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1 Introduction

In the present paper we study certain vector valued Eisenstein series on the metaplectic
cover Mp,(R) of SLy(R).

Let L be an even lattice of signature (b",b7), equipped with a quadratic form ¢, and
write L' for its dual. Recall that the Weil representation pj attached to the quadratic
module (L'/L,q) is a unitary representation of the integral metaplectic group Mp,(Z) on
the group algebra C[L'/L] (cf. [No], [Bo2]). Let k € 1Z and k > 2. We consider the space
My, 1, of C[L'/L]-valued holomorphic modular forms of weight & with respect to Mp,(Z)
and p}. It is easily seen that My = {0}, if 2k is not congruent to b~ — b* modulo 2.
Thus, if the rank m = b" 4+ b~ of L is even, any non-zero modular form in M, ; has integral
weight. If m is odd, then any non-zero modular form in M, ; has half-integral weight.

We define Eisenstein series in the space M}, ;. in the usual way. The main purpose of the
present, paper is to compute their Fourier expansion explicitly. For simplicity we restrict
ourselves to the case 2k —b~ +b" =0 (mod 4) and to one particular Eisenstein series E(7)
in My, 1. This is sufficient for our later applications. The more general case can be treated
similarly.

By a standard computation the (v, n)-th Fourier coefficient ¢(vy,n) of E(r) can be
expressed in terms of a rather complicated infinite series (y € L'/L and n € Z — q(v)).
This was done in chapter 1.2.3 of [Brl]. The resulting formula was sufficient for the
purposes of [Brl] but is not very satisfying. For instance, it does not even show that the
q(v,n) are algebraic (or better rational) numbers. In section 4 we use Shintani’s formula
for the coefficients of the Weil representation [Sh] and results of Siegel on representation
numbers of quadratic forms modulo prime powers [Si], to compute the series for ¢(v,n)
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more explicitly. We obtain a finite formula involving special values of Dirichlet L-series
and finitely many representation numbers modulo prime powers attached to the lattice L
(Theorem 4.6, Theorem 4.8). One pleasant property of the above class of Eisenstein series
is that it includes both, the classical Eisenstein series of integral weight for SLy(Z), and
the half-integral weight Cohen-Eisenstein series for ['g(4), as easy special cases.

In section 5 we consider the case that L has signature (2,/) with [ > 3. Let T'(L)
be the subgroup of the orthogonal group of L that acts identically on the discriminant
group L'/L. The Eisenstein series E(7) of weight 1 + [/2 attached to L can be used to
prove some results on automorphic forms on the orthogonal group O(2,1). This is the
main application of Theorem 4.8 and motivated the present paper. Recall that for any
f € L'/L and any ¢ € Z + ¢(B) with ¢ < 0 there is a ['(L)-invariant divisor H(3,t) on
the Hermitean symmetric space H = 0°(2,1)/K attached to O°(2,1). Here K denotes
a maximal compact subgroup (see section 5 for precise definitions). Following Borcherds
we call H(B,t) Heegner divisor of discriminant (3,t). These divisors generalize the usual
Heegner points on the upper complex half plane.

In the context of Borcherds’ theory of automorphic products (cf. [Bol, Bo2, Bo3]) it
was shown in [Brl] that the coefficients ¢(v,n) of E(7) encode the weights of automorphic
forms for T'(L), whose divisors are linear combinations of Heegner divisors. Hence, if we
know the weight of such an automorphic form, we obtain some information on its divisor
by means of Theorem 4.8.

In particular, if there are no cusp forms in M, 1, then the ¢(v, n) determine completely
the positions of the Heegner divisors H(vy, —n) in the second cohomology of H/T'(L). This
generalizes van der Geer’s result on Siegel modular threefolds [Ge].

We shall show that the ¢(,n) are non-positive rational numbers. Moreover, ¢(v,n)
is negative, if and only if H(v, —n) is non-trivial. As a consequence the main result
(Theorem 5.2) of section 5 can be deduced. It roughly states: Let F' be a holomorphic
modular form of weight r for T'(L), whose divisor (F) is a linear combination of Heegner
divisors. Let D = 335, ¢(8,t)H(f,t) be another linear combination of Heegner divisors
with non-negative integral coefficients ¢(/3,¢) such that D < (F'). Then the corresponding
sum —y > s, c(B,1)q(B,—t) of the coefficients of E(7) is < r. It equals r, if and only if
D = (F).

