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Abstract. Given an infinite set of special divisors satisfying a mild regularity condition,
we prove the existence of a Borcherds product of non-zero weight whose divisor is sup-
ported on these special divisors. We also show that every meromorphic Borcherds product
is the quotient of two holomorphic ones. The proofs of both results rely on the properties
of vector valued Eisenstein series for the Weil representation.

1. Introduction and statement of results

Let (L,Q) be an even lattice of signature (n, 2) with dual L′. We write D+ for the
hermitian symmetric space associated with the connected component of the real points of
the orthogonal group O(L) of L. Let Γ ⊂ O(L) be a congruence subgroup which preserves
D+ and which acts trivially on the discriminant group L′/L. By the theory of Baily-Borel
the quotient

XΓ = Γ\D+

has a structure as a quasi-projective algebraic variety over C of dimension n. For every
µ ∈ L′/L and every positive m ∈ Z+Q(µ) there exists a special divisor Z(m,µ) on XΓ. In
the projective model of D+ it is given by the orthogonal complements of vectors λ ∈ L+µ
with Q(λ) = m, see [Bo2], [Ku1], [Br].

We briefly write L− for the lattice (L,−Q) of signature (2, n). Recall that there is a Weil
representation ρL of the metaplectic group Mp2(Z) on the group ring C[L′/L], see [Bo1],
[Br]. By means of the standard C-bilinear pairing on C[L′/L], the dual representation of ρL
can be identified with ρL− . In his celebrated paper [Bo1], R. Borcherds constructed a map
from weakly holomorphic modular forms of weight 1−n/2 for Mp2(Z) with representation
ρL− to meromorphic modular forms on XΓ whose divisors are supported on special divisors
and which have particular infinite product expansions, see [Bo1, Theorem 13.3] and [Br,
Theorem 3.22]. Since these Borcherds products give rise to explicit relations among special
divisors in the Picard group of XΓ, they are of great importance for algebraic and arithmetic
applications, see e.g. [Bo2], [Ku2], [BHY]. In this note we prove two useful results about
Borcherds products.

We call a set S of pairs (m,µ) ∈ Q>0 × L′/L admissible, if:

(1) For all (m,µ) ∈ S there exists a λ ∈ µ+ L with Q(λ) = m.
(2) There exists a positive integer A such that ordp(m) ≤ A for all (m,µ) ∈ S and for

all primes p dividing 2|L′/L|.
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The first condition is equivalent to requiring that Z(m,µ) be a non-trivial divisor on XΓ.

Theorem 1.1. Assume that n ≥ 2. Let S be an infinite admissible set of pairs (m,µ) ∈
Q>0 × L′/L Then there exists a Borcherds product Ψ of non-zero weight whose divisor is
supported on divisors Z(m,µ) with (m,µ) ∈ S.

Remark 1.2. It is much easier to see that there is also a (non-constant) Borcherds product
of weight 0 whose divisor is supported on divisors Z(m,µ) with (m,µ) ∈ S.

This result can be used to construct sections of a non-trivial power of the tautological
bundle over XΓ whose divisor is supported on divisors Z(m,µ) with (m,µ) ∈ S. This
is employed in the recent proof of the averaged Colmez conjecture by Andreatta, Goren,
Howard, and Madapusi Pera [AGHM, Theorem 9.5.5].

Theorem 1.3. Assume that n ≥ 1. Every Borcherds product for Γ is the quotient of two
Borcherds products for Γ which are holomorphic on XΓ.

This theorem is useful to reduce statements about Fourier expansions of Borcherds prod-
ucts to the holomorphic case. A slight variant (see Theorem 3.7), together with [HM, The-
orem 6.3], can be employed to give a different proof of the converse theorem for Borcherds
products [Br, Theorem 5.12] for lattices that split two hyperbolic planes over Z. Similar
results as Theorems 1.1 and 1.3 were obtained in [BBK, Section 4] for the special case of
Hilbert modular surfaces for the full Hilbert modular group.

