THE ARITHMETIC OF THE VALUES OF MODULAR
FUNCTIONS AND THE DIVISORS OF MODULAR FORMS

JAN H. BRUINIER, WINFRIED KOHNEN AND KEN ONO

1. INTRODUCTION AND STATEMENT OF RESULTS.

Let j(z) = ¢~ ! + 744 + 196884q + - - - denote the usual elliptic modular function on
SLy(Z) (q := €2>™** throughout). We shall refer to a complex number 7 of the form
T = =bhvbi-dac ”;;2_4“ with a,b,c € Z, ged(a, b,c) = 1 and b? — 4ac < 0 as a Heegner point, and
we denote its discriminant by the integer d, := b? — 4ac. The values of j at such points
are known as singular moduli, and they play a substantial role in classical and modern
number theory. For example, the theory of complex multiplication implies that if 7 is a
Heegner point with discriminant d,, then j(7) is an algebraic integer which generates a
ring class field of Q(v/d,).

Singular moduli also play an important role in Borcherds’ [B1, B2] recent work on
the infinite product expansions of certain modular forms. A meromorphic modular form
f on SLy(Z), by definition, has a Heegner divisor if its zeros and poles are supported
at the cusp at infinity and Heegner points. In particular, Borcherds obtains an elegant
description of the infinite product expansion of those meromorphic modular forms on
SL+(7Z) with a Heegner divisor.

Here we consider the values of a specific sequence of elliptic modular functions j,,
where j; = j — 744. In an important recent paper [Z], Zagier expressed the traces of
the values of j, at Heegner points in terms of Fourier coefficients of half integral weight
modular forms. Here we consider the more general case of the sums of the values of
Jn over divisors of meromorphic modular forms. We show that the “traces” of these
values (see Theorem 1) dictate the properties of modular forms on SLy(Z). This result
is obtained using a j,-weighted version of the proof of the classical valence formula for
modular forms on SLy(Z).
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Theorem 1 provides a very useful link relating the values of j to the arithmetic of
the Fourier coefficients of modular forms. Naturally, one then expects a wide variety of
consequences. Here we begin by considering such consequences in connection with the
algebraicity of j-values, congruence properties and bounds for class numbers of imaginary
quadratic fields, infinite product expansions of modular forms, and recurrence relations
for Fourier coefficients. For example, we show that there are universal recursion formulas
for the Fourier coefficients of every modular form on SLs(Z) (see Theorem 3). We also
obtain formulas for the exponents in the infinite product expansion of every modular
form on SL2(Z) (see Theorem 5), and we obtain new p-adic formulas for class numbers
as traces of j-values (see Theorem 9).

Our investigation begins with a careful analysis of Ramanujan’s Theta-operator, the
differential operator defined by

© <Z a(n)q") = Z na(n)q". (1.1)
n=h n=h
We refer to © as Ramanujan’s operator since he first observed that [R]
@(E4) = (E4E2 - EG)/?) and @(EG) = (E6E2 - Eg)/2, (12)

where E}, for every even integer k > 2, is the standard Eisenstein series
2k n
Ex(z):=1— — Zak_l(n)q . (1.3)

Here Bj, denotes the usual kth Bernoulli number and o;_;1(n) := de dFL Ik > 2,

then FEj is a weight & modular form on SLy(Z). As usual, let A := (E$ — E2)/1728, the
unique normalized weight 12 cusp form on SL2(Z).
Although the Eisenstein series

By(2) =1-24) o1(n)q" (1.4)

is not a modular form, it plays an important role. If f(z) = Y 7, a(n)q

meromorphic modular form on SLy(Z), then

n

is a weight &

O(f) = (f + kfE2) /12, (1.5)

where f is a meromorphic modular form of weight &+ 2 on SLy(Z) (Note. The formulas
in (1.2) imply (1.5)). Because of this fact, the O-operator is fundamental in the theory
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of p-adic modular forms and modular forms modulo p. For instance, if f is a p-adic
modular form of weight k, then since Fs is a p-adic modular form of weight 2, ©(f) is a
p-adic modular form of weight £ + 2 [Th. 5, S].

