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Abstract. We show that every Fricke invariant meromorphic modular form for Γ0(N)
whose divisor on X0(N) is defined over Q and supported on Heegner divisors and the cusps
is a generalized Borcherds product associated to a harmonic Maass form of weight 1/2. Fur-
ther, we derive a criterion for the finiteness of the multiplier systems of generalized Borcherds
products in terms of the vanishing of the central derivatives of L-function of certain weight 2
newforms. We also prove similar results for twisted Borcherds products.

1. Introduction

Borcherds’ singular theta correspondence, constructed in his famous paper [1], yields a
multiplicative lifting map from weakly holomorphic modular forms of weight 1− n/2 for the
Weil representation associated to an even lattice L of signature (2, n) to meromorphic modular
forms for the orthogonal group of L. The modular forms arising in this way have particular
infinite product expansions at the cusps and are therefore called Borcherds products. It
is an important question, raised by Borcherds in [1], Problem 16.10, whether there is a
converse theorem for Borcherds products, i.e., whether every meromorphic modular form for
the orthogonal group of L whose divisor is a linear combination of Heegner divisors can be
obtained as a Borcherds product of a weakly holomorphic modular form. If n ≥ 2, then
the best known general result in this direction states that the converse theorem holds if L
splits a hyperbolic plane and a rescaled hyperbolic plane over Z, see [3]. We also refer to [2],
Theorem 5.12, and [4, 6, 10] for related results. On the other hand, if L has signature (2, 1),
then there are counter-examples to the converse theorem. They arise from additional relations
between Heegner divisors which are implied by the Gross-Zagier formula, but which cannot
be obtained as Borcherds products of weakly holomorphic modular forms. In the present
paper we investigate the failure of the converse theorem in signature (2, 1) in detail for the
group Γ0(N). First, we prove a weak converse theorem which states that every meromorphic
modular form for Γ0(N) whose divisor on Y0(N) is a linear combination of Heegner divisors
and whose cuspidal divisor is defined over Q and Fricke-invariant is the generalized Borcherds
product of a harmonic Maass form of weight 1/2. The generalized Borcherds product of a
harmonic Maass form transforms with a multiplier system which may be of infinite order.
Our second main result gives a criterion for the finiteness of the multiplier system in terms
of the vanishing of the central derivatives of the L-functions of certain newforms of weight 2.
Let us describe our results in more detail.

1.1. A weak converse theorem. Let N be a positive integer. We let Y0(N) = Γ0(N)\H
be the modular curve corresponding to Γ0(N) and denote by X0(N) its compactification by
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the cusps. By a meromorphic modular form of real weight κ ∈ R for Γ0(N) with a unitary
multiplier system σ : Γ0(N) → S1 we mean a meromorphic function F : H → C which
transforms as

F (Mz) = σ(M)(cz + d)κF (z)

for all z ∈ H and M ∈ Γ0(N), and which is meromorphic at the cusps. Here we let za =
exp(aLog(z)) for z, a ∈ C, where Log denotes the principal branch of the logarithm. We say
that σ has finite order if there is a positive integer m such that σ(M)m = 1 for all M ∈ Γ0(N).

We recall some basic facts about vector valued harmonic Maass forms for the Weil represen-
tation from [5]. Let LN = Z(N)⊕U where Z(N) is the lattice Z equipped with the quadratic
form Q(x) = Nx2, and U is the hyperbolic plane Z2 with Q(x, y) = xy. It has signature (2, 1)
and level 4N . Write L′N for the dual of LN . The discriminant group DN = L′N/LN is isomor-
phic as a finite quadratic module to Z /2N Z with the finite quadratic form Q(γ) = γ2/4N ,
and we will use this identification without further notice. The hermitian symmetric domain
associated with LN can be identified with the complex upper half-plane, and modular forms
for the discriminant kernel of the orthogonal group of LN can be viewed as classical elliptic
modular forms for Γ0(N). Let C[DN ] be the group ring of LN with standard basis vectors eγ
for γ ∈ DN . The Weil representation ρN associated with LN is a unitary representation of
the integral metaplectic group Mp2(Z) on the group ring C[DN ], see [1]. We let ρN denote
the corresponding dual Weil representation. A smooth function f : H → C[DN ] is called a
harmonic Maass form of weight k ∈ 1

2 + Z for ρN if it is annihilated by the weight k Laplace
operator ∆k, if it transforms under Mp2(Z) like a modular form of weight k for ρN , and if it
is at most of linear exponential growth at the cusp ∞. The antilinear differential operator

ξkf = 2ivk
∂

∂τ
f (τ = u+ iv ∈ H)

maps harmonic Maass forms of weight k for ρN to weakly holomorphic modular forms of
weight 2− k for ρN . We let H+

k,ρN
be the space of all harmonic Maass forms of weight k for

ρN which are mapped to the space S2−k,ρN of cusp forms of weight 2− k for ρN , and we let

M !
k,ρN

be the subspace of weakly holomorphic modular forms. Every f ∈ H+
k,ρN

has a Fourier

expansion of the form

f(τ) =
∑
γ∈DN

 ∑
n∈Z

n�−∞

a+
f (n, γ)e

( nτ
4N

)
+
∑
n∈Z
n<0

a−f (n, γ)Γ

(
1− k, π|n|v

N

)
e
( nτ

4N

) eγ ,

with e(z) = e2πiz for z ∈ C, coefficients a±f (n, γ) ∈ C and Γ(s, x) =
∫∞
x e−tts−1dt the in-

complete gamma function. Note that the transformation behaviour under ρN implies that
a±f (n,−γ) = (−1)k−1/2a±f (n, γ) for all n ∈ Z, γ ∈ DN , and a±f (n, γ) = 0 unless n ≡ γ2(4N).

