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1. Introduction

Let X be an algebraic variety over Q, and let Ψ be a rational function on X and
C =

∑
nPP be a rational 0-cycle on X, then Ψ(C) =

∏
Ψ(P )nP is a rational number.

A natural question is to figure out its prime factorization. Of course, the question asked
in such a generality is perhaps of no good since anything can happen. However, for some
special functions and cycles, the answer could be very interesting, as first theoretically
established by Gross and Zagier in 1985 [GZ1] for the classical j-function. More precisely,
let d1 and d2 be two fundamental discriminants of imaginary quadratic fields such that
(d1, d2) = 1, and D = d1d2. Let X = (SL2(Z)\H)2 be the self-product of the simplest
modular curve X1 = SL2(Z)\H. Let τ = (τ1, τ2) be a CM point in X such that τi is a CM
point on X1 of discriminant di, and denote by CM(d1, d2) the rational 0-cycle in X given
by the sum of all such points. Gross and Zagier consider the value of the rational function
j(z1) − j(z2) on X at CM(d1, d2). They found a striking explicit formula for the prime
factorization of

J(d1, d2) =
∏

[τ1],[τ2]
disc(τi)=di

(
j(τ1)− j(τ2)

) 4
w1w2 ,

which states that

(1.1) J(d1, d2)
2 = ±

∏
x,n,n′∈Z,nn′>0
x2+4nn′=D

nε(n
′).

Here wi is the number of roots of unity in Q(
√
di), and ε is related to the genus character

as follows: ε(n) =
∏
ε(li)

ai if n has the prime factorization n =
∏
lai
i , and

ε(l) =

{
(d1
l
) if l - d1,

(d2
l
) if l - d2,

for primes l with (D
l
) 6= −1. The main purpose of this paper is to establish a similar

formula for certain rational functions on a Hilbert modular surface and CM 0-cycles on
the surface associated to a non-biquadratic quartic CM field containing the underlying real
quadratic field of the Hilbert modular surface. One of the interesting features is that the
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factorization is determined by the arithmetic of the reflex field. Now we describe the result
in more detail.

Let p ≡ 1 (mod 4) be a prime number and F = Q(
√
p). We write OF for the ring of

integers of F , and x 7→ x′ for the conjugation in F . Let Γ = SL2(OF ) be the Hilbert
modular group associated to F . The corresponding Hilbert modular surface X = Γ\H2 is
a normal quasi-projective algebraic variety defined over Q.

Let K = F (
√

∆) be a non-biquadratic totally imaginary quadratic extension of F . We

view both K and F (
√

∆′) as subfields of C with
√

∆,
√

∆′ ∈ H. Then M = F (
√

∆,
√

∆′)
is Galois over Q and has an automorphism σ of order 4 such that

(1.2) σ(
√

∆) =
√

∆′, σ(
√

∆′) = −
√

∆.

Notice that K has four CM types: Φ = {1, σ}, σΦ = {σ, σ2}, σ2Φ, and σ3Φ. We write

(K̃, Φ̃) for the reflex of (K,Φ), and let F̃ = Q(
√

∆∆′) be the real quadratic subfield of K̃.
We refer to [Sh] for details about CM types and reflex fields. For technical reasons (see
Remark 9.2), we assume in this paper that

(1.3) dK/F ∩ Z = qZ, NF/QdK/F = q,

for a prime number q ≡ 1 (mod 4). Here dK/F is the relative discriminant of K/F . This

condition implies (Lemma 7.1) that F̃ = Q(
√
q), and

(1.4) dK̃/F̃ = p̃, NF̃ /Qp̃ = p,

for a prime ideal p̃ of F̃ . For a nonzero element t ∈ d−1

K̃/F̃
and a prime ideal l of F̃ , we

define

(1.5) Bt(l) =

{
0 if l is split in K̃,

(ordl t+ 1)ρ(tdK̃/F̃ l−1) log |l| if l is non-split in K̃,

and

(1.6) Bt =
∑

l

Bt(l).

Here |l| is the norm of l, and ρ(a) = ρK̃/F̃ (a) is defined as

(1.7) ρ(a) = #{A ⊂ OK̃ : NK̃/F̃A = a}.

We remark that ρ(a) = 0 for a non-integral ideal a, and that for every t 6= 0, there are at
most finitely many prime ideals l such that Bt(l) 6= 0. In fact, when t > 0 > t′, then Bt = 0
unless there is exactly one prime ideal l such that χl(t) = −1, in which case Bt = Bt(l) (see
Remark 7.3). Here χ =

∏
l χl is the quadratic Hecke character of F̃ associated to K̃/F̃ .

Let CM(K,Φ,OF ) be the CM 0-cycle in X of CM abelian surfaces of CM type (K,Φ),
i.e., the points on X with an OK action via Φ (see Section 3). By the theory of complex
multiplication [Sh], the field of moduli for CM(K,Φ,OF ) is the reflex field K̃ of (K,Φ). In
fact, one can show that the field of moduli for CM(K) = CM(K,Φ,OF )+CM(K, σ3Φ,OF )
is Q (see Remark 3.5). Therefore, if Ψ is a rational function on X, i.e., a Hilbert mod-
ular function for Γ over Q, then Ψ(CM(K)) is a rational number, and it would be very
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interesting but highly nontrivial to find a factorization formula for this number. The main
purpose of this paper is to find such a formula in some special cases.

Recall that for any positive integer m there is a distinguished divisor Tm on X, the so-
called Hirzebruch-Zagier divisor of discriminantm (see Section 2). Here we consider Hilbert
modular functions whose divisor is supported on Hirzebruch-Zagier divisors. The (multi-
plicative) group of these functions can be characterized as the image of the Borcherds lift
[Bo1], [Br1], [BB], which can be viewed as a multiplicative analogue of the Doi-Naganuma
lift [DN], [Na], [Za]. Observe that in the case of Gross and Zagier, one may regard
(SL2(Z)\H)2 as a degenerate Hilbert modular surface associated to Q⊕Q , and j(z1)−j(z2)
as the Borcherds lift of j(τ)− 744.

A holomorphic Hilbert modular form for the group Γ is called normalized integral, if all
its Fourier coefficients at the cusp ∞ are rational integers with greatest common divisor 1.
A meromorphic Hilbert modular form is called normalized integral, if it is the quotient of
two normalized integral holomorphic Hilbert modular forms.

Theorem 1.1. Let the notation and assumption be as in (1.3)–(1.7). Let Ψ be a normalized
integral Hilbert modular function (of weight 0) for the group Γ such that

div(Ψ) =
∑
m>0

c̃(−m)Tm,

with integral coefficients c̃(−m) ∈ Z. Then

log |Ψ(CM(K))| = WK̃

4

∑
m>0

c̃(−m)bm,

where WK̃ is the number of roots of unity in K̃, and

(1.8) bm =
∑

t=
n+m

√
q

2p
∈d−1

K̃/F̃

|n|<m√q

Bt.

We remark that WK̃ = 2 except when K = K̃ = Q(ζ5), in which case WK̃ = 10. Notice
that log |Ψ(CM(K))| gives a bilinear pairing between the multiplicative group of Hilbert
modular functions and the additive group of CM 0-cycles on X. Theorem 1.1 provides
an explicit formula when the Hilbert modular function is normalized integral with divisor
supported on Hirzebruch-Zagier divisors. This theorem can also be rephrased as a formula
for the factorization of the rational number Ψ(CM(K)).

Corollary 1.2. Let the notation and assumption be as in Theorem 1.1. Then

(1.9) Ψ(CM(K)) = ±
∏

l rational prime

lel

with

el =
WK̃

4

∑
m>0

c̃(−m)bm(l),
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and

bm(l) log l =
∑
l|l

∑
t=

n+m
√

q

2p
∈d−1

K̃/F̃

|n|<m√q

Bt(l).

Moreover, when K/Q is cyclic, the sign in (1.9) is positive.

Corollary 1.3. Let the notation and assumption be as in Corollary 1.2. Then el = 0
unless 4pl|m2q − n2 for some m ∈ M := {m ∈ Z>0 : c̃(−m) 6= 0} and some integer

|n| < m
√
q. In particular, every prime factor of Ψ(CM(K)) is less than or equal to N2q

4p
,

where N = max(M).

In short, the factorization of Ψ(CM(K)) is determined by the arithmetic of the reflex
field K̃. We illustrate these results with some examples for p = 5 and 13. For details
we refer to Section 10. When F = Q(

√
5), there are precisely three normalized integral

holomorphic Hilbert modular forms of weight 10 for the group SL2(OF ) whose divisor
is supported on Hirzebruch-Zagier divisors. They have the divisors 2T1, T6, and T10,
respectively, and are denoted by Ψ2

1, Ψ6, and Ψ10, accordingly. They are constructed
explicitly as Borcherds lifts and as Doi-Naganuma lifts in Section 10. Table 1 gives the
factorization of Ψ(CM(K)) up to sign according Corollary 1.2, where q is the rational
prime number such that NF/QdK/F = q.

Table 1. The case F = Q(
√

5)

q Ψ6

Ψ2
1
(CM(K)) Ψ10

Ψ2
1
(CM(K))

5 (cyclic) 220 · 310 220 · 510

41 214 · 310 · 61 · 73 214 · 59 · 37 · 41
61 220 · 36 · 13 · 97 · 109 220 · 59 · 61
109 220 · 38 · 61 · 157 · 193 220 · 512 · 73
149 220 · 310 · 312 · 37 · 229 220 · 512 · 17 · 113
269 220 · 310 · 13−2 · 372 · 61 · 97 · 349 · 433 220 · 514 · 13−1 · 53 · 73 · 233

When F = Q(
√

13), there are three normalized integral holomorphic Hilbert modular
forms of weight 6 for SL2(OF ) whose divisor is supported on Hirzebruch-Zagier divisors.
They have the divisors 6T1, T14, and T26, respectively, and are denoted by Ψ6

1, Ψ14, and
Ψ26, accordingly. They are also constructed as Borcherds lifts and as Doi-Naganuma lifts in
Section 10. Table 2 gives the factorization of Ψ(CM(K)) up to sign according Corollary 1.2.

These values were verified numerically using the representations of the involved Borcherds
products as Doi-Naganuma lifts.

In the present paper we will in fact prove the following slightly more general result on
meromorphic Hilbert modular forms of arbitrary weights, from which Theorem 1.1 is a
special corollary. It is quite amusing to see how the weight affects the formula. It can
be viewed as a period integral of the Borcherds product over a CM 0-cycle. The period
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Table 2. The case F = Q(
√

13)

q Ψ14

Ψ6
1
(CM(K)) Ψ26

Ψ6
1
(CM(K))

13 (cyclic) 212 · 72 212 · 134

17 213 · 72 · 53 211 · 135

29 212 · 52 · 72 · 109 212 · 134 · 29
113 220 · 76 · 112 · 149 · 277 · 337 · 401 · 421 222 · 72 · 112 · 1311 · 97 · 109 · 113
157 212 · 32 · 72 · 192 · 37 · 193 212 · 134 · 172 · 157
269 236 · 5−2 · 76 · 232 · 373 · 612 · 672 · 1009 236 · 5−2 · 1312 · 232 · 73 · 2332 · 269

integral of the Borcherds product over the 2-cycle (i.e., the volume form) was studied by
Kudla [Ku2] and Bruinier, Burgos, and Kühn [BBK, BK] independently.

Theorem 1.4. Let the notation and assumption be as in Theorem 1.1, but let Ψ be a
normalized integral meromorphic Hilbert modular form of weight c(0) for the group Γ such
that

div(Ψ) =
∑
m>0

c̃(−m)Tm,

with integral coefficients c̃(−m) ∈ Z. Then

log ‖Ψ(CM(K))‖Pet =
WK̃

4

∑
m>0

c̃(−m)bm −
WK̃

4
c(0)α(K̃/F̃ )

with

α(K̃/F̃ ) = Λ(0, χ)

(
Γ′(1) +

Λ′(0, χ)

Λ(0, χ)
− log 4π

)
.

Here bm and WK̃ are given in Theorem 1.1, ‖Ψ‖Pet denotes the Petersson metric of Ψ

normalized as in (2.27), χ is the quadratic Hecke character of F̃ associated to K̃/F̃ , and
Λ(s, χ) is the completed L-function of χ.

Although the proof of Theorem 1.4 is complicated and occupies the whole paper, the
basic idea is clear. It roughly follows the analytic proof of (1.1) in [GZ1] although each step
is more involved and needs new ideas. It consists of three main ingredients and essentially
goes as follows.

By the converse theorem for the Borcherds lift the function Ψ is the Borcherds lift
(see Theorem 2.4) of a weakly holomorphic modular form f of weight 0 for Γ0(p) with
Nebentypus character εp. The logarithm of its Petersson metric can be viewed as a Green
function for the divisor

∑
m>0 c̃(−m)Tm. It turns out that Tm has a ‘natural’ automorphic

Green function itself (see (2.24) and (2.25)). The first ingredient is to work out the exact
relation between Ψ and the automorphic Green function (Theorem 2.8).

Next, using a CM point, one can relate the quadratic lattice defining the automorphic
Green function of Tm with some ideal of the reflex field K̃ of (K,Φ) (Proposition 4.8).
The condition (1.3) on K guarantees that every ideal of K̃ is ‘hit’ via some CM point.
So the evaluation of the automorphic Green function at the CM 0-cycle is now related to
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the arithmetic of K̃ although the Green function itself is still involved. This part occupies
Sections 3 to 5 with the main result as Theorem 5.1.

The third ingredient is to construct a holomorphic modular form of weight 2 for Γ0(p)
with Nebentypus character εp, whose Fourier coefficients are the sum of two parts such that
one part is exactly the evaluation of the automorphic Green function at the CM 0-cycle,
and the other involves arithmetic of K̃ only and is basically a linear combination of the
quantities bm and α(K̃/F̃ ) in Theorem 1.4. To construct such a modular form, we have to
find a nice ‘incoherent’ Eisenstein series [Ku1] on F̃ associated to K̃/F̃ , and compute its
central derivative, restriction to Q, and finally holomorphic projection as in [GZ1]. This
part occupies Sections 6 to 8 with the main result recorded as Theorem 8.1.

Now by Serre duality (see Proposition 2.5), the existence of the weakly holomorphic
form f of weight 0 (whose Borcherds lift is equal to Ψ) implies a certain relation among
the Fourier coefficients of the weight 2 form which allows us to deduce the formula of
Theorem 1.4. This is carried out in Section 9, where we also make some remarks about
the relaxation of the condition (1.3), and a possible application to the Siegel modular
three-fold.

We mention that J. Schofer [Sc] is obtaining a similar formula in his thesis for the
evaluation of Borcherds products on a CM 0-cycle associated with a biquadratic CM field,
using a different method.

Gross and Zagier also gave an algebraic arithmetic proof of their result, using the moduli
interpretation of (SL2(Z)\H)2 and of the CM points on it. In this direction, Goren and
Lauter have recently obtained very interesting results on the CM-values of Igusa genus two
invariants (some Siegel modular functions of genus two) using arithmetic ideas [GL]. Let
X be the moduli stack over Z of abelian surfaces with real multiplication by OF and fixed
polarization (∂−1

F , ∂−1,+
F ), so that X ⊗Q = X. Let Tm and CM(K) be the Zariski closures

of Tm and CM(K) in X . Then Theorem 1.4 suggests the following conjectural intersection
formula:

(1.10) Tm · CM(K) =
WK̃

4
bm.

The left hand side makes sense as the generic fibers do not intersect at all. A CM point
over C associated to a non-biquadratic quartic CM field cannot lie on a Hirzebruch-Zagier
divisor Tm. The conjectured formula (1.10) is true in the degenerated case F = Q⊕Q by
the work of Gross and Zagier [GZ2]. For p = 5, 13, 17, our work implies that (1.10) is true
for every integer m ≥ 1 if it is true for one single m. We hope to come back to this formula
in the near future.

We would like to thank S. Kudla and D. Zagier for many stimulating discussions and
valuable suggestions. We thank N. Boston for help on MAGMA and H. Hippauf for her
help on computations with PARI/GP. The second author’s interest in this project was first
inspired by numerous discussions with K. Lauter on her conjectures on Igusa invariants
[La], and he thanks her for the inspiration. The second author also thanks the Max-Planck
Institut für Mathematik at Bonn for providing the excellent working environment where
part of this project was done during his visit in summer 2003. Finally, we thank the referee
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for his/her careful reading our manuscript and for the very insightful questions and detailed
comments.

2. Borcherds products and automorphic Green functions

In this section, we review some facts about Borcherds products on Hilbert modular
surfaces. By [Br1] they are related to certain automorphic Green functions associated with
Hirzebruch-Zagier divisors. We state this relationship in a precise form which is convenient
for the purposes of the present paper (Theorem 2.8). The constant term of the automorphic
Green function associated to a Hirzebruch-Zagier divisor Tm is dictated by the m-th Fourier
coefficient of a certain Eisenstein series of weight 2, whose definition and Fourier expansion
we review as well. This mainly serves to fix normalizations and notation.