Although © is simple to define, its arithmetic nature is much deeper and is dictated
by the f appearing in (1.5). We derive an explicit formula for ©(f) in terms of a natural
sequence of modular functions j,,(z). Let jo(2) := 1, and for every positive integer m let
Jm(z) be the unique modular function which is holomorphic on #, the upper half of the
complex plane, whose Fourier expansion is of the form

Jm(2) =7+ em(n)g™ (1.6)

Notice that if m is a positive integer, then j,,(z) = ji(z) | To(m), where To(m) is the
usual normalized mth weight zero Hecke operator. The first few j,, are:

jo(z) = 1,

J1(2) = j(2) — 744 = ¢~ 1 +196884q + - - - ,

j2(2) = j(2)?® — 14885 (2) + 159768 = ¢~ 2 + 42987520q + - - - ,

ja(2) = j(2)® — 22325 (2)? + 10699565 (z) — 36866976 = ¢~> 4 2592899910¢ + - - -

Each j,,, is a monic degree m polynomial in j with integer coefficients.

Let § denote the usual fundamental domain of the action of SLy(Z) on H. By
assumption, § does not include the cusp at oco. Throughout, let i« = /=1 and let
w:= (1++/=3)/2. If 7 € F, then define e, by

1/2 if =1,
er =4 1/3 if r=w, (1.7)
1 otherwise.

For every point 7 € H, Asai, Kaneko, and Ninomiya [Th. 3, A-K-N] proved that

Hy(2) =) jn(r)q" = E“(Z)(S)G(z) . (1.8)

For 7 = ¢ and w, we have the following beautiful formulas:

By —

H,=—~= n(w)q"™, 1.9
E, nEZOJ (w) (1.9)
Es .

H, = = = L (1)g". 1.10
i nE:oJ (i)q (1.10)
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In particular, for every 7 it turns out that H, is a weight 2 meromorphic modular form.
The utility of (1.8) was already known; for example, it can be used to prove that

i) = 3(z) = " exp (— > in(2) %) ,

where p = e2™7. This identity is equivalent to the famous denominator formula for the

monster Lie algebra

i —iz)=p" I @—pmgm),

m>0 and n€Z

where the exponents ¢(n) are defined as the coefficients of j1 =Y o> | ¢(n)¢™.
Here we obtain a new proof of (1.8) and consider many of its number theoretic conse-
quences.

Theorem 1. If f = Y >° , af(n)q™ is a nonzero weight k meromorphic modular form
on SLy(Z) for which ag(h) =1, then

_ kEsf
12

@(f) _ff@7

where fo is defined by
fo =Y erord.(f)H.(2).

TEF

Theorem 1 easily reveals some algebraic information about the j, evaluated at the
finite points of the divisor of any meromorphic modular form. A celebrated result of
Schneider asserts that if 7 is an algebraic number of degree > 2, then j(7) is transcen-
dental. Under certain conditions, we observe that the values of j at the points in the
divisor of an algebraic modular form are algebraic. Although there are more direct ways
of establishing this result, it follows rather nicely from Theorem 1.

Corollary 2. Let f = .07, a¢(n)q" be a meromorphic modular form on SLy(Z) for
which ag(h) = 1. If Ty € § is a point for which ord,,(f) # 0 and the coefficients of f are
in a number field K, then j(19) is algebraic.

Using Borcherds’ work on infinite product expansions of modular forms, this corollary
generalizes the classical fact that j(7) is algebraic whenever 7 is a Heegner point.

We consider the arithmetic of the Fourier coefficients of meromorphic modular forms.
If £ > 4 is an even integer and p is prime, then let Ty (p) be the usual Hecke operator.
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In particular, if f =307 jas(n)g™ € Mg(1), the space of holomorphic modular forms of
weight & on SLy(Z), then

oo

F1Ti(p) = (ap(np) + p" " as(n/p)) q". (1.11)

n=0

If f € Sk(1), the space of weight k cusp forms on SLs(Z), then f | Ti(p) € Sk(1).
If Tk (p,z) denotes the characteristic polynomial of Tk (p) on Sk, then it is well known
that Tx(p,z) € Z[x]. There is wide speculation that Ty (p,z) is irreducible for every
prime p, and has the additional property that the Galois group of its splitting field is
the symmetric group Sg,, where dj denotes the dimension of Si(1). Here we express
these polynomials in terms of the values of j, at the zeros of the eigenforms in Si(1)
(see (1.12)). We begin with the following universal recursion relation for certain modular
forms.

