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DEGENERATE WHITTAKER FUNCTIONS FOR Spn(R)

JAN BRUINIER, JENS FUNKE, AND STEPHEN KUDLA

Abstract. In this paper, we construct Whittaker functions with exponential growth for
the degenerate principal series of the symplectic group of genus n induced from the Siegel
parabolic subgroup. This is achieved by explicitly constructing a certain Goodman-Wallach
operator which yields an intertwining map from the degenerate principal series to the space
of Whittaker functions, and by evaluating it on weight ` standard sections. We define a
differential operator on such Whittaker functions which can be viewed as generalization of
the ξ-operator on harmonic Maass forms for SL2(R).

1. Introduction

The standard theory of automorphic forms focuses on the spectral decomposition of the space

L2(Γ\G) where G is a connected real semi-simple Lie group and Γ is a discrete subgroup of

finite co-volume. This analysis involves functions of rapid decay, e.g, cusp forms, or of

moderate growth, e.g., Eisenstein series. Classically, in the case of G = SL2(R) and Γ

commensurable to SL2(Z), the Fourier expansions of such functions involves the solution of the

Whittaker ordinary differential equation that decays exponentially at infinity; this solution

is uniquely characterized by this decay. In general, the uniqueness of the Whittaker model

and the associated smooth Whittaker functional, Jacquet’s functional, plays a fundamental

role and is the subject of a vast literature.

Other Whittaker functionals and the associated ‘bad’ Whittaker functions, which grow ex-

ponentially at infinity, have played a less prominent role in the theory of automorphic forms.

An important exception to this is the work of Miatello and Wallach, [21], where, for G semi-

simple of split rank 1, a theory of Poincaré series constructed from such Whittaker functions

is developed. More recently, in the case of G = SL2(R) and Γ a congruence subgroup of

SL2(Z), the space of (vector-valued) weak Maass forms – Maass forms that are allowed to

grow exponentially at the cusps – and its subspace of harmonic weak Maass forms, ana-

lytic functions annihilated by the weight k Laplacian, have been shown to have interesting

and important arithmetic applications, [8], [9], [11]. For example, the weakly holomorphic

modular forms are the input for Borcherds celebrated construction of meromorphic modular

forms with product formulas, [3], and, more generally, harmonic Maass forms can be used

to construct Arakelov type Green functions for special divisors on orthogonal and unitary

Shimura varieties, [7], [9]. The harmonic weak Maass forms of negative (or low) weight play

a role in the theory of mock modular forms and their relatives, [5], [29], [28]. In particular,
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they are linked to holomorphic modular forms of a complementary positive weight by means

of the ξ-operator introduced in [7].

There are serious obstacles to extending these results to groups of higher rank. For exam-

ple, the Koecher principle asserts that, for Γ irreducible in G of hermitian type of reduced

rank greater than 1, any holomorphic modular form on the associated bounded symmetric

domain ‘extends holomorphically’ to the cusps, i.e., the notions of holomorphic modular form

and weakly holomorphic modular form coincide. More generally, Miatello and Wallach con-

jecture, [21], Section 5, that the same phenomenon occurs for general automorphic forms.

Specifically, they conjecture that, for Γ irreducible in G of real reduced rank greater than 1, a

smooth function f on Γ\G that is K-finite and an eigenfunction of the center of the universal

enveloping algebra of g = Lie(G)C is automatically of moderate growth. They prove this

conjecture in the case of SO(n, 1) over a totally real field.

However, in [6], the first author has shown that forG = SL2(R)d and Γ an arithmetic subgroup

Γ of SL2(Ok), where Ok is the ring of integers in a totally real field k with |k : Q| = d > 1, it is

possible to replace the non-existent space of harmonic weak Maass forms with a certain space

of Whittaker functions. These Whittaker functions are invariant only under the unipotent

subgroup Γu∞ of Γ∞ and the associated Poincaré series do not converge. Nevertheless, it is

shown in [6] that they are linked to holomorphic Hilbert modular cusps forms via a ξ-operator

and provide an adequate input for a Borcherds type construction. This suggests that it would

be fruitful to consider analogous Whittaker functions for more general groups.