I thank S. Ehlen and B. Howard for useful conversations on the content of this note.

2. Preliminaries

We begin by fixing some general notation. If D ∈ Z \ {0} is a discriminant, we write
χD for the Dirichlet character χD(a) =

(
D
a

)
. If a is a positive integer and χ is a Dirichlet

character, we denote by σs(a, χ) the divisor sum

σs(a, χ) =
∑
d|a

χ(d)ds.

If χ = χ1 is the trivial character modulo 1, we briefly write σs(a) = σs(a, χ1). As usual
the Moebius function is denoted by a 7→ µ(a).

In this section we temporarily consider an even lattice (L,Q) of arbitrary signature
(b+, b−). We write N for the level of L and det(L) for the Gram determinant of L. Recall
that | det(L)| = |L′/L| and that N and det(L) have the same prime divisors. Moreover, we
denote by r(L) the Witt rank of L, i.e., the rank of a maximal totally isotropic sublattice.

As in [Bo1] we denote by Mp2(Z) the metaplectic extension of SL2(Z), realized by the two
possible choices of a holomorphic square root σ(τ) of the automorphy factor j(g, τ) = cτ+d
of g = ( a bc d ) ∈ SL2(Z) for τ in the upper complex half plane H. If k ∈ 1

2
Z, we write M !

k(ρL)
for the space of C[L′/L]-valued weakly holomorphic modular forms of weight k for the
group Mp2(Z) with representation ρL. The subspaces of holomorphic modular forms and
cusp forms are denoted by Mk(ρL) and Sk(ρL), respectively.
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2.1. Eisenstein series. Here we recall some facts about C[L′/L]-valued Eisenstein series
from [BK]. Let κ ∈ 1

2
Z with 2κ ≡ b+ − b− (mod 4). Assume that κ > 2.

Let Γ′∞ ⊂ Mp2(Z) be the stabilizer of the cusp∞, that is, the subgroup of pairs (g, σ) ∈
Mp2(Z) for which g is of the form ± ( 1 ∗

0 1 ). Let (χµ)µ∈L′/L be the standard basis of C[L′/L].
The element χ0 ∈ C[L′/L] transforms under Γ′∞ with a character of the center. The
corresponding Eisenstein series

Eκ,L(τ) =
∑

(g,σ)∈Γ′∞\Mp2(Z)

σ(τ)−2κ ·
(
ρL(g, σ)−1χ0

)
defines a holomorphic function in τ ∈ H, satisfying the transformation law

Eκ,L(γτ) = σ(τ)2κρL(γ)Eκ,L(τ)

for all γ = (g, σ) ∈ Mp2(Z). In particular, Eκ,L(τ) belongs to Mκ(ρL). It has a Fourier
expansion

Eκ,L(τ) =
∑

µ∈L′/L

∑
m≥0

eκ,L(m,µ) · qmχµ

with coefficients eκ,L(m,µ), and q = e2πiτ . The constant term of Eκ,L is given by

eκ,L(0, µ) =

{
1, if µ = 0,

0, if µ 6= 0.

This implies that Eκ,L does not vanish identically.
If κ = 2, the Eisenstein series Eκ,L(τ) can be defined similarly using the usual ‘Hecke

trick’. It has the same properties as in the case κ > 2 with the only difference that in
the constant term an additional non-holomorphic contribution (a multiple of =(τ)−1) can
occur. The coefficients with positive index are still constant (see e.g. [BrKü, Section 3]).

The Fourier expansion of this Eisenstein series was computed in [BK] and [KY]. (Note
that in [BK] it was worked implicitly with the lattice (L,−Q). Moreover, the Eisenstein
series 2Eκ,L was considered.) A first result is the following.

Proposition 2.1. For all m ∈ Q>0 and µ ∈ L′/L the coefficients eκ,L(m,µ) are rational
numbers. Moreover, the quantity

(−1)(2κ−b++b−)/4eκ,L(m,µ)

is non-negative.