Acknowledgments. We would like to thank M. Bundschuh, E. Freitag and W. Kohnen for
their help.

2 Notation

Let N = {1,2,...} be the set of positive integers. As usual, we denote by H = {r €
C; S(r) > 0} the complex upper half plane. Throughout we will use 7 as a standard
variable on H and write x for its real part and y for its imaginary part, respectively. For
z € Cwe put e(z) = €?™, and denote by y/z = 2'/2 the principal branch of the square root,
so that arg(y/z) € (—m/2,7/2]. For any integer k we put 2*/2 = (2!/2)k. Moreover, if z is
a real number, we let [z] = max{n € Z; n < z}. If = is non-zero we write sgn(z) = z/|x|.
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Let D be a discriminant, i.e. a non-zero integer congruent to 0 or 1 modulo 4. Then we
write xp for the Dirichlet character modulo |D|, which is given by the Kronecker symbol:
xp(a) = (£). The corresponding Dirichlet series is denoted by L(s, xp).

Let n € N and x be a Dirichlet character. We define the twisted divisor sum og(n, X)
by

os(n,x) = x(d)d’,
din

where the sum runs through all positive divisors of n. For z € R — N we understand
os(x,x) = 0. As usual, if x = x; is the trivial character modulo 1, we briefly write og(n)
instead of oy (n, x1).

For any prime p we denote by v, the (additive) p-adic valuation on Q.

3 Modular forms and the Weil representation

In this section we briefly recall from [Brl] and [Bo2] some facts about the Weil represen-
tation and certain vector valued modular forms.

Let Mpy(R) be the metaplectic cover of SLy(R), realized as the group of pairs (M, ¢(7)),
where M = (2%) € SLy(R), and ¢ is a holomorphic square root of 7 +— ¢7 + d. The
assignment

(24 (2 = ((24),Ver +d) (3.1)

defines a locally isomorphic embedding of SLy(R) into Mp,(R).
We denote by Mp,(Z) the inverse image of SLy(Z) under the covering map Mp,(R) —
SLy(R). It is well known that Mp,(Z) is generated by the two elements

() ()

One has the relations S? = (ST)* = Z, where Z = (( ' %), 1) is the standard generator

of the center of Mp,(Z). We put T’y := SLy(Z) and write 'y, resp. ', for the subgroup of
I'; resp. Mp,(Z) generated by (}7) resp. T.

Let L be an even lattice, i.e. a free Z-module of finite rank, equipped with a symmetric
1

Z-valued bilinear form (-,-) such that the associated quadratic form q(z) = 5(z, ) takes
its values in Z. We assume that L is non-degenerated and denote its signature by (b™,b7)
and its rank by m = b" + b~. We write L' for the dual lattice of L. The modulo 1
reduction of ¢(-) is a Q/Z-valued quadratic form on the (finite) discriminant group L'/L,
whose associated bilinear form is the modulo 1 reduction of the bilinear form (-,-) on L'.

Recall that there is a particular unitary representation p; of Mp,(Z) on the group

algebra C[L'/L]. If we denote the standard basis of C[L'/L] by (e,),cr//1, then p;, can be
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defined by the action of the generators S, T € Mp,(Z) as follows:

pr(T)e, = e(q(7))e, (3.2)

\/—b —bt
pL(S)e’Y \/W 6@2{/]; (33)

(cp. [Bo2]). We denote by p} the dual representation of py.
The representation py, is essentially the Weil representation associated to the quadratic

module (L'/L,q) (see [No]). It factors through a finite quotient of Mpy(Z). Observe that

pr(Z)e, =i e,

Let (-,-) be the standard scalar product on C[L'/L], which is linear in the first vari-
able and anti-linear in the second. For 5,y € L'/L and (M, ¢) € Mp,(Z) we define the

coefficient pg, (M, ¢) of the representation p;, by

p/B’Y(Ma d)) = <pL(M7 qs)e’)” 2,3>'

The following result due to Shintani will be of fundamental importance to us (cf. [Sh],
Prop. 1.6).