The goal of this paper is to construct ‘bad’ Whittaker functions for the degenerate principal

series I(s) induced from a character of the Levi factor M = GLn(R) of the Siegel parabolic

P = MN of G = Spn(R). For s ∈ C, let I(s) = I(s, χ) be the space of smooth of K-finite

functions φ on G such that

(1.1) φ(n(b)m(a)g) = χ(det a)| det(a)|s+ρφ(g), m(a) =

(
a

ta−1

)
, n(b) =

(
1 b

1

)
,

a ∈ GLn(R), b ∈ S := Symn(R), χ(t) = sgn(t)ν , ν = 0, 1, ρ = 1
2(n+1). Then I(s) is a (g,K)-

module, where g = Lie(G)C and K ' U(n), k 7→ k. For T ∈ Symn(R) with det(T ) 6= 0, an

algebraic Whittaker functional of type T is an element ωT ∈ I(s)∗ = HomC(I(s),C) such

that

(1.2) ωT (n(X)φ) = 2πi tr(TX)ωT (φ), n(X) =

(
X

0

)
∈ g, X ∈ SC = Symn(C).

Such a functional determines a (g,K)-intertwining map

(1.3) ωT : I(s) −→WT (G), ωT (φ)(g) = ωT (π(g)φ),

where WT (G) is the space of smooth functions f on G such that

(1.4) f(n(b)g)) = e(tr(Tb)) f(g).

Here e(t) = e2πit. The resulting generalized Whittaker functions are right K-finite and real

analytic on G. Conversely, such an intertwining map (1.3) gives rise to a Whittaker functional

ωT (φ) = ωT (φ)(e).
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One intertwining map is given by the integral

W T (g, s;φ) =

∫
S
φ(wn(b)g) e(−tr(Tb)) db, w =

(
1

−1

)
,

which converges absolutely for Re(s) > ρ and has a meromorphic analytic continuation in s.

For example, for φ = φs,`, the (unique) function in I(s) such that φs,`(k) = det(k)`,

(1.5) W T (n(b)m(a)k, s;φs,`) = χ(det(a)) |det(a)|s+ρ e(tr(Tb)) det(k)` ξ(v, T ;α′, β′),

where

(1.6) ξ(v, T ;α′, β′) =

∫
S

det(b+ iv)−α
′

det(b− iv)−β
′
e(−tr(Tb)) db,

with v = ata, α′ = 1
2(s+ρ+`) and β′ = 1

2(s+ρ−`), is the confluent hypergeometric function

of matrix argument studied by Shimura [23]. If ε T > 0 with ε = ±1, then (1.6) can be

written as

i−n` 2−n(ρ−1) (2π)n(s+ρ)Γn(α)−1Γn(β)−1 | det(T )|s(1.7)

× e−2πεtr(Tv)

∫
t>0

e−2πtr(cvtct) det(t)α−ρ det(t+ 1)β−ρ dt,

where α = 1
2(s + ρ − ε`) and β = 1

2(s + ρ + ε`) and ε T = c tc. For notation not explained

here see section 2.1 and the Appendix.

The Whittaker function (1.5), which decays exponentially as the trace of v goes to infinity,

plays a key role in many applications. The corresponding Whittaker functional on I(s) is

characterized, among all algebraic Whittaker functionals, by the fact that it extends to a

continuous functional on the space Ism(s) of smooth functions on G satisfying (1.1). In the

general theory, such Jacquet functionals and the resulting good Whittaker functions have

been studied very extensively, cf. [24] and the literature discussed there.

To construct other Whittaker functionals, we apply Goodman-Wallach operators to conical

vectors in I(s)∗. Such conical vectors correspond to embeddings into induced representations.

The two relevant ones in our situation are given by

(1.8) c1(φ) = φ(e),

and, for Re(s) > ρ,

(1.9) cw(φ) = (A(s, w)φ)(e) =

∫
S
φ(wn(b)) db,

where A(s, w) : I(s) −→ I(−s) is the intertwining operator defined by (3.3), with correspond-

ing embeddings the identity map and A(s, w) respectively. Matumoto’s generalization [20] of

the results of [13] apply in our situation. Let

(1.10) N̄ = {n−(x) | x ∈ S }, n−(x) =

(
1
x 1

)
,

and let n̄ = Lie(N̄)C. Since n̄ is abelian, U(n̄) = S(n̄), and the completion

(1.11) S(n̄)[n̄] = lim
←−
r

S(n̄)/n̄rS(n̄)
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is the ring of formal power series in elements of n̄. The action of U(n̄) on I(s)∗ extends1 to

an action of S(n̄)[n̄]. Then, by the results of [20], there are elements

gwT
s , gwT

−s ∈ S(n̄)[n̄]

such that

ωT1 := gwT
s · c1, ωTw := gwT

−s · cw
are Whittaker functionals of type T .

