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1. Introdu
tion and Statement of Results.

Let j(z) = q

�1

+ 744 + 196884q + � � � denote the usual ellipti
 modular fun
tion on

SL

2

(Z) (q := e

2�iz

throughout). We shall refer to a 
omplex number � of the form

� =

�b+

p

b

2

�4a


2a

with a; b; 
 2 Z, g
d(a; b; 
) = 1 and b

2

�4a
 < 0 as a Heegner point, and

we denote its dis
riminant by the integer d

�

:= b

2

� 4a
. The values of j at su
h points

are known as singular moduli, and they play a substantial role in 
lassi
al and modern

number theory. For example, the theory of 
omplex multipli
ation implies that if � is a

Heegner point with dis
riminant d

�

, then j(�) is an algebrai
 integer whi
h generates a

ring 
lass �eld of Q(

p

d

�

).

Singular moduli also play an important role in Bor
herds' [B1, B2℄ re
ent work on

the in�nite produ
t expansions of 
ertain modular forms. A meromorphi
 modular form

f on SL

2

(Z), by de�nition, has a Heegner divisor if its zeros and poles are supported

at the 
usp at in�nity and Heegner points. In parti
ular, Bor
herds obtains an elegant

des
ription of the in�nite produ
t expansion of those meromorphi
 modular forms on

SL

2

(Z) with a Heegner divisor.

Here we 
onsider the values of a spe
i�
 sequen
e of ellipti
 modular fun
tions j

n

,

where j

1

= j � 744. In an important re
ent paper [Z℄, Zagier expressed the tra
es of

the values of j

n

at Heegner points in terms of Fourier 
oeÆ
ients of half integral weight

modular forms. Here we 
onsider the more general 
ase of the sums of the values of

j

n

over divisors of meromorphi
 modular forms. We show that the \tra
es" of these

values (see Theorem 1) di
tate the properties of modular forms on SL

2

(Z). This result

is obtained using a j

n

-weighted version of the proof of the 
lassi
al valen
e formula for

modular forms on SL

2

(Z).
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Theorem 1 provides a very useful link relating the values of j to the arithmeti
 of

the Fourier 
oeÆ
ients of modular forms. Naturally, one then expe
ts a wide variety of


onsequen
es. Here we begin by 
onsidering su
h 
onsequen
es in 
onne
tion with the

algebrai
ity of j-values, 
ongruen
e properties and bounds for 
lass numbers of imaginary

quadrati
 �elds, in�nite produ
t expansions of modular forms, and re
urren
e relations

for Fourier 
oeÆ
ients. For example, we show that there are universal re
ursion formulas

for the Fourier 
oeÆ
ients of every modular form on SL

2

(Z) (see Theorem 3). We also

obtain formulas for the exponents in the in�nite produ
t expansion of every modular

form on SL

2

(Z) (see Theorem 5), and we obtain new p-adi
 formulas for 
lass numbers

as tra
es of j-values (see Theorem 9).

Our investigation begins with a 
areful analysis of Ramanujan's Theta-operator, the

di�erential operator de�ned by

�

 

1

X

n=h

a(n)q

n

!

:=

1

X

n=h

na(n)q

n

: (1.1)

We refer to � as Ramanujan's operator sin
e he �rst observed that [R℄

�(E

4

) = (E

4

E

2

� E

6

)=3 and �(E

6

) = (E

6

E

2

�E

8

)=2; (1.2)

where E

k

, for every even integer k � 2, is the standard Eisenstein series

E

k

(z) := 1�

2k

B

k

1

X

n=1

�

k�1

(n)q

n

: (1.3)

Here B

k

denotes the usual kth Bernoulli number and �

k�1

(n) :=

P

djn

d

k�1

. If k > 2,

then E

k

is a weight k modular form on SL

2

(Z). As usual, let � := (E

3

4

�E

2

6

)=1728, the

unique normalized weight 12 
usp form on SL

2

(Z).

Although the Eisenstein series

E

2

(z) = 1� 24

1

X

n=1

�

1

(n)q

n

(1.4)

is not a modular form, it plays an important role. If f(z) =

P

1

n=h

a(n)q

n

is a weight k

meromorphi
 modular form on SL

2

(Z), then

�(f) = (

~

f + kfE

2

)=12; (1.5)

where

~

f is a meromorphi
 modular form of weight k+2 on SL

2

(Z) (Note. The formulas

in (1.2) imply (1.5)). Be
ause of this fa
t, the �-operator is fundamental in the theory
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of p-adi
 modular forms and modular forms modulo p. For instan
e, if f is a p-adi


modular form of weight k, then sin
e E

2

is a p-adi
 modular form of weight 2, �(f) is a

p-adi
 modular form of weight k + 2 [Th. 5, S℄.

Although � is simple to de�ne, its arithmeti
 nature is mu
h deeper and is di
tated

by the

~

f appearing in (1.5). We derive an expli
it formula for �(f) in terms of a natural

sequen
e of modular fun
tions j

m

(z). Let j

0

(z) := 1, and for every positive integer m let

j

m

(z) be the unique modular fun
tion whi
h is holomorphi
 on H, the upper half of the


omplex plane, whose Fourier expansion is of the form

j

m

(z) = q

�m

+

1

X

n=1




m

(n)q

n

: (1.6)

Noti
e that if m is a positive integer, then j

m

(z) = j

1

(z) j T

0

(m), where T

0

(m) is the

usual normalized mth weight zero He
ke operator. The �rst few j

m

are:

j

0

(z) = 1;

j

1

(z) = j(z)� 744 = q

�1

+ 196884q + � � � ;

j

2

(z) = j(z)

2

� 1488j(z) + 159768 = q

�2

+ 42987520q + � � � ;

j

3

(z) = j(z)

3

� 2232j(z)

2

+ 1069956j(z)� 36866976 = q

�3

+ 2592899910q + � � �

Ea
h j

m

is a moni
 degree m polynomial in j with integer 
oeÆ
ients.