Theorem 3. For every n > 2 define Fp,(x1,...,2p_1) € Qx1,...,2n_1] by

2z101(n —1
ot o (M4 Mg — 1)! e
+ Z (—1)matrtmae ml!---m:_g! EEAREEE A

mla'-'7mn—220a
mi+2mo+--+(n—2)my_o=n—1

If f=q+> " yar(n)g™ is a weight k meromorphic modular form on SLy(Z), then for
every integer n > 2 we have
1

ag(n) = Fa(k,ap(2),... ap(n = 1)) = —

3" erord.(f) - jaa(7).

TEF

It is simple to modify Theorem 3 for any modular form with leading coefficient 1.
The first few polynomials F,, are

Fs(xy) := =224,
z3
F3(x1,22) == =321 + X
8x x5
F4(,’171,:132,:133) = _—1 — 2 +$2$3,
3 3
Tr 74 p2
F5($1,.’L'2,l'3,l’4) = _71 - l'%l'g + xoxy + ZQ + ?3

By arguing inductively with Theorem 3, it turns out that every Fourier coefficient a(n)
is a Q-rational expression in the weight £ and the values of 7 at the points in the divisor

of f.
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Remark. Theorem 3 includes a simple recursion for the coefficients of A = 37 | 7(n)q".
Since A has no zeros in §, for every n > 2 we find that

7(n) = Fy(12,7(2),...,7(n — 1)).

As a special case of Theorem 3, we obtain the following strange formula.

Corollary 4. If f =q+ > " ,a¢(n)q" is a meromorphic modular form of weight k on
SLy(Z), then

as(2) = 60k — 744 = Y e ord,(f) - j(7).
TEF

As an immediate consequence of Theorem 3, we obtain an expression for S (p, z). If d,
is the dimension of Si(1), then for 1 < s < dj, let

fs =q+ Zafs(n)qn
n=2

be the normalized Hecke eigenforms in Si(1). For every prime p, we have

dp,
Tk(p,x) = H <x — Fp(k,ay,(2),...,az,(p—1)) + p%l ZeTordT(fS) 'jp—l(T)> :

s=1 TES
(1.12)

These results are closely related to Borcherds’ recent work on the infinite product
expansions of modular forms. Borcherds [B1, B2] provided a striking description for
the exponents in the infinite product expansion for those modular forms with a Heegner
divisor. For example, if the integers c¢(n) are defined by

E4(Z) -1+ 24020’3(%)(]” _ (1 B q)—240(1 B q2)26760 L H(l B qn)c(n)7
n=1 n=1

then Borcherds’ theorem implies that there is a weight 1/2 meromorphic modular form

G(z) = Y b(n)q" = ¢ * + 4 —240q + 26760¢" + - - - — 4096240¢° + ...
n>—3

on ['g(4) with the property that c(n) = b(n?) for every positive integer n. We obtain
an arithmetic formula for the exponents of the infinite product expansion of every mero-
morphic modular form on SLs(7Z).
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Theorem 5. Suppose that f = 7, ar(n)q™ is a weight k meromorphic modular form
on SLy(7Z) for which ay(h) =1, and let c(n) denote the complex numbers for which

f — qh H(l . qn)c(n)-
n=1

If n is a positive integer, then

> e(d)d = 2ko1(n) + ) erord.(f) - jn(7).

d|n TES

In an important paper [G-Z], Gross and Zagier described the divisibility properties
of differences of singular moduli. More recently [Z], Zagier described the arithmetic of
the traces of singular moduli in terms of the Fourier coefficients of modular forms of half
integral weight. Since the modular functions j,, play an important role, we consider their
divisibility and congruence properties. We consider the arithmetic of the values of j, as
we vary n. First we obtain the following theorem for the special values at 7 = w and
T =1.

Theorem 6. If 7 = w, then let M be a positive integer which is not divisible by a prime
p=1 (mod 3). If 7 =i, then suppose that M is a positive integer which is not divisible
by a prime p =1 (mod 4). Then there is a positive real number oo(M) for which

#{1<n<X : juo(r)=0 (modM)}:(’)(W).

In particular, for almost all n we have j, (1) =0 (mod M).

In addition to results of this type, there are examples of explicit congruences. For
example, congruences with modulus 2k relating such values to Borcherds exponents follow
immediately from Theorem 5. We highlight two further types of congruence properties.

Theorem 7. If k > 4 is even, then for every positive integer n we have

Z erord,; (Eg) - jn(7) = —2ko1(n) (mod 4 H p).