We use τ = u + iv as a standard variable on the upper complex half plane H and put
q = e2πiτ as usual. If w ∈ C we briefly write e(w) = e2πiw. Let p ≡ 1 (mod 4) be a prime.
Moreover, let k be an integer, and denote by Wk(p, εp) the space of weakly holomorphic
modular forms of weight k for the group

Γ0(p) = {( a bc d ) ∈ SL2(Z) : c ≡ 0 (mod p)}
with Nebentypus character εp = ( ·

p
). Recall that a weakly holomorphic modular form is a

meromorphic modular form which is holomorphic outside the cusps. We let W+
k (p, εp) be

the subspace of those f ∈ Wk(p, εp), whose Fourier coefficients c(n) satisfy the so-called
plus space condition, i.e., c(n) = 0 whenever εp(n) = −1. If f ∈ W+

k (p, εp) with Fourier
expansion f(τ) =

∑
n�−∞ c(n)qn , then the polynomial

P (f) =
∑
n<0

c(n)qn

is called the principal part of f . Moreover, we write M+
k (p, εp) (respectively S+

k (p, εp)) for
the subspace of holomorphic modular forms (respectively cusp forms) in W+

k (p, εp). If k
is odd, then Wk(p, εp) = {0}. Throughout we therefore assume that k is even. The space
M+

k (p, εp) decomposes as a direct sum

M+
k (p, εp) = S+

k (p, εp)⊕ CE+
k (τ, 0),

where E+
k (τ, 0) is the value at s = 0 of a non-holomorphic Eisenstein series. Since we will

need this Eisenstein series at several places in this section, we briefly discuss its construction
and its Fourier expansion.

There are two non-holomorphic Eisenstein series

E∞
k (τ, s) =

∑
c,d∈Z
c≡0 (p)

εp(d)
1

(cτ + d)k
vs

|cτ + d|2s
,(2.1)

E0
k(τ, s) =

∑
c,d∈Z

εp(c)
1

(cτ + d)k
vs

|cτ + d|2s
(2.2)

of weight k for Γ0(p) with character εp. The former series corresponds to the cusp ∞ of
Γ0(p), the latter to the cusp 0. It is easily seen that these series converge normally on H
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if Re(s) > 1− k/2, and it is well known that they have a meromorphic continuation to all
s ∈ C, which is holomorphic at s = 0. By means of Lemma 3 of [BB] one can check that
the linear combination

E+
k (τ, s) =

1

2L(k + 2s, εp)

(
psE∞

k (τ, s) + p1/2−k−sE0
k(τ, s)

)
(2.3)

satisfies the plus space condition (extended to non-holomorphic modular forms in the anal-
ogous way). Here L(s, εp) denotes the usual Dirichlet series associated with the Dirichlet
character εp.

Let Wν,µ(z) be the usual W -Whittaker function as in [AbSt] Chapter 13, given by (when
Re(1

2
+ µ− ν) > 0, Re z > 0, see [AbSt] (13.2.5))

(2.4) Wν,µ(z) =
e−

z
2 zµ+ 1

2

Γ(1
2

+ µ− ν)

∫ ∞

0

e−tzt−
1
2
+µ−ν(1 + t)−

1
2
+µ+νdt.

To lighten the notation we put for s ∈ C and v ∈ R \ {0}:
(2.5) Ws(v) = |v|−k/2Wsgn(v)k/2,(1−k)/2−s(|v|).
Notice that

(2.6) W0(v) =

{
e−v/2, if v > 0,

e−v/2Γ(1− k, |v|), if v < 0,

where Γ(a, x) =
∫∞
x
e−tta−1dt denotes the incomplete Gamma function as in [AbSt] p. 81.

We have suppressed the dependency of k from the notation Ws(v), since it will be fixed
(equal to 2) later.

We define a function h(τ, s) on H× C by

h(τ, s) =
∑
d∈Z

1

(τ + d)k
1

|τ + d|2s
.(2.7)

It converges for Re(s) > (1− k)/2 and is clearly periodic in τ .

Lemma 2.1. The function h(τ, s) has the Fourier expansion

h(τ, s) = 22−k−2sπik
Γ(2s+ k − 1)

Γ(s+ k)Γ(s)
v1−k−2s

+
(2πi)kπs

Γ(s)vs

∑
n<0

|n|s+k−1Ws(4πnv)e(nu)

+
(2πi)kπs

Γ(s+ k)vs

∑
n>0

|n|s+k−1Ws(4πnv)e(nu).

Here the Whittaker function Ws(v) is defined by (2.5).

Proof. We write the Fourier expansion of h(τ, s) in the form

h(τ, s) =
∑
n∈Z

cn(v, s)e(nu),
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with

cn(v, s) =

∫ 1

u=0

h(τ, s)e(−nu) du.

By Poisson summation

cn(v, s) =

∫ ∞

u=−∞

e(−nu)
τ k+sτ̄ s

du,

and this integral is computed in (3.11), (3.12) of [BK]. We find that

cn(v, s) =


2kπs+kik|n|s+k−1v−sWs(4πnv)Γ(s)−1, n < 0

22−k−2sπik Γ(k+2s−1)
Γ(k+s)Γ(s)

v1−k−2s, n = 0,

2kπs+kik|n|s+k−1v−sWs(4πnv)Γ(k + s)−1, n > 0.

This implies the assertion. �

Theorem 2.2. The Eisenstein series E+
k (τ, s) defined in (2.3) has the Fourier expansion

E+
k (τ, s) = c(0, s, v) +

∑
n∈Z\{0}

C(n, s)Ws(4πnv)e(nu),

where

c(0, s, v) = (pv)s + 22−k−2sπikp1/2−k−sv1−k−sΓ(2s+ k − 1)

Γ(s+ k)Γ(s)

L(2s+ k − 1, εp)

L(2s+ k, εp)
,(2.8)

C(n, s) = 2
( p

4π

)s cos(πs)Γ(2s+ k)σ|n|(1− k − 2s)

Γ(s)L(1− k − 2s, εp)
, if n < 0,(2.9)

C(n, s) = 2
( p

4π

)s cos(πs)Γ(2s+ k)σn(1− k − 2s)

Γ(s+ k)L(1− k − 2s, εp)
, if n > 0,(2.10)

and σn(s) denotes the generalized divisor sum

σn(s) = n(k−1−s)/2
∑
d|n

ds (εp(d) + εp(n/d)) .(2.11)

Proof. It is easily seen that

E∞
k (τ, s) = 2vsL(2s+ k, εp) + 2vsp−k−2s

∑
d′ mod p

εp(d
′)

∑
c∈N

h(cτ + d′/p, s),

E0
k(τ, s) = 2vs

∑
c∈N

εp(c)h(cτ, s).

The assertion can be deduced from (2.3) by means of the Fourier expansion of h(τ, s) and
the functional equation of L(s, εp) as in (3.30) of [BK]. �

Observe that σn(s) = σn(−s), and σn(k − 1) =
∑

d|n d
k−1(εp(d) + εp(n/d)).
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Corollary 2.3. For k ≥ 2, the special value E+
k (τ, 0) is an element of M+

k (p, εp) with
Fourier expansion

E+
k (τ, 0) = 1 +

2

L(1− k, εp)

∞∑
n=1

σn(k − 1)qn.(2.12)

In particular, C(n, 0) = 2
L(1−k,εp)

σn(k − 1).

We now define Hirzebruch-Zagier divisors on the Hilbert modular surface X. We use
z = (z1, z2) as a standard variable on H2 and denote its imaginary part by (y1, y2). It is
well known that the Hilbert modular group can also be viewed as a discrete subgroup of
the orthogonal group of the rational quadratic space

(2.13) V = {A ∈M2(F ) : tA = A′} = {A =
(
a λ
λ′ b

)
: a, b ∈ Q, λ ∈ F},

equipped with the quadratic form Q(A) = det(A). Here tA is the transpose of A. The
Hilbert modular group Γ = SL2(OF ) acts on V via

(2.14) γ.A = γ′A tγ.

We consider the even integral lattice

L0 = {A =
(
a λ
λ′ b

)
: a, b ∈ Z, λ ∈ OF}(2.15)

in V . It has level p and its dual is given by

L = {A =
(
a λ
λ′ b

)
: a, b ∈ Z, λ ∈ ∂−1

F },(2.16)

where ∂F =
√
pOF denotes the different of F . The discriminant group L/L0 is simply

Z/pZ. For a positive integer m we denote

Lm = {A ∈ L : Q(A) = m/p}.(2.17)

The subset

(2.18) Tm =
⋃

“
a λ
λ′ b

”
∈Lm/{±1}

{(z1, z2) ∈ H2 : az1z2 + λz1 + λ′z2 + b = 0}

defines an Γ-invariant analytic divisor on H2, which by Chow’s lemma descends to an
algebraic divisor on X. This is the Hirzebruch-Zagier divisor of discriminant m, which we
also denote by Tm. The multiplicities of all irreducible components of Tm are equal to 1.
Moreover, Tm = 0 if εp(m) = −1.

We are now ready to state Borcherds’ Theorem (see [Bo1] Theorem 13.3). In the
present form it was obtained in [BB], Theorem 9. We refer the reader to [BB] for de-
tails, in particular on Weyl chambers and on the computation of the Weyl vector. If
f =

∑
n∈Z c(n)qn ∈ C((q)) is a formal Laurent series, we put

c̃(n) =

{
c(n), if n 6≡ 0 (mod p),

2c(n), if n ≡ 0 (mod p).
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Theorem 2.4. Let f =
∑

n�−∞ c(n)qn ∈ W+
0 (p, εp) be a weakly holomorphic modular

form and assume that c̃(n) ∈ Z for all n < 0. Then there exists a meromorphic Hilbert
modular form Ψ(z, f) for Γ = SL2(OF ) (with some multiplier system of finite order) such
that:

(i) The weight of Ψ(z, f) is equal to the constant term c(0) of f .
(ii) The divisor Tf of Ψ(z, f) is determined by the principal part of f at the cusp ∞.

It equals

Tf =
∑
n<0

c̃(n)T−n.

(iii) Let W ⊂ H2 be a Weyl chamber associated to f and put N = max{n : c(−n) 6= 0}.
The function Ψ(z, f) has the Borcherds product expansion

Ψ(z, f) = qρ1q
ρ′

2

∏
ν∈∂−1

F
(ν,W )>0

(
1− qν1q

ν′

2

)c̃(pνν′)
,

which converges normally for all z = (z1, z2) with y1y2 > N/p outside the set of
poles. Here ρ ∈ F is the Weyl vector corresponding to W and f , and qνj = e2πiνzj

for ν ∈ F .
(iv) A sufficiently large power of Ψ is a normalized integral Hilbert modular form for Γ.

Hilbert modular forms that arise as lifts via Theorem 2.4 are called Borcherds prod-
ucts. They provide a vast supply of Hilbert modular forms for which our main results
Theorems 1.1 and 1.4 apply.

The existence of weakly holomorphic forms in W+
0 (p, εp) with prescribed principal part

is dictated by the Fourier coefficients of holomorphic modular forms in M+
2 (p, εp).

Proposition 2.5. Let P =
∑

n<0 c(n)qn ∈ C[q−1] be a polynomial with c(n) = 0 if εp(n) =
−1. The following statements are equivalent:

(i) There is a weakly holomorphic form f ∈ W+
2−k(p, εp) with principal part P .

(ii) For every g =
∑

m>0 b(m)qm ∈ S+
k (p, εp) we have

∑
n<0 c̃(n)b(−n) = 0.

(iii) For every g =
∑

m>0 b(m)qm ∈ Sk(p, εp) we have
∑

n<0 c̃(n)b(−n) = 0.

This is proved for certain vector valued modular forms in [Bo2] and in the present form
in [BB], Theorem 6. In the same way one also finds:

Proposition 2.6. Let f =
∑

n�−∞ c(n)qn ∈ W+
2−k(p, εp) be a weakly holomorphic modular

form. Then the constant term can be computed in terms of the principal part by

c(0) = −1

2

∑
n<0

c̃(n)C(−n, 0).

Here C(m, 0) is the m-th coefficient of the Eisenstein series E+
k (τ, 0), see Corollary 2.3.

We now recall from [Br1] and [BBK] how Borcherds products are related to automorphic
Green functions in a form which is convenient for our purposes. This relationship is the
first step in the proof of our main results.
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For s ∈ C with Re(s) > 1 and (z1, z2) ∈ H2\Tm we define the automorphic Green
function for Tm by

Φm(z1, z2, s) =
∑

“
a λ
λ′ b

”
∈Lm

Qs−1

(
1 +

|az1z2 + λz2 + λ′z1 + b|2

2y1y2m/p

)
,(2.19)

where Qs−1(t) denotes the Legendre function of the second kind (cf. [AbSt] §8) which is
the unique solution to the second order Legendre (ordinary differential) equation

(2.20) (1− t2)Q′′(t)− 2tQ′(t) + s(s− 1)Q(t) = 0

satisfying Qs−1(t) = O(t−s) when t goes to ∞, and

(2.21) Qs−1(t) = −1

2
log(t− 1) +O(1)

when t goes to 1. In fact, Qs−1(t) can be given by

Qs−1(t) =

∫ ∞

0

(t+
√
t2 − 1 cosh v)−sdv,

and

Qs−1

(
1 + t

1− t

)
=

Γ(s)2

2Γ(2s)
(1− t)sF (s, s, 2s; 1− t) (0 < t < 1).

It is easily seen that Φm(z1, z2, s) converges normally for (z1, z2) ∈ H2\Tm and Re(s) > 1
and therefore defines a Γ-invariant function, which has a logarithmic singularity along Tm.
According to [Br1] it has a meromorphic continuation to a neighborhood of s = 1, and a
simple pole at s = 1. The residue is equal to −1

2
C(m, 0), where C(m, 0) is the coefficient of

E+
2 (τ, 0). This follows from [BK] (in particular Example 2) or from [BBK] Theorem 2.11

combined with the observation that the function ϕm(s) of [BBK] satisfies

ϕm(s) = (π/p)s−1 sΓ(s− 1/2)

(2− 4s)Γ(1/2)
C(m, s− 1),(2.22)

ϕm(1) = −1

2
C(m, 0).(2.23)

So C(m, s − 1) occurs in the constant term of the Fourier expansion of Φm(z1, z2, s) and
dictates the residue at s = 1.

We define the regularized Green function Φm(z1, z2) for the divisor Tm as the constant
term in the Laurent expansion of Φm(z1, z2, s) at s = 1, that is

Φm(z1, z2) = lim
s→1

(
Φm(z1, z2, s) +

C(m, 0)

2(s− 1)

)
.(2.24)

For questions regarding the arithmetic of Borcherds products, it is convenient to renormal-
ize the Green function Φm(z1, z2) as in [BBK], Definition 2.13:

Definition 2.7. If m is a positive integer we put

Gm(z1, z2) =
1

2

(
Φm(z1, z2)− Lm

)
,(2.25)



CM-VALUES OF HILBERT MODULAR FUNCTIONS 13

where

(2.26) Lm =
C(m, 0)

2

(
1 + Γ′(1)− log(4π)− C ′(m, 0)

C(m, 0)

)
.

Recall that the Petersson metric of a Hilbert modular form F of weight k is defined as

‖F (z1, z2)‖Pet = |F (z1, z2)|
(
16π2y1y2

)k/2
.(2.27)

Theorem 2.8. Let F be a meromorphic Hilbert modular form of weight k for the group Γ
such that

div(F ) =
∑
m>0

c̃(−m)Tm,

with integral coefficients c̃(−m) ∈ Z.

(i) Then there exists a weakly holomorphic form f ∈ W+
0 (p, εp) with principal part∑

m<0 c(m)qm and a non-zero constant C such that F (z) = CΨ(z, f), that is, F is
a constant multiple of the Borcherds lift of f .

(ii) The Petersson metric of F is given by

log ‖F (z1, z2)‖Pet = log |C| −
∑
m>0

c̃(−m)Gm(z1, z2).

Here C is the same constant as in (i).
(iii) If F is in addition normalized integral, then C = ±1 in (i) and (ii).

Proof. The first assertion is the converse Theorem (see [Br1] Theorem 9), see also [Br3],
Section 5, for background information.

To prove (iii), we notice that, by Theorem 2.4 (iv), there is a positive integer N such that
Ψ(z, f)N is a normalized integral Hilbert modular form for Γ. So F (z)N/Ψ(z, f)N = CN

is a normalized integral modular form which is constant. This implies CN = ±1. Now we
notice that the Fourier coefficient of Ψ(z, f) with index given by the Weyl vector ρ is equal
to 1. On the other hand the corresponding coefficient of F is rational by assumption. This
implies that C is rational, and hence C = ±1.