Let F denote the usual fundamental domain of the a
tion of SL

2

(Z) on H. By

assumption, F does not in
lude the 
usp at 1. Throughout, let i =

p

�1 and let

! := (1 +

p

�3)=2. If � 2 F, then de�ne e

�

by

e

�

:=

8

>

<

>

:

1=2 if � = i;

1=3 if � = !;

1 otherwise:

(1.7)

For every point � 2 H, Asai, Kaneko, and Ninomiya [Th. 3, A-K-N℄ proved that

H

�

(z) :=

1

X

n=0

j

n

(�)q

n

=

E

2

4

(z)E

6

(z)

�(z)

�

1

j(z)� j(�)

: (1.8)

For � = i and !, we have the following beautiful formulas:

H

!

=

E

6

E

4

=

1

X

n=0

j

n

(!)q

n

; (1.9)

H

i

=

E

8

E

6

=

1

X

n=0

j

n

(i)q

n

: (1.10)
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In parti
ular, for every � it turns out that H

�

is a weight 2 meromorphi
 modular form.

The utility of (1.8) was already known; for example, it 
an be used to prove that

j(�)� j(z) = p

�1

exp

 

�

1

X

n=1

j

n

(z) �

p

n

n

!

;

where p = e

2�i�

. This identity is equivalent to the famous denominator formula for the

monster Lie algebra

j(�)� j(z) = p

�1

Y

m>0 and n2Z

(1� p

m

q

n

)


(mn)

;

where the exponents 
(n) are de�ned as the 
oeÆ
ients of j

1

=

P

1

n=�1


(n)q

n

.

Here we obtain a new proof of (1.8) and 
onsider many of its number theoreti
 
onse-

quen
es.

Theorem 1. If f =

P

1

n=h

a

f

(n)q

n

is a nonzero weight k meromorphi
 modular form

on SL

2

(Z) for whi
h a

f

(h) = 1, then

�(f) =

kE

2

f

12

� ff

�

;

where f

�

is de�ned by

f

�

:=

X

�2F

e

�

ord

�

(f)H

�

(z):

Theorem 1 easily reveals some algebrai
 information about the j

n

evaluated at the

�nite points of the divisor of any meromorphi
 modular form. A 
elebrated result of

S
hneider asserts that if � is an algebrai
 number of degree > 2, then j(�) is trans
en-

dental. Under 
ertain 
onditions, we observe that the values of j at the points in the

divisor of an algebrai
 modular form are algebrai
. Although there are more dire
t ways

of establishing this result, it follows rather ni
ely from Theorem 1.

Corollary 2. Let f =

P

1

n=h

a

f

(n)q

n

be a meromorphi
 modular form on SL

2

(Z) for

whi
h a

f

(h) = 1. If �

0

2 F is a point for whi
h ord

�

0

(f) 6= 0 and the 
oeÆ
ients of f are

in a number �eld K, then j(�

0

) is algebrai
.

Using Bor
herds' work on in�nite produ
t expansions of modular forms, this 
orollary

generalizes the 
lassi
al fa
t that j(�) is algebrai
 whenever � is a Heegner point.

We 
onsider the arithmeti
 of the Fourier 
oeÆ
ients of meromorphi
 modular forms.

If k � 4 is an even integer and p is prime, then let T

k

(p) be the usual He
ke operator.
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In parti
ular, if f =

P

1

n=0

a

f

(n)q

n

2M

k

(1), the spa
e of holomorphi
 modular forms of

weight k on SL

2

(Z), then

f j T

k

(p) :=

1

X

n=0

�

a

f

(np) + p

k�1

a

f

(n=p)

�

q

n

: (1.11)

If f 2 S

k

(1), the spa
e of weight k 
usp forms on SL

2

(Z), then f j T

k

(p) 2 S

k

(1).

If T

k

(p; x) denotes the 
hara
teristi
 polynomial of T

k

(p) on S

k

, then it is well known

that T

k

(p; x) 2 Z[x℄. There is wide spe
ulation that T

k

(p; x) is irredu
ible for every

prime p, and has the additional property that the Galois group of its splitting �eld is

the symmetri
 group S

d

k

, where d

k

denotes the dimension of S

k

(1). Here we express

these polynomials in terms of the values of j

n

at the zeros of the eigenforms in S

k

(1)

(see (1.12)). We begin with the following universal re
ursion relation for 
ertain modular

forms.

Theorem 3. For every n � 2 de�ne F

n

(x

1

; : : : ; x

n�1

) 2 Q [x

1

; : : : ; x

n�1

℄ by

F

n

(x

1

; : : : ; x

n�1

) := �

2x

1

�

1

(n� 1)

n� 1

+

X

m

1

;:::;m

n�2

�0;

m

1

+2m

2

+���+(n�2)m

n�2

=n�1

(�1)

m

1

+���+m

n�2

�

(m

1

+ � � �+m

n�2

� 1)!

m

1

! � � �m

n�2

!

