

2

S[r℄ � �~n (mod a)

	

(4.10)

in this 
ase. For general a we have

N


;n

(a) = #

�

r 2 (Z=d




aZ)

m

;

1

2

S[r℄ + ~n � 0 (d

2




a); r � ~
 (d




)

	

: (4.11)

It is easily seen that N


;n

(a) is multipli
ative:

N


;n

(a

1

a

2

) = N


;n

(a

1

)N


;n

(a

2

)

for 
oprime a

1

and a

2

. This implies that L


;n

(s) has an Euler produ
t expansion

L


;n

(s) =

Y

p

 

X

��0

N


;n

(p

�

)p

�(1�m=2�s)

!

; (4.12)

where the produ
t extends over all primes p.

Lemma 4.4. Let p be a prime. Put

w

p

= 1 + 2v

p

(2nd




): (4.13)

Then the equality

N


;n

(p

�+1

) = p

m�1

N


;n

(p

�

)

holds for any � � w

p

.

Proof. This 
an be proved in the same way as Hilfssatz 13 in [Si℄.

Note that 2nd




is always integral and thereby w

p

� 1.

8



Using the above Lemma, the Euler produ
t (4.12) 
an be simpli�ed:

L


;n

(s) =

Y

p

 

w

p

�1

X

�=0

N


;n

(p

�

)p

�(1�m=2�s)

+N


;n

(p

w

p

)p

w

p

(1�m=2�s)

X

��0

p

�(m=2�s)

!

= �(s�m=2)

Y

p

L


;n

(s; p); (4.14)

where L


;n

(s; p) denotes the lo
al Euler fa
tor

L


;n

(s; p) = (1� p

m=2�s

)

w

p

�1

X

�=0

N


;n

(p

�

)p

�(1�m=2�s)

+N


;n

(p

w

p

)p

w

p

(1�m=2�s)

: (4.15)

The following Theorem is 
ru
ial for the further 
omputation of L


;n

(s).

Theorem 4.5 (Siegel). Let p be a prime not dividing 2 det(S) and � 2 Z with � > v

p

(n).

i) Suppose that m is even. Put D = (�1)

m=2

det(S). Then

p

�(1�m)

N


;n

(p

�

) =

�

1� �

D

(p)p

�m=2

� �

1 + �

D

(p)p

1�m=2

+ � � �+ �

D

(p

v

p

(n)

)p

v

p

(n)(1�m=2)

�

:

ii) Suppose that m is odd. Write n = n

0

f

2

(where n

0

2 Q and f 2 N) su
h that

(f; 2 detS) = 1 and v

`

(n

0

) 2 f0; 1g for all primes ` with (`; 2 detS) = 1. Let ~n

0

= n

0

d

2




and D = 2(�1)

(m+1)=2

~n

0

det(S). If m � 3, then

p

�(1�m)

N


;n

(p

�

) =

1� p

1�m

1� �

D

(p)p

(1�m)=2

�

�

2�m

(p

v

p

(f)

)� �

D

(p)p

(1�m)=2

�

2�m

(p

v

p

(f)�1

)

�

:

If m = 1, we have

N


;n

(p

�

) =

�

�

D

(p) + �

D

(p)

2

�

p

v

p

(f)

:

It is well known that (�1)

m=2

det(S) � 0; 1 (mod 4), if m is even, and that det(S) � 0

(mod 2), if m is odd. Thus D and D are dis
riminants.

Proof. Sin
e p is 
oprime to det(S), the numberN


;n

(p

�

) is given by (4.10). So the assertion

is just a reformulation of Hilfssatz 16 in [Si℄. (The formula for m = 1 has to be extra
ted

dire
tly from the proof.)

We may now state a formula for q(
; n) whi
h is a

essible for 
omputer 
omputation.

Theorem 4.6. Let 
 2 L

0

and n 2 Z� q(
) with n > 0. The 
oeÆ
ient q(
; n) equals

2

k+1

�

k

n

k�1

(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Lj�(k)

9



times

8

>

>

>

>

>

<

>

>

>

>

>

:

1

L(k; �

D

)

Y

pj2~ndet(S)

L


;n

(k; p)

1� �

D

(p)p

�k

; if m is even,

L(k � 1=2; �

D

)

�(2k � 1)

Y

pj2~ndet(S)

1� �

D

(p)p

1=2�k

1� p

1�2k

L


;n

(k; p); if m is odd.

Here L


;n

(k; p) is given by (4.15) and D, D are de�ned as in Theorem 4.5.