Proof. The rationality of the coefficients is Corollary 8 in [BK]. The non-negativity follows
from Theorem 7 in [BK] by means of standard bounds for Dirichlet L-functions in the
region of convergence. �

Now we specialize to the case that κ = (b+ + b−)/2, still assuming that κ ≥ 2. The
condition that 2κ ≡ b+ − b− (mod 4) is then equivalent to requiring that b− is even. For
µ ∈ L′/L we let dµ = min{b ∈ Z>0 : bµ = 0} be the order of µ. If m ∈ Z +Q(µ) we write

Nm,µ(a) = |{r ∈ L/aL : Q(r + µ) ≡ m (mod a)}| .
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This is a multiplicative function in a. Theorem 11 of [BK] gives the following explicit
formulas for the Fourier coefficients of Eκ,L.

Theorem 2.2. Assume that b+ + b− is even. Let µ ∈ L′/L, and let m ∈ Z + Q(µ) be
positive. Then

eκ,L(m,µ) =
(2π)κmκ−1(−1)b

−/2√
|L′/L|Γ(κ)

·
σ1−κ(d

2
µm,χ4D)

L(κ, χ4D)

∏
p prime
p|2N

Nm,µ(pwp)

p(2κ−1)wp
,

where D denotes the discriminant D = (−1)(b++b−)/2 det(L), and

wp = wp(m,µ) = 1 + 2 ordp(2dµm).

Theorem 2.3. Assume that b++b− is odd. Let µ ∈ L′/L, and let m ∈ Z+Q(µ) be positive.
Write md2

µ = m0f
2 for positive integers m0, f with (f, 2N) = 1 and ordp(m0) ∈ {0, 1} for

all primes p coprime to 2N . Then

eκ,L(m,µ) =
(2π)κmκ−1(−1)b

−/2√
|L′/L|Γ(κ)

· L(κ− 1/2, χD′)

ζ(2κ− 1)

×
∑
d|f

µ(d)χD′(d)d1/2−κσ2−2κ(f/d)
∏

p prime
p|2N

Nm,µ(pwp)

(1− p1−2κ)p(2κ−1)wp
,

where D′ denotes the discriminant D′ = 2(−1)(b++b−+1)/2m0 det(L), and

wp = wp(m,µ) = 1 + 2 ordp(2dµm).

From this result we obtain the following lower bound for the coefficients.

Proposition 2.4. Assume that κ = b++b−

2
> 2, and let A ≥ 0. There exists a constant

C > 0 (depending only on A and L) such that for all (m,µ) ∈ Q>0 × L′/L satisfying

(i) m is represented by L+ µ,
(ii) ordp(m) ≤ A for all primes p dividing 2N ,

we have

(−1)b
−/2eκ,L(m,µ) > C ·mκ−1.

Proof. This is a direct consequence of Theorem 2.2 and Theorem 2.3, combined with ele-
mentary estimates for L-functions of quadratic Dirichlet characters.

For instance, in the case when n is odd, we have

L(κ− 1/2, χD′) >
ζ(2κ− 1)

ζ(κ− 1/2)
.

This follows from the Euler product expansion which converges absolutely since κ ≥ 5/2.
In the sum over the divisors of f , the term d = 1 is dominating. Using again the fact that
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κ ≥ 5/2, we obtain∑
d|f

µ(d)χD′(d)d1/2−κσ2−2κ(f/d) ≥ 1−
∑
d|f
d>1

d1/2−κσ2−2κ(f/d)

≥ 1− (ζ(2)− 1)ζ(3)

≥ 1/5.

Finally, the condition (i) implies that the representation numbers Nm,µ(a) modulo a are
all at least 1. Condition (ii) implies that for primes p dividing 2N the quantities wp are
bounded by 1 + 2(ordp(2N) + A). Hence∏

p prime
p|2N

Nm,µ(pwp)

p(2κ−1)wp

is greater than a positive constant. This concludes the proof of the proposition. �

Remark 2.5. If κ = 2 then the assertion of Proposition 2.4 is still true with the slightly
weaker lower bound

(−1)b
−/2eκ,L(m,µ) > C ·mκ−1−ε

for any ε > 0, and a constant C depending in addition on ε. Here the extra m−ε term
comes from bounding σ1−κ(d

2
µm,χ4D) in this case.