� x

m

1

2

� � �x

m

n�2

n�1

:

If f = q +

P

1

n=2

a

f

(n)q

n

is a weight k meromorphi
 modular form on SL

2

(Z), then for

every integer n � 2 we have

a

f

(n) = F

n

(k; a

f

(2); : : : ; a

f

(n� 1))�

1

n� 1

X

�2F

e

�

ord

�

(f) � j

n�1

(�):

It is simple to modify Theorem 3 for any modular form with leading 
oeÆ
ient 1.

The �rst few polynomials F

n

are

F

2

(x

1

) := �2x

1

;

F

3

(x

1

; x

2

) := �3x

1

+

x

2

2

2

;

F

4

(x

1

; x

2

; x

3

) := �

8x

1

3

�

x

3

2

3

+ x

2

x

3

;

F

5

(x

1

; x

2

; x

3

; x

4

) := �

7x

1

2

� x

2

2

x

3

+ x

2

x

4

+

x

4

2

4

+

x

2

3

2

:

By arguing indu
tively with Theorem 3, it turns out that every Fourier 
oeÆ
ient a

f

(n)

is a Q -rational expression in the weight k and the values of j at the points in the divisor

of f .



6 JAN H. BRUINIER, WINFRIED KOHNEN AND KEN ONO

Remark. Theorem 3 in
ludes a simple re
ursion for the 
oeÆ
ients of � =

P

1

n=1

�(n)q

n

.

Sin
e � has no zeros in F, for every n � 2 we �nd that

�(n) = F

n

(12; �(2); : : : ; �(n� 1)):

As a spe
ial 
ase of Theorem 3, we obtain the following strange formula.

Corollary 4. If f = q +

P

1

n=2

a

f

(n)q

n

is a meromorphi
 modular form of weight k on

SL

2

(Z), then

a

f

(2) = 60k � 744�

X

�2F

e

�

ord

�

(f) � j(�):

As an immediate 
onsequen
e of Theorem 3, we obtain an expression for T

k

(p; x). If d

k

is the dimension of S

k

(1), then for 1 � s � d

k

let

f

s

= q +

1

X

n=2

a

f

s

(n)q

n

be the normalized He
ke eigenforms in S

k

(1). For every prime p, we have

T

k

(p; x) =

d

k

Y

s=1

 

x� F

p

(k; a

f

s

(2); : : : ; a

f

s

(p� 1)) +

1

p� 1

X

�2F

e

�

ord

�

(f

s

) � j

p�1

(�)

!

:

(1.12)

These results are 
losely related to Bor
herds' re
ent work on the in�nite produ
t

expansions of modular forms. Bor
herds [B1, B2℄ provided a striking des
ription for

the exponents in the in�nite produ
t expansion for those modular forms with a Heegner

divisor. For example, if the integers 
(n) are de�ned by

E

4

(z) = 1 + 240

1

X

n=1

�

3

(n)q

n

= (1� q)

�240

(1� q

2

)

26760

� � � =

1

Y

n=1

(1� q

n

)


(n)

;

then Bor
herds' theorem implies that there is a weight 1/2 meromorphi
 modular form

G(z) =

X

n��3

b(n)q

n

= q

�3

+ 4� 240q + 26760q

4

+ � � � � 4096240q

9

+ : : :

on �

0

(4) with the property that 
(n) = b(n

2

) for every positive integer n. We obtain

an arithmeti
 formula for the exponents of the in�nite produ
t expansion of every mero-

morphi
 modular form on SL

2

(Z).
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Theorem 5. Suppose that f =

P

1

n=h

a

f

(n)q

n

is a weight k meromorphi
 modular form

on SL

2

(Z) for whi
h a

f

(h) = 1, and let 
(n) denote the 
omplex numbers for whi
h

f = q

h

1

Y

n=1

(1� q

n

)


(n)

:

If n is a positive integer, then

X

djn


(d)d = 2k�

1

(n) +

X

�2F

e

�

ord

�

(f) � j

n

(�):

In an important paper [G-Z℄, Gross and Zagier des
ribed the divisibility properties

of di�eren
es of singular moduli. More re
ently [Z℄, Zagier des
ribed the arithmeti
 of

the tra
es of singular moduli in terms of the Fourier 
oeÆ
ients of modular forms of half

integral weight. Sin
e the modular fun
tions j

n

play an important role, we 
onsider their

divisibility and 
ongruen
e properties. We 
onsider the arithmeti
 of the values of j

n

as

we vary n. First we obtain the following theorem for the spe
ial values at � = ! and

� = i.

Theorem 6. If � = !, then let M be a positive integer whi
h is not divisible by a prime

p � 1 (mod 3). If � = i, then suppose that M is a positive integer whi
h is not divisible

by a prime p � 1 (mod 4). Then there is a positive real number �(M) for whi
h

#f1 � n � X : j

n

(�) � 0 (mod M)g = O

�

X

(logX)

�(M)

�

:

In parti
ular, for almost all n we have j

n

(�) � 0 (mod M).

In addition to results of this type, there are examples of expli
it 
ongruen
es. For

example, 
ongruen
es with modulus 2k relating su
h values to Bor
herds exponents follow

immediately from Theorem 5. We highlight two further types of 
ongruen
e properties.