TEF p—1|k
5<p prime
Theorem 8. Let f = > 7, af(n)q" be a weight k meromorphic modular form on

SLo(Z) whose coefficients are in O, the ring of algebraic integers in a number field
K. Suppose that ay(h) =1 and that f has a Heegner divisor whose Heegner points in §
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are T1,Ta, ..., Ts. Furthermore, suppose that p € {2,3,5,7} has the property that for all
1 < s <t we have

3 (mod 8) if p=2,

d, | = 1 (mod 3) if p=3,
1) 2,3 (mod 5) if p=5,
1,2,4 (mod 7) ifp=".

If v is a positive integer, then there is a positive real number a(p,v) for which

t . . X
HISnSX ¢ Yenonde () () =0 (mod )} = 0 (o )

In particular, for almost all n we have ZZZI er,ord;, - jn(7.) =0 (mod p*).

The p-adic properties of the values of the 7, are closely related to the arithmetic of

class numbers of imaginary quadratic fields. Let H(—D) be the Hurwitz class number
for the discriminant —D.

Theorem 9. Suppose that —D < —4 is a fundamental discriminant of an imaginary

quadratic field, and let 7 be any Heegner point of discriminant —D. If K = Q(j(7)),
then the following are true:

(1) If D =3 (mod 8), then as 2-adic numbers we have

1 .. .
H(-D) = = Tim _Tri/q(jan (7))

(2) If D=1 (mod 3), then as 3-adic numbers we have

1 .. .
H(-D) = — 1Tim_Tri/q(jsn (7))

(3) If D = 2,3 (mod 5), then as 5-adic numbers we have

H(-D) =+ lim Trx/q(is(r)-

6 n—+oo
(4) If D=1,2,4 (mod 7), then as T-adic numbers we have

H(-D)= > lim Trgsq(im (1)

B 4 n—+oo
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Remark. Analogs of Theorem 9 hold for —D = —3 (resp. —D = —4). Subject to
the same congruence conditions on D, these results simply require replacing jy» (7) by
Jpn (w)/3 (resp. jpn(%)/2). Moreover, simple analogs hold for every —D, not just those
which are fundamental. More generally, there are analogs of Theorem 8 and 9 for primes
p > 11, but these results are more complicated to state.

If D =3 (mod 8), it turns out that the 2-adic behavior of these traces, for all j,, are
also controlled by the class number H(—D). Using the fact that the Hecke algebra for
holomorphic modular forms is locally nilpotent at 2, we obtain the following 2-divisibility
results. Let w(n) denote the number of distinct prime factors of n.

Theorem 10. Suppose that —3 # —D =5 (mod 8) is a fundamental discriminant of

an imaginary quadratic field, and suppose that T is a Heegner point of discriminant —D.
If K =Q(j(1)) and s > 4, then

Trx/o(jn(7)) =0 (mod 2°)
for every positive square-free integer n for which
w(n) > 2°"*H(-D).

Theorem 10 yields theoretical lower bounds for H(—D). To state these results, for
D =0,3 (mod 4), let

F(D;z)=q¢ "D T (1 = gm)er™ (1.13)

n=1

be the unique weight zero modular function on SLs(Z), with leading coefficient one,
whose divisor consists of a pole of order H(—D) at z = oo and a simple zero at each
Heegner point with discriminant —D. These functions have integer coefficients. Consider
the formal power series

% = —H(-D) - ZBA@; n)g" = —H(=D) = > ep(d)dg".  (1.14)

n=1 d|n

Corollary 11. Suppose that —3 # —D =5 (mod 8) is a fundamental discriminant of
an imaginary quadratic field. If s > 4 and there is an odd square-free integer n for which
orde(A(D;n)) < s, then

w(n) 1

2s—4s  3.2573°

It will be extremely interesting to see whether a detailed study of the Hecke algebra
modulo powers of 2, perhaps combined with further 2-adic arguments, can be used to

H(-D) >
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transform Corollary 11 into a lower bound like the celebrated bound due to Goldfeld,
Gross and Zagier.

In §2 we prove Theorems 1, 3, and 5, and Corollaries 2 and 4. In §3 we prove Theorems
6, 7, 8 and 9. There we consider the p-adic behavior of the ©-operator under certain
conditions. In §4 we prove Theorem 10 and Corollary 11 using an analysis of the behavior
of the Hecke algebra on modular forms modulo 2.