The finite Laurent polynomial

Pf (τ) =
∑
γ∈DN

∑
n∈Z
n≤0

a+
f (n, γ)e

( nτ
4N

)
eγ

is called the principal part of f . We emphasize that the principal part includes the coefficients
with n = 0.

Next, we explain the generalized Borcherds products associated with harmonic Maass
forms, as defined in [7], Section 6. Let f ∈ H+

1/2,ρN
and assume that the coefficients a+

f (n2, n)
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are real for all n, and that the coefficients a+
f (n, γ) for n < 0, γ ∈ DN , are integers. Then by

Theorem 6.1 of [7] the infinite product

Ψ(f, z) = e(ρfz)

∞∏
n=1

(1− e(nz))a
+
f (n2,n)

converges for =(z)� 0 large enough and has a continuation to all of H which is a meromorphic
modular form of weight a+

f (0, 0) for Γ0(N) with a unitary multiplier system (possibly of

infinite order). Here ρf ∈ R is the Weyl vector at the cusp ∞ associated with f , which can
be computed in terms of the Petersson inner product of f with a unary theta series of weight
1/2. The divisor on Y0(N) of the generalized Borcherds product Ψ(f, z) is given in terms of
the principal part of f by the linear combination

Z(f) =
∑
γ∈DN

∑
n<0

a+
f (n, γ)Z(n, γ),

where Z(n, γ) is the Heegner divisor defined in [7], Section 5. The cuspidal part of the divisor
of f can explicitly be described in terms of the Weyl vectors associated to f at the different
cusps. What is important to us is the fact that if we represent the cusps of Γ0(N) by fractions
a
c with a, c ∈ Z>0, (a, c) = 1 and c | N , then the order of Ψ(f, z) at a

c only depends on c,
but not on a (compare [8], Section 5). It is well known that the cusp a

c is defined over the
cyclotomic field Q(ζ(c,N/c)) and that the cusps a

c with fixed c form a complete Galois orbit.
Consequently, the cuspidal part of the divisor of Ψ(f, z) is defined over Q. Furthermore, the
divisor of Ψ(f, z) is invariant under the Fricke involution WN =

(
0 −1
N 0

)
. Our first main result

is the following weak converse theorem.

Theorem 1.1. Let F be a meromorphic modular form for Γ0(N) with a unitary multiplier
system (possibly of infinite order). Suppose that the divisor of F on Y0(N) is a linear com-
bination of Heegner divisors Z(n, γ) and that its divisor at the cusps is defined over Q and
invariant under the Fricke involution WN . Then F is (up to a non-zero constant factor) the
generalized Borcherds product associated to a unique harmonic Maass form f ∈ H+

1/2,ρN
.

Remark 1.2. The supplement ‘weak’ indicates that f is a harmonic Maass form, rather than
a weakly holomorphic modular form.

It is well known that any linear combination of Heegner divisors Z(n, γ) can be realized as
the divisor on Y0(N) of the generalized Borcherds product associated to a suitable harmonic
Maass form f ∈ H+

1/2,ρN
of weight 1/2. The main point of the above theorem is that we can

choose f in such a way that its associated generalized Borcherds product also has the correct
cuspidal divisor. We construct this f by considering the Borcherds products of suitable unary
theta series of weight 1/2. We refer to Section 4 for a detailed proof of the theorem.

1.2. Generalized Borcherds products with multiplier systems of finite order. Next,
we want to describe those harmonic Maass forms f whose associated generalized Borcherds
products Ψ(f, z) transform with multiplier systems of finite order. Using transcendence results
of Waldschmidt, Wüstholz and Scholl (see e.g. [14], [15], [12]) for periods of differentials of
the third kind, it was proved in [7] that the finiteness of the multiplier system is equivalent
to the rationality of certain coefficients of the holomorphic part of f , see Theorem 3.1 below.
Furthermore, if we are in the special situation that g = ξ1/2f ∈ S3/2,ρN

is a newform, then
an application of the Gross-Zagier formula shows that the rationality of these coefficients
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of f is equivalent to the vanishing of the central derivative L′(G, 1) of the L-function of
the weight 2 newform G for Γ0(N) corresponding to g under the Shimura correspondence,
see Theorem 3.4 below. We will give a similar criterion for the finiteness of the multiplier
system of the generalized Borcherds product associated to an arbitrary harmonic Maass form
f ∈ H+

1/2,ρN
, which does not necessarily map to a newform under ξ1/2.