3. Proofs

Here we turn to the proofs of the theorems stated in the introduction.

3.1. Weakly holomorphic modular forms. Throughout this subsection we assume that
L has signature (n, 2) with n ≥ 2 and put κ = 1 + n/2.

Let S be an infinite admissible set of pairs (m,µ) ∈ Q>0 × L′/L as in the introduction.
In view of of [Bo1, Theorem 13.3], Theorem 1.1 of the introduction is a consequence of the
following proposition.

Proposition 3.1. There exists a weakly holomorphic modular form f ∈ M !
2−κ(ρL−) with

integral Fourier coefficients cf (l, ν) with the properties:

(i) if (m,µ) ∈ Q>0 × L′/L with cf (−m,µ) 6= 0, then (m,µ) ∈ S,
(ii) cf (0, 0) 6= 0.

To prove this proposition, we recall the following result from [Bo2] (see also Corollary 3.9
in [BF]).

Proposition 3.2. There exists a weakly holomorphic modular form f ∈ M !
2−κ(ρL−) with

Γ′∞-invariant prescribed principal part∑
ν∈L′/L

∑
l<0

c(l, ν) qlχν ∈ C[L′/L][q−1/N ]
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at the cusp ∞ if and only if ∑
ν∈L′/L

∑
l>0

c(−l, ν) b(l, ν) = 0(3.1)

for every g =
∑

ν

∑
l b(l, ν)qlχν ∈ Sκ(ρL).

If n > 2 or n = 2 > r(L), the constant term c(0, 0) of such an f is given in terms of the
coefficients of the Eisenstein series Eκ,L ∈Mκ(ρL) by

c(0, 0) = −
∑

ν∈L′/L

∑
l>0

c(−l, ν) eκ,L(l, ν).(3.2)

Remark 3.3. The condition on the Witt rank r(L) in the second part of the proposition
implies that the Eisenstein series Eκ,L is holomorphic even in the case n = 2.

Proof of Proposition 3.1. We generalize the argument of [BBK, Lemma 4.11]. According
to [McG], the space M !

2−κ(ρL−) has a basis of weakly holomorphic modular forms with
integral coefficients. Hence, it suffices to show the existence of an f ∈ M !

2−κ(ρL−) with
rational coefficients satisfying (i) and (ii). Let us first assume that n > 2 or n = 2 > r(L),
so that (3.2) holds.

To lighten the notation, throughout the proof we write Mκ for the Q-vector space of
holomorphic modular forms in Mκ(ρL) with rational coefficients. We write Sκ for the
subspace of cusp forms with rational coefficients. The Q-dual spaces are denoted by M∨

κ

and S∨κ , respectively. The natural inclusion Sκ →Mκ induces a surjective linear map

pr : M∨
κ → S∨κ , a 7→ pr(a).

For µ ∈ L′/L and m ∈ Z + Q(µ), we write am,µ for the element in M∨
κ taking an element

g =
∑

ν

∑
l b(l, ν)qlχν ∈Mκ to the Fourier coefficient

am,µ(g) = b(m,µ).

We let M∨
κ,S ⊂ M∨

κ be the subspace generated by the functionals am,µ with (m,µ) ∈ S.
According to Proposition 3.2, it suffices to show that there exists an a ∈M∨

κ,S with pr(a) =
0 and a(Eκ,L) 6= 0.

Let a1, . . . , ad ∈M∨
κ,S such that pr(a1), . . . , pr(ad) is a basis of pr(M∨

κ,S) ⊂ S∨κ . Then for

every (m,µ) ∈ S there exists a unique vector r(m,µ) = (r1(m,µ), . . . , rd(m,µ)) ∈ Qd such
that

pr(am,µ) = r1(m,µ) · pr(a1) + . . .+ rd(m,µ) · pr(ad).