Theorem 7. If k � 4 is even, then for every positive integer n we have

X

�2F

e

�

ord

�

(E

k

) � j

n

(�) � �2k�

1

(n) (mod 4

Y

p�1jk

5�p prime

p):

Theorem 8. Let f =

P

1

n=h

a

f

(n)q

n

be a weight k meromorphi
 modular form on

SL

2

(Z) whose 
oeÆ
ients are in O

K

, the ring of algebrai
 integers in a number �eld

K. Suppose that a

f

(h) = 1 and that f has a Heegner divisor whose Heegner points in F
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are �

1

; �

2

; : : : ; �

t

. Furthermore, suppose that p 2 f2; 3; 5; 7g has the property that for all

1 � s � t we have

jd

�

s

j �

8

>

>

>

<

>

>

>

:

3 (mod 8) if p = 2;

1 (mod 3) if p = 3;

2; 3 (mod 5) if p = 5;

1; 2; 4 (mod 7) if p = 7:

If � is a positive integer, then there is a positive real number �(p; �) for whi
h

#f1 � n � X :

t

X


=1

e

�




ord

�




(f) � j

n

(�




) � 0 (mod p

�

)g = O

�

X

(logX)

�(p;�)

�

:

In parti
ular, for almost all n we have

P

t


=1

e

�




ord

�




� j

n

(�




) � 0 (mod p

�

).

The p-adi
 properties of the values of the j

n

are 
losely related to the arithmeti
 of


lass numbers of imaginary quadrati
 �elds. Let H(�D) be the Hurwitz 
lass number

for the dis
riminant �D.

Theorem 9. Suppose that �D < �4 is a fundamental dis
riminant of an imaginary

quadrati
 �eld, and let � be any Heegner point of dis
riminant �D. If K = Q (j(�)),

then the following are true:

(1) If D � 3 (mod 8), then as 2-adi
 numbers we have

H(�D) =

1

24

lim

n!+1

Tr

K=Q

(j

2

n

(�)):

(2) If D � 1 (mod 3), then as 3-adi
 numbers we have

H(�D) =

1

12

lim

n!+1

Tr

K=Q

(j

3

n

(�)):

(3) If D � 2; 3 (mod 5), then as 5-adi
 numbers we have

H(�D) =

1

6

lim

n!+1

Tr

K=Q

(j

5

n

(�)):

(4) If D � 1; 2; 4 (mod 7), then as 7-adi
 numbers we have

H(�D) =

1

4

lim

n!+1

Tr

K=Q

(j

7

n

(�)):
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Remark. Analogs of Theorem 9 hold for �D = �3 (resp. �D = �4). Subje
t to

the same 
ongruen
e 
onditions on D, these results simply require repla
ing j

p

n

(�) by

j

p

n

(!)=3 (resp. j

p

n

(i)=2). Moreover, simple analogs hold for every �D, not just those

whi
h are fundamental. More generally, there are analogs of Theorem 8 and 9 for primes

p � 11, but these results are more 
ompli
ated to state.

If D � 3 (mod 8), it turns out that the 2-adi
 behavior of these tra
es, for all j

n

, are

also 
ontrolled by the 
lass number H(�D). Using the fa
t that the He
ke algebra for

holomorphi
 modular forms is lo
ally nilpotent at 2, we obtain the following 2-divisibility

results. Let !(n) denote the number of distin
t prime fa
tors of n.

Theorem 10. Suppose that �3 6= �D � 5 (mod 8) is a fundamental dis
riminant of

an imaginary quadrati
 �eld, and suppose that � is a Heegner point of dis
riminant �D.

If K = Q (j(�)) and s � 4, then

Tr

K=Q

(j

n

(�)) � 0 (mod 2

s

)

for every positive square-free integer n for whi
h

!(n) > 2

s�4

H(�D):

Theorem 10 yields theoreti
al lower bounds for H(�D). To state these results, for

D � 0; 3 (mod 4), let

F (D; z) = q

�H(�D)

1

Y

n=1

(1� q

n

)




D

(n)

(1.13)

be the unique weight zero modular fun
tion on SL

2

(Z), with leading 
oeÆ
ient one,

whose divisor 
onsists of a pole of order H(�D) at z = 1 and a simple zero at ea
h

Heegner point with dis
riminant �D. These fun
tions have integer 
oeÆ
ients. Consider

the formal power series

�(F (D; z))

F (D; z)

:= �H(�D)�

1

X

n=0

A(D;n)q

n

= �H(�D)�

1

X

n=1

X

djn




D

(d)dq

n

: (1.14)

Corollary 11. Suppose that �3 6= �D � 5 (mod 8) is a fundamental dis
riminant of

an imaginary quadrati
 �eld. If s � 4 and there is an odd square-free integer n for whi
h

ord

2

(A(D;n)) < s, then

H(�D) >

!(n)

2

s�4

s

�

1

3 � 2

s�3

:

It will be extremely interesting to see whether a detailed study of the He
ke algebra

modulo powers of 2, perhaps 
ombined with further 2-adi
 arguments, 
an be used to
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transform Corollary 11 into a lower bound like the 
elebrated bound due to Goldfeld,

Gross and Zagier.

In x2 we prove Theorems 1, 3, and 5, and Corollaries 2 and 4. In x3 we prove Theorems

6, 7, 8 and 9. There we 
onsider the p-adi
 behavior of the �-operator under 
ertain


onditions. In x4 we prove Theorem 10 and Corollary 11 using an analysis of the behavior

of the He
ke algebra on modular forms modulo 2.

2. Proof of Theorems 1, 3, and 5 and Corollaries 2 and 4.

For 
onvenien
e, we begin by proving Theorem 5 on the in�nite produ
t expansion of

generi
 modular forms. Before we prove Theorem 5, we 
all attention to earlier work of

Eholzer and Skoruppa [E-S℄ whi
h also 
onsiders produ
t expansions of modular forms.