The space S3/2,ρN
is isomorphic to the space Jcusp

2,N of Jacobi cusp forms of weight 2 and

index N , see [9], Theorem 5.1. There is an extensive theory of Hecke operators and newforms
for Jacobi forms which carries over to vector valued modular forms. In particular, there is
a Hecke operator Tn acting on S3/2,ρN

for every positive integer n, and the space Snew
3/2,ρN

of

newforms for ρN is defined. By the Shimura correspondence it is isomorphic as a module over

the Hecke algebra to the space Snew,−
2 (N) of newforms of weight 2 for Γ0(N) on which the

Fricke involution acts with eigenvalue +1. The results of [13] yield a direct sum decomposition

S3/2,ρN
=
⊕
d,`>0
d2`|N

Snew
3/2,ρN/d2`

|UdV`(1)

where Ud : S3/2,ρN/d2
→ S3/2,ρN

and V` : S3/2,ρN/`
→ S3/2,ρN

are the translations to vector

valued modular forms of the usual index raising operators on Jacobi forms, compare Section 4
below. If G ∈ Snew,−

2 (N/m) for some m | N is a newform and g ∈ Snew
3/2,ρN/m

is the newform

corresponding to G under the Shimura correspondence, then the cusp forms g|UdV` with
d2` = m form a basis for the space of those forms in S3/2,ρN

which have the same eigenvalues
as G under all Hecke operators Tn with (n,N) = 1. We call this space the G-isotypical
component of S3/2,ρN

.
By subtracting a suitable multiple of a unary theta function from f we can assume that

a+
f (0, 0) = 0. Then the associated generalized Borcherds product Ψ(f, z) has weight 0 and its

divisor has degree 0. Let J be the Jacobian of X0(N). For a number field F , we let J(F ) be
its points over F . They correspond to divisors of degree 0 on X0(N) which are defined over
F . We define a degree 0 divisor corresponding to Z(f) by putting

y(f) ∈ Z(f)− deg(Z(f)) · ∞ ∈ J(Q).

Note that y(f) and the divisor of the generalized Borcherds product Ψ(f, z) differ by a degree
0 divisor supported at the cusps. By the Manin-Drinfeld theorem, y(f) and the divisor of
Ψ(f, z) define the same point in J(Q)⊗ R. Our second main result is the following criterion
for the finiteness of the multiplier systems of generalized Borcherds products.

Theorem 1.3. Let f ∈ H+
1/2,ρN

be a harmonic Maass form with real coefficients a+
f (n, γ) for

n ∈ Z, γ ∈ DN , and integral coefficients a+
f (n, γ) for n < 0, γ ∈ DN . Further assume that

a+
f (0, 0) = 0, f is orthogonal to cusp forms with respect to the regularized Petersson inner

product, and the principal part of f is defined over Q. Then the following statements are
equivalent.

(1) The multiplier system of the Borcherds product Ψ(f, z) has finite order.
(2) The divisor y(f) is torsion in the Jacobian of X0(N).
(3) The coefficients a+

f (n2, n) are rational for all n ∈ Z.

(4) The coefficients a+
f (n2, n) are algebraic for all n ∈ Z.

(5) We have (
ξ1/2f, g

)
L′(G, 1) = 0
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for every newform G ∈ Snew,−
2 (N/m) for m | N and every cusp form g in the G-

isotypical component of S3/2,ρN
. Here (·, ·) denotes the Petersson inner product on

S3/2,ρN
.

Remark 1.4. (1) It is easy to see that we can write every f ∈ H+
1/2,ρN

with real cofficients

in the holomorphic part and integral coefficients a+
f (γ, n) for n < 0, γ ∈ DN , as

f = f1 + f2 with f1 ∈ H+
1/2,ρN

satisfying the conditions required in the theorem,

and f2 ∈ M1/2,ρN a holomorphic modular form. From the facts that M1/2,ρN has a
basis consisting of unary theta series (see Lemma 4.1) whose Borcherds products are
given by explicit eta products (see Corollary 4.3) we see that the Borcherds product
Ψ(f2, z) transforms with a multiplier system of finite order if and only if all of the
coefficients of f2 are rational. Combining this with the theorem we obtain a criterion
for the finiteness of the multiplier system of the generalized Borcherds product Ψ(f, z),
without the additional assumptions on f .

(2) The equivalence of (1) and (2) is clear by the remarks preceeding the theorem, and
the equivalence of (2), (3) and (4) is the statement of Theorem 6.2 in [7] (which we
recall in Theorem 3.1 below). We included all these equivalent statements for the
convenience of the reader. The main point of the theorem is the equivalence of (1)
and (5), which will be proved in Section 5.

(3) By the results of [13], the space S3/2,ρN
∼= Jcusp

2,N is isomorphic as a module over the

Hecke algebra to the cuspidal part of a certain subspace M−2 (N) of the space of
holomorphic modular forms of weight 2 for Γ0(N) which have eigenvalue +1 under

the Fricke involution WN . If we denote this isomorphism by ϕN : S3/2,ρN

∼→M−2 (N),
then the above theorem implies that if Ψ(f, z) transforms with a multiplier system of
finite order, then

L′(ϕN (ξ1/2f), 1) = 0.

However, the vanishing of this L-derivative is not equivalent to item (5) in the above
theorem.