Proposition 3.1 (Shintani). Let 5,7 € L'/L and M = (%%) € SLy(Z). Then the
coefficient pg (M) is given by

-(b~ —bT)(1—sgn(d))
Vi H 65 .ae aba(8)), (3.4)
if c =0, and by

(b~ —b1) sgn(c
S s > ( a(B+r,B+71)—20v,B+71)+d(v,7 ))
|c|=+0)/2, /|1 [ L] reljeL 2

if c# 0. Here, 0, denotes the Kronecker-delta.

(3.5)

Let k € 37 and f be a C[L'/L]-valued function on H. We define the Petersson slash
operator by

(f i (M,9)) (1) = &(r) " pL.(M, )7 f(MT) (3.6)

for (M, ¢) € Mp,(Z).
Any holomorphic function f : H — C[L’/L], which is invariant under the |;-operation
of T € Mp,(Z), has a Fourier expansion

Z Z n)ey(nr), (3.7)

veL' /L neZ—q(y)

where ¢, (7) := e,e(7).
Let k € 7. We call a holomorphic function f : H — C[L' /L] a modular form of weight
k with respect to p; and Mp,(Z) if



i) f i (M,¢) = fforall (M,¢) € Mp,(Z) and
ii) f is holomorphic in co.

Here, the second condition means that all coefficients ¢(y,n) with n < 0 vanish in the
Fourier expansion (3.7) of f. The C-vector space of modular forms of weight k& with respect
to p} and Mpy(Z) is denoted by My, ;.. It is easily seen that My, is finite dimensional. The
transformation behavior under Z? implies that My ;, = {0}, if 2k Zb~ — b* (mod 2).

4 Eisensteln series

We now construct Eisenstein series Ez(7) for the space My, 1 and determine their Fourier
coefficients gz(v,n). Throughout we assume that k& € $Z and k& > 2. For simplicity we
only consider the case 2k — b~ +b" =0 (mod 4), the case 2k — b~ + b" =2 (mod 4) can
be treated similarly.

Let § € L'/L with ¢(8) € Z. Then the vector eg € C[L' /L], considered as a constant
function H — C[L'/L], is invariant under the |;-action of T, Z? € Mp,(Z). The Eisenstein
series

Es(r) = > e |1, (M, ¢) (4.1)

(M) €T 00\ Mp, (7))

1
2

of weight k& converges normally on H and therefore defines a Mp,(Z)-invariant holomorphic
function on HL.

The following proposition can be proved in the standard way (see [Brl] chapter 1.2.3).
We omit the proof.

Proposition 4.1. The Eisenstein series Eg has the Fourier expansion

Z Z qgv, n)ey(nt)

YEL' /L n€Z—
n>0
with
55,7 + 5,5,7, ifn=0,
gs(v,n) = q (2m)*n*! - . (4.2)
T Z e TFH;(8,0,v,n), ifn>0.
ceZ—{0}
Here, H} (3, m,~,n) denotes the generalized Kloosterman sum
. e*ﬂ'isgn(c)k/Z /CL_\; ma + nd
Aeman = S () (M)

d(c)”
(& 4)eTao\1 /T

(B,v€L'/L and m € Z —q(B), n € Z— q(v)). In particular Es is an element of My ,.
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The sum in (4.3) runs over all primitive residues d modulo ¢ and (¢ %) is a representative
for the double coset in ['y,\I'1 /T's with lower row (¢ d’) and d' = d (mod ¢). Observe that

the expression pg, (2 4) e(%ﬁd) does not depend on the choice of the coset representative.

The coefficients pg,(2Y) are universally bounded, since py factors through a finite
group. Hence there is a constant C' > 0 such that H}(3,m,v,n) < C for all v € L'/L,
n€7Z—q(y), and ¢ € Z — {0}. This implies that the series (4.2) converges absolutely.

We will mainly be interested in the Eisenstein series Fy(7) which we simply denote by
E(7). In the same way we write ¢(,n) for the Fourier coefficients ¢ (v, n) of E(7).

The rest of this section is devoted to finding a more explicit formula for the coefficients
q(v,n) of E(r). Note that the coefficients of the more general Eisenstein series Eg(7) can
be computed analogously.

Proposition 4.2. The generalized Kloosterman sum H*(0,0,v,n) equals

(_1)(2k—b—+b+)/4 e .
|72 "6 (el /a) Ny o (a).