The linear combination

ãm,µ := am,µ − r1(m,µ) · a1 − . . .− rd(m,µ) · ad ∈M∨
κ,S(3.3)

is in the kernel of pr. Evaluating ãm,µ at the Eisenstein series, we obtain

ãm,µ(Eκ,L) = eκ,L(m,µ)− r1(m,µ) · a1(Eκ,L)− . . .− rd(m,µ) · ad(Eκ,L).(3.4)

In view of (3.2), it suffices to show that there is an (m,µ) ∈ S such that ãm,µ(Eκ,L) is
non-zero.
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To see this, we assume on the contrary that ãm,µ(Eκ,L) = 0 for all (m,µ) ∈ S. We let
‖r‖ be the euclidian norm of a vector r ∈ Rd. Moreover, we also denote by ‖ · ‖ a norm
on S∨κ ⊗R, say the operator norm. Since pr(a1), . . . , pr(ad) are linearly independent, there
exists an ε > 0 such that

‖r1 pr(a1) + . . .+ rd pr(ad)‖ ≥ ε‖r‖

for all r = (r1, . . . , rd) ∈ Rd. By means of (3.3) we obtain

‖ pr(am,µ)‖ ≥ ε · ‖r(m,µ)‖.(3.5)

On the other hand, our assumption ãm,µ(Eκ,L) = 0 and (3.4) imply that there is a constant
C ′ > 0 such that

|eκ,L(m,µ)| ≤ C ′ · ‖r(m,µ)‖.(3.6)

Together, (3.5) and (3.6) imply that

|eκ,L(m,µ)| ≤ C ′

ε
· ‖ pr(am,µ)‖(3.7)

for all (m,µ) ∈ S. The Weil bound for the coefficients of (scalar valued) cusp forms of
weight κ for Γ(N) implies that ‖ pr(am,µ)‖ = O(mκ/2−1/4+δ) as m → ∞ for any δ > 0.
Combining this with (3.7) we obtain

|eκ,L(m,µ)| = O(mκ/2−1/4+δ)

for (m,µ) ∈ S and m→∞, contradicting Proposition 2.4 and Remark 2.5.
We finally consider the remaining case n = 2 = r(L). From (3.1) and the fact that S is

infinite, we easily deduce the existence of an f satisfying condition (i) of Proposition 3.1,
but possibly violating condition (ii). The fact that r(L) = 2 implies that there is an even
overlattice M ⊃ L which is isomorphic to the even unimodular lattice II2,2 of signature
(2, 2). This in turn implies that C[L′/L] contains a rational vector f0 which is invariant
under the Weil representation ρL− and which has non-zero χ0-component. In other words,
f0 is a non-zero element of M0(ρL−). A suitable linear combination of f and f0 satisfies
both conditions of Proposition 3.1. �

3.2. Proof of Theorem 1.3. Throughout this subsection we assume that (L,Q) has
signature (n, 2) with n ≥ 1. We briefly write L− for the lattice (L,−Q) of signature (2, n).

Lemma 3.4. Let b ∈ Z such that k := 1−n/2+12b is greater than 2. The Eisenstein series
Ek,L− ∈Mk(ρL−) has non-negative Fourier coefficients ek,L−(l, µ). When l ∈ −Q(µ+L) is
positive, the coefficient ek,L−(l, µ) is strictly positive.

Proof. The non-negativity of the coefficients is a direct consequence of Proposition 2.1.
When l ∈ −Q(µ + L), then the congruence representation numbers Nl,µ(pν) for the lat-
tice L− are all positive, since there even exists a global solution. Therefore the claimed
positivity follows from Theorem 2.2 and Theorem 2.3. �
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For µ ∈ L′/L we define

tµ = min{−Q(λ) | λ ∈ µ+ L and −Q(λ) > 0},
T = max{tµ | µ ∈ L′/L}.