1.3. A converse theorem for twisted Borcherds products. In [7], Theorem 6.1, the
authors also defined certain twisted generalized Borcherds products Ψ∆,r(f, z) of harmonic

Maass forms f ∈ H+
1/2,ρ̃N

, where ∆ is a fundamental discriminant and r ∈ Z /2N Z satisfies

r2 ≡ ∆(4N), and ρ̃N is either ρN or ρN , depending on whether ∆ > 0 or ∆ < 0. For brevity,
we do not repeat the definition of these twisted Borcherds products here but refer the reader
to [7]. If ∆ 6= 1, then Ψ∆,r(f, z) is a meromorphic modular form of weight 0 for Γ0(N) with a
unitary multiplier system (possibly of infinite order). The divisor of Ψ∆,r(f, z) is supported
on Y0(N) and is given by the linear combination

Z∆,r(f) =
∑
γ∈DN

∑
n<0

a+
f (n, γ)Z∆,r(n, γ)

with the twisted Heegner divisors Z∆,r(n, γ) as defined in [7], Section 5. For ∆ 6= 1 the divisor
Z∆,r(n, γ) has degree 0, therefore we set y∆,r(f) = Z∆,r(f) in this case.

The space Snew
3/2,ρ̃N

is isomorphic to the space of (holomorphic if ∆ > 0, skew-holomorphic

if ∆ < 0) cuspidal Jacobi newforms of weight 2 and index N , which is in turn isomorphic as

a module over the Hecke algebra to the space Snew,∓
2 (N) (∓ = − if ∆ > 0, ∓ = + if ∆ < 0)

of newforms of weight 2 for Γ0(N) on which the Fricke involution acts with eigenvalue ±1.
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Here we understand that for ∆ < 0 the space Snew
3/2,ρN

consists of those newforms which are

orthogonal with respect to the Petersson inner product to the space of unary theta series
of weight 3/2 (as defined in [8]), since the latter functions correspond to Eisenstein series
under the Shimura correspondence. We have the following twisted version of Theorem 1.1
and Theorem 1.3.

Theorem 1.5. Let ∆ 6= 1 and let r ∈ Z /2N Z with r2 ≡ ∆(4N). Let F be a meromorphic
modular form for Γ0(N) with a unitary multiplier system (possibly of infinite order). Suppose
that the divisor of F on X0(N) is a linear combination of twisted Heegner divisors Z∆,r(n, γ).

There exists a harmonic Maass form f ∈ H+
1/2,ρ̃N

whose (∆, r)-twisted generalized Borcherds

product Ψ∆,r(f, z) is a non-zero constant multiple of F . Further, the following statements are
equivalent.

(1) The multiplier system of F has finite order.
(2) The divisor y∆,r(f) is torsion in the Jacobian of X0(N).

(3) The coefficients a+
f (|∆|n2, rn) are rational for all n ∈ Z.

(4) The coefficients a+
f (|∆|n2, rn) are algebraic for all n ∈ Z.

(5) We have (
ξ1/2f, g

)
L′(G,χ∆, 1) = 0

for every newform G ∈ Snew,±
2 (N/m) for m | N and every cusp form g in the G-

isotypical component of S3/2,ρ̃N
. Here χ∆ =

(
∆
·
)

is the Kronecker symbol.

Remark 1.6. Note that M1/2,ρN has a basis consisting of theta series (see Lemma 4.1 below)
and M1/2,ρN

∼= J1,N = {0} by a well-known result of Skoruppa (compare [9], Theorem 5.7).
Using this it follows immediately from the definition of the twisted Borcherds product that
Ψ∆,r(f, z) = 1 for ∆ 6= 1 and f ∈ M1/2,ρ̃N . Hence, in contrast to the the untwisted case, for
∆ 6= 1 we do not need to assume that f is orthogonal to cusp forms or that its coefficients∑

γ∈DN a
+
f (0, γ) eγ are rational. Further, this shows that the harmonic Maass form f in the

theorem is only unique up to addition of a holomorphic modular form.

The proof of the theorem is analogous to the proofs of Theorem 1.1 and Theorem 1.3, so
we will leave the details to the reader. We only mention that if ∆ < 0 and ξ1/2f lies in the
space of unary theta series of weight 3/2, then the holomorphic part of f has rational Fourier
coefficients by [8], Theorem 4.7. Hence the above converse theorem is trivially true for such
f .

The work is organized as follows. In Section 2 we translate some classical operators on
Jacobi forms into the vector valued setting. In Section 3 we recall some results of Ono and
the first named author [7] on the algebraicity of Fourier coefficients of harmonic Maass forms,
which are crucial for the proofs of our main theorems. In Section 4 we prove the weak converse
theorem, Theorem 1.1, and in Section 5 we prove the finiteness criterion for generalized
Borcherds products, Theorem 1.3. Along the way we obtain some general results about
newforms and harmonic Maass forms of half-integral weight which might be of independent
interest.

2. Operators on vector valued modular forms

We recall some classical operators on Jacobi forms from [9], viewed here as operators on
vector valued modular forms. Let ρ be one of the representations ρN or ρN , and let k ∈ 1

2 +Z.
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The automorphism group Aut(DN ) acts on vector valued modular forms f =
∑

γ fγ eγ for

ρ by fσ =
∑

γ fγ eσ(γ). The elements of Aut(DN ) are all involutions, also called Atkin-Lehner

involutions, and correspond to the exact divisors c || N (i.e., c | N and (c,N/c) = 1). The
automorphism σc corresponding to c is defined by the equations

σc(γ) ≡ −γ (2c) and σc(γ) ≡ γ (2N/c)

for γ ∈ DN , compare [9], Theorem 5.2.
For each positive integer n there is a Hecke operator Tn acting on the space M !

k,ρ. For

example, if n = p is a prime with (p,N) = 1, then the action of Tp on the Fourier expansion
of a weakly holomorphic vector valued modular form

f =
∑
γ∈DN

∑
n�−∞

af (n, γ)e
( nτ

4N

)
eγ ∈M !