Proposition 2.1. Let f =

P

1

n=h

a

f

(n)q

n

be a meromorphi
 fun
tion in a neighborhood

of q = 0, and suppose that a

f

(h) = 1. Then there are uniquely determined 
omplex

numbers 
(n) su
h that

f = q

h

1

Y

n=1

(1� q

n

)


(n)

;

where the produ
t 
onverges in a small neighborhood of q = 0. Moreover, the following

identity is true

�(f)

f

= h�

1

X

n=1

X

djn


(d)dq

n

:

Proof. As usual, we understand that 
omplex powers are de�ned by the prin
ipal bran
h

of the 
omplex logarithm. If F (q) := f(z), then the fun
tion qF

0

(q)=F (q) is holomorphi


at q = 0. Write its Taylor expansion as

qF

0

(q)=F (q) = h�

X

n�1

�(n)q

n

(jqj < �) (2.1)

and for n � 1 let


(n) :=

1

n

X

djn

�(d)�(n=d);

where � denotes the M�obius fun
tion. This implies that

�(n) =

X

djn


(d)d: (2.2)

Obviously, the numbers 
(n) are uniquely determined by f .
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For �xed q

0

with jq

0

j < � we have �(n) = O(jq

0

j

�n

) for all n, and this easily implies

that the double series

X

m;n�1


(n)nq

mn

is absolutely 
onvergent in jqj < jq

0

j, hen
e in jqj < �.

In the following, suppose that jqj < �. From the above we see that

d

dq

log(F (q)q

�h

) =

F

0

(q)

F (q)

�

h

q

= �

X

n�1


(n)

d

dq

0

�

X

m�1

q

mn

m

1

A

=

d

dq

�

X

n�1


(n) log(1� q

n

)

�

;

the inter
hange of di�erentiation and summation being justi�ed be
ause of lo
al uniform


onvergen
e as 
an easily be seen in a similar way as above.

We thus obtain

log(F (q)q

�h

) =

X

n�1


(n) log(1� q

n

):

The values 
(n) log(1� q

n

) and log(1 � q

n

)


(n)

di�er by integer multiples of 2�i. Sin
e


(n) log(1 � q

n

) ! 0 (n ! 1) the same is true for log(1 � q

n

)


(n)

, hen
e we see that

there is an integer N su
h that

log(F (q)q

�h

) =

X

n�1

log(1� q

n

)


(n)

+ 2�iN:

Taking the exponential on both sides proves our 
laim.

�

Proof of Theorem 5. Let

F := fz 2 H : jzj � 1; jRe (z)j �

1

2

g

be the standard fundamental domain for the a
tion of SL

2

(Z) on H. We 
ut o� F

by a horizontal line L := fiC � t : �

1

2

� t �

1

2

g where C > 0 is 
hosen so large

that all poles and zeros of f , apart from those at the 
usp at in�nity, are 
ontained in

fz 2 H : Im (z) < Cg.
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For simpli
ity, suppose that f has no zero or pole on the boundary �F ex
ept possibly

i or ! (if not one has to modify the arguments in the same way as in the 
lassi
al proof

of the \

k

12

-identity").

We let 
 be the 
losed path with positive orientation 
onsisting of L and 


1

where 


1

is the part of �F below L modi�ed in the usual way: in a small neighborhood U of !

resp. i resp. �� we repla
e U \ �F by F \C

!

resp. F \C

i

resp. F \C

�!

where C

!

resp.

C

i

resp. C

�!

are small 
ir
les with radius r around ! resp. i resp. �!.

We integrate

1

2�i

f

0

(z)

f(z)

j

n

(z) along 
. By the residue theorem, taking into a

ount that

j

n

(z) is holomorphi
 on H, this integral is equal to

X

�2F�f!;ig

ord

�

(f)j

n

(�):

On the other hand, the integral 
an be evaluated separately along the di�erent pie
es of


, in a well-known way. If we let r tend to zero, we then �nd that

X

�2F�f!;ig

ord

�

(f)j

n

(�) = �

1

3

ord

!

(f)j

n

(!)�

1

2

ord

i

(f)j

n

(i)+

1

2�i

Z

�

F

0

(q)

F (q)

J

n

(q)dq (2.3)

�

k

2�i

Z

�

j

n

(z)

z

dz:

Here F (q) = f(z) as before and J

n

(q) := j

n

(z). Furthermore, � is a small 
ir
le around

q = 0 with negative orientation and not 
ontaining any pole or zero of F (q) ex
ept

possibly 0, and � is the part of the unit 
ir
le in the upper half-plane that 
onne
ts !

and i, with positive orientation.

By Proposition 2.1, for jqj < � we see that

qF

0

(q)

F (q)

=

�(f)

f

= h�

1

X

n=1

X

djn


(d)dq

n

;

where h is the order of F at q = 0. Hen
e re
alling that J

n

(q) = q

�n

+O(q) we �nd that

Z

�

F

0

(q)

F (q)

J

n

(q)dq =

X

djn


(d)d: (2.4)

We 
annot dire
tly evaluate the last integral on the right-hand side of (2.3). Instead

we pro
eed as follows. Formula (2.3) in parti
ular is valid for the fun
tion f = � of

weight 12. In this 
ase we have

X

djm


(d)d = 24�

1

(m) (m � 1);
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by de�nition. Sin
e � has no zeros on H, we obtain from (2.3) that

1

2�i

Z

�

j

n

(z)

z

dz = 2�

1

(n): (2.5)

Inserting (2.4) and (2.5) into (2.3), we dedu
e the theorem.