Following [13] one realizes the representation I(s) on a space of functions on N̄ , where

the Goodman-Wallach operator is given by a differential operator of infinite order. Taking

advantage of the fact that N is abelian and passing to the Fourier transform, this operator

is realized as multiplication by an analytic function. In the case of SL2(R), this function is

given explicitly in the introduction to [13], where the corresponding formal power series in

S(n̄)[n̄] is determined by a simple recursion relation. For n ≥ 2, it does not seem feasible to

apply this method, and, as far as we could see, explicit formulas for these kernel functions

do not exist in the literature.

Our first main result is that, in analogy to the case of SL2(R) given in [13], the kernel function

for the Goodman-Wallach operator gwT
s for any n is given explicitly by a Bessel function,

now of a matrix argument. We now describe the result in more detail. For φ ∈ I(s), define

a function Ψ(φ) in N̄ by

(1.12) Ψ(x;φ) = φ(n−(x))

and let

(1.13) Ψ̂(y;φ) =

∫
S
e(tr(xy)) Ψ(x;φ) dx

be its Fourier transform. Note that, in this model of I(s), the conical functional c1 is given

by

(1.14) c1(φ) = Ψ(0;φ) =

∫
S

Ψ̂(y;φ) dy.

To define the relevant hypergeometric function of matrix argument, we use the notation and

results of [12] and [22]. For z and w ∈ SC = Symn(C) and for m = (m1, . . . ,mn), with

integers mj with m1 ≥ m2 ≥ · · · ≥ mn, let Φm(z) be the spherical polynomial, and let

Φm(z, w) be its ‘bi-variant’ version. For further explanation and notation, see Appendix 1.

Following [22], define the hypergeometric function

(1.15) GWs(z, w) :=
∑
m≥0

(−1)|m| dm
(s+ ρ)m(ρ)m

Φm(z, w).

This is a Bessel function of matrix argument, [14], [12].

Theorem A. The kernel for the Goodman-Wallach operator is given by GWs(·, 2πT ). More

precisely, for φ ∈ I(s),

ωT1 (φ) =

∫
S

GWs(2πy, 2πT ) Ψ̂(y;φ) dy.

1Here it is essential that we have taken the dual I(s)∗ of the K-finite vectors I(s).
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Thus, the corresponding Whittaker function is

ωT1 (g;φ) = ωT1 (π(g)φ) =

∫
S

GWs(2πy, 2πT ) Ψ̂(y;π(g)φ) dy.

Our second main result is an evaluation of the Whittaker function for φ = φs,`.

Theorem B. For ε = ±1, suppose that ε T ∈ Symn(R)>0 and let fTs,`(g) = ωT1 (π(g)φs,`) be

the weight ` degenerate Whittaker function. Then, for g = n(b)m(a)k,

fTs,`(g) = χ(det(a)) | det(a)|s+ρ e(tr(Tb)) det(k)`

× 2n(s−ρ+1) exp(−2π ε tr(Tv)) 1F1(α, α+ β; 4πcvtc)

where v = ata, α = 1
2(s+ ρ− ε`) and β = 1

2(s+ ρ+ ε`) and ε T = tcc. Here

1F1(α, α+ β; z) =
∑
m≥0

(α)m
(α+ β)m

dm
(ρ)m

Φm(z)

=
Γn(α+ β)

Γn(α)Γn(β)

∫
t>0

1−t>0

etr(zt) det(t)α−ρ det(1− t)β−ρ dt

is the matrix argument hypergeometric function.

It is instructive to compare the formula for fTs,` and the integral occurring here with the

expressions in (1.5) and (1.7) defining the good Whittaker function. Note, for example, that

in the case n = 1, the functions

M(a, b; z) =
Γ(b)

Γ(a)Γ(b)

∫ 1

0
ezt ta−1 (1− t)b−a−1 dt

and

U(a, b; z) =
1

Γ(a)

∫ ∞
0

e−zt ta−1 (t+ 1)b−a−1 dt,

occurring in Theorem A and (1.7) respectively, are a standard basis for the space of solutions

for the second order Kummer equation, [1], Chapter 13.

The proof of Theorem B depends on an elaborate calculation which makes essential use of

the fact that, up to diagonalization, the orthogonal group of T is O(n). Thus, at present, we

do not have a corresponding evaluation for T of arbitrary signature.

It is easy to check, cf. Lemma 7.1, that for a, b, and z > 0 real, with a > ρ, b > ρ, and for

any η with 0 < η < 1,

|1F1(a, a+ b; z)| ≥ Cη e(1−η)tr(z).