2. PROOF OF THEOREMS 1, 3, AND 5 AND COROLLARIES 2 AND 4.

For convenience, we begin by proving Theorem 5 on the infinite product expansion of
generic modular forms. Before we prove Theorem 5, we call attention to earlier work of
Eholzer and Skoruppa [E-S] which also considers product expansions of modular forms.

Proposition 2.1. Let f =Y 7", as(n)q™ be a meromorphic function in a neighborhood
of ¢ = 0, and suppose that ay(h) = 1. Then there are uniquely determined complex
numbers c(n) such that

oo

H (1 — g™,

where the product converges in a small neighborhood of ¢ = 0. Moreover, the following
tdentity s true

Proof. As usual, we understand that complex powers are defined by the principal branch
of the complex logarithm. If F'(q) := f(z), then the function ¢F’(q)/F(q) is holomorphic
at ¢ = 0. Write its Taylor expansion as

gF'(q)/F(q) =h =Y a(n)q" (gl <e) (2.1)

n>1

and for n > 1 let .
c(n) =~ 3 ald)u(n/d)

dln

where ;1 denotes the Mobius function. This implies that

d|n

Obviously, the numbers ¢(n) are uniquely determined by f.
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For fixed qo with |go| < € we have a(n) = O(|go|™™) for all n, and this easily implies
that the double series
Z c(n)ng™"

m,n>1

is absolutely convergent in |q| < |qol|, hence in |g| < €.
In the following, suppose that |¢| < €. From the above we see that

d

dq log(F(q)q™") = i)

F(q)

SRS

d mn
=Dl g | 2

- dilq(z ¢(n) log(1 — ¢™).

n>1
the interchange of differentiation and summation being justified because of local uniform
convergence as can easily be seen in a similar way as above.
We thus obtain
log(F(q)g™") =Y c(n)log(1 — ¢").
n>1

The values ¢(n)log(l — ¢™) and log(1 — ¢")°(™ differ by integer multiples of 27i. Since
c¢(n)log(l — ¢®) — 0 (n — o00) the same is true for log(1 — ¢™)°(™), hence we see that
there is an integer N such that

log(F(q)q™") = log(1 — ¢")*™ + 2miN.

n>1

Taking the exponential on both sides proves our claim.

O
Proof of Theorem 5. Let

F:={z€HH : |z| >1,|Re(2)| < =}

DN —

be the standard fundamental domain for the action of SLs(Z) on H. We cut off F

by a horizontal line £ := {iC —¢ : —1 <t < 1} where C' > 0 is chosen so large

that all poles and zeros of f, apart from those at the cusp at infinity, are contained in

{zeH : Im(2) < C}.
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For simplicity, suppose that f has no zero or pole on the boundary 0F except possibly
i or w (if not one has to modify the arguments in the same way as in the classical proof
of the “E-identity”).

We let v be the closed path with positive orientation consisting of £ and v, where v¢
is the part of F below £ modified in the usual way: in a small neighborhood U of w
resp. ¢ resp. —p we replace U NOF by FNC, resp. FNC; resp. FN C_w where C,, resp.

C; resp. C_g are small circles with radius r» around w resp. ¢ resp.

We integrate 5 i j}((z)) jn(2) along 7. By the residue theorem, takmg into account that

Jn(2) is holomorphlc on H, this integral is equal to

> ordr(f)in(7)-

TEF—{w,i}

On the other hand, the integral can be evaluated separately along the different pieces of
v, in a well-known way. If we let r tend to zero, we then find that

S onde(7)in(r) = —pordu(Aine) ~ yord(Din() + 5 [ D g (01 (2

TEF—{w,i} 2m1 F(Q)
2mi J,  z

Here F'(q) = f(z) as before and J,,(q) := j,.(z). Furthermore, p is a small circle around
= 0 with negative orientation and not containing any pole or zero of F(q) except
possibly 0, and o is the part of the unit circle in the upper half-plane that connects w
and ¢, with positive orientation.
By Proposition 2.1, for |¢| < € we see that

aF'(q) _ N
— — dqn7
o 22
where h is the order of F' at ¢ = 0. Hence recalling that .J,,(¢) = ¢~™ + O(q) we find that

F'(q) ey
/p - Jn<q>dq—§; (d)d. (2.4)

We cannot directly evaluate the last integral on the right-hand side of (2.3). Instead
we proceed as follows. Formula (2.3) in particular is valid for the function f = A of
weight 12. In this case we have