�

Proof of Theorem 1. We begin by proving that if

�(f)

f

=

kE

2

12

� f

�

; (2.6)

then f

�

has the 
laimed form. If n is a positive integer, then Proposition 2.1 and Theorem

5 imply that the 
oeÆ
ient of q

n

in �(f)=f is �2k�

1

(n)�

P

�2F

e

�

ord

�

(f) � j

n

(�): Sin
e

the E

2

is given by

E

2

= 1� 24

1

X

n=1

�

1

(n)q

n

;

(2.6) veri�es the truth Theorem 1 for every 
oeÆ
ient with the ex
eption of the 
onstant

term. The 
onstant term in �(f)=f is h = ord

1

(f). However, the 
onstant term of

kE

2

=12 � f

�

is

k

12

�

P

�2F

e

�

ord

�

(f) whi
h equals h by the 
lassi
al \k=12" valen
e

formula.

�

Proof of Corollary 2. We begin by �xing notation. Let �

1

; �

2

; : : : ; �

t

2 F be the numbers

for whi
h ord

�

(f) 6= 0. If n is a positive integer, then the 
oeÆ
ient of q

n

in kE

2

=12 is

the integer �2k�

1

(n). Therefore by Theorem 1, if the Fourier 
oeÆ
ients of f are in a

�eld K, then the 
oeÆ
ients of f

�

and 1=f belong to K. Hen
e if n is a positive integer,

then

t

X

s=1

j

n

(�

s

) =

t

X

s=1

G

n

(j(�

s

)) 2 K: (2.7)

where G

n

2 Z[x℄ is a moni
 polynomial of degree n. Sin
e j

1

= j�744, for every positive

integer n we have

t

X

s=1

j(�

s

)

n

2 K:

Therefore, by solving for the elementary symmetri
 fun
tions in j(�

1

); : : : ; j(�

t

), we �nd

that

t

Y

s=1

(x� j(�

s

)) 2 K[x℄:
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This proves the 
orollary.

�

Proof of Theorem 3. By Theorem 1, we have that

X

�2F

e

�

ord

�

(f)

1

X

n=0

j

n

(�)q

n

= �

�(f)

f

+

kE

2

12

:

If n � 2, then Theorem 5 gives

X

�2F

e

�

ord

�

(f)j

n�1

(�) =

X

djn�1


(d)d� 2k�

1

(n� 1);

where

f = q

1

Y

n=1

(1� q

n

)


(n)

:

Therefore, to prove the theorem it suÆ
es to obtain a 
losed formula for b(n) :=

P

djn


(d)d in terms of a

f

(n). In parti
ular, it suÆ
es to show that if n � 1, then

b(n) = n

X

m

1

;:::;m

n

�0;

m

1

+2m

2

+:::+nm

n

=n

(�1)

m

1

+���+m

n

�

(m

1

+ � � �+m

n

� 1)!

m

1

! � � �m

n

!

a

f

(2)

m

1

� � �a

f

(n+ 1)

m

n

:

(2.8)

To prove (2.8), one observes that

0 = b(n) + b(n� 1)a

f

(2) + b(n� 2)a

f

(3) + � � �+ b(1)a

f

(n) + na

f

(n+ 1);

and uses the well known fa
t that

0 = s

n

� s

n�1

�

1

+ s

n�2

�

2

� � � �+ (�1)

n�1

s

1

�

n�1

+ (�1)

n

n�

n

:

Here the �

i

are the elementary symmetri
 fun
tions in X

1

; : : : ; X

n

and the s

i

are the

power fun
tions in these variables (i.e. s

i

:= X

i

1

+ � � � + X

i

n

). One now obtains (2.8)

by evaluating these identities at (X

1

; :::; X

n

) = (�(1; n); :::; �(n; n)) where the �(j; n) are

the roots of the polynomial

X

n

+ a

f

(2)X

n�1

+ a

f

(3)X

n�2

+ � � �+ a

f

(n+ 1):
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One requires the fa
t that

s

i

= i

X

m

1

;:::;m

n

�0;

m

1

+2m

2

+���+nm

n

=i

(�1)

m

2

+m

4

+:::

(m

1

+m

2

+ � � �+m

n

� 1)!

m

1

!m

2

! � � �m

n

!

�

m

1

1

� � ��

m

n

n

:

�

Proof of Corollary 4. Sin
e j

1

(z) = j(z)� 744 and

P

�2F

e

�

ord

�

(f) =

k

12

� 1, this result

is the n = 2 
ase of Theorem 3.

�

3. Proof of Theorems 6, 7 , 8 and 9.

In this se
tion we prove Theorems 6, 7, 8 and 9 using theorems of Serre on p-adi


modular forms and the divisibility of the Fourier 
oeÆ
ients of modular forms modulo

M (see [S, S2℄) .

Proof of Theorem 6. By (1.9) and (1.10), it suÆ
es to prove that the 
oeÆ
ients of the

Fourier series

H

!

=

E

6

E

4

=

1

X

n=0

j

n

(!)q

n

= 1� 744q + 159768q

2

� 36866976q

3

+ � � � ; (3.1)

H

i

=

E

8

E

6

=

1

X

n=0

j

n

(i)q

n

= 1 + 984q + 574488q

2

+ 307081056q

3

+ � � � (3.2)

satisfy the 
laim.