1/2,ρ

of weight k for ρ is given by

f |Tp =
∑

γ∈L′/L

∑
n�−∞

af |Tp(n, γ)e
( nτ

4N

)
eγ ∈M !

1/2,ρ

with

af |Tp(n, γ) = af (p2n, pγ) + pk−3/2

(
σn

p

)
af (n, γ) + p2k−2af (n/p2, γ/p),

where σ = 1 if ρ = ρN and σ = −1 if ρ = ρN .
There are level raising operators Ud and V` which act on the Fourier expansion of a weakly

holomorphic modular form of weight k for ρN by

f |Ud =
∑

γ∈DNd2

∑
n�−∞

af (n/d2, γ/d)e
( nτ

4Nd2

)
eγ ∈M !

k,ρNd2
,

f |V` =
∑

γ∈DN`

∑
n�−∞

 ∑
a|(n+γ2

4N
,γ,`)

ak−1/2af (n/a2, γ/a)

 e
( nτ

4N`

)
eγ ∈M !

k,ρN`

Their actions on M !
k,ρN

almost look the same, but in the action of V` we have to replace n with
−n in the greatest common divisor in the index of the innermost sum. These two operators
commute with each other for all d and `, and they commute with the Hecke operators Tn for
(n,N) = 1.

All the above operators act on harmonic Maass forms as well, their actions on the Fourier
expansion being the same. For f ∈ H+

k,ρ we have the following commutation relations with

the ξ-operator,

ξk(f
σc) = (ξkf)σc ,

ξk(f |Tn) = n2k−2(ξkf)|Tn,
ξk(f |Ud) = (ξkf)|Ud,

ξk(f |V`) = `k−1(ξkf)|V`,

which can be verified using the explicit actions of the operators on the Fourier expansions.
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3. Algebraicity results for the coefficients of harmonic Maass forms

We recall a few results from [7] which relate the finiteness of the multiplier system of the
generalized Borcherds product of f ∈ H+

1/2,ρN
with the algebraicity of some of the Fourier

coefficients of f and the vanishing of certain central L-derivatives of weight 2 newforms.

Theorem 3.1 ([7], Theorem 6.2). Let f ∈ H+
1/2,ρN

be a harmonic Maass form with real

coefficients a+
f (n, γ) for all n ∈ Z, γ ∈ DN , and integral coefficients a+

f (n, γ) ∈ Z for all

n < 0, γ ∈ DN . Further assume that a+
f (0, 0) = 0, f is orthogonal to cusp forms, and the

principal part of f is defined over Q. Then the following statements are equivalent.

(1) The multiplier system of the Borcherds product Ψ(f, z) has finite order.
(2) The coefficients a+

f (n2, n) are rational for all n ∈ Z.

(3) The coefficients a+
f (n2, n) are algebraic for all n ∈ Z.

We further require Theorem 7.6 and Theorem 7.8 from [7]. The theorems are only stated
in twisted versions for ∆ 6= 1 in the reference. The following proposition is needed to obtain
an untwisted version.

Proposition 3.2. The orthogonal complement of S1/2,ρN in M !
1/2,ρN

has a basis consisting

of weakly holomorphic modular forms with rational Fourier coefficients. In particular, if
f ∈M !

1/2,ρN
is a weakly holomorphic modular form whose principal part is defined over some

number field K and which is orthogonal to cusp forms, then all coefficients of f lie in K.

Proof. We first show the second claim. For every m > 0, β ∈ DN , with m ≡ β2(4N) there
exists a harmonic Maass form Pm,β ∈ H+

3/2,ρN
for with principal part e(−mτ/4N)(eβ + e−β)+c

for some constant c ∈ C[DN ], compare [5], Proposition 3.11. By adding a suitable linear
combination of Eisenstein series of weight 3/2 we can assume that c ∈ Q[DN ], so the principal
part of Pm,β is defined over Q. Since ξ3/2Pm,β ∈ S1/2,ρN and the latter space has a basis
consisting of unary theta series (see Lemma 4.1 below), Theorem 4.7 in [8] shows that we can
assume that all coefficients a+

Pm,β (n, γ), n ≥ 0, γ ∈ DN , are rational. Using Stokes’ theorem

(compare [5], Proposition 3.5), we obtain

0 = (f, ξ3/2Pm,β) = 2af (m,β) +
∑
γ∈DN

∑
n≥0

af (−n, γ)a+
Pm,β (n, γ).

Since af (−n, γ) ∈ K and a+
Pm,β (n, γ) ∈ Q for n ≥ 0, γ ∈ DN , this shows that all coefficients

of f lie in K.
Now let {fj} be a basis of M !

1/2,ρN
with rational coefficients. Consider those fj which

are not cusp forms. By subtracting from every fj a suitable cusp form we obtain a weakly

holomorphic modular form f̃j which is orthogonal to cusp forms but has the same principal

part as fj . It is clear that these f̃j form a basis of the orthogonal complement of S1/2,ρN in

M !
1/2,ρN

. Since the f̃j are orthogonal to cusp forms and have rational principal part, they

have rational coefficients. �

Remark 3.3. The analogous result for the space M !
1/2,ρN

follows from the fact that S1/2,ρN
∼=

Jcusp
1,N = {0} by a result Skoruppa, compare [9], Theorem 5.7, and that M !