VITTI] -

Here 1 denotes the Moebius function and
Nyn(a) =#{reL/aLl; q(r—v)+n=0 (moda)}. (4.4)
Notice that the left hand side of the congruence in (4.4) is always integral, because
nezZ—q(y).

Proof. Tf we insert the formula for the coefficients of the representation p; (Proposition
3.1) into the definition of H}(0,0,~,n), we obtain

—misgn(c)(2k—b~ +b1)/4

o (@a(r) = (v,r) +dg(v) +nd
/|L//L||C|1+m/2 d% Z ( c )

* reL/cL
ad=1 (c)

(&

H(0,0,7v,n) =

(_ 1)(2k—b— +b+)/4

_ (dlalr =) +7)
= f|L//L||C|1+m/2 reLZ/ch%* < c > )

where the sums ), () Tun through all primitive residues d modulo ¢. We use the evaluation
of the Ramanujan sum

dn
S e (%) = 3 utlelfaa
d (¢)* al(e,n)
by means of the Moebius function ([Ap] Chapter 8.3). We get

©0.07m =SV S e Y
H:(0,0,7,n) = w(lel/a)a 1.
VL[ Lje[t*m/ ale reL/cL

q(r—=7)+n=0 (a)




The condition ¢(r — ) + n =0 (mod a) in the inner sum depends only on r modulo aL.
Thus

(_1)(2k7b_+b+)/4 Z Z
HZ(0,0,7,n) = ~—F—— p(lel/a)a(lcl/a)™ 1
|LI/L||C|1+m/2 ale réL/aL

q(r—)+n=0 (a)

(_1)(2k—b*+b+)/4 . ) .
el 2> el /a)a! N (a).

VITTII -

O

Proposition 4.3. Let v € L' and n € Z — q(vy) with n > 0. The coefficient q(v,n) equals
the value at s = k of the analytic continuation in s of

ok+1kpk—1 (_1)(21971)— +bt)/4
VIL'/LIL(E)C(s —m/2)

Here ((s) denotes the Riemann zeta function and L. ,(s) the L-series

Lyn(s) = Z N, n(a)a"™/*5. (4.5)

a>1

Ly n(s).

Proof. We consider the L-series

Lon(s)= Y el H:(0,0,7,n). (4.6)

ceZ—{0}
It converges normally for (s) > 2. According to Proposition 4.2 one has

- 2(_1)(2k—b_+b+)/4

Loyn(s) =

/s c/a)at™™ a).
o7 ; %;M( fa)a " Nyp(a)

Substituting d = ¢/a in the above sums we find

— 2(_1)(2k—b_+b+)/4

Lyn(s) =

N%n(a)al—m/Q—s Z M(d)dm/Q—s

VIL/L] ; i1

_ 2(_1)(2k—b*+b+)/4 . (5)
VIDTLI (s —m/2)

If we insert this into the formula for ¢(vy, n) given in Proposition 4.1, we obtain the assertion.
O

(4.7)

Note that the L-series L, ,(s) only converges for £(s) > 1 + m/2. Using the equality
of (4.6) and (4.7), and the properties of the Riemann zeta function, we see that it has a
meromorphic continuation to R(s) > 2 and a simple pole at s = 1+ m/2.
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Let S denote the Gram matrix of the lattice L with respect to a fixed basis. Then
|L'/L| = | det(S)|. We use the common abbreviation S[z] = xSz, whenever the matrix
product makes sense. We may obviously write

N,,(a) =# {r € (Z/a)™, %S[r —v]+n=0 (mod a)} ,

where we have identified v € L' with its coordinate vector.
Let d, =min{b € N; by € L} be the level of v and put

n=dn. (4.9)

Then 7 is integral, and d, divides det(S) and 2n. If a is coprime to det(S), then d, is
invertible modulo a. Hence

Nyn(a) =#{re(Z/aZ)™;, 1S[r]=-n (moda)} (4.10)

N[ —

in this case. For general a we have

Nyn(a) =#{r € (Z/dyaZ)™; 1S[r]+n=0(da), r (d))}. (4.11)

Il
-

It is easily seen that N, ,(a) is multiplicative:
Nyn(a1a2) = Ny (a1)Nyn(az2)
for coprime a; and ay. This implies that L., (s) has an Euler product expansion
Loa(s) =1 (Z Nv,n(p")p”“m/“)> , (4.12)