Sin
e z = i (resp. z = !) is �xed by the modular transformation Sz = �1=z (resp.

Az = �(z + 1)=z), the de�nition of a modular form implies that if k � 4 is even, then

k � 2 (mod 4) =) E

k

(i) = 0;

k � 2; 4 (mod 6) =) E

k

(!) = 0:

If p � 5 is prime, then these observations together with the von Staudt-Clausen Theorem

[p. 233, I-R℄ and (1.3) imply that if p 6� 1 (mod 4), then there is an Eisenstein series

E

i;p

for whi
h

E

i;p

(i) = 0 and E

i;p

� 1 (mod 24p); (3.3)

and if p 6� 1 (mod 3), then there is an Eisenstein series E

!;p

for whi
h

E

!;p

(!) = 0 and E

!;p

� 1 (mod 24p): (3.4)
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Now observe that if H � 1 (mod `), where ` is prime, then H

`

s

� 1 (mod `

s+1

). If

p

1

6� 1 (mod 4) is prime, then for every positive integer s we have that

E

8

E

6

�

E

8

E

6

� E

p

s

1

i;p

1

(mod p

s+1

1

): (3.5)

Similarly, if p

2

6� 1 (mod 3) is prime, then

E

6

E

4

�

E

6

E

4

� E

p

s

2

!;p

2

(mod p

s+1

2

): (3.6)

Sin
e E

4

(!) = 0 (resp. E

6

(i) = 0) and E

4

(resp. E

6

) has no other zeros in F, (3.3)

and (3.5) (resp. (3.4) and (3.6)) illustrate that the relevant forms are the redu
tion

modulo p

s+1

i

of holomorphi
 integer weight modular forms on SL

2

(Z). There are obvious

analogous 
onstru
tions for both forms modulo powers of 2 and 3. The theorem now

follows from a well known theorem of Serre whi
h asserts that almost all the 
oeÆ
ients

of a modular form with algebrai
 integer 
oeÆ
ients are multiples of any given integer

M [Th. 4.7, S2℄.

�

Proof of Theorem 7. By (1.3) and the von Staudt-Clausen Theorem, if k � 4 is even,

then

E

k

� 1 (mod 4

Y

p�1jk

p prime

p):

This observation and Theorem 1 imply that

0 �

�(E

k

)

E

k

=

kE

2

12

� (E

k

)

�

(mod 4

Y

p�1jk

p prime

p)

The theorem follows from (1.4).

�

Proof of Theorem 8. By [Cor. 3, Br-O℄, �(f)=f is a p-adi
 modular form of weight 2.

Sin
e the Eisenstein series E

2

is also a p-adi
 modular form of weight 2 [S℄, we �nd that

f

�

= �

�(f)

f

+

kE

2

12

=

X

� inf F

e

�

ord

�

(f)

1

X

n=0

j

n

(�)q

n

is a p-adi
 modular form of weight 2. Therefore, f

�

(mod p

�

) is the redu
tion modulo p

�

of some holomorphi
 integer weight modular form on SL

2

(Z). The theorem now follows

from [Th. 4.7, S2℄.
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�

Proof of Theorem 9. If 0 < D � 0; 3 (mod 4), then there is a unique meromorphi


modular form of weight 1/2 on �

0

(4) that is holomorphi
 on H whose Fourier series has

the form [Lemma 14.2, B℄

f(D; z) = q

�D

+

1

X

n=1


(D;n)q

n

; (3.7)

where 
(D;n) = 0 for every n � 2; 3 (mod 4). Bor
herds' theory [B1, B2℄ implies that

F (D; z) = q

�H(�D)

1

Y

n=1

(1� q

n

)


(D;n

2

)

(3.8)

is a weight zero modular fun
tion on SL

2

(Z) whose divisor 
onsists of a pole of order

H(�D) at z = 1 and a simple zero at ea
h Heegner point with dis
riminant �D. For

ea
h D we 
onsider the following formal power series (also de�ned in (1.14))

F(D; q) = �H(�D)�

1

X

n=0

A(D;n)q

n

:= �H(�D)�

1

X

n=1

X

djn


(D; d

2

)dq

n

: (3.9)

If D and p satisfy the hypotheses of the theorem, then [Cor. 3, Br-O℄ implies that

F(D; q) is a p-adi
 modular form of weight 2. Serre proved [Th. 7, S℄, for 
ertain p-adi


modular forms, that the 
onstant term of the Fourier expansion is essentially the p-adi


limit of its Fourier 
oeÆ
ients at exponents whi
h are p

th

powers. In these 
ases we

obtain

H(�D) =

8

>

>

>

<

>

>

>

:

1

24

lim

n!+1

A(D; 2

n

) if D � 3 (mod 8);

1

12

lim

n!+1

A(D; 3

n

) if D � 1 (mod 3);

1

6

lim

n!+1

A(D; 5

n

) if D � 2; 3 (mod 5);

1

4

lim

n!+1

A(D; 7

n

) if D � 1; 2; 4 (mod 7):

(3.10)

Sin
e F (D; z) has weight zero, for every positive integer n Theorem 5 implies

A(D; p

n

) = j

p

n

(�

1

) + � � �+ j

p

n

(�

H(�D)

);

where �

1

; : : : ; �

H(�D)

2 F are the Heegner points of dis
riminant �D. Sin
e the j(�

i

)

are 
onjugates over Q , the theorem follows from (3.10) and the fa
t that ea
h j

n

is an

integral polynomial in j.