Thus, for s real and α and β > ρ,

|fTs,`(g)| ≥ C ′η det(v)
1
2

(s+ρ) e2π(1−2η) tr(εTv).

This shows the exponential growth of fTs,` as the trace of v goes to infinity.
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Note that, due to its construction via a Whittaker functional, the function fTs,` on G is an

eigenfunction for the center of the universal enveloping algebra with eigencharacter given by

the infinitesimal character of the degenerate principal series I(s).

Of course, for n = 1, the results of Theorems A and B agree with the expressions given in the

introduction of [13] in the case of SL2(R). Also, up to an elementary factor, the Whittaker

function

fTs,`(g) = χ(a) |a|s+ρ e(Tb) det(k)` 2s exp(−2π ε Tv)M(α, α+ β; 4πεTv)

in the n = 1 case is precisely (the m1-component of) the function utilized in the construction

of [6], (4.13).

Finally, we define an analogue of the ξ-operator introduced in [7] and [6]. Since this operator

is a variant of the ∂̄-operator, it is best expressed in terms of vector bundles. Write Hn for

the Siegel upper half plane of genus n. For a discrete, torsion free subgroup Γ0 ⊂ G, let

X = Γ0\Hn, and let Ea,b be the bundle of smooth differential forms of type (a, b) on X. For

a hermitian vector bundle E on X, let

∗̄E : Ea,b ⊗ E −→ EN−a,N−b ⊗ E∗

be the Hodge ∗-operator, [27], Chapter V, Section 2. Here N = nρ = dimHn. Note that we

include the cases where Γ0 is Γu∞ or trivial.

Definition. For a hermitian vector bundle E on X, the ξ-operator is defined as

(1.16) ξ = ξE = ∗̄E ◦ ∂̄ : Γ(X, Ea,b ⊗ E) −→ Γ(X, EN−a,N−b−1 ⊗ E∗).

For a finite dimensional representation (σ,Vσ) of GLn(C) with an admissible hermitian norm,

there is an associated homogeneous hermitian vector bundle Lσ on X. For example, for an

integer r, Lr := L(det)−r is the line bundle whose sections correspond to functions on Hn
that transform like Siegel modular forms of weight r with respect to Γ0. In particular,

EN,0 ' Ln+1. If Fν is a flat hermitian bundle associated to a unitary representation (ν,Fν)

of Γ0, and κ is an integer, then sections of Fν ⊗E0,N−1⊗Ln+1−κ can be viewed as Fν-valued

(0, N − 1)-forms of weight n+ 1− κ, and ξ carries such sections to sections of

Fν∨ ⊗ EN,0 ⊗ Lκ−n−1 ' Fν∨ ⊗ Lκ.

For n = 1 and Γ0 a subgroup of finite index in SL2(Z), this reduces to the ξ-operator defined

in [7] where (ν,Fν) is a finite Weil representation. For simplicity, we now omit the bundle

Fν .

Motivated by the construction of [6], we consider the ξ-operator applied to a space of Whit-

taker forms

ξ : W−T (E0,N−1 ⊗ Ln+1−κ) −→WT (Lκ).

Here we take T ∈ Symn(Z)∨>0 and Γ0 = Γu∞ = Spn(Z) ∩N . Lifted to G, this amounts to

ξ : [W−T (G)⊗ ∧N−1(p∗−)⊗ C(κ− n− 1) ]K −→ [WT (G)⊗ C(−κ) ]K .
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A family of Whittaker forms in the space on the left here can be constructed by means of

our Whittaker functional. Note that

σ∨ = ∧N−1(p∗−)⊗ C(κ− n− 1)

is an irreducible representation of K. Since the K-types of I(s) occur with multiplicity one,

we see that the space

[ I(s)⊗ ∧N−1(p∗−)⊗ C(κ− n− 1) ]K

has dimension 1. Let φs,σ be a basis vector. We then obtain a diagram

(1.17)[
I(s)⊗ ∧N−1(p∗−)⊗ C(κ− n− 1)

]K ω−T1 //

ξ
��

[
W−T (G)⊗ ∧N−1(p∗−)⊗ C(κ− n− 1)

]K
ξ
��[

I(s̄)⊗ C(−κ)
]K ωT1 //

[
WT (G)⊗ C(−κ)

]K
.

and define the Whittaker form

f−Ts,σ := ω−T1 (φs,σ).

We finally determine the behavior of this family of Whittaker forms under the ξ-operator.

Theorem C. The Whittaker form f−Ts,σ has the following properties.