Proof. By Proposition 4.3 and (4.14) we know that

q(
; n) =

2

k+1

�

k

n

k�1

(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Lj�(k)

Y

p

L


;n

(k; p): (4.16)

Let p be a prime with (p; 2~ndetS) = 1. A

ording to Theorem 4.5 we have

p

1�m

N


;n

(p) =

8

<

:

1� �

D

(p)p

�m=2

; if 2 j m,

1 + �

D

(p)p

(1�m)=2

; if 2 - m.

Noting that w

p

= 1 we �nd

L


;n

(s; p) =

8

>

<

>

:

1� �

D

(p)p

�s

; if 2 j m,

1� p

1�2s

1� �

D

(p)p

1=2�s

; if 2 - m.

If we insert this into (4.16), we obtain the assertion.

Corollary 4.7. The 
oeÆ
ients of E(�) are rational numbers.

Proof. This 
an be dedu
ed using the fun
tional equation of the Diri
hlet series L(s; �

D

)

(resp. L(s; �

D

) and �(s)) and the fa
t that the values at negative integers 
an be expressed

in terms of Bernoulli polynomials [Za℄.

Example 1. Let L be a hyperboli
 plane, i.e. the latti
e Z

2

with the quadrati
 form

q((a; b)) = ab. This is obviously a unimodular latti
e of signature (1; 1). Let k be an

even integer. In this 
ase the spa
e M

k;L

is simply the spa
e of ellipti
 modular forms of

weight k for SL

2

(Z). The fun
tion E(�) is the 
lassi
al Eisenstein series of weight k for

SL

2

(Z), normalized su
h that its 
onstant term equals 2. A

ording to Theorem 4.6, for

any positive integer n the n-th Fourier 
oeÆ
ient q(n) = q(0; n) is given by

2

k+1

�

k

n

k�1

(�1)

k=2

�(k)�(k)

Y

pj2n

L

0;n

(k; p)

1� p

�k

: (4.17)

10



We leave it to the reader to verify that

N

0;n

(p

�

) =

8

<

:

(v

p

(n) + 1)(1� 1=p)p

�

; if v

p

(n) < �,

(� + 1)p

�

� �p

��1

; if v

p

(n) � �,

for any prime p. A straightforward 
omputation yields L

0;n

(s; p) = (1 � p

�s

)�

1�s

(p

v

p

(n)

).

If we insert this into (4.17), we �nd

q(n) =

2

k+1

�

k

n

k�1

(�1)

k=2

�(k)�(k)

�

1�k

(n):

Using �(k) = �

(2�i)

k

2k!

B

k

, with the k-th Bernoulli number B

k

, we get

q(n) = �

4k

B

k

�

k�1

(n);

in a

ordan
e with the 
lassi
al result.

Example 2. Let L be the 1-dimensional latti
e Z equipped with the quadrati
 form q(a) =

a

2

. Then L

0

=L

�

=

Z=2Z. Let k be half-integral su
h that k + 1=2 is even. The spa
e M

k;L

is isomorphi
 to the spa
e of Ja
obi forms of weight k + 1=2 and index 1 ([EZ℄ Theorem

5.1) and thereby isomorphi
 to the Kohnen spa
e M

+

k

of modular forms of weight k for the

group �

0

(4) whose n-th Fourier 
oeÆ
ient equals zero unless �n � 0; 1 (mod 4) ([Ko℄, [EZ℄

Theorem 5.4). In this 
ase E(�) essentially equals the Cohen-Eisenstein series of weight

k (
f. [Co℄). Let 
 2 L

0

=L and n 2 Z� q(
) with n > 0. Moreover, let � be the unique

fundamental dis
riminant su
h that �4n = �f

2

with f 2 N . By Theorem 4.6 we have

q(
; n) =

2

k+1=2

�

k

n

k�1

(�1)

(2k+1)=4

�(k)

L(k � 1=2; �

�

)

�(2k � 1)

Y

pj2~n

1� �

�

(p)p

1=2�k

1� p

1�2k

L


;n

(k; p): (4.18)

To 
ompute the �nite Euler produ
t we note that

N


;n

(p

�

) =

8

<

:

�

�

�

(p) + �

�

(p)

2

�

p

v

p

(f)

; if v

p

(n) < �,

p

[�=2℄

; if v

p

(n) � �,

for any odd prime p. In fa
t, the 
ase v

p

(n) � � is easy, and the 
ase v

p

(n) < � follows

from Theorem 4.5. With some extra work it 
an be seen that this formula still holds for

p = 2. (That is why we have worked with � instead of D.) It 
an be dedu
ed that

L


;n

(s; p) =

1� p

1�2s

1� �

�

(p)p

1=2�s

�

�

2�2s

(p

v

p

(f)