1/2,ρN
has a basis

consisting of forms with integral coefficients by results of McGraw [11].
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Combined with the above proposition, the remarks after Theorem 7.6 and Theorem 7.8 in
[7] yield the following result.

Theorem 3.4 ([7], Theorems 7.6 and 7.8). Let G ∈ Snew,−
2 (N) be a newform and let KG be

the number field generated by its coefficient. Let g ∈ Snew
3/2,ρN

be the newform corresponding

to G under the Shimura correspondence, normalized to have coefficients in KG. There exists
a harmonic Maass form f ∈ H+

1/2,ρN
with a+

f (0, 0) = 0 which is orthogonal to cusp forms

and has principal part defined over KG such that ξ1/2(f) = ‖g‖−2g. Further, the following
statements are equivalent.

(1) a+
f (n2, n) is algebraic for all n ∈ Z.

(2) a+
f (1, 1) is algebraic.

(3) L′(G, 1) = 0.

4. Proof of Theorem 1.1

We consider the unary theta series

θ1/2,N (τ) =
∑
γ∈DN

∑
n∈Z

n≡γ(2N)

e

(
n2τ

4N

)
eγ ∈M1/2,ρN .

We have the following analog of the Serre-Stark basis theorem for vector valued modular
forms.

Lemma 4.1 ([8], Lemma 2.1). Let D(N) be the set of all positive divisors of N modulo the
equivalence relation d ∼ N/d. Then the theta series

θ
σd/(d,N/d)
1/2,N/(d,N/d)2

|U(d,N/d), d ∈ D(N),

form a basis of M1/2,ρN .

We remark that the above basis was already given in [13], p. 130, in the language of Jacobi
forms. Next, we determine the Borcherds products associated with the above theta series.

Proposition 4.2. (1) The Borcherds product of θσc1/2,N for c || N is given by

Ψ
(
θσc1/2,N , z

)
= η(cz)η

(
N

c
z

)
.

(2) For f ∈ H+
1/2,ρN

the Borcherds product of f |Ud is given by

Ψ (f |Ud, z) = Ψ(f, dz).

Proof. The result follows easily from the explicit actions of σc and Ud on Fourier expansions
and the definition of the Borcherds product. �

Corollary 4.3. For every divisor d | N we have

Ψ
(
θ
σd/(d,N/d)
1/2,N/(d,N/d)2

|U(d,N/d), z
)

= η(dz)η

(
N

d
z

)
.

Lemma 4.4. For every finite Laurent polynomial

P (τ) =
∑
γ∈DN

∑
n<0

a+(n, γ)e
( nτ

4N

)
eγ
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with a+(n, γ) = a+(n,−γ) ∈ C and a+(n, γ) = 0 unless n ≡ γ2(4N) there exists a harmonic
Maass form f ∈ H+

1/2,ρN
with principal part Pf = P + c for some constant c ∈ C[DN ]. If

the coefficients a+(n, γ) for n < 0, γ ∈ DN , are real, then we can choose f such that all its
coefficients a±f (n, γ) are real for n ∈ Z, γ ∈ DN .

Proof. By [5], Proposition 3.11, there exists a harmonic Maass form f ∈ H+
1/2,ρN

with the

claimed principal part. Let f c be the function obtained by replacing all the coefficients
a±f (n, γ) of f with their complex conjugates. It is straightforward to check that f c ∈ H+

1/2,ρN
is

again a harmonic Maass form. Further, if the coefficients of negative index in the holomorphic
part of f are real, then 1

2(f+f c) has the same coefficients of negative index in the holomorphic
part as f , and all its coefficients are real. �

Proof of Theorem 1.1. Let F be a meromorphic modular form for Γ0(N) whose divisor
on Y0(N) is a linear combination of Heegner divisors Z(n, γ) and whose cuspidal divisor is
defined over Q and invariant under the Fricke involution. By the last lemma we can find a
harmonic Maass form f1 ∈ H+

1/2,ρN
(unique up to addition of a holomorphic modular form

in M1/2,ρN ) whose generalized Borcherds product Ψ(f1, z) has the same divisor on Y0(N) as
F . Hence the divisor of Ψ(f1, z)/F (z) is supported at the cusps, defined over Q, and Fricke-
invariant. Since the order of a cusp a

c with c | N in such a divisor only depends on c, and the

Fricke involution identifies 1
c with 1

N/c , the Q-vector space consisting of all such divisors has

dimension
1

2
(σ0(N) + δN=�) ,

where σ0(N) is the number of divisors of N and δN=� equals 1 if N is a square and 0 oth-
erwise. This is exactly the dimension of the Q-vector space of divisors of the eta products
η(dz)η(Nz/d) for d | N , which arise as Borcherds products of unary theta series by Corol-
lary 4.3. In particular, there exists a unique holomorphic modular form f2 ∈ M1/2,ρN such
that Ψ(f2, z) has the same divisor as Ψ(f1, z)/F (z). Let f = f1 − f2. Then the quotient
Ψ(f, z)/F (z) is a holomorphic modular form of some weight k ∈ R for Γ0(N) which does not
have any zeros in H or at the cusps. Hence the function

G(z) = 2 log

(
=(z)k/2

∣∣∣∣Ψ(f, z)

F (z)

∣∣∣∣)
is invariant under Γ0(N), satisfies ∆0G(z) = k, and is square-integrable onX0(N) with respect

to (f, g) =
∫

Γ0(N)\H f(z)g(z)dxdy
y2

. Using the fact that the Laplace operator is self-adjoint on

L2(X0(N)), we obtain

k2vol(X0(N)) = (k, k) = (∆0G, k) = (G,∆0k) = 0,

which implies k = 0. Hence G is harmonic without any singularities on X0(N). The maximum
principle for harmonic functions on X0(N) implies that G is a constant. Thus Ψ(f, z)/F (z) is
a holomorphic function with constant modulus, therefore a constant. This finishes the proof
of Theorem 1.1.