Finally, the assertion (ii) follows from [BBK] Theorem 4.3 (iv). (Notice that we use the
same normalization of Gm as in [BBK].) �

3. Hilbert modular varieties and CM 0-cycles

In this section, we review some basic facts about CM 0-cycles on a Hilbert modular
variety, which are known to experts but not in the literature. For that reason, we make it
more general than it perhaps should be and hope it will be useful for non-experts in this
field. We first recall some facts on modular varieties and refer to [Ge] and [Go] for details.

Let F be a totally real number field of degree g with ring of integers OF . Let {σ1, . . . , σg}
be the real embeddings of F . For a subset S of F , we denote S+ for the subset of S of
elements which are totally positive.

For a fractional ideal f0 of F , let

(3.1) Γ = Γ(f0) = SL(OF ⊕ f0) = {g = ( a bc d ) ∈ SL2(F ) : a, d ∈ OF , b ∈ f0, c ∈ f−1
0 }.
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It acts on Hg via

γ(z1, . . . , zg) = (σ1(γ)z1, . . . , σg(γ)zg).

The quotient space X = X(f0) = Γ\Hg is the so-called open Hilbert modular variety
(associated to f0). Clearly, for a ∈ F+ one has

X(f0)
∼−→ X(af0), z = (zi) 7→ az = (σi(a)zi).

More generally, for any ideal a0 of F , there is

A =

(
a b
c d

)
∈ SL2(F ) ∩

(
a0 a0f0

(a0f0)
−1 (a0)

−1

)
.

Moreover,

(3.2) φ : X(f0) −→ X(a2
0f0), z 7→ Az = (σ1(A)z1, . . . , σg(A)zg)

is an isomorphism of varieties.
It is known ([Go], Theorem 2.17) that X(f0) parameterizes the isomorphism classes of

the triples (A, ı,m), where (A, ı) is an abelian variety with real multiplication ı : OF ↪→
End(A), and

m : (MA,M
+
A) −→

(
(∂F f0)

−1, (∂F f0)
−1,+

)
is an OF -isomorphism between MA and (∂F f0)

−1 which preserves the ‘direction’, i.e., maps
M+

A onto (∂F f0)
−1,+. Here

MA = {λ : A→ A∨ : λ is a symmetric OF -linear homomorphism}
is the polarization module of A and

M+
A = {λ ∈ MA : λ is a polarization}

is its positive cone. In terms of lattices, X(f0) parameterizes isomorphism classes of tuples
(Λ, (

∧2
OF

Λ)∗,+, i,m), where Λ is a projective OF -module of rank 2,

i : Λ⊗OF
R ∼−→ C2

is a complex structure on Λ⊗OF
R, and(∧
2
OF

Λ
)∗

= Hom
(∧

2
OF

Λ,Z
)
,

and (
∧2
OF

Λ)∗,+ is a sub-semigroup of (
∧

2
OF

Λ)∗ (direction), and

m :
(
(
∧

2
OF

Λ)∗, (
∧

2
OF

Λ)∗,+
) ∼−→

(
(∂F f0)

−1, (∂F f0)
−1,+

)
.

Let K be a totally imaginary quadratic extension of F and let Φ = (σ1, . . . , σg) be a CM
type of K. Then a point z = (A, ı,m) ∈ X(f0) is said to be a CM point of type (K,Φ) if
one of the following equivalent conditions holds:

(1) As a point z ∈ Hg, there is τ ∈ K such that Φ(τ) = (σ1(τ), . . . , σg(τ)) = z and such
that Λτ = OF τ + f0 is a fractional ideal of K.

(2) (A, ı′) is a CM abelian variety of type (K,Φ) by OK , ı′ : OK ↪→ EndA, such that
ı = ı′|OF

.
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To relate CM points with ideals of K, it is convenient to fix a ξ0 ∈ K∗ such that
ξ̄0 = −ξ0 and that Φ(ξ0) = (σ1(ξ0), . . . , σg(ξ0)) ∈ Hg. We will say an element z ∈ K is in
Hg if Φ(z) ∈ Hg and will identify z with Φ(z) to lighten up the notation sometimes. We
also denote K+ = K ∩Hg via the above identification (it depends on Φ).

Lemma 3.1. Let a be a fractional ideal of K. Then the ideal class of fa = ξ0∂K/Faā ∩ F
is the Steinitz class of a as a projective OF -module. More precisely, we have an OF -linear
isomorphism

f−1
a

∼−→ HomOF

(∧
2
OF

a,OF

)
, a 7→ Eaξ0 ,

where

Eξ : K ×K −→ F, Eξ(x, y) = trK/F ξx̄y.

Moreover, a is totally positive if and only if trF/QEaξ0 is a non-degenerate Riemann form.

Proof. Since K = F + Fξ0, a 7→ Eaξ0 is an F -isomorphism between F and F -symplectic
forms on K. We have Eaξ0(x, y) ∈ OF for all x, y ∈ a if and only if a ∈ f−1

a . �

From this lemma, it is easy to see that the CM abelian variety (Aa = Cg/Φ(a), ı) has
the following polarization module

(MA,M
+
A) =

(
(∂F fa)

−1, (∂F fa)
−1,+

)
.

To give an OF -isomorphism between this pair with ((∂F f0)
−1, (∂F f0)

−1,+), is the same as
to give an r ∈ F+ such that fa = rf0. Therefore, to give a CM point (A, ı,m) ∈ X(f0) is
the same as to give a pair (a, r) where a is a fractional ideal K and fa = rf0 with r ∈ F+.
Two such pairs are equivalent if they give the same CM point, that is, there is α ∈ K∗

such that

a2 = αa1, r2 = r1αᾱ.

We write [a, r] for the equivalence class of (a, r) and identify it with its associated CM
point (Aa, ı,m) ∈ X(f0). In terms of its coordinates in Hg, we have the following

Lemma 3.2. Given a CM point [a, r] ∈ X(f0), there is a decomposition

(3.3) a = OFα+ f0β

with z = α
β
∈ K∗ ∩Hg. Moreover z represents the point [a, r] in X(f0).

Proof. Lemma 3.1 implies that the Steinitz class of a in CL(F ) is f0. So we can decompose
a as in (3.3) with α, β ∈ K∗. This implies that

(ᾱβ − αβ̄)f0OK = ∂K/Faa, and ξ0(ᾱβ − αβ̄)f0 = fa = rf0.

So ξ0(ᾱβ − αβ̄) = rε for some unit ε ∈ O∗
F . Replacing β by βε−1 if necessary, we may

assume ε = 1. This implies

ξ0(z̄ − z) =
r

ββ̄
∈ F+

and thus z ∈ K+ = {z ∈ K∗ : Φ(z) ∈ Hg}. Now notice that

a = βΛz, Aa
∼= Az,
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where Λz = OF z+f0 and Az = Cg/Λz is the abelian variety associated to z. So z represents
[a, r] in X(f0). �

Lemma 3.3. Let a0 be an ideal of F . Then, under the isomorphism φ : X(f0) −→ X(a2
0f0)

given by (3.2), one has φ([a, r]) = [aa0, r].

Proof. We may assume a = OF z + f0 with z = [a, r] ∈ X(f0). Let

A =

(
a b
c d

)
∈ SL2(F ) ∩

(
a0 a0f0

(a0f0)
−1 (a0)

−1

)
be the matrix defining φ in (3.2). Then

φ(z) = Az =
az + b

cz + d
,

and

(cz + d)Λφ(z) = OFα+ a2
0f0β ⊂ aa0

with (
α
β

)
=

(
az + b
cz + d

)
= A

(
z
1

)
.

Then (
z
1

)
= A−1

(
α
β

)
=

(
dα− bβ
−cα + aβ

)
.

Now z = dα− bβ implies

a0z ⊂ a0dα− a0bβ ⊂ OFα+ a2
0f0β = (cz + d)Λφ(z),

and 1 = −cα + aβ implies

a0f0 ⊂ a0f0cα + a0f0aβ ⊂ OFα+ a2
0f0β = (cz + d)Λφ(z).

So

aa0 = (cz + d)Λφ(z)

and φ(z) = [aa0, r] ∈ X(a2
0f0). �

We will denote CM(K,Φ, f0) for the set of CM points [a, r] in X(f0), and view it as a
0-cycle in X(f0). We also denote

CM(K,Φ) =
∑

f0∈CL+(F )

CM(K,Φ, f0).

Notice that the forgetful map

CM(K,Φ) −→ CL(K), [a, r] 7→ [a]

is surjective. All the fibers are indexed by ε ∈ O∗,+
F /NK/FO∗

K , since every element in the

fiber of a is of the form [a, rε] with r fixed and ε ∈ O∗,+
F a totally positive unit. It is

the same as [a, r] if and only if ε ∈ NK/FO∗
K . In particular, all the fibers have the same

cardinality of O∗,+
F /NK/FO∗

K which is 1 or 2.
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Let (K̃, Φ̃) be the reflex type of (K,Φ). Then there is a type norm map NΦ both on
elements and on ideals,

(3.4) NΦ : K∗ −→ K̃∗, α 7→ NΦ(α) =
∏
σ∈Φ

σ(α),

and

(3.5) NΦ : I(K) −→ I(K̃), NΦ(a) =
∏
σ∈Φ

σ(a)OM ∩ K̃,

where M is a Galois extension of Q containing both K and K̃, and I(K) is the group of
all fractional ideals of K. Notice that

NΦ(a)NΦ(a) = NaOF̃ .

Here Na = #OK/a. Let H(K) be the subgroup of I(K) of ideals a such that

(3.6) NΦa = µOK̃ , Na = µµ̄ for some µ ∈ K̃∗.

We call the quotient CC(K) = CC(K,Φ) = I(K)/H(K) the CM ideal class group of K.
According to [Sh], page 112, Main Theorem 1, the class field of K̃ associated to the CM
ideal class group CC(K̃, Φ̃) is the composite of K̃ with the field of the moduli of any
polarized CM abelian variety of type (K,Φ) by OK . This CM ideal class group acts on
CM(K,Φ, f0) via

(3.7) [a, r]σb̃ = [aNΦ̃b̃, rN b̃].

Therefore, CM(K,Φ, f0), as a 0-cycle, is defined over K̃. Let Φ̄ be the complement of Φ,
consisting of σ ◦ ρ for all σ ∈ Φ, where ρ is the complex conjugation in K.

Lemma 3.4. One has

CM(K,Φ, f0) = CM(K, Φ̄, f0).

More generally, if φ is an automorphism of K over Q such that φ(f0) = f0, then

CM(K,Φ ◦ φ−1, f0) = CM(K,Φ, f0).

In particular, if K/Q is Galois, then CM(K,Φ,OF ) is rational over Q.

Proof. If [a, r] ∈ CM(K,Φ, f0), then Lemma 3.2 implies that fa = rf0 and

a = OFα+ f0β

with z = Φ(α
β
) ∈ Hg. In this case, z is the associated CM point in X(f0). Notice that

φ(a) = OFφ(α) + f0φ(β)

and Φ◦φ−1(φ(α)/φ(β)) = Φ(α/β) = z. On the other hand, it is easy to see that φ(∂K/F ) =
∂K/F , and

φ(fa) = φ(ξ0)∂K/Fφ(a)φ(a) ∩ F = φ(r)φ(f0) = φ(r)f0.
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So φ(fa) can be viewed as fφ(a) with respect to φ(ξ0). Therefore, [a, r] (with respect to Φ)
and [φ(a), φ(r)] (with respect to Φ ◦ φ−1) give rise to the same point z in X(f0). Since
a 7→ φ(a) is an automorphism of CL(K), one has thus

CM(K,Φ ◦ φ−1, f0) = CM(K,Φ, f0).

�

Remark 3.5. Now we are in a position to explain the claims in the introduction about the
rationality of the CM 0-cycles and prove that Corollary 1.2 follows from Theorem 1.1. Let
(K,Φ) be as in the introduction. By (3.7), CM(K,Φ,OF ) is defined over K̃. So

CM(K,Φ,OF ) + CM(K, σΦ,OF ) + CM(K, σ2Φ,OF ) + CM(K,σ3Φ,OF )

is defined over Q. Since σ2 is the complex conjugation, Lemma 3.4 implies that

CM(K,Φ,OF ) = CM(K, σ2Φ,OF ), CM(K,σΦ,OF ) = CM(K, σ3Φ,OF ).

So CM(K) is rational over Q, and Ψ(CM(K)) is a rational number. Now Corollary 1.2
follows from Theorem 1.1. When K/Q is cyclic, the four CM 0-cycles above are all the
same by Lemma 3.4. So CM(K,Φ,OF ) is defined over Q, and

Ψ(CM(K)) = Ψ(CM(K,Φ,OF ))2 > 0.

4. CM number fields of degree 4

The automorphic Green function Φm(z1, z2, s) associated to Tm is by definition an infinite
sum over Lm, the vectors of norm m/p in the lattice L of rank 4. In this section, we show
(Proposition 4.8) that when (z1, z2) is a CM point associated to (K,Φ), the lattice L can
be replaced by an ideal of K̃ via some isometry ρ defined in (4.11).

Let F = Q(
√
D) be a real quadratic field, and let K = F (

√
∆) be a totally imaginary

quadratic extension of F , and let Φ be a CM type of K. Let F̃ = Q(
√

∆∆′), where

a+ b
√
D 7→ (a+ b

√
D)′ = a− b

√
D is the non-trivial automorphism of F over Q. We first

record an easy lemma (see [Sh], page 64).

Lemma 4.1. Let the notation be as above.

(1) K/F is biquadratic if and only if F̃ = Q.
(2) K/F is cyclic if and only if F̃ = F .
(3) K/F is non-Galois if and only if F̃ 6= F is a real quadratic field.
(4) (K,Φ) is a primitive CM type if and only if K is not biquadratic.

From now on, we assume that K is non-biquadratic, i.e., F̃ is a real quadratic field.
We view both

√
∆ and

√
∆′ as complex numbers with positive imaginary parts. Then

M = Q(
√

∆,
√

∆′) is a Galois closure of K over Q. There are two cases:
(a) Cyclic Case: In this case, M = K, and Gal(M/Q) =< σ > with

(4.1) σ(
√

∆) =
√

∆′, σ(
√

∆′) = −
√

∆.

(b) Non-Galois case: In this case, Gal(M/Q) =< σ, τ > is D4, with σ as above and

(4.2) τ(
√

∆) =
√

∆′, τ(
√

∆′) =
√

∆.
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It is clear that σ2 = ‘−’ is the complex conjugation. Let Φ = {1, σ} be a CM type of
K, which is primitive since K is non-biquadratic. Let (K̃, Φ̃) be its reflex. Then F̃ is the
maximal totally real subfield of K̃. Recall

K+ = K+(Φ) = {z ∈ K : Φ(z) = (z, σ(z)) ∈ H2}.

Define D̃ = NF/QdK/F . Then

(4.3) ∆∆′ = D̃a2, D̃ = dF̃ b
2

for some rational numbers a, b ∈ 1
2
Z.

Lemma 4.2. Let f0 be an integral ideal of F , and let a = OFα + f0β be a fractional ideal
of K. Then √

D̃Na = ±4 Im(αβ̄) Im(σ(α)σ(β))N f0

= ∓(αβ̄ − ᾱβ)(σ(α)σ(β)− σ(α)σ(β))N f0.

Here N means the absolute norm from a number field to Q. When z = α
β
∈ K+, the sign

± becomes +1.

Proof. First we recall a general fact. Let K/F be a finite extension of number fields of
degree d, and let a be a fractional ideal of K generated by x1, . . . , xd over OF . Then

(4.4) dK/F{x1, . . . , xd} = NK/Fa2dK/F ,

where
dK/F{x1, . . . , xd} = det(trxixj) = det((σi(xj)))

2

with σi the different embeddings of K into F̄ fixing F . In our case, let {e1, e2} be a Z-basis
of OF and {f1, f2} be a Z-basis of f0, then {e1α, e2α, f1β, f2β} is a Z-basic for a. Then a
simple calculation gives

dK/Q · (Na)2 = dK/Q{e1α, e2α, f1β, f2β}

= (αβ̄ − ᾱβ)(σ(α)σ(β)− σ(α)σ(β))dF/Q{e1, e2}dF/Q{f1, f2}

= (αβ̄ − ᾱβ)(σ(α)σ(β)− σ(α)σ(β))d2
F · (N f0)

2.

Notice that dK = d2
F D̃, one proves the lemma by taking the square root of the above

identity. �

Let

(4.5) V = {A ∈M2(F ) : tA = A′} = {A =
(
a λ
λ′ b

)
: a, b ∈ Q, λ ∈ F}

with quadratic form Q(A) = detA = ab − λλ′ as in Section 2. For an ideal f0 of F , let
f0 = N f0 ∈ Q+. The Hilbert modular group Γ = Γ(f0) acts on V via

(4.6) γ.A = γ′A tγ.