)� �

�

(p)p

1=2�s

�

2�2s

(p

v

p

(f)�1

)

�

:

Inserting this into (4.18), we obtain

q(
; n) =

2

k+1=2

�

k

n

k�1

(�1)

(2k+1)=4

�(k)

L(k � 1=2; �

�

)

�(2k � 1)

X

djf

�(d)�

�

(d)d

1=2�k

�

2�2k

(f=d):

11



Throughout the rest of this paper we suppose that k = m=2. (For later appli
ations

we will only need this 
ase.) Then the 
ondition 2k � b

�

+ b

+

� 0 (mod 4) is equivalent

to requiring that b

+

is even. The 
ondition k > 2 implies m � 5.

Under this assumption the formula of Theorem 4.6 
an be 
onsiderably simpli�ed.

Theorem 4.8. Let 
 2 L

0

and n 2 Z � q(
) with n > 0. The 
oeÆ
ient q(
; n) of the

Eisenstein series E(�) of weight k = m=2 is equal to

2

k+1

�

k

n

k�1

(�1)

b

+

=2

p

jL

0

=Lj�(k)

times

8

>

>

>

>

>

<

>

>

>

>

>

:

�

1�k

(~n; �

4D

)

L(k; �

4D

)

Y

pj2det(S)

p

w

p

(1�2k)

N


;n

(p

w

p

); if 2 j m,

L(k � 1=2; �

D

)

�(2k � 1)

X

djf

�(d)�

D

(d)d

1=2�k

�

2�2k

(f=d)

Y

pj2det(S)

p

w

p

(1�2k)

N


;n

(p

w

p

)

1� p

1�2k

; if 2 - m.

Here N


;n

(p

w

p

) is given by (4.4), (4.13); and D, D, f are de�ned as in Theorem 4.5.

Moreover, �

1�k

(~n; �

4D

) denotes the twisted divisor sum (see se
tion 2).

Proof. Let p be a prime. Sin
e k = m=2 the lo
al Euler fa
tor L(k; p) (4.15) is equal to

p

w

p

(1�2k)

N


;n

(p

w

p

):

If we put this into the formula given in Theorem 4.6, we �nd that q(
; n) is equal to

2

k+1

�

k

n

k�1

(�1)

b

+

=2

p

jL

0

=Lj�(k)

times

8

>

>

>

>

>

<

>

>

>

>

>

:

1

L(k; �

D

)

Y

pj2~ndet(S)

p

w

p

(1�2k)

N


;n

(p

w

p

)

1� �

D

(p)p

�k

; if 2 j m,

L(k � 1=2; �

D

)

�(2k � 1)

Y

pj2~ndet(S)

1� �

D

(p)p

1=2�k

1� p

1�2k

p

w

p

(1�2k)

N


;n

(p

w

p

); if 2 - m.

(4.19)

If m is even, then a

ording to Theorem 4.5 the �nite Euler produ
t over p j 2~ndet(S) in

(4.19) is given by

Y

pj~n

p-2 det(S)

�

1�k

(p

v

p

(n)

; �

4D

)

Y

pj2det(S)

p

w

p

(1�2k)

N


;n

(p

w

p

)

1� �

D

(p)p

�k

= �

1�k

(~n; �

4D

)

1

1� �

D

(2)2

�k

Y

pj2det(S)

p

w

p

(1�2k)

N


;n

(p

w

p

): (4.20)
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If m is odd, then the �nite Euler produ
t over p j 2~n det(S) in (4.19) is equal to

Y

pj~n

p-2det(S)

�

�

2�2k

(p

v

p

(f)

)� �

D

(p)p

1=2�k

�

2�2k

(p

v

p

(f)�1

)

�

Y

pj2 det(S)

p

w

p

(1�2k)

N


;n

(p

w

p

)

1� p

1�2k

=

X

djf

�(d)�

D

(d)d

1=2�k

�

2�2k

(f=d)

Y

pj2det(S)

p

w

p

(1�2k)

N


;n

(p

w

p

)

1� p

1�2k

: (4.21)

Inserting (4.20) resp. (4.21) into (4.19), we obtain the assertion.

We have written a C++ program to evaluate the above formula. The sour
e 
ode and

the binary (
ompiled for x86-Linux) 
an be downloaded from the �rst author's home-page.

In [Bu℄ for some latti
es L the Eisenstein series E(�) is expressed in terms of elementary

theta fun
tions.