> e(d)yd =2401(m)  (m > 1),

dlm
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by definition. Since A has no zeros on H, we obtain from (2.3) that
1 Jn(2)
— | —/——=dz =2 . 2.5
2me J, 2 ? o1(n) (25)
Inserting (2.4) and (2.5) into (2.3), we deduce the theorem.
0
Proof of Theorem 1. We begin by proving that if

() _ kE;

=g e, (26)

then fg has the claimed form. If n is a positive integer, then Proposition 2.1 and Theorem
5 imply that the coefficient of ¢" in O(f)/f is —2ko1(n) — > __~erord,(f)- jn (7). Since
the F is given by

TEF

(o)
Ey=1-24) o1(n)q",
n=1

(2.6) verifies the truth Theorem 1 for every coefficient with the exception of the constant
term. The constant term in ©(f)/f is h = ords(f). However, the constant term of
kE2/12 — fo is & — > reg erord.(f) which equals h by the classical “k/12” valence
formula.

O

Proof of Corollary 2. We begin by fixing notation. Let 7y, 7s,..., 7 € § be the numbers
for which ord,(f) # 0. If n is a positive integer, then the coefficient of ¢" in kE3/12 is
the integer —2koy(n). Therefore by Theorem 1, if the Fourier coefficients of f are in a
field K, then the coefficients of fg and 1/f belong to K. Hence if n is a positive integer,

then
t

Y in(r) =) Guli(r)) € K. (2.7)

s=1

where G,, € Z[z] is a monic polynomial of degree n. Since j; = j— 744, for every positive

integer n we have
t

> j(r)" e K.

s=1

Therefore, by solving for the elementary symmetric functions in j(71),...,j(7), we find

that
t

[[-i(r) € K.

s=1
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This proves the corollary.
O
Proof of Theorem 3. By Theorem 1, we have that

ZeTordT(f) ijn(T)q" = _9) + @
TEF n=0 f 12

If n > 2, then Theorem 5 gives

> erord, (f)in-1(r) = > e(d)d — 2koy(n — 1),

TES dln—1

where

f=q]—gv.
n=1

Therefore, to prove the theorem it suffices to obtain a closed formula for b(n) :=
> ¢(d)d in terms of ay(n). In particular, it suffices to show that if n > 1, then

b(n)=n Z (—1)mattmn

mly"'ymnzov
mi+2meo—+...4+nmy=n

n_l!
y (m1-|- +m ) af(2)m1---af(n+1)m".
l... |

To prove (2.8), one observes that
0=>b(n)+b(n—1)as(2) +bn—2)ar(3)+---+b(1)ag(n) +nas(n+1),

and uses the well known fact that

0=5, — S$,_101 + Sp_009 — -+ (=1)""Lsy0,_1 + (—=1)"no,.
Here the o; are the elementary symmetric functions in Xq,..., X,, and the s; are the
power functions in these variables (i.e. s; := X} 4+ --- 4+ X}). One now obtains (2.8)

by evaluating these identities at (X1, ..., X;;) = (A(1,n), ..., A(n,n)) where the A(j,n) are
the roots of the polynomial

X" +ap(2)X" P +a;(3)X" 2+ - +ap(n+1).
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One requires the fact that

(mi4+mo+---+m, —1)!

LI mn
o8} op .

S; = Z § (_1)m2+m4+... m
mla--'7mn207
mi1+2meo+---+nm, =1

mylmsa! - m,,!

OJ

Proof of Corollary 4. Since ji(2) = j(2) — 744 and )~ erord,(f) = % — 1, this result
is the n = 2 case of Theorem 3.

OJ

3. PROOF OF THEOREMS 6, 7 , 8 AND 9.

In this section we prove Theorems 6, 7, 8 and 9 using theorems of Serre on p-adic
modular forms and the divisibility of the Fourier coefficients of modular forms modulo
M (see [S, S2]) .