5. Proof of Theorem 1.3

We first prove some general lemmas about newforms in Snew
2−k,ρN and harmonic Maass forms

in H !
k,ρN

for k ∈ 1
2 + Z.
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Lemma 5.1. Let g ∈ Snew
2−k,ρN/m with m | N be a newform with algebraic coefficients. Then

the Petersson inner products (g|UdV`, g|Ud′V`′) are algebraic multiples of (g, g) for all positive

integers d, `, d′, `′ with d2` = d
′2`′ = m.

Proof. Since g is a newform with algebraic coefficients, Lemma 7.3 in [7] tells us that there
exists a harmonic Maass form f ∈ H+

k,ρN
with algebraic principal part such that ξkf = ‖g‖−2g.

We obtain by Stokes’ theorem (compare [5], Proposition 3.5)

(g|UdV`, g|Ud′V`′) = ‖g‖2`′1−k(g|UdV`, ξk(f |Ud′V`′))

= ‖g‖2`′1−k
∑
γ∈DN

∑
n≤0

ag|UdV`(−n, γ)a+
f |Ud′V`′

(n, γ).

From the explicit action of Ud and V` given in Section 2 and the fact that the principal part
of f and the coefficients of g are algebraic, we see that the right-hand is an algebraic multiple
of ‖g‖2 = (g, g). �

Lemma 5.2. Every simultaneous eigenspace of the Hecke operators Tn with (n,N) = 1 in
S2−k,ρN has an orthogonal basis consisting of cusp forms with algebraic Fourier coefficients.

Proof. By the direct sum decomposition (1) of S2−k,ρN and the multiplicity one theorem,
every eigenspace has a basis consisting of the forms g|UdV` for some newform g ∈ Snew

2−k,ρN/m
with m | N , where ` and d run through the positive integers with d2` = m. If we normalize g
to have algebraic coefficients, then the functions g|UdV` have algebraic coefficients as well. We
apply the Gram-Schmidt orthogonalization procedure (without normalization) to this basis.
Using the last lemma, it follows by induction that the cusp forms in the resulting orthogonal
basis are algebraic linear combinations of the g|UdV` and hence have algebraic coefficients. �

Lemma 5.3. Let g ∈ S2−k,ρN be a cusp form with algebraic Fourier coefficients and assume
that g is an eigenform of all Hecke operators Tn with (n,N) = 1. Then there exists a harmonic
Maass form f ∈ H+

k,ρN
with algebraic principal part such that

ξkf = ‖g‖−2g.

Remark 5.4. This result generalizes Lemma 7.3 in [7], where g was assumed to be a newform.

Proof. By the direct sum decomposition (1) of S2−k,ρN and the multiplicity one theorem, the
assumption that g is a simultaneous Hecke eigenform implies that there exists a newform
g′ ∈ Snew

2−k,ρN/m (normalized to have algebraic coefficients) for some m | N such that

g =
∑
d,`>0
d2`=m

ad,`g
′|UdV`

with suitable coefficients ad,` ∈ C. Since the functions g′|UdV` are linearly independent
and have algebraic coefficients, and g has algebraic coefficients by assumption, the ad,` are

algebraic. Lemma 7.3 in [7] yields some f ′ ∈ H+
k,ρN/m

with algebraic principal part and

ξkf
′ = ‖g′‖−2g′. Using Lemma 5.1 above we obtain that ‖g‖−2‖g′‖2 is algebraic. In particular,

the harmonic Maass form

f := ‖g‖−2‖g′‖2`1−k
∑
d,`>0
d2`=m

ad,`f
′|UdV`
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has algebraic principal part and is mapped to ‖g‖−2g under ξk. �

Lemma 5.5. Let f ∈ H+
k,ρN

be a harmonic Maass form with algebraic principal part. Write

ξkf =
m∑
i=1

gi

with cusp forms gi ∈ S2−k,ρN which are eigenforms under all Hecke operators Tn with (n,N) =

1 and which lie in distinct eigenspaces. Then we can find harmonic Maass forms fi ∈ H+
k,ρN

with algebraic principal parts such that ξkfi = gi and

f =

m∑
i=1

fi.