5 Modular forms on O(2; l)

Throughout this se
tion we assume that L has signature (2; l) with l � 3. Moreover, we

suppose that L splits two hyperboli
 planes over Q . (This is always true if l � 5.) We put

V = L


Z

R and denote by

O(V ) = fg 2 SL(V ); q(ga) = q(a) for all a 2 V g

the (spe
ial) orthogonal group of V . If O

0

(V ) denotes the 
onne
ted 
omponent of the

identity and K a maximal 
ompa
t subgroup, then O

0

(V )=K is a Hermitean symmetri


spa
e. The Hermitean stru
ture 
an be des
ribed expli
itly as follows.

We extend the bilinear form (�; �) on V to a C -bilinear form on the 
omplexi�
ation

V

C

= V 


R

C of V . Let P (V

C

) denote the asso
iated proje
tive spa
e and write W 7! [W ℄

for the 
anoni
al proje
tion V

C

! P (V

C

). Consider the subset

K =

�

[W ℄ 2 P (V

C

); (W;W ) = 0; (W;W ) > 0

	

of P (V

C

). It is easily seen that K is a 
omplex manifold of dimension l that 
onsists of 2


onne
ted 
omponents. The a
tion of the orthogonal group O(V ) on V indu
es an a
tion

on K. The 
onne
ted 
omponent of the identity preserves the 
omponents of K, whereas

O(V )� O

0

(V ) inter
hanges them. We 
hoose one �xed 
omponent of K and denote it by

H. Then O

0

(V ) a
ts transitively on H and the stabilizer K of a �xed point is a maximal


ompa
t subgroup. Thus O

0

(V )=K = H.

Let O(L) =

�

g 2 O

0

(V ); gL = L

	

be the orthogonal group of L. We denote by

�(L) the subgroup of �nite index of O(L) 
onsisting of all elements whi
h a
t trivially on

the dis
riminant group L

0

=L. A

ording to Baily-Borel the quotient H=�(L) is a quasi-

proje
tive algebrai
 variety.

Let X be a normal irredu
ible 
omplex spa
e. By a divisor D on X we mean a formal

linear 
ombination D =

P

n

Y

Y (n

Y

2 Z) of irredu
ible 
losed analyti
 subsets Y of

13




odimension 1 su
h that the support

S

n

Y

6=0

Y is a 
losed analyti
 subset of everywhere

pure 
odimension 1. For two divisors D =

P

n

Y

Y and D

0

=

P

n

0

Y

Y on X we write

D � D

0

, if n

Y

� n

0

Y

for all irredu
ible 
losed analyti
 subsets Y of 
odimension 1.

Re
all that for any ve
tor � 2 L

0

of negative norm there is a divisor �

?

on H whi
h is

given by the orthogonal 
omplement of � in H. Let � 2 L

0

=L and t 2 Z+ q(�) with t < 0.

Then

H(�; t) =

X

�2L

0

q(�)=t

�+L=�

�

?

(5.1)

is a �(L)-invariant divisor onH. It is the inverse image under the 
anoni
al proje
tion of an

algebrai
 divisor on H=�(L) (whi
h will also be denoted by H(�; t)). The multipli
ities of

all irredu
ible 
omponents equal 2, if 2� = 0, and 1, if 2� 6= 0 in L

0

=L. Following Bor
herds

we 
all this divisor Heegner divisor of dis
riminant (�; t). Note that H(�; t) = H(��; t).

We now de�ne automorphi
 forms for the group �(L). Denote by

e

H = fW 2 V

C

� f0g; [W ℄ 2 Hg � V

C

(5.2)

the 
one over H. Let r 2 Q and � be a 
hara
ter of �(L). A meromorphi
 fun
tion G on

e

H is 
alled automorphi
 form of weight r and 
hara
ter � with respe
t to �(L), if

i) G is homogeneous of degree �r, i.e. G(
W ) = 


�r

G(W ) for any 
 2 C � f0g;

ii) G is invariant under �, i.e. G(�W ) = �(�)G(W ) for any � 2 �(L).

If G is in addition holomorphi
 on

e

H, it is 
alled modular form. (Sin
e l � 3, then the

Koe
her prin
iple ensures that G is also holomorphi
 on the Satake boundary.)

Let E(�) be the Eisenstein series of weight k = 1+l=2 with 
onstant term 2e

0

inM

k;L

(as

in Theorem 4.8) and write q(
; n) for its Fourier 
oeÆ
ients (
 2 L

0

=L and n 2 Z� q(
)).

The signi�
an
e of E(�) lies in the following theorem whi
h was proved in [Br1℄ Theorem

13.15 and Corollary 13.15 (see also [Br2℄ Theorem 9).