P \v>0
where the product extends over all primes p.
Lemma 4.4. Let p be a prime. Put

wy, =1+ 2v,(2nd,). (4.13)
Then the equality

Ny (0°F1) = 0™ Nou (%)

holds for any o > wy,.
Proof. This can be proved in the same way as Hilfssatz 13 in [Si]. O

Note that 2nd, is always integral and thereby w, > 1.
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Using the above Lemma, the Euler product (4.12) can be simplified:

wp—1
L H (pz v(l—m/2—s) —|—N ( wp)pwp(lm/2s)zpu(m/2s)>

v>0

= C(S - m/2) H ’Y,n(sap)v (414)

P
where L. ,(s,p) denotes the local Euler factor

wp—1

L% ( ) 1_ m/2— s Z N, v(l—m/2— S)+N'yn( wp)pwp(l m/2— s) (415)

The following Theorem is crucial for the further computation of L., (s).

Theorem 4.5 (Siegel). Let p be a prime not dividing 2 det(S) and o € Z with a > v,(n).
i) Suppose that m is even. Put D = (—1)™/?det(S). Then

PN L (%) = (L= xp(P)p™™?) (L + xp(p)p' ™™ + -+ - + xp(p™))prr=m/2) |

i) Suppose that m is odd. Write n = ngof? (where ng € Q and f € N) such that
(f,2det S) =1 and ve(ng) € {0,1} for all primes ¢ with (¢,2det S) = 1. Let ng = nod?,
and D = 2(—1)™+V/25 det(S). If m > 3, then

1 — plfm
a(1-m) ) — vp(f)y _ (1-m)/2 vp(f)—1
p N’Y,n(p ) = 1— Xp(p)p(l_m)/Q (JQ—m(p ) — xo(p)p To—m (P )) .

If m =1, we have

Nyn(0®) = (xp(p) + xp(p)*) p1V.

It is well known that (—1)™/?det(S) = 0,1 (mod 4), if m is even, and that det(S) = 0
(mod 2), if m is odd. Thus D and D are discriminants.

Proof. Since p is coprime to det(S), the number N, ,,(p®) is given by (4.10). So the assertion
is just a reformulation of Hilfssatz 16 in [Si]. (The formula for m = 1 has to be extracted
directly from the proof.) O

We may now state a formula for ¢(y,n) which is accessible for computer computation.

Theorem 4.6. Let v € L' and n € Z — q(vy) with n > 0. The coefficient q(y,n) equals

ok+1 1k k—1 (_1)(2k7b* +bt)/4

|/ LIV (k)
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times

( 1 H L. ,.(k,p)

, if m is even,
L(k, xp) | 1—xp(p)p*

|27 det(S)

<
o 1— 1/2—k
L{k—1/2, xo) | | xo(P)p L, ,(k,p), ifmis odd.

C(2k —1) 1—pi—2

p|27 det(S)
Here L, ,(k,p) is given by (4.15) and D, D are defined as in Theorem 4.5.

Proof. By Proposition 4.3 and (4.14) we know that
2k+17rknk71(_1)(2k7b_+b+)/4

| L'/ LIT (k)

q(y,n) = Ly n(k, ). (4.16)

Let p be a prime with (p,2ndet S) = 1. According to Theorem 4.5 we have

1—xp@)p ™%  if2|m,

1-m
p"Nyn(p) = )
L+ xo(p)p!' ™", if 24 m.

Noting that w, =1 we find

S

1- XD(p)pi ) if 2 | m,
Lyn(s,p) = 1—pl %
1 — xp(p)p/2=*’

if 2+ m.

If we insert this into (4.16), we obtain the assertion. O
Corollary 4.7. The coefficients of E(T) are rational numbers.