Since L is indefinite, tµ has a finite value in 1
N
Z>0. The coefficient ek,L−(tµ, µ) of the

Eisenstein series Ek,L− of Lemma 3.4 is positive (for any choice of b).

Lemma 3.5. Let b ∈ Z>0 such that k := 1− n/2 + 12b is greater than 2. There exists an
element h ∈M !

1−n/2(ρL−) with non-negative rational Fourier coefficients ch(l, µ) such that

ch(l, µ) > 0

for all µ ∈ L′/L and all l ∈ Z−Q(µ) with l ≥ T − b.

Proof. Let Ek,L− ∈Mk(ρL−) be the Eisenstein series of weight k of Lemma 3.4. Then

h(τ) = ∆(τ)−bEk,L−(τ)

belongs to M !
1−n/2(ρL−). The product expansion ∆ = q

∏
j≥1(1− qj)24 of the discriminant

function implies that the Fourier coefficients c∆−1(j) of ∆−1 with index j ≥ −1 are all
positive. Consequently, the coefficients of c∆−b(j) of ∆−b with index j ≥ −b are all positive.
By Lemma 3.4 we obtain that the coefficients of h are all non-negative.

If µ ∈ L′/L and l ∈ Z−Q(µ) with l ≥ T − b, we have that

ch(l, µ) =
∑
j∈Z

c∆−b(j) · ek,L−(l − j, µ)

= c∆−b(l − tµ) · ek,L−(tµ, µ) +
∑
j∈Z

j 6=l−tµ

c∆−b(j) · ek,L−(l − j, λ).

The hypothesis l ≥ T − b implies that l − tλ ≥ −b, and therefore, by Lemma 3.4, the first
quantity on the right hand side of the latter equation is positive. Since the second quantity
is non-negative, we obtain the assertion. �

We say that a weakly holomorphic modular form f ∈M !
k(ρL−) with Fourier coefficients

cf (l, µ) has non-negative principal part if

cf (l, µ) ≥ 0

for all µ ∈ L′/L and all l < 0. Note that the Borcherds lift Ψ(z, f) of any f ∈M !
1−n/2(ρL−)

with integral and non-negative principal part is holomorphic on XΓ. Theorem 1.3 is a
direct consequence of the following proposition.

Proposition 3.6. Let f ∈ M !
1−n/2(ρL−). There exist f1, f2 ∈ M !

1−n/2(ρL−) with non-
negative principal part such that f = f1 − f2. If f has integral principal part, we may also
choose f1 and f2 with integral principal part.
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Proof. Let b ∈ Z>0 such that b−T is greater than the order of the pole of f at∞. Let h be
the corresponding element of M !

1−n/2(ρL−) as in Lemma 3.5. Then there exists a positive
integer c such that

f1 = f + c · h
has non-negative principal part. Setting in addition f2 = c · h gives the desired represen-
tation of f . �

We close this section with a variant of Theorem 1.3, which can be proved similarly.

Theorem 3.7. For every µ ∈ L′/L and every positive m ∈ Q(µ+ L) there exists a (non-
zero) holomorphic Borcherds product for Γ which vanishes along Z(m,µ).

In view of [HM, Theorem 6.3] and [HM, Remark 7.2] this result can be employed to
prove the converse theorem for Borcherds products for lattices that split two hyperbolic
planes over Z (see [Br, Theorem 5.12]) in a completely different way.
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[BBK] J. Bruinier, J. Burgos, and U. Kühn, Borcherds products and arithmetic intersection theory on
Hilbert modular surfaces, Duke Math. Journal 139 (2007), 1–88.

[BF] J. Bruinier and J. Funke, On two geometric theta lifts, Duke Math J. 125 (2004), 45-90.
[BHY] J. Bruinier, B. Howard, and T. Yang, Heights of Kudla-Rapoport divisors and derivatives of

L-functions, Invent. Math. 201 (2015), 1–95.
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