Let

(4.7) L0(f0) = {A =
(
a λ
λ′ b

)
∈ V : a ∈ Z, b ∈ f0Z, λ ∈ f0}
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be an f0-integral lattice of V (so Q(L0) ⊂ f0Z) which is preserved by the action of Γ. Its
dual is 1

f0
L(f0), where

(4.8) L(f0) = {A =
(
a λ
λ′ b

)
: a ∈ Z, b ∈ f0Z, λ ∈ f0∂

−1
F }.

Notice that Q(L(f0)) ⊂ f0
D

Z, and that L is the same lattice as in (2.16) when f0 = OF . For
a positive integer m ≥ 1, let

(4.9) Lm = Lm(f0) = {A ∈ L : detA = m
f0

D
}, L0

m = {A ∈ L0 : detA = mf0}.

It can be proved that

(4.10) L0
m = LmD.

For any (α, β) ∈ K2, we define a map

(4.11) ρ(α,β) : V −→ K̃, ρ(α,β)(A) = (σ(α), σ(β))A

(
α
β

)
.

Explicitly,

(4.12) ρα,β(A) = aασ(α) + ασ(λβ) + σ(α)λβ + bβσ(β) if A =

(
a λ
λ′ b

)
.

We define

γ.(α, β) = (α, β)γ.

Then for γ ∈ Γ(f0) and a ∈ K∗, one has

(4.13) ργ.(α,β)(A) = ρ(α,β)(γ.A), ρ(aα,aβ)(A) = aāρ(α,β)(A).

For a CM point [a, r] ∈ CM(K,Φ, f0), we write

(4.14) a = OFα+ f0β, z =
α

β
∈ K+

as in (3.3).
We define two Q-quadratic forms on K̃ via

Q−(ρ) = trF̃ /Q
1√
D̃
ρρ̄ =

1√
D̃

(ρρ̄− σ(ρ)σ(ρ)),(4.15)

Q+(ρ) = trF̃ /Q ρρ̄ = ρρ̄+ σ(ρ)σ(ρ).

Then

(4.16) ρρ̄ =
1

2
(Q+(ρ) +

√
D̃Q−(ρ)).

Proposition 4.3. Let [a, r] ∈ CM(K,Φ, f0), and write a = OFα+ f0β as in (4.14). Then
the map ρ(α,β) is a Q-linear isometry between quadratic spaces (V, det) and (K̃,−N f0

Na
Q−).

That is,

Q−(ρα,β(A)) = −Na

N f0
det(A).
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Proof. We may assume β = 1 and write z = α and

(4.17) ρz(A) = ρz,1(A) = azσ(z) + zλ′ + σ(z)λ′ + b.

When K is cyclic over Q, K̃ = K, ρz is clearly a Q-linear map. When K is non-Galois, K̃
is the subfield of M fixed by τ , and ρz(A) is fixed by τ and thus belongs to K̃. So ρz is
again a Q-linear map. If ρz(A) = 0, so is σ(ρz(A)), and thus

0 = ρz(A)− σ(ρz(A)) = (aσ(z) + λ′)(z − z̄),

which is impossible since z /∈ F . So ρz is injective and thus an isomorphism since dimV =
dim K̃ = 4. To check the isometry, set ρ = ρz(A). It is easy to check that

ρ− σ(ρ) = (aσ(z) + λ′)(z − z̄),

ρ− σ(ρ) = (az + λ)(σ(z)− σ(z)),(4.18)

ρ̄σ(z)− σ(ρ)σ(z) = (λ′z̄ + b)(σ(z)− σ(z)).

So

ρρ̄− σ(ρ)σ(ρ) = ρ̄(ρ− σ(ρ)) + σ(ρ)(ρ̄− σ(ρ))

= (z − z̄)
(
a(ρ̄σ(z)− σ(ρ)σ(z)) + λ′(ρ̄− σ(ρ))

)
= (z − z̄)(σ(z)− σ(z)) detA.

By Lemma 4.2, we have then

Q−(ρz(A)) = −Na

N f0
det(A).

�

To determine the image of the latices L0 and L, we need some more preparation. Without
loss of generality, we may write

(4.19) ∆ = c
−a+ b

√
D

2
, a, b, c ∈ Z

such that −a+b
√
D

2
∈ OF is primitive in the sense that it does not have any rational prime

factor, and that c is square-free. For each prime p, we write a(p) for the p-part of an ideal
a, and aodd for the prime to 2-part of a.

Lemma 4.4. Let the notation be as above. Then

dodd
K/F ∩ Z = dodd

F̃

∏
p|c,p-2DdF̃

pZ,

and

NF/Qd
odd
K/F = dodd

F̃

∏
p|c,p-2DdF̃

p2Z.
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Proof. By looking at each finite prime of F locally (p-adic completion), one sees dodd
K/F |∆OF .

One also has dodd
F̃
|∆∆′. Write ∆ = c∆1 with ∆1 = −a+b

√
D

2
primitive. Let p|∆∆′ = c2∆1∆

′
1

be an odd prime number. We will prove the formulas prime-by-prime.
If p is inert in F , then p|c and p - ∆1∆

′
1. So F̃ is unramified at p, and K/F is ramified

at p (ordp ∆ = 1), i.e., d
(p)
K/F = pOF . The p-parts of the formulas hold.

If p = p2 is ramified in F , then

ordp ∆ = 2 ordp c+ ordp ∆1 = 2 ordp c+ ordp ∆1∆
′
1.

So K/F is ramified at p if and only if F̃ is ramified at p, and thus

d
(p)
K/F = pf if d

(p)

F̃
= pf .

The p-parts of the formulas hold again in this case.
If p = pp′ is split in F , then there are two sub-cases. When p|dF̃ , ordp ∆∆′ is odd. But

ordp ∆∆′ = ordp ∆ + ordp ∆′ = ordp δ + ordp′ ∆,

exactly one of ordp ∆ or ordp ∆′ is odd. So

d
(p)
K/F = p or p′, d

(p)

F̃
= p,

and the p-parts of the formulas hold again in this case. When p - dF̃ , F̃ is unramified at p.
In this case,

ordp ∆1∆
′
1 = ordp ∆1 + ordp′ ∆1,

is even, and one of ordp ∆1 or ordp′ ∆1 is zero since ∆1 is primitive. So both are even, and

ordp ∆ ≡ ordp′ ∆ ≡ ordp c mod 2.

So

d
(p)
K/F =

{
pOF if p|c,
OF if p - c.

The p-parts of the formulas hold in this case too. �

Recall that (K̃, Φ̃) is the reflex type of (K,Φ), and K̃ = F̃ (
√

∆̃) with

∆̃ = (
√

∆ +
√

∆′)2 = c(−a− 2
√

∆1∆′
1).

It is easy to check that −a− 2
√

∆1∆′
1 is prime-to-2 primitive. So the above lemma gives,

Corollary 4.5. Let the notation be as above. Then

dodd
K̃/F̃

∩ Z = Dodd
∏

p|c,p-2DdF̃

pZ,

and
NF̃ /Qd

odd
K̃/F̃

= Dodd
∏

p|c,p-2DdF̃

p2Z.

Here Dodd is as before the odd part of D.
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Corollary 4.6. Let the notation be as above, and assume that ∆ is primitive. Then

(∂FOM)odd = (∂K̃/F̃σ(∂K̃/F̃ )OM)odd,

and

(∂F̃OM)odd = (∂K/Fσ(∂K/F )OM)odd.

Proof. Let AM = ∂K̃/F̃σ(∂K̃/F̃ )OM . Recall that Gal(M/F ) =< τσ, σ2 > and that σ2 is the
complex conjugation. Clearly,

σ2(AM) = AM ,

and (since τσ = σ−1τ and τ fixes K̃)

τσ(AM) = τστ−1(∂K̃/F̃ )τσ2(∂K̃/F̃ )

= σ−1(∂K̃/F̃ )σ2τ(∂K̃/F̃ )

= σ2(AM) = AM .

So AM is invariant under Gal(M/F ), and there is thus an ideal aF such that AM = aFOM .
On the other hand,

A2
M = AMAM = NF̃ (dK̃/F̃ )OM .

So Proposition 4.4 implies

(a2
F )odd = dodd

F OF

and thus aodd
F = ∂odd

F . This proves the first formula of this corollary. The second formula
is the same. �

For the rest of this section, we assume that

(4.20) ∆ is primitive and dK is odd.

According to a theorem of Hilbert ([Co], Theorem 17.20, see also [Ya2], Appendix A), dK
is odd if D and ∆ are odd, and ∆ is a square modulo 4. Under our assumption, dodd

F

becomes dF and so on in the above lemma and corollaries.

Proposition 4.7. Let the notation be as in Proposition 4.3, and assume that the condition
(4.20) holds. Then

ρα,β(L
0) = NΦa.

Proof. We may assume that α = z and β = 1. Notice first that for any A =
(
a λ
λ′ b

)
∈ L0(f0),

a ∈ Z, b ∈ f0Z ⊂ f0σ(f0) ⊂ aσ(a), and λ ∈ f0 ⊂ a. So

ρz(A) = azσ(z) + zλ′ + σ(z)λ′ + b ∈ NΦ(a).

Conversely, if ρ = ρz(A) ∈ NΦ(a), we first assume that f0 = OF . Then OF ⊂ a, and thus
ρ, σ(ρ) ∈ aāσ(a)OM . By (4.18), one has then

ρ− σ(ρ) = (aσ(z) + λ′)(z − z̄) ∈ aāσ(a)OM .

On the other hand, a = OF z +OF implies that

(4.21) (z − z̄)OK = ∂K/Faā.
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Hence

aσ(z) + λ′ ∈ σ(a)∂−1
K/FOM ,

and

aσ(z) + λ′ ∈ σ(a)∂−1
K/FOM .

Thus

a(σ(z)− σ(z)) ∈ σ(a)σ(a)∂−1
K/FOM .

Now (4.21) and Corollary 4.6 implies

a ∈ ∂−1
K/Fσ(∂−1

K/F )OM ∩Q = ∂−1

F̃
∩Q = Z.

This implies

λ′ ∈ σ(a)∂−1
K/FOM ∩ F = OF .

It is easy now to verify that b ∈ Z, i.e., A ∈ L0. This proves the proposition in the case
f0 = OF . Shifting by a generator of f0, we see that this is also true if f0 is principal. For
a general ideal f0, we localize as every prime ideal of OF , and the above argument shows
that A ∈ L(f0)p for every prime ideal p of F , and so A ∈ L(f0). �

For the lattice L, it is clear from the definition

ρα,β(A) = aασ(α) + ασ(λβ) + σ(α)λβ + bβσ(β) ∈ ∂−1
F aσ(a)OM ∩K.

However, the converse is not true. In fact, one of the key technical results in this paper is
the following proposition, which connects the quadratic lattice L related to the Hirzebruch-
Zagier curves with some ideal of the reflex field K̃ via the CM point involved.

Proposition 4.8. Let the notation be as in Proposition 4.3, and assume that the condition
(4.20) holds. Then

ρα,β(L) = ∂−1

K̃/F̃
NΦa.

In particular, for any integer m ≥ 1, one has

(4.22) ρ(α,β)(Lm) = {ρ ∈ ∂−1

K̃/F̃
NΦ(a) : ρρ̄ =

n−m
√
D̃

2D
Na ∈ NadK̃/F̃

−1}.

Proof. The cyclic case: We first assume that K is cyclic over Q so M = K = K̃ and
F = F̃ . We may also assume that α = z, β = 1, f0 = OF , and that (Na, dK) = 1. If
A =

(
a λ
λ′ b

)
∈ L with a, b ∈ Z and λ ∈ ∂−1

F = 1√
D
OF , one has by definition

ρz(A) = azσ(z) + b+ λ′z + λσ(z) ∈ ∂−1
F NΦa.

Clearly azσ(z) + b ∈ NΦa. Write λ = λ1√
D

with λ1 ∈ OF , then

λ′z + λσ(z) =
σ(λ′1z)− λ′1z√

D
.

Since
√
DOK = ∂2

K/F , it suffices to prove that for any z ∈ OK ,

σ(z)− z ∈ ∂K/F .
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For any prime P of K dividing ∂K/F , P is totally ramified in K/Q and so OK/P = Z/p
where p is the prime below P . So

σ(z)− z ≡ 0 mod P

and thus

σ(z)− z ∈ ∂K/F .

This proves one inclusion. Conversely, if ρ ∈ ∂−1
K/FNΦa, write ρ = ρz(A) for some A ∈ V

by Proposition 4.3. By our assumption at the beginning of the proof, we know a ⊃ OF .
Hence

ρ ∈ ∂−1
K/Faσ(a)a,

σ(ρ) ∈ ∂−1
K/Faσ(a)a,

since σ(∂K/F ) = ∂K/F . So

ρ− σ(ρ) = (az + λ′)(z − z̄) ∈ ∂−1
K/Faσ(a)a.

Now (4.21) implies

az + λ′ ∈ ∂−2
K/Fσ(a)

and the same argument as in the proof of the previous proposition gives

a ∈ ∂−3
K/F ∩Q = Z.

This implies

λ ∈ ∂−2
K/Fσ(a) ∩ F =

1√
D
OF .

Now it easy to see by definition b ∈ Z, i.e., A ∈ L. This proves the cyclic case.
Easy non-Galois case: Now we assume thatK/Q is non-Galois and a further condition

that (dF , dF̃ ) = 1. By Corollary 4.6, one has

1√
D
OM = ∂−1

K̃/F̃
σ(∂K̃/F̃ )−1OM .

Claim: σ(∂−1

K̃/F̃
)OM ∩ K̃ = OK̃ .

Indeed, by Lemma 4.4, we only need to check primes p|dF . By the same lemma, p splits
into two primes pF̃ and p′

F̃
, such that pF̃ is ramified in K̃ while p′

F̃
is unramified in K̃.

On the other hand, the following diagram and Lemma 4.4 imply that the prime ideal of F
above p is unramified in M (since (dF , dF̃ ) = 1).
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So the diagram and Corollary 4.6 imply that the prime ideal(s) of K̃ above p′
F̃

is ramified

in M while p′
F̃

is ramified in σ(K̃) and becomes unramified in M . Therefore for a prime
P of M above p′

F̃
(i.e., above σ(∂K̃/F̃ )), one has

ordP σ(∂K̃/F̃ )OM = 1, e(P/PK̃) = 2

where PK̃ = P ∩ K̃, and e(P/PK̃) is the ramification index. So

σ(∂K̃/F̃ )−1OM ∩ K̃ = OK̃ .

Next, the claim and Corollary 4.6 imply

1√
D

aσ(a)OM ∩ K̃ = (∂K̃/F̃ )−1aσ(a)σ(∂K̃/F̃ )−1OM ∩ K̃

= (∂K̃/F̃ )−1aσ(a)OM ∩ K̃ = (∂K̃/F̃ )−1NΦa.

So ρ(L) ⊂ (∂K̃/F̃ )−1NΦa. The other direction is the same as the cyclic case with following
modification:

ρ ∈ ∂−1

K̃/F̃
aσ(a)aOM , σ(ρ) ∈ σ(∂−1

K̃/F̃
)aσ(a)aOM .

So

ρ− ρ(z) = (az + λ′)(z − z̄) ∈ ∂−1

K̃/F̃
σ(∂−1

K̃/F̃
)aσ(a)aOM = ∂−1

F aσ(a)aOM ,

and thus

az + λ′ ∈ ∂−1
K/F∂

−1
F σ(a)OM .

The same argument as in the cyclic case shows

a ∈ ∂−1
F ∂−1

F̃
OM ∩Q = Z

since (dF , dF̃ ) = 1. This proves the easy non-Galois case. The cyclic and easy non-Galois
case are all we need for the proof of Theorem 1.4.

The general non-Galois case: The proposition is local in nature, we can prove it one
prime at a time. For p - dFdF̃ , there is nothing to prove. When p divides exactly one of the
dF and dF̃ . The same argument as in the easy non-Galois case applies. When p|dF and p|dF̃ ,
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the argument is similar to that of the cyclic case. Indeed, to prove ρz(L) ⊂ ∂−1

K̃/F̃
NΦ(a), it

suffices to prove, by Corollary 4.6, that for any z ∈ OK ,

σ(z)− z ∈ σ(∂K̃/F̃ )OM .

Since p|dF and p|dF̃ , Lemma 4.4 implies that p is totally ramified in K and K̃ and the

prime ideal PK (resp. PK̃) of K (resp. K̃) above p becomes unramified in M . Write

z = a+ bδ, a, b ∈ OFp ,

where δ ∈ Kp is a uniformizer with δ̄ = −δ. Then

σ(z)− z = a− a′ + bδ − b′δ′.

Clearly a− a′ ∈
√
DOFp ⊂ σ(∂K̃/F̃ )OMp . On the other hand,

bδ − b′δ′ = bδ − σ(bδ) ∈ σ(∂K̃/F̃ ).

So

σ(z)− z ∈ σ(∂K̃/F̃ )OMp .