Proof. This can be deduced using the functional equation of the Dirichlet series L(s, xp)
(resp. L(s, xp) and ((s)) and the fact that the values at negative integers can be expressed
in terms of Bernoulli polynomials [Za]. O

Ezample 1. Let L be a hyperbolic plane, i.e. the lattice Z2 with the quadratic form
q((a,b)) = ab. This is obviously a unimodular lattice of signature (1,1). Let k be an
even integer. In this case the space M} 1, is simply the space of elliptic modular forms of
weight & for SLy(Z). The function E(7) is the classical Eisenstein series of weight k for
SLy(Z), normalized such that its constant term equals 2. According to Theorem 4.6, for
any positive integer n the n-th Fourier coefficient ¢(n) = ¢(0,n) is given by

Pt (M L ()

NORO T—p (4.17)

pl2n
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We leave it to the reader to verify that

(vp(n) + 1)(1 = 1/p)p®, if vy(n) < a,

a—1

NO,n(pa) =
(a+1)p* —ap™ ', if v,(n) > a,

for any prime p. A straightforward computation yields Ly, (s,p) = (1 — p~*)o1_,(p**™).
If we insert this into (4.17), we find

k1 h=1(_1)k/2

Using ((k) = —(2;:!)k By, with the k-th Bernoulli number By, we get
4k
q(n) = ~ B, Ok 1(n),

in accordance with the classical result.

Ezample 2. Let L be the 1-dimensional lattice Z equipped with the quadratic form ¢(a) =
a®. Then L'/L = 7./27. Let k be half-integral such that k 4+ 1/2 is even. The space My,
is isomorphic to the space of Jacobi forms of weight £ + 1/2 and index 1 ([EZ] Theorem
5.1) and thereby isomorphic to the Kohnen space M," of modular forms of weight k for the
group I'y(4) whose n-th Fourier coefficient equals zero unless —n = 0,1 (mod 4) ([Ko], [EZ]
Theorem 5.4). In this case E(7) essentially equals the Cohen-Eisenstein series of weight
k (cf. [Co]). Let v € L'/L and n € Z — q(vy) with n > 0. Moreover, let A be the unique
fundamental discriminant such that —4n = A f? with f € N. By Theorem 4.6 we have

2k+1/27rknk—1(_1)(2k+1 /4 (k _ 1/2 XA) H 1 — XA(p)p1/2—k

q(v,n) = 0 D) " Lya(k,p). (4.18)

p|27

To compute the finite Euler product we note that

(xa(®) + xa®)?) pr | ifu,(n) < a,

Nyn(p®) =
! p[a/Q}a if Up(n) 2 a,
for any odd prime p. In fact, the case v,(n) > « is easy, and the case v,(n) < « follows
from Theorem 4.5. With some extra work it can be seen that this formula still holds for
= 2. (That is why we have worked with A instead of D.) It can be deduced that

1—p2 , . o
Lon(s,p) = 1— xa(p)p'/>— (02-25(p"7) = xa(p)P'/* #0205 (P 71)) .

Inserting this into (4.18), we obtain

2k+1/2ﬂ.knk—1(_1)(2k+1)/4 ( _ 1/2 XA
_ d1/2 k d).
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Throughout the rest of this paper we suppose that & = m/2. (For later applications
we will only need this case.) Then the condition 2k — b~ 4+ b" = 0 (mod 4) is equivalent
to requiring that b is even. The condition & > 2 implies m > 5.

Under this assumption the formula of Theorem 4.6 can be considerably simplified.

Theorem 4.8. Let v € L' and n € Z — q(y) with n > 0. The coefficient q(v,n) of the
Fisenstein series E(T) of weight k = m/2 is equal to

2k+1ﬂ.knk71(_1)b+/2

|/ LIT (k)

times

(01 n X4D »(1-2k) \ w .
pr aP"), if 2 | m,
L(I{? X4D Q!;t[ ) 'Y ( ) |

L(k —1/2,xp) 1/2—k p U IN, L ()
@k —1) %“(d)xp(f”d "“’“(f/d)mg(s) i f2Am

Here N, ,(p"?) is given by (4.4), (4.13); and D, D, f are defined as in Theorem 4.5.
Moreover, o1 (7, X4ap) denotes the twisted divisor sum (see section 2).

Proof. Let p be a prime. Since k = m/2 the local Euler factor L(k,p) (4.15) is equal to
pwp(l—Qk)N%n (pwp).