�
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4. Proof of Theorem 10 and Corollary 11.

We adopt the notation from the proof of Theorem 9. We begin by re
alling the

following theorem whi
h is proved in [Cor. 3, Br-O℄.

Theorem 4.1. If 0 < D � 3 (mod 8), then F(D; q) is a weight two 2-adi
 modular

form.

Using the lo
al nilpoten
y of the He
ke algebra on modular forms of SL

2

(Z) modulo

2, we make the following vital observation.

Theorem 4.2. Suppose that f =

P

1

n=0

a(n)q

n

2 M

k

(1) has integer 
oeÆ
ients. If s is

a positive integer and t �

ks

12

, then for every set of odd primes p

1

; p

2

; : : : ; p

t

we have

f j T

k

(p

1

) j T

k

(p

2

) j � � � j T

k

(p

t

) � 0 (mod 2

s

):

Proof. Begin by noti
ing that the Fourier expansion of every Eisenstein series on SL

2

(Z)

is 
ongruent to 1 modulo 2. Serre [S2℄ observed that the He
ke operators a
t nilpotently

on S

k

(1) (mod 2), the spa
e of 
usp forms modulo 2 on SL

2

(Z). If � 2 S

12

(1) is the

unique normalized weight 12 
usp form

�(z) = q

1

Y

n=1

(1� q

n

)

24

= q � 24q

2

+ � � � ;

then S

k

(1) (mod 2) has F

2

-basis

f�

i

(mod 2) : 1 � i � bk=12
g:

Serre's observation implies that if j is a positive integer, then

�

j

j T

k

(p) �

j�1

X

i=1

�(i)�

i

(mod 2)

where �(i) 2 F

2

, and so we have

f j T

k

(p

1

) j T

k

(p

2

) j � � � j T

k

(p

t

) � 0 (mod 2) (4.1)

whenever t � k=12. One easily obtains the result by su

essive division by 2 and iteration

of (4.1).

�

As an immediate 
orollary, we obtain the following inequality.
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Corollary 4.3. Suppose that f =

P

1

n=1

a(n)q

n

2M

k

(1) has integer 
oeÆ
ients. If s is

a positive integer, then

maxf!(n) : n odd and square-free with ord

2

(a(n)) < sg <

ks

12

:

Proof. If t � ks=12, then let p

1

; p

2

; : : : ; p

t

be distin
t odd primes. Let f

0

:= f , and for

1 � i � t let f

i

=

P

1

n=0

a

i

(n)q

n

be the modular forms de�ned indu
tively by

f

i

:= f

i�1

j T

k

(p

i

): (4.2)

By Theorem 4.2, we have

a

t

(M) � 0 (mod 2

s

)

for every M . In parti
ular, (4.2) implies that

0 � a

t

(1)

= a

t�1

(p

t

)

= a

t�2

(p

t�1

p

t

)

.

.

.

= a(p

1

p

2

� � � p

t

) (mod 2

s

):

This 
ompletes the proof.

�

Theorem 4.4. If s � 4 and 0 < D � 3 (mod 8), then F(D; q) (mod 2

s

) is the redu
tion

modulo 2

s

of a modular form with integer 
oeÆ
ients in M

k(D;s)

(1) where

k(D; s) := 12 � 2

s�4

H(�D) + 2:

Proof. By 
onstru
tion [Prop. 2.1, Br-O℄, we have

F(D; q) =

�(F (D; z))

F (D; z)

: (4.3)

We see that F(D; q) is a weight 2 meromorphi
 modular form on SL

2

(Z) whi
h is non-

vanishing at in�nity. Moreover, it has a simple zero at ea
h Heegner point � with dis-


riminant �D and no other singularities.
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It is well known that j(!) = 0. Let �

1

; � � � �

H(�D)

denote the Heegner points of

dis
riminant �D. For ea
h 1 � i � H(�D) de�ne E(D; i; z) by

E(D; i; z) := E

3

4

(z) �

�

1�

j(�

i

)

j(z)

�

: (4.4)

Observe that the modular fun
tion 1 �

j(�

i

)

j(z)

has a simple pole at z = ! and a simple

zero at z = �

i

. Sin
e E

3

4

(z) has a simple zero at z = !, the modular form E(D; i; z)

is a holomorphi
 modular form in M

12

(1). Sin
e E

4

(z) � 1 (mod 16) and j(�

i

) � 0

(mod 2

15

) (see [G-Z℄), we have that

E(D; i; z) � 1 (mod 16):

Hen
e, if s � 4, then

E(D; i; z)

2

s�4

� 1 (mod 2

s

):

Therefore if s � 4, then

F(D; q) �

�(F (D; z))

F (D; z)

�

H(�D)

Y

i=1

E(D; i; z)

2

s�4

(mod 2

s

): (4.5)

The modular form on the right hand side of (4.5) is holomorphi
 and has weight

k(D; s) = 12 � 2

s�4

H(�D) + 2:

This 
ompletes the proof.

�

Proof of Theorem 10 and Corollary 11. By Corollary 4.3 and Theorem 4.4, we have that

if A(D;n) 6� 0 (mod 2

s

), then

!(n) <

k(D; s)s

12

=

(12 � 2

s�4

H(�D) + 2)s

12

= 2

s�4

s �H(�D) + s=6:

Therefore, we �nd that

!(n)

2

s�4

s

�

1

3 � 2

s�3

< H(�D):

This 
ompletes the proof.

�
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