For the other direction, we notice that both PK̃ and σ(PK̃) are unramified in M , and

PK̃OM = σ(PK̃)OM = PKOM = σ(OK)OM .

This implies

σ(∂K̃p/F̃p
OMp) = ∂K̃p/F̃p

OMp = PK̃OMp .

So the same argument as the cyclic case gives

ρ, σ(ρ) ∈ (∂K̃/F̃ )−1aσ(a)aOMp .

The same argument as in the cyclic case then shows

az + λ′ ∈ ∂−1
K/F (∂K̃/F̃ )−1σ(a)OMp = ∂−2

K/Fσ(a)OMp

and

a ∈ ∂−3
K/FOMp ∩Qp = Zp.

So the p-part of a is integral. The same argument as in the cyclic case implies then that
the p-part of λ is in ∂−1

F . Since this holds for every p, we finally proved the proposition. �

5. CM values of automorphic Green functions

Now we come back to our situation in the introduction and provide the second ingredient
for the proof of Theorem 1.4. The theorem itself should be of independent interest.

Theorem 5.1. Let F = Q(
√
p) be a real quadratic field with p ≡ 1 (mod 4) being prime.

Let K = F (
√

∆) be a totally imaginary quadratic extension of F such that

(5.1) dK/F ∩ Z = qZ, and NF/QdK/F = q
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for some prime number q ≡ 1 (mod 4), as in the introduction. Let Φ = {1, σ} be the
CM type of K defined in (1.2), and let CM(K,Φ,OF ) be the CM 0-cycle in X defined in
Section 3. Let Φm(z, s) be the automorphic Green function for Tm as in (2.19). Then1

Φm(CM(K,Φ,OF ), s) = WK̃

∑
µ=

n−m
√

q

2p
∈d−1,+

K̃/F̃

Qs−1

(
n

m
√
q

)
ρK̃/F̃ (µdK̃/F̃ ).

Here (K̃, Φ̃) is the reflex type of (K,Φ), and F̃ = Q(
√
q). Finally, WK̃ is the number of

roots of unity in K̃, and ρK̃/F̃ is defined as in (1.7).

Proof. For A =
(
a λ
λ′ b

)
∈ V , set w = ( 0 −1

1 0 ), and

(5.2) dA(z1, z2) = 1 +
|az1z2 + λ′z1 + λz2 + b|2

2y1y2 detA
.

Then for a CM point [a, r] ∈ CM(K,Φ,OF ), we write as in (4.14)

a = OFα+OFβ, z =
α

β
∈ K+.

Proposition 4.3 and Lemma 4.2, imply (ρ = ρ(α,β)(A))

dA(z, σ(z)) = 1 +
2ρρ̄

4 Im(z) Im(σ(z)) detA
=
Q+(ρ)
√
q

1

Na detA
.

Set

(5.3) µ(z, A) =
ρ(α,β)(A)ρ(α,β)(A)

Na
=
Q+(ρ) +

√
D̃Q−(ρ)

2Na
.

The identity (4.13) implies

(5.4) µ(γz,A) = µ(z, tγ.A).

So µ(z, A) depends only on the CM point z = [a, r] ∈ CM(K,Φ,OF ), up to a SL2(OF )
action. Now A ∈ Lm implies detA = m

p
. Proposition 4.8 implies µ(z, A) ∈ d−1,+

K̃/F̃
⊂ 1

p
OF̃ ,

so we can write

µ(z, A) =
n−m

√
q

2p
∈ d−1,+

K̃/F̃
.

Then dA(z, σ(z)) = n
m
√
q
, and

Φm(z, s) =
∑
A∈Lm

Qs−1(dA(z, σ(z)))

=
∑

µ=
n−m

√
q

2p
∈d−1

K̃/F̃

Qs−1(
n

m
√
q
)

∑
A∈Lm

µ(z,A)=µ

1.(5.5)

1Throughout, for the Green functions Gm and Φm the evaluation on a 0-cycle is additive.
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So Proposition 4.8 implies

(5.6) Φm(CM(K,Φ,OF ), s) =
∑

µ=
n−m

√
q

2p
∈d−1

K̃/F̃

Qs−1(
n

m
√
q
)C(µ)

with

(5.7) C(µ) = #{[a, r] ∈ CM(K,Φ,OF ), ρ ∈ ∂−1

K̃/F̃
NΦa : ρρ̄ = µNa}.

Fix a ξ0 ∈ K∗ with ξ̄0 = −ξ0, then ξ0∂K/F = f0OK for some ideal f0 of F . Since p ≡ 1
mod 4 is prime, the narrow class number of F is odd, and thus f0 = λ0g

2
0 for some ideal g0

of F and λ0 � 0. Recall that CM(K,Φ,OF ) is the equivalence classes of [a, r] where a is
an ideal of K and r ∈ F+ with

(5.8) fa := ξ0∂K/Faā ∩ F = λ0g
2
0NK/Fa = rOF .

To continue the proof, we need two lemmas.

Lemma 5.2. Let the notation and assumption be as in Theorem 5.1. Let CL0(K) = {[a] ∈
CL(K) : NK/Fa = µOF for some µ � 0}. Then [a, r] 7→ [ag0] gives an bijection between
CM(K,Φ,OF ) and CL0(K). Moreover, for [ag−1

0 , r] ∈ CM(K,Φ,OF ) with [a] ∈ CL0(K)
and µ ∈ d−1

K̃/F̃
, one has

#{ρ ∈ ∂−1

K̃/F̃
NΦ(ag−1

0 ) : ρρ̄ = µNK/Q(ag−1
0 )}

= WK̃#{b̃ ∈ [∂K̃/F̃ ][NΦ(a)]−1 integral : NK̃/F̃ b̃ = µdK̃/F̃}.

Proof. Since every totally positive unit of F is a square, the comment after Lemma 3.3
implies that [ag−1

0 , r] 7→ [a] gives a bijection between CM(K,Φ,OF ) and CL0(K).
Secondly, NΦg0 = NF/Qg0 = g0 ∈ Q∗, ρ 7→ ρg0 gives a bijection between

S1 = {ρ ∈ ∂−1

K̃/F̃
NΦ(ag−1

0 ) : ρρ̄ = µNK/Q(ag−1
0 )}

and

S2 = {ρ ∈ ∂−1

K̃/F̃
NΦ(a) : ρρ̄ = µNK/Q(a)}.

Thirdly, ρ 7→ b̃ = ρ∂K̃/F̃NΦa−1 is a map from S2 to

S3 = {b̃ ∈ [∂K̃/F̃ ][NΦ(a)]−1 integral : NK̃/F̃ b̃ = µdK̃/F̃}.

Conversely, if b̃ ∈ S3, then

b̃∂−1

K̃/F̃
NΦ(a) = ρOK , ρρ̄OF = µNaOF

for some ρ ∈ K∗. So ρ ∈ ∂−1

K̃/F̃
NΦ(a), and ρρ̄ = µNaε for some ε ∈ O∗

F totally positive.

Again, one has ε = ε21 for some unit ε1 ∈ O∗
F and ρε−1

1 maps to b̃ under our map. Finally,

if ρ1 and ρ2 map to the same ideal b̃, then

ρ1 = ερ2, ρ1ρ̄1 = ρ1ρ̄1 = µNa
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for some unit ε ∈ O∗
K̃

. So εε̄ = 1, and therefore ε is a root of unity in K̃. So the map from
S2 to S3 is surjective and WK̃ to one, and thus

#S1 = #S2 = WK̃#S3.

�

Lemma 5.3. Under the assumption of Theorem 5.1, the type norm map

NΦ : CL(K) −→ CL(K̃), [a] 7→ [aσ(a)OM ∩ K̃]

induces an isomorphism between CL0(K) and CL0(K̃).

Proof. Since NΦ(a)NΦ(a) = NaOK̃ , one sees [NΦa] ∈ CL0(K̃) always. Next, for an ideal
class [a] ∈ CL0(K), we may choose a representative a so that a and σ(a) are relatively
prime in the Galois closure M of K. Then one has

NΦ̃ ◦NΦ(a) = NΦ(a)σ−1(NΦ(a))OM ∩K
= a2σ(aā).

Since [a] ∈ CL0(K), aā = λOK for some λ ∈ F+. So

[NΦ̃ ◦NΦ(a)] = [a]2

is the square map. By [CH], Corollary 13.9, CL(K) and thus CL0(K) is odd. So the square
map and thus NΦ and NΦ̃ are isomorphisms. �

Now we return to the proof of Theorem 5.1. By the above two lemmas, one has for
µ ∈ d−1,+

K̃/F̃
:

C(µ) = WK̃#{[a] ∈ CL0(K), b̃ ∈ [∂K̃/F̃ ][NΦa]−1 integral : NK̃/F̃ b̃ = µdK̃/F̃}

= WK̃#{[ã] ∈ CL0(K̃), b̃ ∈ [∂K̃/F̃ ][ã] integral : NK̃/F̃ b̃ = µdK̃/F̃}

= WK̃#{b̃ ⊂ OK̃ : NK̃/F̃ b̃ = µdK̃/F̃}
= WK̃ρK̃/F̃ (µdK̃/F̃ ).

The last identity is due to the fact that if an integral ideal b̃ of K̃ satisfies NK̃/F̃ b̃ = µdK̃/F̃ ,

then ã = b̃∂−1

K̃/F̃
∈ CL0(K̃). Combining this formula for C(µ) with (5.6), one proves the

theorem. �

Let Φ′ = {1, σ−1} = σ3Φ be another CM type of K, and let (K̃ ′, Φ̃′) be the reflex of
(K,Φ′). Then σ(K̃ ′) = K̃ and σ(∂′

K̃/F̃
) = ∂K̃/F̃ , where ∂K̃/F̃ is the ideal of K̃ ′ defined the

same manner as that of ∂K̃/F̃ . So Theorem 5.1 implies:
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Corollary 5.4. Let the notation be as above. Then

Φm(CM(K,Φ′,OF )) = WK̃′

∑
µ=

n−m
√

q

2p
∈d′−1,+

K̃/F̃

Qs−1

(
n

m
√
q

)
ρK̃′/F̃ (µd′

K̃/F̃
)

= WK̃

∑
µ=

n+m
√

q

2p
∈d−1,+

K̃/F̃

Qs−1

(
n

m
√
q

)
ρK̃/F̃ (µdK̃/F̃ ).

6. Incoherent Eisenstein series

In [Ya1], one of the authors constructed holomorphic modular forms by restricting a
‘coherent’ Eisenstein series over a totally real number field to Q. The purpose of next
three sections is to construct a holomorphic cuspidal modular form of weight 2 from an
‘incoherent’ Eisenstein series over a real quadratic field by means of central derivative, di-
agonal restriction, and holomorphic projection. This provides the third and last ingredient
we need for the proof of Theorem 1.4. We start with a more general setting with new
notations. The quadratic field F here will be F̃ in Theorem 1.4 in the end.

Let F = Q(
√
D) be a real quadratic field with fundamental discriminant D > 0, and let

K = F (
√

∆) be a totally imaginary quadratic extension with ∆ � 0 totally negative. Let
χ = χK/F be the quadratic Hecke character of F associated to K/F .

Let ψQ be the canonical unramified additive character of QA with ψQ∞(x) = e(x) = e2πix.
Let ψ be the unramified additive character of FA given by

(6.1) ψ(x) = ψ

(
trF/Q

x√
D

)
.

We fix one embedding F into R such that
√
D > 0, and denote the other embedding by

x = a + b
√
D 7→ x′ = a − b

√
D. In particular, (

√
D)′ = −

√
D < 0. We denote the

corresponding two infinite places by ∞ and ∞′. We also fix a CM type Φ = {1, σ} of K

so that
√

∆ ∈ iR>0 and σ(
√

∆) =
√

∆′ ∈ iR>0. Under these identifications, one has

(6.2) ψ∞(x) = e

(
x√
D

)
, ψ∞′(x) = e

(
− x√

D

)
.

Let I(s, χ) = ⊗′I(s, χv) be the induced representation of SL2(FA), consisting of Schwartz
functions Φ(g, s) on SL2(FA) such that

(6.3) Φ(n(b)m(a)g, s) = χ(a)|a|s+1Φ(g, s), n(b) =

(
1 b
0 1

)
, m(a) =

(
a 0
0 a−1

)
.

Recall first that for a factorizable standard section Φ =
∏

v Φv ∈ I(s, χ), the Eisenstein
series

(6.4) E(g, s,Φ) =
∑

γ∈B\ SL2(F )

Φ(γg, s)
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is absolutely convergent when Re(s) � 0 and has a meromorphic continuation to the whole
complex s-plane with finitely many poles and is holomorphic on the unitary line Re(s) = 0.
Here B is the usual Borel subgroup of SL2(F ).

In this paper, we choose ΦK =
∏

Φv ∈ I(s, χ) as follows. Let V = K with the quadratic
form Q(z) = zz̄. Then the reductive dual pair (O(V ), SL2) gives rise to the Weil represen-
tation ω = ωψ of SL2(FA) on the space of Schwartz functions S(VA) = S(KA), and there is
SL2(FA)-equivariant map

(6.5) λ = λV : S(VA) −→ I(0, χ), φ 7→ ω(g)φ(0).

For any finite prime v of F , let Φv ∈ I(s, χv) be the standard section such that

Φv(g, 0) = λv(char(OKv))(g).

That is, Φv is Φ+
v associated to ψv in the notation of [Ya1]. For an infinite v, we take

Φv = Φ1
R ∈ I(s, χv) to be the unique eigenfunction of SO2(R) of weight 1, i.e.,

Φv(gkθ, s) = Φv(g, s)e
iθ, Φ(1, s) = 1, kθ =

(
cos θ sin θ
− sin θ cos θ

)
.

We remark that due to our choice of ψ, every Φv except for v = ∞′ comes from the
quadratic space Vv while Φ∞′ actually comes from −V∞′ (the same space with the negative
quadratic form), thus ‘incoherent’ according to Kudla ([Ku1]).

We normalize

(6.6) E∗(τ, τ ′, s,ΦK) = (vv′)−
1
2E(gτgτ ′ , s,Φ

K)Λ(s+ 1, χ).

Here (τ, τ ′) = (u+ iv, u′ + iv′) ∈ H2, A = DNF/QdK/F , and

(6.7) Λ(s, χ) = A
s
2L(s, χ)ΓR(s+ 1) = A

s
2

∏
v

L(s, χv), ΓR(s) = π−
s
2 Γ( s

2
).

The same proof as that of [Ya1], Theorem 1.2, implies:

Theorem 6.1. The Eisenstein series E∗(τ, τ ′, s,ΦK) has the following properties.

(1) It is a (non-holomorphic) Hilbert modular form for the group Γ0(dK/F ) of weight
(1, 1) and character χ. That is,

E∗(γτ, γ′τ ′, s,ΦK) = χ(γ)(cτ + d)(c′τ ′ + d′)E∗(τ, τ ′, s,ΦK),

for every γ = ( a bc d ) ∈ Γ0(dK/F ), i.e., c ∈ dK/F . Here χ(γ) is defined as

(6.8) χ(γ) :=
∏

v|dK/F

χv(d).

(2) It satisfies the functional equation

E∗(τ, τ ′, s,ΦK) = −E∗(τ, τ ′,−s,ΦK).

(3) The constant term is given by

E∗
0(τ, τ

′, s,ΦK) = (vv′)
s
2 Λ(−s, χ)− (vv′)−

s
2 Λ(s, χ).

Here ΓR(s) = π−
s
2 Γ(s), and

Λ(s, χ) = A
s
2 ΓR(s+ 1)2L(s, χ), A = DNF/QdK/F
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is the complete L-function of χ.
(4) E∗

t (τ, τ
′, s,ΦK) = 0 unless t ∈ OF .

In particular, E∗(τ, τ ′, 0,ΦK) = 0 automatically, and it is interesting to compute the
central derivative E∗,′(τ, τ ′, 0,ΦK). In fact, we need a slightly more general result, which
we now describe. For γ = ( a bc d ) ∈ SL2(OF ), it is easy to check that

E∗(τ, τ ′, s,Φ)|1γ := (cτ + d)−1(c′τ ′ + d′)−1E∗(γτ, γ′τ ′, s,Φ)

= E∗(τ, τ ′, s, γ−1
f Φ),(6.9)

where γf is the image of γ in SL2(Af ) under the diagonal embedding.
We decompose dK/F = dcd

′
c according to c such that d′c is relatively prime to cOF and

every prime factor of dc divides cOF . Define

(6.10) Ct(γ) =
∏
v|dc

χv(d)
∏
v|d′c

χv(c)ε(χv, ψv)|dK/F |
1
2ψ(−d

c
t).

In particular, Ct(1) = 1 and Ct(w) = (NF/QdK/F )−
1
2 . Finally, we define

(6.11) δ(t) =
∏

v|dK/F

(1 + χv(t)),

and for an ideal a of F (as in (1.7))

(6.12) ρ(a) = #{A ⊂ OK : NK/F (A) = a}.