Proof of Theorem 6. By (1.9) and (1.10), it suffices to prove that the coefficients of the
Fourier series

E oo
H, === > jn(w)g™ =1 - T44q + 159768¢> — 36866976¢" + - - - , (3.1)
E4 n=0
E o0
H; = Es =Y jnli)g"™ =1+ 984q + 574488¢ + 307081056¢° + - - - (3.2)
6 n=0

satisfy the claim.
Since z = i (resp. z = w) is fixed by the modular transformation Sz = —1/z (resp.
Az = —(z 4+ 1)/z), the definition of a modular form implies that if £ > 4 is even, then

k=2 (mod4) = E(i)=0,

k=24 (mod 6) — FEi(w)=0.
If p > 5 is prime, then these observations together with the von Staudt-Clausen Theorem
[p. 233, I-R] and (1.3) imply that if p Z 1 (mod 4), then there is an Eisenstein series

&; p for which
Eip(i)=0 and & ,=1 (mod 24p), (3.3)

and if p # 1 (mod 3), then there is an Eisenstein series &, , for which

Ewplw)=0 and &,,=1 (mod 24p). (3.4)
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Now observe that if H = 1 (mod £), where £ is prime, then H* = 1 (mod ¢5+1). If
p1 Z1 (mod 4) is prime, then for every positive integer s we have that
Es _ Eg

Py s+1
B - B, &y, (mod pi™r). (3.5)

Similarly, if po Z 1 (mod 3) is prime, then

E E ;

7= gl (mod g™, (3.5)
Since Ey(w) = 0 (resp. Fg(i) = 0) and E4 (resp. Fg) has no other zeros in §, (3.3)
and (3.5) (resp. (3.4) and (3.6)) illustrate that the relevant forms are the reduction
modulo pf"’l of holomorphic integer weight modular forms on SL2(7Z). There are obvious
analogous constructions for both forms modulo powers of 2 and 3. The theorem now
follows from a well known theorem of Serre which asserts that almost all the coefficients

of a modular form with algebraic integer coefficients are multiples of any given integer
M [Th. 4.7, S2].

OJ

Proof of Theorem 7. By (1.3) and the von Staudt-Clausen Theorem, if & > 4 is even,
then

Ex=1 (mod4 H D).

p—1|k
p prime
This observation and Theorem 1 imply that
O(Ey) kFEs
0= = — (K d4
ot 52 (Be (modd ] p)

p—1|k
p prime

The theorem follows from (1.4).
U

Proof of Theorem 8. By [Cor. 3, Br-O], ©(f)/f is a p-adic modular form of weight 2.
Since the Eisenstein series Fj is also a p-adic modular form of weight 2 [S], we find that

S k >
o= AL = S ronts (1) S dulr)”
Tinf § n=0

is a p-adic modular form of weight 2. Therefore, fo (mod p”) is the reduction modulo p”
of some holomorphic integer weight modular form on SL2(Z). The theorem now follows
from [Th. 4.7, S2].
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O

Proof of Theorem 9. If 0 < D = 0,3 (mod 4), then there is a unique meromorphic
modular form of weight 1/2 on I'y(4) that is holomorphic on H whose Fourier series has
the form [Lemma 14.2, B]

f(D;2)=q¢ P+ Z c¢(D;n)q", (3.7)
n=1
where ¢(D;n) = 0 for every n = 2,3 (mod 4). Borcherds’ theory [B1, B2] implies that

F(D;z)=q¢ "D TT (1 = gm)e®Pm) (3.8)

n=1

is a weight zero modular function on SL2(7Z) whose divisor consists of a pole of order
H(—D) at z = oo and a simple zero at each Heegner point with discriminant —D. For
each D we consider the following formal power series (also defined in (1.14))

§(D;q) = —H(-D) = Y A(D;n)q" := —H(=D) = Y > o(D;d’)dg".  (3.9)

n=1 d|n

If D and p satisfy the hypotheses of the theorem, then [Cor. 3, Br-O] implies that
§(D;q) is a p-adic modular form of weight 2. Serre proved [Th. 7, S|, for certain p-adic
modular forms, that the constant term of the Fourier expansion is essentially the p-adic
limit of its Fourier coefficients at exponents which are pt”* powers. In these cases we
obtain

o7 limp, o0 A(D; 27) if D =3 (mod 8),
L lim, 1o A(D; 3" if D=1 (mod 3),
5 limy, oo A(D;5") if D=2,3 (mod 5),
1 limy, 4 oo A(D;7™) if D=1,2,4 (mod 7).
Since F(D;z) has weight zero, for every positive integer n Theorem 5 implies
A(D;p") = Jpm (7)) +--+ Jpm (TH(—D))7
where 71, ...,7g(—p) € § are the Heegner points of discriminant —D. Since the j(7;)

are conjugates over Q, the theorem follows from (3.10) and the fact that each j, is an
integral polynomial in j.