If we put this into the formula given in Theorem 4.6, we find that ¢(,n) is equal to
2k+1ﬂ.knk71(_1)b+/2

VI (k)

times
'# H p p(1-2k) N’Y,n(pwz’) o | -
L(k, XD) p|2n det(S B XD(p)p k ’
(4.19)
L(k —1/2, xo) L= xo@p"* " ok w :
C(Qk — ]_) H 1— pl_Qk p ol )ny,n(p p), if 2 'f m.
\ p|27i det(S)

If m is even, then according to Theorem 4.5 the finite Euler product over p | 2n det(S) in
(4.19) is given by

pwpl QkN pwp
H a1k (p™, xap) H (k)

p|R p|2det(S _XD )
pf2 det(S)
:Ul—k(ﬁaX4D)1 H p I TIN L (0. (4.20)
p\Qdet S)
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If m is odd, then the finite Euler product over p | 2n det(S) in (4.19) is equal to

wp(1—2k) w
" _ P w( N pvr
H (027219 D) — xp(p)p"* Fos H pi- 2k( )
pl|n p|2det(S
pr2det(S)
wp(1— 2k)N wp
p p
=3 wldxo(d)d > Foy u(f/d) ] i (P™7) (421)
s pl2dei(s) P

Inserting (4.20) resp. (4.21) into (4.19), we obtain the assertion. O

We have written a C++ program to evaluate the above formula. The source code and
the binary (compiled for x86-Linux) can be downloaded from the first author’s home-page.

In [Bu] for some lattices L the Eisenstein series E(7) is expressed in terms of elementary
theta functions.

5 Modular forms on O(2,1)

Throughout this section we assume that L has signature (2,[) with [ > 3. Moreover, we
suppose that L splits two hyperbolic planes over Q. (This is always true if [ > 5.) We put
V = L ®z R and denote by

O(V)={geSL(V); q(ga) =q(a) for alla € V'}

the (special) orthogonal group of V. If O°(V) denotes the connected component of the
identity and K a maximal compact subgroup, then O°(V)/K is a Hermitean symmetric
space. The Hermitean structure can be described explicitly as follows.

We extend the bilinear form (-,-) on V to a C-bilinear form on the complexification
Ve =V ®r Cof V. Let P(V¢) denote the associated projective space and write W +— [IW]
for the canonical projection Vi — P(V¢). Consider the subset

’C:{[W]GP(V(C); (W, W) =0, (WaW) >0}

of P(V¢). Tt is easily seen that K is a complex manifold of dimension [ that consists of 2
connected components. The action of the orthogonal group O(V) on V induces an action
on IC. The connected component of the identity preserves the components of IC, whereas
O(V) — O°(V) interchanges them. We choose one fixed component of K and denote it by
H. Then O°(V) acts transitively on H and the stabilizer K of a fixed point is a maximal
compact subgroup Thus O°(V)/K = H.

Let O(L {g c O(V); gL = L} be the orthogonal group of L. We denote by
['(L) the subgroup of finite index of O(L) consisting of all elements which act trivially on
the discriminant group L'/L. According to Baily-Borel the quotient 7 /T'(L) is a quasi-
projective algebraic variety.

Let X be a normal irreducible complex space. By a divisor D on X we mean a formal
linear combination D = Y nyY (ny € Z) of irreducible closed analytic subsets Y of
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codimension 1 such that the support UnY 40 Y 1s a closed analytic subset of everywhere
pure codimension 1. For two divisors D = Y nyY and D' = Y n{Y on X we write
D < D', if ny <nj for all irreducible closed analytic subsets Y of codimension 1.

Recall that for any vector A € L' of negative norm there is a divisor A on H which is
given by the orthogonal complement of X in H. Let 5 € L'/L and t € Z+ q(3) with t < 0.
Then

>t (5.1)

\eL!
q(N)=t
A\+L=8

is a I'(L)-invariant divisor on H. It is the inverse image under the canonical projection of an

algebraic divisor on H/I'(L) (which will also be denoted by H(3,t)). The multiplicities of

all irreducible components equal 2, if 24 = 0, and 1, if 23 # 0 in L'/ L. Following Borcherds

we call this divisor Heegner divisor of discriminant (3,t). Note that H(8,t) = H(—f,1).
We now define automorphic forms for the group I'(L). Denote by

H={WeVe—{0}; [W]eH}cW (5.2)

the cone over H. Let r € Q and y be a character of I'(L). A meromorphic function G' on
H is called automorphic form of weight r and character x with respect to I'(L), if

i) G is homogeneous of degree —r, i.e. G(cW) = ¢ "G(W) for any ¢ € C — {0};
ii) G is invariant under T, i.e. G(oW) = x(0)G(W) for any o € T'(L).