Then ρ(a) = 0 for a non-integral integral a. If a is integral, one has

(6.13) ρ(a) =
∏
v<∞

ρv(a),

with

(6.14) ρv(a) =


1 if v|dK/F ,
1+(−1)ordv a

2
if v inert inK/F,

1 + ordv a if v split inK/F.

The rest of this section is to prove the following theorem.

Theorem 6.2. Let the notation be as above. Let γ = ( a bc d ) ∈ SL2(OF ) and assume that
the 2-part of dK/F either divides cOF or is prime to cOF . Then

E∗,′(τ, τ ′, 0, γ−1
f ΦK) =

∑
t∈(d′c)

−1

Ct(γ)At(v, v
′)e

(
tr

tτ√
D

)
,

where τ = u+ iv, τ ′ = u′ + iv′, and At(v, v
′) are given as follows.

(1) The constant term is

A0(v, v
′) = log(vv′)Λ(0, χ) + 2Λ′(0, χ).
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(2) When t, t′ > 0, one has

At(v, v
′) = −2δ(t)ρ(tdK/F )β1

(
4π|t′|v′√

D

)
.

(3) When t, t′ < 0, one has

At(v, v
′) = −2δ(t)ρ(tdK/F )β1

(
4π|t|v√
D

) ∏
v|dc

χv(a).

(4) When t > 0 > t′, and there is a ramified finite prime v0 such that χv0(t) = −1, one
has

At(v, v
′) = At = −4 ordv0(tdK/F )ρ(tdK/F )

∏
v0 6=v|dK/F

(1 + χv(t)) log |pv0 |

is independent of τ or τ ′. Here pv0 is the prime ideal of F associated to v0, for an
integral ideal a, we write |a| for the order of OF/a.

(5) When t > 0 > t′ and there is an inert finite prime v0 such that χv0(t) = −1, one
has

At(v, v
′) = At = −2δ(t)ρ(tdK/Fp−1

v0
)(ordv0 t+ 1) log |pv0 |

is independent of τ or τ ′.
(6) In all other cases, one has

At(v, v
′) = 0.

The proof is local in nature. We first recall that for any factorizable section Φ =
∏

Φv,
the Eisenstein series E(g, s,Φ) has the Fourier expansion

(6.15) E(g, s,Φ) = E0(g, s,Φ) +
∑
t∈F ∗

Et(g, s,Φ),

where, for t ∈ F ∗,

(6.16) Et(g, s,Φ) =
∏
v

Wt,v(g, s,Φv)

with

(6.17) Wt,v(g, s,Φv) =

∫
Fv

Φv(wn(b)g, s)ψv(−tb)db.

Here db is the Haar measure on Fv with respect to the character ψv. The constant term is

(6.18) E0(g, s,Φ) = Φ(g, s) +W0(g, s,Φ) = Φ(g, s) +M(s)Φ(g, s).

We normalize

(6.19) W ∗
t,v(g, s,Φ) = L(s+ 1, χv)Wt,v(g, s,Φ).

Then our normalized Eisenstein series is

E∗(τ, τ ′, s,Φ) = E∗
0(τ, τ

′, s,Φ) +
∑
t∈F ∗

E∗
t (τ, τ

′, s,Φ)
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with (t 6= 0)

E∗
t (τ, τ

′, s,Φ) = A
s+1
2 W ∗

t,∞(τ, s,Φ∞)W ∗
t′,∞′(τ ′, s,Φ∞)

∏
v<∞

W ∗
t,v(1, s,Φv).

The constant term E∗
0 is similar. We now recall the local results in [Ya1].

Lemma 6.3. ([Ya1], Proposition 2.1) Assume v - dK/F∞∞′.

(1) Φv is the unique eigenfunction of K = SL2(Ov) with trivial eigencharacter such
that Φv(1, s) = 1.

(2) Its Whittaker function satisfies W ∗
t,v(1, s,Φv) = 0 unless t ∈ Ov. When t ∈ Ov,

W ∗
t,v(1, 0,Φv) = ρv(tOv).

(3) W ∗
t,v(1, 0,Φv) = 0 if and only if v is inert in K/F and χv(t) = −1. In such a case,

W ∗,′
t,v (1, 0,Φv) =

1

2
(ordv t+ 1) log |pv|.

(4) M∗
v (s)Φv(g, s) = L(s, χv)Φv(g,−s).

Lemma 6.4. ([Ya1], Proposition 2.3) Assume that v|dK/F . Then

(1) Φv is an eigenfunction of K0(dK/F ) with eigencharacter χv, where

K0(dK/F ) = {γ = ( a bc d ) ∈ SL2(Ov) : c ≡ 0 mod dK/F}, χv(γ) = χv(d).

Moreover,

Φv(1) = 1, Φv(w) = χv(−1)ε(χv, ψv)|dK/F |
1
2
v , Φv(n

−(c)) = 0

for n−(c) = ( 1 0
c 1 ) with 0 < ordv c < ordv dK/F .

(2) Its Whittaker function with respect to ψv satisfies

W ∗
t (1, s,Φv) = Φv(w)(1 + χv(t)|tdK/F |sv)char(Ov)(t),

W ∗
t (w, s,Φv) = Φv(w)2(1 + χv(t)|tdK/F |sv)char(d−1

K/FOv)(t).

(3) For t ∈ OF , W ∗
t (1, 0,Φv) = 0 if and only if χv(t) = −1. In such a case,

W ∗,′
t,v (1, 0,Φv) = Φv(w)(ordv tdK/F ) log |pv|.

(4) For t ∈ d−1
K/F , W ∗

t,v(w, 0,Φv) = 0 if and only if χv(t) = −1. In such a case,

W ∗,′
t,v (w, 0,Φv) = Φv(w)2(ordv tdK/F ) log |pv|.

(5) One has the functional equation

M∗
v (s)Φv(g, s) = Φv(g,−s)Φv(w).

Next, we consider the infinite primes ∞ and ∞′. Notice first that ψ∞(x) = ψQ∞( x√
D

),

so the self-dual Haar measure dψ∞b with respect to ψ∞ is

dψ∞b = D− 1
4db,
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where db is the usual Haar measure on R, self-dual respect to φQ∞ . Let Φ∞ be the weight
one section. Then its t-th Whittaker function with respect to ψ∞ is

Wt,∞(τ, s,Φ∞) = v−
1
2

∫
R

Φ1
R(wn(b)gτ , s)ψQ∞(− tb√

D
)dψ∞b

= −v−
1
2

∫
R

Φ1
R(w−1n(b)gτ , s)ψQ∞(− tb√

D
)dψ∞b

= −v−
1
2D− 1

4W t√
D
,R(gτ , s,Φ

1
R).

Here Wt,R(gτ , s,Φ
1
R) is the Whittaker function of Φ1

R with respect to ψR, which is computed
in [KRY1]. Notice that [KRY1] uses w−1 to define local Whittaker functions. Similarly,
one has

Wt,∞′(τ ′, s,Φ∞′) = −D− 1
4v′,−

1
2W− t√

D
,R(τ ′, s,Φ1

R).

We set

W ∗
t,∞(τ, τ ′, s) = W ∗

t,∞(τ, s,Φ∞)W ∗
t′,∞′(τ ′, s,Φ∞′)(6.20)

= D− 1
2W ∗

t√
D
,R(τ, s,Φ1

R)W ∗
− t′√

D
,R(τ ′, s,Φ1

R).

Here W ∗
t,R(τ, s,Φ1

R) is the v−
1
2 times of the function W ∗

t,∞(τ, s) in [KRY1]. The lemma and
Proposition 2.6 of [KRY1] imply

Lemma 6.5. Let t ∈ F .

(1) When t, t′ > 0, i.e., t� 0, one has W ∗
t,∞(τ, τ ′, 0) = 0, and

W ∗,′
t,∞(τ, τ ′, 0) = − 2√

D
e

(
tτ − t′τ ′√

D

)
β1

(
4π|t′|v′√

D

)
.

Here

β1(x) = −Ei(−t) =

∫ ∞

1

e−uxu−1du, x > 0.

(2) When t� 0 is totally negative, one has W ∗
t,∞(τ, τ ′, 0) = 0, and

W ∗,′
t,∞(τ, τ ′, 0) = − 2√

D
e

(
tτ − t′τ ′√

D

)
β1

(
4π|t|v√
D

)
.

(3) When t < 0 < t′, one has

W ∗,′
t,∞(τ, τ ′, 0) = W ∗

t,∞(τ, τ ′, 0) = 0.

(4) When t > 0 > t′, one has

W ∗
t,∞(τ, τ ′, 0) = − 4√

D
e

(
tτ − t′τ ′√

D

)
.

(5) When t = 0, one has

W ∗
0,∞(τ, τ ′, s) = −(vv′)−

s
2D− 1

2L(s, χ∞)L(s, χ∞′).
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(6) One has the functional equation for v = ∞,∞′,

M∗
v (s)Φv(g, s) = −iD− 1

4L(s, χv)Φv(g,−s).

Proof of Theorem 6.2. Now we are ready to prove Theorem 6.2. We check the case t 6= 0
and leave the constant term to the reader. By Lemma 6.3, one has γ−1

v Φv = Φv for
v - dK/F∞∞′. For v|dc, the condition in Theorem 6.2 implies γv ∈ K0(dK/F ), and thus

γ−1
v Φv = χv(d)Φv.

For v|d′c, one has c ∈ O∗
v and

γ−1
v = −m(c−1)n(−c−1d)wn(−c−1a)

and thus

W ∗
t,v(1, s, γ

−1
v Φv) =

∫
Fv

Φv(wn(b)γ−1
v )ψv(−tb)db

= χv(−c)|c|s+1
v

∫
Fv

Φv(wn(c2b− cd)w)ψv(−tb)db

= χv(−c)ψv(−
d

c
t)W ∗

t
c2
,v(w, s,Φv).

Since c ∈ O∗
v, Lemma 6.4(2) implies then

(6.21) W ∗
t,v(1, s, γ

−1
v Φv) = χv(−c)ψv(−

d

c
t)W ∗

t,v(w, s,Φv).

So

E∗
t (τ, τ

′, s, γ−1
f ΦK) = A

s+1
2 W ∗

t,∞(τ, τ ′, s)
∏

v-dK/F∞∞′

W ∗
t,v(1, s,Φv)

·
∏
v|dc

χv(d)W
∗
t,v(1, s,Φv)

∏
v|d′c

χv(−c)ψv(−
d

c
t)W ∗

t,v(w, s,Φv).(6.22)

So Lemmas 6.3 and 6.4 imply that E∗
t (τ, τ, 0, γ

−1
f ΦK) = 0 unless t ∈ d′−1

c . We assume

t ∈ d′−1
c from now on. These lemmas also imply

(6.23)
∏

v-dK/F∞∞′

W ∗
t,v(1, 0,Φv) = ρ(tdK/F )

and ∏
v|dc

χv(d)W
∗
t,v(1, 0,Φv)

∏
v|d′c

χv(−c)ψv(−
d

c
t)W ∗

t,v(w, 0,Φv)

= δ(t)
∏

v|dK/F

Φv(w)
∏
v|dc

χv(d)
∏
v|d′c

χv(−c)ψv(−
d

c
t)Φv(w)

=
δ(t)√

NF/QdK/F
Ct(γ).(6.24)
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If t� 0 is totally positive, W ∗
t,∞(τ, τ ′, 0) = 0 by Lemma 6.5. Moreover, Lemmas 6.3–6.5

and the above calculation imply (recall A = DNF/QdK/F )

E∗,′
t (τ, τ ′, 0, γ−1

f ΦK)

= A
1
2W ∗,′

t,∞(τ, τ ′, 0)
∏

v-dK/F∞∞′

W ∗
t,v(1, 0,Φv)

·
∏
v|dc

χv(d)W
∗
t,v(1, 0,Φv)

∏
v|d′c

χv(−c)ψv(−
d

c
t)W ∗

t,v(w, 0,Φv)

= −2δ(t)ρ(tdK/F )Ct(γ)β1

(
4π|t′|v′√

D

)
e

(
tr

tτ√
D

)
as claimed. The case t� 0 is the same.

Next, if t > 0 > t′ but there is a prime v0 of F inert in K/F such that χv0(t) = −1, then
W ∗
t,v0

(1, 0,Φv) = 0 and ordv0 t > 0 is odd. This implies ρv0(tp
−1
v0

) = 1, and∏
v-v0dK/F∞∞′

W ∗
t,v(1, 0,Φv) = ρ(tdK/Fp−1

v0
).

Now Lemmas 6.3–6.5 and the above calculation give again

E∗,′
t (τ, τ ′, 0, γ−1

f ΦK)

= A
1
2W ∗,′

t,v0(1, 0,Φv0) · other values

= −2δ(t)ρ(tdK/Fp−1
v0

)(ordv0 t+ 1)Ct(γ)e

(
tr

tτ√
D

)
as claimed. The same calculation also verifies the case when t > 0 > t′ and there is a
v0|dK/F such that χv0(t) = −1. In all other cases, E∗

t (τ, τ
′, s, γ−1

f ΦK) has at least a double
zero at s = 0 and thus the central derivative is zero. �

7. Diagonal restriction

In this section we study the restriction to the diagonal of E∗,′(τ, τ ′, 0,ΦK). We first
determine the level and the Nebentypus character precisely, and then compute the Fourier
expansion and the image under the Fricke involution.

Setting τ ′ = τ , one sees from Theorem 6.2 that E∗,′(τ, τ, 0,ΦK) is a non-holomorphic
modular form of weight 2 for the group Γ0(N) with Nebentypus character χ̃. Here NZ =
dK/F ∩ Z, and χ̃ is the composition of χ and the embedding (Z/N)∗ ↪→ (OF/dK/F )∗. The
following lemma ([Ya1], Lemma 5.6) makes N and χ̃ more explicit in some cases.

Lemma 7.1. Let F = Q(
√
D) be a real quadratic field, and let ∆ ∈ OF be an odd totally

negative primitive element (without any rational prime factor) such that ∆ is a square

modulo 4. Let K = F (
√

∆) and F̃ = Q(
√

∆∆′). Then

(1) dK/F ∩ Z = dF̃Z, and the character χ̃ just defined above is the quadratic Dirichlet

character associated to F̃ /Q.
(2) NF/QdK/F = dF̃ is odd.
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In particular, under the condition of the lemma, every prime factor of dF̃ is split in F ,
and the diagonal restriction E∗,′(τ, τ, 0,ΦK) is a non-holomorphic modular form of weight
2, level N = dF̃ , and Nebentypus character ( ·

N
).

From now on, we assume in addition that:

(7.1) dK/F = p, and dF̃ = p = NF/Qp are prime.

So the situation is more general than in Theorem 1.4, where we also assume that F/Q is
only ramified at one prime. We hope that this will be useful for possible generalizations
(see Remark 9.2).

For the proof of Theorem 1.4, it is more convenient to consider the modular form

(7.2) f̃(τ) =
1
√
p
E∗,′(τ, τ, 0,ΦK)|2Wp,

where Wp =
(

0 −1
p 0

)
= wdiag(p, 1). Since Wp normalizes Γ0(p), f̃(τ) is also a non-

holomorphic modular form of weight 2, level p, and Nebentypus character ( ·
p
). It is easy

to check

f̃(τ) = p
1
2E∗,′(pτ, pτ, 0,ΦK)|2w

= p
1
2E∗,′(pτ, pτ, 0, w−1

f ΦK).

Theorem 7.2. Let F = Q(
√
D) and let K = F (

√
∆) be a CM quadratic extension of

F satisfying the condition in Lemma 7.1 and the equation (7.1). Then one has for τ =
u+ iv ∈ H

f̃(τ) =
∑
m∈Z

am(v)e(mτ),

where am(v) are given as follows.

(1) The constant term is

a0(v) = 2Λ(0, χ) log pv + 2Λ′(0, χ)− 8
∞∑
n=1

ρ(nOF )β1(
4πnpv√

D
).

(2) For m 6= 0, one has am(v) = −4bm − 4cm(v), where

(7.3) bm =
∑

t∈d−1
K/F

t>0>t′

t−t′=m
p

√
D

Bt =
∑

t=n+m
√

D
2p

∈d−1
K/F

|n|<m
√
D

Bt

with

(7.4) Bt = (ordl t+ 1)ρ(tdK/F l−1) log |l|,
where l is a prime ideal of F non-split in K such that χl(t) = −1. Moreover,

(7.5) cm(v) =
∑

t=n+m
√

D
2p

∈d−1,+
K/F

ρ(tdK/F )β1(
4πt′pv√

D
)+

∑
t=n+m

√
D

2p
∈(d′

K/F
)−1,+

ρ(t′dK/F )β1(
4πt′pv√

D
).
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Remark 7.3. Before the proof, we remark that Bt and bm are well-defined and the same
as in (1.6) and (1.8) except that they are with respect to K and F here. Indeed, since
t > 0 > t′, the identity

1 = χ(t) = −
∏
l<∞

χl(t) = −
∏
l<∞

l non-split

χl(t)

implies that χl(t) = −1 for an odd number of non-split prime ideals l of F . However,
ρ(tdK/F l−1) = 0 if there is another l′ 6= l such that χl′(t) = −1 and l′ is inert in K/F by
(6.13) and (6.14) (recall that K/F is only ramified at one prime). So Bt is well-defined
and is zero unless there is a unique non-split prime ideal l of F such that χl(t) = −1. This
also shows that Bt is the same as the one defined in the introduction.