Proof. For fixed i we let {gi,j}j=1,...,mi ⊂ S2−k,ρN be an orthogonal basis with algebraic
coefficients of the eigenspace in which gi lies, compare Lemma 5.2 above. Note that the
function gi,j are pairwise orthogonal for all i, j. We can write

ξkf =

m∑
i=1

gi =

m∑
i=1

mi∑
j=1

ai,jgi,j

with some ai,j ∈ C. Using Stokes’ theorem (see [5], Proposition 3.5) we see that

ai,j‖gi,j‖2 = (gi,j , ξkf) =
∑
γ∈DN

∑
n≤0

agi,j (−n, γ)a+
f (n, γ),

which is algebraic. By Lemma 5.3 we can find harmonic Maass forms fi,j ∈ H+
k,ρN

with

algebraic principal parts such that ξkfi,j = ‖gi,j‖−2gi,j . We obtain

f =

m∑
i=1

mi∑
j=1

ai,j‖gi,j‖2fi,j + f̃

for some weakly holomorphic modular form f̃ ∈ M !
k,ρN

. Since f and all fi,j have algebraic

principal parts and the values ai,j‖gi,j‖2 are algebraic, the principal part of f̃ is algebraic as
well. Then the harmonic Maass forms

fi :=

mi∑
j=1

ai,j‖gi,j‖2fi,j +
1

m
f̃

have algebraic principal parts, map to gi under ξk, and f =
∑m

i=1 fi. This finishes the
proof. �

Proposition 5.6. In the situation of Lemma 5.5, assume that k = 1/2, and that f and the
fi are orthogonal to cusp forms. Then the coefficients a+

f (n2, n) are algebraic for all n ∈ Z if

and only if the coefficients a+
fi

(n2, n) are algebraic for all n ∈ Z and all i.

Proof. Let us assume that the coefficients a+
f (n2, n) are algebraic for all n ∈ Z. By the last

lemma, we know that

f =

m∑
i=1

fi.
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We apply the Hecke operator Tp for every prime p with (p,N) = 1, and obtain an equation
of the form

f |Tp =

m∑
i=1

p−1λp(gi)fi + f̃

for some weakly holomorpic modular form f̃ ∈M !
1/2,ρN

, where λp(gi) is the Hecke eigenvalue

of ξ1/2fi = gi. From the fact that f (hence also f |Tp) and all fi are orthogonal to cusp forms

and have algebraic principal parts, and the λp(gi) are algebraic, we see that f̃ is orthogonal

to cusp forms and has algebraic principal part as well. Hence f̃ has algebraic coefficients by
Proposition 3.2. Thus we obtain for every p with (p,N) = 1 an equation of the form

f (p) =

m∑
i=1

λp(gi)fi

where f (p) = p(f |Tp − f̃) is a harmonic Maass whose coefficients a+
f (p)

(n2, n) are algebraic

for all n ∈ Z. For fixed n ∈ Z, we consider the linear system obtained by looking at the
coefficient of the holomorphic part of index (n2, n) in all of these equations, where we view
the values a+

fi
(n2, n) with 1 ≤ i ≤ m as variables. The system has algebraic coefficients and is

solvable, hence it has an algebraic solution. Since the gi lie in different Hecke eigenspaces, the
solution is unique, therefore algebraic. This shows that a+

fi
(n2, n) is algebraic for all n ∈ Z.

The converse direction of the proposition is clear. �

Proof of Theorem 1.3. We prove that item (4) implies item (5) in Theorem 1.3. The
converse implication is similar but simpler. Therefore, let us suppose from now on that the
coefficients a+

f (n2, n) of f are algebraic for all n ∈ Z. By the last proposition we can assume

without loss of generality that ξ1/2f is a simultaneous Hecke eigenform. Hence there exists a
newform g ∈ Snew

3/2,ρN/m
for some m | N such that

ξ1/2f =
∑
d,`>0
d2`=m

ad,`g|UdV`

for some ad,` ∈ C. By Theorem 3.4 we find some fg ∈ H+
1/2,ρN/m

with principal part in the

number field generated by the eigenvalues of g such that ξ1/2fg = ‖g‖−2g, and

f =
∑
d,`>0
d2`=m

ad,`‖g‖2
√
`fg|UdV` + f̃ ,(2)

with some f̃ ∈M !
1/2,ρN

. By subtracting a suitable linear combination of unary theta functions

of weight 1/2 we can assume that fg is orthogonal to cusp forms and satisfies a+
fg

(0, 0) = 0.

As in the proofs of the lemmas above we see that the values ad,`‖g‖2
√
` and all the coefficients

of f̃ are algebraic. Let d0 be the smallest positive integer with d2
0 | m and ad0,`0 6= 0. We can

assume that such a d0 exists since otherwise ξ1/2f = 0 and item (5) is trivially satisfied. Note

that the Fourier expansion of fg|UdV` for d > d0 is supported on indices (n, γ) with d2 | n
and d | γ. In particular, the coefficient of index (d2

0, d0) of the holomorphic part of∑
d,`>0
d2`=m

ad,`‖g‖2
√
`fg|UdV`
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equals the corresponding coefficient of

ad0,`0‖g‖2
√
`0fg|Ud0V`0 ,

which is algebraic by equation (2) and the algebraicity of the correpsonding coefficient of

f − f̃ . Since ad0,`0‖g‖2
√
`0 6= 0 is algebraic, we find that

a+
fg |Ud0V`0

(d2
0, d0) = a+

fg
(1, 1)

is algebraic as well, where the equation follows from the explicit actions of Ud and V`. By
Theorem 3.4 this implies that L′(G, 1) = 0 for the newform G ∈ Snew

2 (N/m) corresponding
to g under the Shimura correspondence. This concludes the proof of Theorem 1.3.
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