If G is in addition holomorphic on 7—~l, it is called modular form. (Since [ > 3, then the
Koecher principle ensures that G is also holomorphic on the Satake boundary.)

Let E(7) be the Eisenstein series of weight £ = 14-1/2 with constant term 2e in M, 1, (as
in Theorem 4.8) and write ¢(v, n) for its Fourier coefficients (y € L'/L and n € Z — q(7)).
The significance of E(7) lies in the following theorem which was proved in [Brl] Theorem
13.15 and Corollary 13.15 (see also [Br2] Theorem 9).

Theorem 5.1. Let F' be an automorphic form of weight r with some character for the
group T'(L). Suppose that its divisor (F) is a linear combination of Heegner divisors

Z > (B H(B,), (5.3)

,BEL’/L teZ+q(B)
<0

where the c¢(f,t) are integral coefficients with c(3,t) = ¢(—f,t). Then r satisfies

1SS e,

BEL’/L teZ+q(B)
<0
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Using Theorem 4.8 of the present paper, the ¢(v,n) can be computed explicitly. By
Theorem 5.1 we obtain some information on the existence of automorphic forms for I'(L)
with prescribed zeros and poles along Heegner divisors.

Theorem 5.2. Let F' be a holomorphic modular form of weight r with some character for
the group T'(L), whose divisor (F) is a linear combination of Heegner divisors. Let

33 X dBnHE.Y

,BEL’/L teZ+q(B)
<0

be a linear combination with non-negative integral coefficients ¢(B,t) (satisfying c(B,t) =
c(—pB,t)) such that D < (F). Then

= Z > e —t) <. (5.4)

66L’/L teZ+q(B)
<0

The equality sign in (5.4) holds, if and only if D = (F).

This theorem is an immediate consequence of Theorem 5.1 and the following proposi-
tion. (Observe that H(3,t) equals 0 in the divisor group, if there is no A € L' such that
A=p (mod L) and ¢(A\) =t.)

Proposition 5.3. The Fourier coefficients q(v,n) (v € L' and n € Z — q(vy) with n > 0)
of E(T) are non-positive rational numbers. Furthermore, q(y,n) < 0, if and only if there
exists a X € L' such that A\ =~ (mod L) and g(\) = —n.

Proof. We consider the formula for ¢(y,n) of Theorem 4.8. Obviously the first factor is
negative. Moreover, it is easily seen that oy (7, x4p) and

> uld)xo(d)d"* F oy (f /d)

dlf

are positive.

The following argument shows that L(u, xp) > 0 for any v € R with « > 1 and any
discriminant D. The Euler product expansion implies that we may assume that D is a
fundamental discriminant, i.e. the discriminant of a quadratic field K over Q. It is well
known that the L-series L (s) attached to K is equal to ((s)L(s,xp) (cf. [Za] §11). The
values Ly (u) and ((u) are positive by definition.

We find that ¢(,n) is the product of a negative (rational) number with

H pvr 12k % (pwp)‘

p|2det(S)

Hence ¢(v,n) < 0. If there is a A € L’ such that A =+ (mod L) and ¢(\) = —n, then

Nyn(a) = Nx—qo(a) =#{r € L/aL; q(r—X)—q(XA) =0 (mod a)}

15



(a € N). Since r = 0 is a solution of the congruence, we have N, ,(a) > 1 and thereby
q(v,n) <0.

Now suppose that there isno A € L' such that A = v (mod L) and ¢(\) = —n. Assume
that ¢(y,n) < 0. Then N, ,(p“?) > 1 for any prime p dividing 2 det(S). Hence, by Lemma
4.4 the equation ¢(r —v) +n = 0 has a solution r over Z, for any prime p. Since ¢ is
indefinite of rank > 5 we may infer that there exists a global solution r» € L of the latter
equation (cf. [Wa] Theorem 63 and 72). But then —r + v € L' satisfies —r + v = «
(mod L) and ¢(—r + ) = —n contradicting our assumption. (The latter statement can
also be proved in a rather indirect way: If there is no A € L' such that A = v (mod L)
and ¢(\) = —n, then H(y,—n) = 0 in the divisor group of % /T'(L). Thus any constant

non-zero function F' on H is a modular form of weight 0 with divisor (F') = H(y, —n). By

Theorem 5.1 we obtain ¢(v,n) = 0.) O
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