Proof of Theorem 7.2. By Theorem 6.2, one has

am(v) =
∑

t∈d−1
K/F

,t−t′=m
p

√
D

At(pv, pv).

First notice that since dK/F = p is a prime, one has

(7.6) δ(t)ρ(tdK/F ) = 2ρ(tdK/F ) for t� 0.

For m = 0, the sum is then over t ∈ Q ∩ d−1
K/F = Z. So

a0(v) = log(pv)2Λ(0, χ) + 2Λ′(0, χ) +
∞∑
n=1

An(pv, pv) +
∞∑
n=1

A−n(pv, pv)

= 2Λ(0, χ) log pv + 2Λ′(0, χ)− 8
∞∑
n=1

ρ(nOF )β1

(
4πnpv√

D

)
.

Here we have used the fact that ρ(adK/F ) = ρ(a) for any integral ideal a of F .
For m 6= 0, Theorem 6.2 and (7.6) imply

am(v) = −4
∑

t∈d−1,+
K/F

t−t′=m
p

√
D

ρ(tdK/F )β1

(
4πt′pv√

D

)

− 4
∑

t∈d−1
K/F

,t�0

t−t′=m
p

√
D

ρ(tdK/F )β1

(
4π|t|pv√

D

)

− 4
∑

t∈d−1
K/F

,t>0>t′

t−t′=m
p

√
D

At(pv, pv).

A substitution t 7→ −t′ in the second sum implies that the first two sums give −4cm(v)
in (7.5). On the other hand, Theorem 6.2(4)(5) imply At(pv, pv) = bm in the third sum.
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Here we remark that

(ordp t+ 1)ρ(tdK/F ) log p = (ordp t+ 1)ρ(tdK/Fp−1) log |p|.
So am(v) = −4bm − 4cm(v) as claimed. This proves the theorem. �

To carry out the holomorphic projection, we also need to know the behavior of f̃ at the
cusp 0 = w(∞). Since Wpw = diag(−1,−p), one has

f̃ |2w(τ) =
1
√
p
E∗,′(τ, τ, 0,ΦK)|2diag(−1,−p)

= p−
3
2E∗,′

(
τ

p
,
τ

p
, 0,ΦK

)
.

So we have by Theorem 6.2:

Theorem 7.4. Under the assumption (7.1), one has

f̃ |2w(τ) = p−
3
2

∑
m∈Z

a0
m(v)e

(
mτ

p

)
,

where a0
m(v) are given as follows.

(1) The constant term is

a0
0(v) = 2Λ(0, χ) log

v

p
+ 2Λ′(0, χ)− 8

∞∑
n=1

ρ(nOF )β1

(
4πnv

p
√
D

)
.

(2) For m 6= 0, one has a0
m(v) = −4b0m − 4c0m(v), where

(7.7) b0m =
∑
t∈OF

t>0>t′

t−t′=m
√
D

Bt

and

(7.8) c0m(v) =
∑
t∈O+

F

t−t′=m
√
D

(ρ(tOF ) + ρ(t′OF ))β1

(
4πt′v

p
√
D

)
.

8. Holomorphic projection

Let the notation be as in Section 7, and retain the assumption (7.1). Following Sturm
[St], and Gross and Zagier [GZ2], one obtains a holomorphic modular form of weight 2,

level p, and Nebentypus character εp = ( ·
p
) by computing the holomorphic projection of f̃ .

This is the unique holomorphic cusp form f of the same type as f̃ with the property that

(8.1) 〈f, g〉 = 〈f̃ , g〉
for every holomorphic cusp form g of the same type. This provides the third and last ingre-
dient in the proof of Theorem 1.4: An explicit holomorphic cusp form which connects the
CM value of the automorphic Green function of Tm and the arithmetic of K̃ (Theorem 8.1).
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Theorem 8.1. Let f̃ be the non-holomorphic form of weight 2, level p, and Nebentypus
character εp defined in (7.2), and let f =

∑
m≥1 amq

m be the holomorphic cusp form of

weight 2, level p, and Nebentypus character εp defined by the holomorphic projection of f̃ .
Then

am = −4bm − 4cm − 2C(m, 0)Λ(0, χK/F )α(K/F ),

where bm = bm(K/F ) is given in Theorem 7.2, C(m, 0) and Lm are given in Section 2,

(8.2) α(K/F ) =

(
Γ′(1) +

Λ′(0, χK/F )

Λ(0, χK/F )
− log 4π

)
,

and cm = cm(K/F ) is given by

cm = lim
s→1
{2

∑
t=n±m

√
D

2p
∈d−1,+

K/F

ρ(tdK/F )Qs−1(
n

m
√
D

)

+
Λ(0, χK/F )C(m, 0)

2(s− 1)
− Λ(0, χK/F )Lm}.

Proof. It is easy to see from Theorem 2.2 that

E+
2 (τ, s) = 1 + s log(pv) +O(v−1 log v),(8.3)

E+
2 |2w(τ, s) = p−

3
2 (1 + s log v

p
+O(v−1 log v))(8.4)

as v →∞ and Re s > 0. Set

E(τ, s) = 2Λ(s, χK/F )E+
2 (τ, s) = C̃(0, s, v) +

∑
m6=1

C̃(m, s)Ws(4πmv)e(mu)

with C̃(m, s) = 2Λ(s, χK/F )C(m, s). Then

E ′(τ, 0) = 2Λ′(0, χK/F ) + 2Λ(0, χK/F ) log pv +O(v−1 log v),

E ′|2w(τ, 0) = p−
3
2 (2Λ′(0, χK/F ) + 2Λ(0, χK/F ) log v

p
) +O(v−1 log v).

So Theorems 7.2 and 7.4 imply that

f̃1(τ) = f̃ − E ′(τ, 0)

has the following property:

(8.5) f̃1(τ) = O(v−1 log v), and f̃1|2w(τ) = O(v−1 log v), as v →∞.

Notice also that f̃1 and f̃ have the same holomorphic projection. Now recall that the
Poincare series for m > 0,

P s
m,εp(τ) =

∑
γ∈Γ∞\Γ0(p)

εp(d)e
2πimτvs−1|2γ,

is absolutely convergent for Re s > 1 and has holomorphic continuation to s = 1, which
gives a holomorphic modular form of weight 2, level p, Nebentypus character εp. So by the
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definition of holomorphic projection and (8.5), one has for m > 0

lim
s→1
〈f, P s̄

m,εp〉 = lim
s→1
〈f̃1, P

s̄
m,εp〉,

that is,

(8.6) am = lim
s→1

(
ãm(s)− C̃ ′(m, 0)I1(s)− C̃(m, 0)I2(s)

)
,

where

ãm(s) =
(4πm)s

Γ(s)

∫ ∞

0

am(v)e−4πmvvs
dv

v
,

I1(s) =
(4πm)s

Γ(s)

∫ ∞

0

W0(4πmv)e
−2πmvvs

dv

v
,

I2(s) =
(4πm)s

Γ(s)

∫ ∞

0

W ′
0(4πmv)e

−2πmvvs
dv

v
.

By ([EMOT] p. 216 (16)), one sees that

(8.7) I1(s) = 1, and I2(s) =
1

s− 1
.

Next, one has by Theorem 7.2

ãm(s) = −4bm − 4
∑

t=n+m
√

D
2p

∈d−1,+
K/F

ρ(tdK/F )αm

(
t′p

m
√
D
, s

)

− 4
∑

t=n+m
√

D
2p

∈(d′
K/F

)−1,+

ρ(t′dK/F )αm

(
t′p

m
√
D
, s

)
.

Here for c > 0

αm(c, s) =
(4πm)s

Γ(s)

∫ ∞

0

β1(4πmcv)e
−4πmvvs

dv

v

=
(4πm)s

Γ(s)

∫ ∞

1

dr

r

∫ ∞

0

e−4πmv(1+cr)vsdv

=

∫ ∞

1

dr

r(1 + cr)s
.

The integral is studied in page 218 of [GZ1] and satisfies

αm(c, s) =
2Γ(2s)

Γ(s)Γ(s+ 1)
Qs−1(1 + 2c) + err(c, s)

for some error function err(c, s) satisfying

err(c, 1) = 0,(8.8)

err(c, s) = O( 1
c1+s ) when c→∞.(8.9)
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One checks that 1 + 2t′p

m
√
D

= n
m
√
D

. So

ãm(s) = −4bm −
8Γ(2s)

Γ(s)Γ(s+ 1)

∑
t=n+m

√
D

2p
∈d−1,+

K/F

ρ(tdK/F )Qs−1(
n

m
√
D

)

− 8Γ(2s)

Γ(s)Γ(s+ 1)

∑
t=n+m

√
D

2p
∈(d′

K/F
)−1,+

ρ(t′dK/F )Qs−1(
n

m
√
D

) + Err(s)

= −4bm −
8Γ(2s)

Γ(s)Γ(s+ 1)

∑
t=n±m

√
D

2p
∈d−1,+

K/F

ρ(tdK/F )Qs−1(
n

m
√
D

) + Err(s).

Combining this with (8.6) and (8.7), one has

am = −4bm − C̃ ′(m, 0)

− lim
s→1

[
8

∑
t=n±m

√
D

2p
∈d−1,+

K/F

ρ(tdK/F )Qs−1(
n

m
√
D

) +
C̃(m, 0)

s− 1

Γ(s)Γ(s+ 1)

Γ(2s)

]
.

A simple calculation, using the fact Γ(s)Γ(s+1)
Γ(2s)

= 1− (s− 1) +O((s− 1)2), reveals

am = −4bm − 4cm − 2C(m, 0)Λ(0, χ)α(K/F ).

This finishes the proof of the Theorem. �

Remark 8.2. It is easy to check by Theorems 7.2 and 7.4 that f̃ |2Wp =
√
pf̃ |2Up for the

usual Up operator and the modular form f̃ in Section 7. This implies that f |2Wp =
√
pf |2Up

for the holomorphic form f in Theorem 8.1. Now [BB], Lemma 3 implies that f ∈ S+
2 (p, εp)

is in the plus space. In particular, we have

(8.10) bm + cm = 0

whenever εp(m) = −1. It is amusing to compare this identity with Theorem 1.4, which
deals with the situation εp(m) 6= −1.

9. Proof of Theorem 1.4 and possible generalizations

Now we are ready to prove Theorem 1.4. For the convenience of the reader, we restate
the theorem here as follows:

Theorem 9.1. Let (K,Φ) be a non-biquadratic quartic CM number field with CM type Φ
and maximal totally real subfield F = Q(

√
p) such that p ≡ 1 mod 4 is prime and

(9.1) dK/F ∩ Z = qZ, NF/QdK/F = q, q ≡ 1 (mod 4) is prime.

Let K̃ be the reflex field of (K,Φ) with maximal totally real subfield F̃ = Q(
√
q). Let Ψ be

a normalized integral Hilbert modular form for Γ = SL2(OF ) of weight c(0) such that

div(Ψ) =
∑
m>0

c̃(−m)Tm,
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with integral coefficients c̃(−m) ∈ Z. Then

log ‖Ψ(CM(K))‖Pet =
WK̃

4

∑
m>0

c̃(−m)bm −
WK̃

4
c(0)α(K̃/F̃ )

with

α(K̃/F̃ ) = Λ(0, χ)

(
Γ′(1) +

Λ′(0, χ)

Λ(0, χ)
− log 4π

)
.

Here bm = bm(K̃/F̃ ) and WK̃ are given in Theorem 1.1 (or Theorem 7.2), ‖Ψ‖Pet denotes
the Petersson metric of Ψ normalized as in (2.27), χ is the quadratic Hecke character of
F̃ associated to K̃/F̃ , and Λ(s, χ) is the completed L-function of χ.

Proof. First, one has by the definition of Gm in Section 2, Theorem 5.1, and Corollary 5.4:

2Gm(CM(K)) = Φm(CM(K))−#CM(K)Lm

= lim
s→1

(
Φm(CM(K), s) +

#CM(K)C(m, 0)

2(s− 1)
−#CM(K)Lm

)
=
WK̃

2
lim
s→1

[
2

∑
µ=

n−m
√

q

2p
∈d−1,+

K̃/F̃

Qs−1(
n

m
√
q
)ρ(µdK̃/F̃ )

+ 2
∑

µ=
n+m

√
q

2p
∈d−1,+

K̃/F̃

Qs−1(
n

m
√
q
)ρ(µdK̃/F̃ )

+
2#CM(K)

WK̃

C(m, 0)

2(s− 1)
− 2#CM(K)

WK̃

Lm
]

=
WK̃

2
cm +

WK̃

2
lim
s→1

(
C(m, 0)

2(s− 1)
− Lm

) (
2#CM(K)

WK̃

− Λ(0, χ)

)
.

Here cm = cm(K̃/F̃ ) is the number in Theorem 8.1 but related to K̃/F̃ , and χ = χK̃/F̃ .
So one has to have

(9.2) Λ(0, χ) =
2#CM(K)

WK̃

,

and

(9.3) 4Gm(CM(K)) = WK̃cm.

On the other hand, Proposition 2.5 and Theorem 8.1 (applying to K̃/F̃ ) assert

0 =
∑
m>0

c̃(−m)am,

that is,

−
∑
m>0

c̃(−m)cm =
∑
m>0

c̃(−m)bm +
1

2
α(K̃/F̃ )

∑
m>0

c̃(−m)C(m, 0).
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Here am = am(K̃/F̃ ) and bm = bm(K̃/F̃ ) are the numbers in Theorem 8.1 but related to
K̃/F̃ . Therefore,

log ‖Ψ(CM(K))‖Pet = −
∑
m>0

c̃(−m)Gm(CM(K))

= −WK̃

4

∑
m>0

c̃(−m)cm

=
WK̃

4

∑
m>0

c̃(−m)bm +
WK̃

8
α(K̃/F̃ )

∑
m>0

c̃(−m)C(m, 0).

By Proposition 2.6, one has ∑
m>0

c̃(−m)C(m, 0) = −2c(0).

This completes the proof of the Theorem 9.1 (i.e., Theorem 1.4). �

Theorem 1.1 is the special case of Theorem 9.1 where c(0) = 0.

Remark 9.2. A natural question is whether our main result just proved can be extended
to a general non-biquadratic CM number field. If we still require p to be prime and relax
q to be odd and square-free, i.e., K = F (

√
∆) with ∆ an odd totally negative primitive

element which is a square modulo 4 (Lemma 7.1), then every step needed to prove the main
theorem is true and already in this paper except Lemma 5.3, which is not true anymore.
We expect that there is still a constant κ depending only on K and K̃ such that

(9.4) C(µ) = κρK̃/F̃ (µdK̃/F̃ )

for every totally positive µ ∈ d−1

K̃/F̃
, where C(µ) is given by (5.7). When q is prime, we

proved in Section 5 that κ = WK̃ . If (9.4) is true in general, then Theorem 1.4 holds in this
slightly more general case with the minimal change of a factor. If ∆ is not primitive, or not
a square modulo 4, the Eisenstein series and thus the modular form we constructed might
have higher level than p. One might get down to level p by taking the trace. This would
yield a similar result if (9.4) holds. The level at 2 seems to be complicated in general.

Finally, if we also relax p to be a general fundamental discriminant, the Borcherds
lifting theory is only stated in terms of vector valued modular forms [Bo1]. However, the
results of [BB] will probably generalize to this case, yielding a smooth description of the
lifting in terms of scalar valued modular forms. The automorphic Green functions are
already constructed in a rather general setting in [Br1, Br2]. In that way, Section 2 could
be generalized. The holomorphic projection in Section 8 is more complicated, too, but
could probably be done by looking at all Atkin-Lehner involutions. In that way the whole
argument of the paper would carry over except for Lemma 5.3. Here the same problems
arise as discussed above. It would be very interesting to see any of these generalizations
worked out.