OJ
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4. PROOF OF THEOREM 10 AND COROLLARY 11.

We adopt the notation from the proof of Theorem 9. We begin by recalling the
following theorem which is proved in [Cor. 3, Br-O].

Theorem 4.1. If 0 < D = 3 (mod 8), then §(D;q) is a weight two 2-adic modular
form.

Using the local nilpotency of the Hecke algebra on modular forms of SLy(Z) modulo
2, we make the following vital observation.

Theorem 4.2. Suppose that f =Y~ a(n)q" € My(1) has integer coefficients. If s is

a positive integer and t > %, then for every set of odd primes p1,po,...,p; we have
f 1 Tu(p1) | Tr(p2) | -+ | Tr(pe) =0 (mod 27).

Proof. Begin by noticing that the Fourier expansion of every Eisenstein series on SLo(Z)
is congruent to 1 modulo 2. Serre [S2] observed that the Hecke operators act nilpotently
on Sk(1) (mod 2), the space of cusp forms modulo 2 on SLy(Z). If A € S12(1) is the
unique normalized weight 12 cusp form

Az)=q[[A-qg")*=q-24¢" + -,
n=1

then Si(1) (mod 2) has Fa-basis
{A" (mod2) : 1<i<|k/12]}.

Serre’s observation implies that if j is a positive integer, then

A | Ti(p) =) afi)A' (mod 2)

i
where a(i) € Fy, and so we have

F 1 Te(p1) | Tr(p2) | -+ | Ti(pe) =0 (mod 2) (4.1)
whenever ¢t > k/12. One easily obtains the result by successive division by 2 and iteration
of (4.1).

O
As an immediate corollary, we obtain the following inequality.
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Corollary 4.3. Suppose that f =Y 2 a(n)q" € My(1) has integer coefficients. If s is
a positive integer, then

k
max{w(n) : n odd and square-free with ords(a(n)) < s} < 1—;

Proof. If t > ks/12, then let py,pa,...,p; be distinct odd primes. Let f, := f, and for
1<i<tlet fi =>"_,ai(n)¢" be the modular forms defined inductively by

fi = fic1 | Ti(pi)- (4.2)
By Theorem 4.2, we have
as(M)=0 (mod 2%)

for every M. In particular, (4.2) implies that

= a(p1p2 -+ -pr) (mod 27).

This completes the proof.
O

Theorem 4.4. Ifs >4 and0 < D =3 (mod 8), then F(D;q) (mod 2%) is the reduction
modulo 2° of a modular form with integer coefficients in Myp (1) where

k(D,s):=12-2°"*H(-D) + 2.

Proof. By construction [Prop. 2.1, Br-O], we have

O(F(D; z))

FD2) (4.3)

§(D;q) =

We see that §(D;q) is a weight 2 meromorphic modular form on SLy(Z) which is non-
vanishing at infinity. Moreover, it has a simple zero at each Heegner point 7 with dis-
criminant —D and no other singularities.
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It is well known that j(w) = 0. Let 7i,--7g(_p) denote the Heegner points of
discriminant —D. For each 1 < i < H(—D) define E(D,i;z) by

E(D,i;2) = E3(2) - (1 - j(“')> . (4.4)

j(2)
i)

Observe that the modular function 1 — HO) has a simple pole at z = w and a simple

zero at z = 7;. Since Ej(z) has a simple zero at 2z = w, the modular form FE(D,i;2)
is a holomorphic modular form in Mis(1). Since F4(z) = 1 (mod 16) and j(7;) = 0
(mod 2'°) (see [G-Z]), we have that

E(D,i;z)=1 (mod 16).
Hence, if s > 4, then
E(D,i;2)? =1 (mod 2°).
Therefore if s > 4, then

H(-D)

OF(D;2)) 11 E(D,i;2)* " (mod 2°). (4.5)

3(D;q) FD:2)

The modular form on the right hand side of (4.5) is holomorphic and has weight
k(D,s) =12-2°"*H(-D) + 2.

This completes the proof.
O

Proof of Theorem 10 and Corollary 11. By Corollary 4.3 and Theorem 4.4, we have that
if A(D;n)#0 (mod 2%), then

k(D,s)s
12
(12-2°"*H(-D) + 2)s
12
= 25745 . H(—D) + 5/6.

w(n) <

Therefore, we find that
wn) 1
25—4g  3.28°3

< H(-D).

This completes the proof.
O
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