Theorem 5.1. Let F be an automorphi
 form of weight r with some 
hara
ter for the

group �(L). Suppose that its divisor (F ) is a linear 
ombination of Heegner divisors

(F ) =

1

2

X

�2L

0

=L

X

t2Z+q(�)

t<0


(�; t)H(�; t); (5.3)

where the 
(�; t) are integral 
oeÆ
ients with 
(�; t) = 
(��; t). Then r satis�es

r = �

1

4

X

�2L

0

=L

X

t2Z+q(�)

t<0


(�; t)q(�;�t):

14



Using Theorem 4.8 of the present paper, the q(
; n) 
an be 
omputed expli
itly. By

Theorem 5.1 we obtain some information on the existen
e of automorphi
 forms for �(L)

with pres
ribed zeros and poles along Heegner divisors.

Theorem 5.2. Let F be a holomorphi
 modular form of weight r with some 
hara
ter for

the group �(L), whose divisor (F ) is a linear 
ombination of Heegner divisors. Let

D =

1

2

X

�2L

0

=L

X

t2Z+q(�)

t<0


(�; t)H(�; t)

be a linear 
ombination with non-negative integral 
oeÆ
ients 
(�; t) (satisfying 
(�; t) =


(��; t)) su
h that D � (F ). Then

�

1

4

X

�2L

0

=L

X

t2Z+q(�)

t<0


(�; t)q(�;�t) � r: (5.4)

The equality sign in (5.4) holds, if and only if D = (F ).

This theorem is an immediate 
onsequen
e of Theorem 5.1 and the following proposi-

tion. (Observe that H(�; t) equals 0 in the divisor group, if there is no � 2 L

0

su
h that

� � � (mod L) and q(�) = t.)

Proposition 5.3. The Fourier 
oeÆ
ients q(
; n) (
 2 L

0

and n 2 Z� q(
) with n > 0)

of E(�) are non-positive rational numbers. Furthermore, q(
; n) < 0, if and only if there

exists a � 2 L

0

su
h that � � 
 (mod L) and q(�) = �n.

Proof. We 
onsider the formula for q(
; n) of Theorem 4.8. Obviously the �rst fa
tor is

negative. Moreover, it is easily seen that �

1�k

(~n; �

4D

) and

X

djf

�(d)�

D

(d)d

1=2�k

�

2�2k

(f=d)

are positive.

The following argument shows that L(u; �

D

) > 0 for any u 2 R with u > 1 and any

dis
riminant D. The Euler produ
t expansion implies that we may assume that D is a

fundamental dis
riminant, i.e. the dis
riminant of a quadrati
 �eld K over Q . It is well

known that the L-series L

K

(s) atta
hed to K is equal to �(s)L(s; �

D

) (
f. [Za℄ x11). The

values L

K

(u) and �(u) are positive by de�nition.

We �nd that q(
; n) is the produ
t of a negative (rational) number with

Y

pj2det(S)

p

w

p

(1�2k)

N


;n

(p

w

p

):

Hen
e q(
; n) � 0. If there is a � 2 L

0

su
h that � � 
 (mod L) and q(�) = �n, then

N


;n

(a) = N

�;�q(�)

(a) = #fr 2 L=aL; q(r � �)� q(�) � 0 (mod a)g

15



(a 2 N). Sin
e r = 0 is a solution of the 
ongruen
e, we have N


;n

(a) � 1 and thereby

q(
; n) < 0.

Now suppose that there is no � 2 L

0

su
h that � � 
 (mod L) and q(�) = �n. Assume

that q(
; n) < 0. Then N


;n

(p

w

p

) � 1 for any prime p dividing 2 det(S). Hen
e, by Lemma

4.4 the equation q(r � 
) + n = 0 has a solution r over Z

p

for any prime p. Sin
e q is

inde�nite of rank � 5 we may infer that there exists a global solution r 2 L of the latter

equation (
f. [Wa℄ Theorem 63 and 72). But then �r + 
 2 L

0

satis�es �r + 
 � 


(mod L) and q(�r + 
) = �n 
ontradi
ting our assumption. (The latter statement 
an

also be proved in a rather indire
t way: If there is no � 2 L

0

su
h that � � 
 (mod L)

and q(�) = �n, then H(
;�n) = 0 in the divisor group of H=�(L). Thus any 
onstant

non-zero fun
tion F on

e

H is a modular form of weight 0 with divisor (F ) = H(
;�n). By

Theorem 5.1 we obtain q(
; n) = 0.)
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