Remark 9.3 (Application to Siegel modular forms). Let H2 = {Z ∈ Mat2(C); Z =
tZ, Im(Z) > 0} be the Siegel upper half plane of genus two. The Siegel modular group
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Γ2 = Sp2(Z) ⊂ GL4(Z) acts on H2, and the quotient X2 = Γ2\H2 is a normal quasi-
projective algebraic variety over C. It can be viewed as the complex points of the coarse
moduli space of principally polarized abelian surfaces. Forgetting the real multiplication
induces a morphism ϕD from the Hilbert modular surface X associated to the real qua-
dratic field F = Q(

√
D) (where D ≡ 1 (mod 4) is a positive fundamental discriminant) to

X2. The image GD ⊂ X2 of X is known as the Humbert surface of discriminant D. It turns
out that ϕD induces a birational morphism Xsym → GD, where Xsym is the symmetric
Hilbert modular surface associated to F . Moreover, one can define GD (for any positive
integer D ≡ 1 (mod 4)) by means of equations on H2 analogously to (2.18). For details
we refer to [Ge] Chapter IX, [Ru] Section 4, [Fr] Chapter 3.

As for Hilbert modular surfaces, there is a Borcherds lift from weakly holomorphic
modular forms for Γ0(4) of weight −1/2 to meromorphic Siegel modular forms for Γ2 whose
divisor is supported on Humbert surfaces. This follows from [Bo1], using the exceptional
isomorphism relating O(2, 3) and Sp2. See also [GN] for an intrinsic description in terms
of Sp2. It turns out that for every GD, there is a (up to multiplication by ±1 unique)
normalized integral Siegel Borcherds product ΨD,Siegel whose divisor is equal toGD. (Notice
that ΨD,Siegel may have a character of order 2.) Some of these functions were known before.
For instance Ψ2

1,Siegel is up to a power of 2 the Siegel cusp form χ10 of weight 10 constructed
by Igusa as a product of theta functions, and Ψ4,Siegel is up to a power of 2 the Igusa cusp
form χ35 of weight 35.

Moreover, it is known that the pullback to the Hilbert modular surface X of a Humbert
surface GD′ under the morphism ϕD is a linear combination of Hirzebruch-Zagier divisors.
More precisely, we have:

(9.5) ϕ∗D(GD′) =
∑
x∈Z≥0

x<
√
DD′

x2≡DD′ (4)

T(DD′−x2)/4,

see [Fr] Theorem 3.3.5. Therefore, by Theorem 2.8, the pullback to X of the Borcherds
product ΨD′,Siegel, is a Hilbert Borcherds product with divisor (9.5). Consequently, the
CM values corresponding to quartic CM fields satisfying the conditions of Theorem 9.1
of all Siegel Borcherds products can be computed by means of Theorem 9.1. It will be
interesting to compare such values with the results of [GL].

10. Examples

Here we give some examples of Borcherds products, and express them as Doi-Naganuma
lifts. In that way, the formula in Theorem 1.1 can be checked numerically.

Recall that p is a prime congruent to 1 modulo 4. By a result due to Hecke [He] the
dimension of S+

2 (p, εp) is equal to [p−5
24

]. In particular there exist three such primes for
which S+

2 (p, εp) is trivial, namely p = 5, 13, 17. In these cases W+
0 (p, εp) is a free module

of rank p+1
2

over the ring C[j(pτ)]. Therefore it is not hard to compute explicit bases. For
any m ∈ N with εp(m) 6= −1 there is a unique fm =

∑
n≥−m cm(n)qn ∈ W+

0 (p, εp) whose
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Fourier expansion starts with

fm =

{
q−m + cm(0) +O(q), if p - m,
1
2
q−m + cm(0) +O(q), if p | m.

The fm (m ∈ N) form a base of the space W+
0 (p, εp). The Borcherds lift Ψm of fm is a

Hilbert modular form for Γ of weight cm(0) = −C(m, 0)/2 with divisor Tm. Here C(m, 0)
denotes the m-th coefficient of the Eisenstein series E+

2 (τ, 0) as before.
To check the formula for the CM-values of Borcherds products, one wants to evaluate at

CM-points. Unfortunately, by Theorem 2.4 the infinite product expansion of any Borcherds
lift only converges near the cusp ∞ (respectively near other cusps if one considers the
corresponding Fourier expansions). The CM-points usually do not lie in this domain of
convergence. Therefore one has to find a different expression for the Borcherds product
one wants to evaluate. In some cases this can be done as follows.

Recall that the Doi-Naganuma lift is a C-linear map from Mk(p, εp) to the space Mk(Γ)
of holomorphic Hilbert modular forms of weight k for the group Γ [DN], [Na], [Za]. It takes
cusp forms to the subspace Sk(Γ) of cusp forms in Mk(Γ). It is injective on M+

k (p, εp) and
vanishes identically on M−

k (p, εp).
If g =

∑
n≥0 b(n)qn is an element of M+

k (p, εp), then its Doi-Naganuma lift is given by

DN(g)(z1, z2) = −Bk

k
b(0) +

∑
ν∈∂−1

F
ν�0

∑
d|ν

dk−1b̃(pνν
′

d2
)qν1q

ν′

2 .(10.1)

Here Bk denotes the k-th Bernoulli number and the latter sum runs through all positive
integers d for which ν/d ∈ ∂−1

F . If g ∈ S+
k (p, εp), then DN(g) is in Sk(Γ) by [Za] §5. For

general g it follows by [Bo1] Theorem 14.3 (combined with Theorem 5 of [BB]) that DN(g) ∈
Mk(Γ). Notice that DN(g) is a symmetric Hilbert modular form, that is, DN(g)(z1, z2) =
DN(g)(z2, z1).

Sometimes it happens that a holomorphic Borcherds product can also be written as
a Doi-Naganuma lift. Such identities between the multiplicative Borcherds lift and the
additive Doi-Naganuma lift are of independent interest and we will state some examples
below. It would be very interesting to understand conceptually when that occurs. Does it
happen infinitely often?

The Fourier expansion of the Doi-Naganuma lift DN(g) converges rapidly on the whole
domain H2 and can be used for numerical computations.

10.1. The case p = 5. We denote the fundamental unit by ε0 = 1
2
(1+

√
5). Here the first

few fm were computed in [BB]. For completeness and for the convenience of the reader we
repeat the result:

f1 = q−1 + 5 + 11 q − 54 q4 + 55 q5 + 44 q6 − 395 q9 + 340 q10 + 296 q11 − 1836 q14 + . . . ,

f4 = q−4 + 15− 216 q + 4959 q4 + 22040 q5 − 90984 q6 + 409944 q9 + 1388520 q10 + . . . ,

f5 = 1
2
q−5 + 15 + 275 q + 27550 q4 + 43893 q5 + 255300 q6 + 4173825 q9 + . . . ,

f6 = q−6 + 10 + 264 q − 136476 q4 + 306360 q5 + 616220 q6 − 35408776 q9 + . . . ,
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f9 = q−9 + 35− 3555 q + 922374 q4 + 7512885 q5 − 53113164 q6 + 953960075 q9 + . . . ,

f10 = 1
2
q−10 + 10 + 3400 q + 3471300 q4 + 9614200 q5 + 91620925 q6 + 5391558200 q9 + . . . .

The Eisenstein series E+
2 (τ, 0) ∈M+

2 (5, ε5) has the Fourier expansion

E+
2 (τ, 0) = 1−10q−30q4−30q5−20q6−70q9−20q10−120q11−60q14−40q15−110q16− . . . .

From this and a little estimate one concludes that there exist precisely 3 holomorphic
Borcherds products in weight 10, namely

Ψ2
1 = q2ρ1

1 q
2ρ′2
2

∏
ν∈∂−1

F
tr(νρ′1)>0

(
1− qν1q

ν′

2

)2c̃1(5νν′)

,

Ψ6 =
∏
ν∈∂−1

F
ν�0

(
1− qν1q

ν′

2

)c̃6(5νν′)

,

Ψ10 =
∏
ν∈∂−1

F
ν�0

(
1− qν1q

ν′

2

)c̃10(5νν′)

.

Here the Weyl vector for Ψ1 is ρ1 = ε0/
√

5 by [BB]. From the fact that T6 and T10 do not
meet the boundary it follows that the Weyl vectors of Ψ6 and Ψ10 are 0.

The dimension of M+
10(5, ε5) is 3, and it turns out that all the three Borcherds products

lie in the image of the Doi-Naganuma lift. This can be seen as follows. Let h1, h2 be a basis
of S+

10(5, ε5). Then DN(hj) ∈ S10(Γ). The restriction of DN(hj) to T1 can be viewed as an
elliptic cusp form of weight 20 for the group SL2(Z). This implies that there is a linear
combination α1h1 +α2h2 whose Doi-Naganuma lift H vanishes on T1. Consequently H/Ψ1

is a holomorphic Hilbert modular form of weight 5 for the group Γ. On the other hand,
it is easily seen that Ψ1 is a multiple of the modular form Θ constructed by Gundlach,
and hence is antisymmetric, i.e. Ψ1(z1, z2) = −Ψ1(z2, z1) (see [Gu], Theorem 2). Since H
is symmetric as a DN-lift, the function H/Ψ1 is antisymmetric, too. But this implies that
it also vanishes on T1. Thus H/Ψ2

1 is a holomorphic Hilbert modular form of weight 0
and therefore constant. Consequently, Ψ2

1 is a multiple of the DN-lift H. All occurring
constants can be determined by computing the first terms of the Fourier expansions.

Since Γ has just one cusp, the difference of Ψ6 and a suitable multiple of the DN-lift of
E+

10(τ, 0) will be in S10(Γ). Arguing as before, we can find a linear combination of E+
10(τ, 0),

h1, h2 whose Doi-Naganuma lift H ′ has the property that Ψ6−H ′ is in S10(Γ) and vanishes
on T1. Consequently, Ψ6 − H ′ is a multiple of Ψ2

1 and hence a Doi-Naganuma lift. Thus
Ψ6 is a Doi-Naganuma lift itself. For Ψ10 one can argue in the same way.

A base for M10(5, ε5) is given by the eta quotients η(τ)25−6aη(5τ)6a−5, where a = 0, . . . , 5.
It turns out that there is a base of M+

10(5, ε5), consisting of modular forms whose Fourier
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expansion begins with

g1 = q4 − q5 − q6 − 18 q9 + 19 q10 + 20 q11 + 133 q14 +O(q15),

g6 = −132− 264 q + 306360 q4 − 271512 q5 − 236400 q6 + 1613256 q9 +O(q10),

g10 = −132− 3400 q + 4047800 q4 − 3834200 q5 − 5106800 q6 − 55543800 q9 +O(q10).

Comparing the first terms of the Fourier expansions, one finds that

DN(g1) = Ψ2
1, DN(g6) = Ψ6, DN(g10) = Ψ10.(10.2)

Now we compute the values of the rational functions Ψ6/Ψ
2
1 and Ψ10/Ψ

2
1 at a selection

of CM-points, and verify the first table in the introduction numerically.
We first consider the cyclic CM extensionK = Q(ζ5) of F , where ζ5 = e2πi/5. If σ denotes

the complex embedding of K taking ζ5 to ζ2
5 then Φ = {1, σ} is a CM type of K. We have

OK = OF +OF ζ5 and the corresponding CM cycle CM(K,Φ) is represented by the point
τ1 = (ζ5, ζ

2
5 ) ∈ H2. Using (10.1) and (10.2) one can compute the Fourier expansion of

Ψ6, Ψ2
1, and Ψ10 and evaluate at τ1 numerically. It confirms the case p = q = 5 in the

table. As another example we consider the case p = 5 and q = 41. Here one has the

non-Galois CM extension K = F (
√

∆) with ∆ = −13+
√

5
2

. So ∆′ = −13−
√

5
2

. Recall that

σ(
√

∆) =
√

∆′, and σ−1(
√

∆) = −
√

∆′. It turns out that hK = 1 andOK = OF+OF z with

z = 1
2
(1 +

√
∆ + ∆). The CM cycles CM(K,Φ,OK) and CM(K,Φ′,OK) are represented

by τ1 = (z, σ(z)) and τ3 = (ε0z, ε
′
0

1
2
(1−

√
∆′+∆′)), respectively. The numerical calculation

confirms the case p = 5, q = 41. The case q = 61 was confirmed the same way.

Remark 10.1. The formula of [HZ] for the intersection of two Hirzebruch-Zagier divisors
on Γ\H2 implies that Ψ1, Ψ6, Ψ10 have precisely one common zero on Γ\H2, represented
by the point (e2πi/3, e2πi/3). Arguing more carefully one actually finds that the restrictions
of Ψ6, Ψ10, Ψ15, Ψ2

5 to T1 generate the ring of elliptic modular forms for SL2(Z) of weight
divisible by 20. (In particular, Ψ1, Ψ5, Ψ10 have no common zero on Γ\H2.) An inductive
argument shows that the ring of symmetric Hilbert modular forms for Γ of weight divisible
by 10 is generated by Ψ2

1, Ψ6, Ψ10, Ψ15, Ψ2
5. Hence every rational function on the symmetric

Hilbert modular surface Xsym associated to Γ can be written as a rational function in these
five Borcherds products.

10.2. The case p = 13. We denote the fundamental unit by ε0 = 1
2
(3 +

√
13). Here the

fm can be computed as follows. The space S6(13, χ0) has dimension five. It contains an
element h whose Fourier expansion begins with h = q5 − q7 − 2q8 + 2q9 − 4q10 + . . . . It
turns out that f1(τ) = h(τ)η(τ)−1η(13τ)−11. The other fm can be obtained in a similar
way as in [BB]. We list the first few fm:

f1 = q−1 + 1 + q + 3 q3 − 2 q4 − q9 − 4 q10 + 4 q12 + 3 q13 + 6 q16 − 8 q17 − 4 q22 + . . . ,

f3 = q−3 + 4 + 9 q − 2 q3 + 12 q4 + 12 q9 − 60 q10 − 68 q12 + 51 q13 + 108 q14 + . . . ,

f4 = q−4 + 3− 8 q + 16 q3 + 29 q4 − 88 q9 + 24 q10 − 85 q12 + 152 q13 − 352 q14 + . . . ,
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f9 = q−9 + 13− 9 q + 36 q3 − 198 q4 + 2419 q9 + 2304 q10 − 8160 q12 + 5967 q13 + . . . ,

f10 = q−10 + 4− 40 q − 200 q3 + 60 q4 + 2560 q9 − 2410 q10 + 13260 q12 + 10880 q13 + . . . ,

f12 = q−12 + 12 + 48 q − 272 q3 − 255 q4 − 10880 q9 + 15912 q10 + 5270 q12 + . . . ,

f13 = 1
2
q−13 + 7 + 39 q + 221 q3 + 494 q4 + 8619 q9 + 14144 q10 + 35360 q12 + . . . ,

f14 = q−14 + 6 + 504 q3 − 1232 q4 − 9240 q9 − 32571 q10 + 64428 q12 + 89432 q13 + . . . ,

f26 = 1
2
q−26 + 6 + 208 q + 3432 q3 + 10296 q4 + 790920 q9 + 1627418 q10 + . . . .

The Eisenstein series E+
2 (τ, 0) ∈M+

2 (13, ε13) has the Fourier expansion

E+
2 (τ, 0) = 1− 2 q − 8 q3 − 6 q4 − 26 q9 − 8 q10 − 24 q12 − 14 q13 − 12 q14 − 22 q16 + . . . .

One finds that there are precisely 3 holomorphic Borcherds products of weight 6 (with
trivial character), namely

Ψ6
1 = q6ρ1

1 q
6ρ′2
2

∏
ν∈∂−1

F
tr(νρ′1)>0

(
1− qν1q

ν′

2

)6c̃1(13νν′)

,

Ψ14 =
∏
ν∈∂−1

F
ν�0

(
1− qν1q

ν′

2

)c̃14(13νν′)

,

Ψ26 =
∏
ν∈∂−1

F
ν�0

(
1− qν1q

ν′

2

)c̃26(13νν′)

.

Here the Weyl vector for Ψ1 is ρ1 = ε0
3
√

13
by [BB]. From the fact that T14 and T26 do not

meet the boundary it follows that the Weyl vectors of Ψ14 and Ψ26 are 0. (The Borcherds
product Ψ2

4 of weight 6 has a non-trivial character.)
It turns out that the dimension of M+

6 (13, ε13) is 4, and all the three Borcherds products
lie in the image of the Doi-Naganuma lift. This can be seen in a similar way as in the first
example. A base for M6(13, ε13) is given by the eta quotients η(τ)13−2aη(13τ)2a−1, where
a = 0, . . . , 7. One finds that there are elements in M+

6 (13, ε13), whose Fourier expansion
begins as follows:

g1 = q4 − 6 q9 − 5 q10 + 15 q12 − 10 q13 + 9 q14 − 5 q16 + 18 q17 + . . . ,

g14 = −252− 504 q3 + 1232 q4 + 9240 q9 + 10472 q10 + 78456 q12 + 37576 q13 + . . . ,

g26 = −252− 208 q − 3432 q3 + 17888 q4 − 77064 q9 − 81224 q10 + 412776 q12 + . . . .

Comparing the first terms of the Fourier expansions, we see that

DN(g1) = Ψ6
1, DN(g14) = Ψ14, DN(g26) = Ψ26.(10.3)

By means of (10.1) and (10.3), the second table in the introduction was verified numer-
ically.
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