(i) The form f−Ts,σ is an eigenfunction of the center of the universal enveloping algebra of g

with eigencharacter the infinitesimal character of I(s). In particular, for the Casimir operator

C,

C · f−Ts,σ =
1

8
(s+ ρ)(s− ρ)f−Ts,σ .

(ii) For the ξ-operator,

ξ(f−Ts,σ ) = n (s̄− ρ+ κ) f−Ts,−κ,

where

f−Ts,−κ = ω−T1 (φs,−κ).

(iii) At s = s0 = κ− ρ,

ξ(f−Ts0,σ)(g) = c(n, s0)W T
κ (g),

where

(1.18) W T
κ (n(b)m(a)k) = det(k)κ det(a)κ e(tr(Tτ)) = j(g, i)−κ qT ,

and c(n, s0) = 2n(κ−2ρ+1). Here τ = b+ iata and qT = e(tr(Tτ)).

Thus, the ξ-operator carries f−Ts0,σ to the standard holomorphic Whittaker function of weight

κ.

Here note that, for Γ = Spn(Z) and for κ > 2n, the Poincaré series defined by

PΓ(W T
κ )(g) =

∑
γ∈Γu∞\Γ

W T
κ (γg)
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is termwise absolutely convergent and defines a cusp form of weight κ. We define the global

ξ-operator

ξΓ = PΓ ◦ ξ : Hn+1−κ(G) −→ Sκ(Γ),

where Hn+1−κ is the subspace of

[ C∞(Γu∞\G)⊗ ∧N−1(p∗−) ]K

spanned by the f−Ts0,σ for T ∈ Symn(Z)∨>0. Since the Poincaré series span Sκ(Γ), the conjugate

linear map ξΓ is surjective and we obtain a kind of ‘resolution’

(1.19) ker(ξΓ) −→ Hn+1−κ −→ Sκ(Γ)

of the space of cusp forms which, for n > 1, might be viewed as a kind of replacement for

harmonic weak Maass forms in the higher genus case.

It is our hope that the ‘resolution’ of the space of cusp forms resulting from (1.19) will have in-

teresting arithmetic applications. In particular, we will consider the Borcherds lift/regularized

theta lift of such forms in a sequel to this paper.

We remark that there are two points where our results could be extended. First, we have only

determined the Whittaker function ωT1 (φs,`) for definite T . As mentioned above and explained

in Section 4, our calculation depends on this assumption in an essential way, although it may

be that some variant could be used for T of arbitrary signature. Note that this case distinction

also occurs in [23] where the case of arbitrary signature requires a more elaborate argument.

Second, we have not treated the Whittaker functions ωTw(fs,`) arising from the other conical

vector cw. There are two reasons for this. On the one hand, we do not need them for the

applications we have in mind, and, on the other hand, already in the case n = 1, some

additional complications arise which we did not see how to handle for general n.

We now briefly describe the contents of the various sections. In Section 2, we review back-

ground material about the degenerate principal series representation I(s). In Section 3, we

begin with a sketch of the theory of Goodman-Wallach operators relevant to our situation,

intended to summarize some of the basic ideas from [13] and [20] for nonspecialists (like the

authors). We then state and prove our first main result, Theorem 3.1 (Theorem A). Its proof

depends on some basic facts about matrix argument Bessel functions and Bessel operators

from [22]. Note that everything up to this point could just as well have been formulated

in terms of analysis on symmetric cones associated to Euclidean Jordan algebras, as in [12],

[22], [23], and it should be possible to prove the analogue of Theorem A in this generality.

We plan to do this in a sequel. In Section 4, we compute that ‘bad’ Whittaker function with

scalar K-type explicitly via an elaborate exercise with special functions of matrix argument.

As the final answer is quite simple, we wonder if there is not a more direct derivation of it but

did not succeed in finding one. In Section 5, we begin by defining the ξ-operator in some gen-

erality. We then show that its action on Whittaker forms can be determined from that of the

corresponding operator on a complex associated to the degenerate principal series, cf. (5.16).

We then construct certain Whittaker forms whose images under the ξ-operator interpolate,

in the variable s, the standard Whittaker function W T
κ occurring in the Fourier expansion

of holomorphic Siegel cusp forms of weight κ, as explained in Theorem C. In Section 6, we
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briefly discuss the global ξ-operator and in Section 7, the Appendix, we review some nota-

tion from [12], the inversion formula used in the proof of Theorem A, and an estimate for the

growth of 1F1.

This paper is part of an ongoing joint project begun durning a visit by the third author to

Darmstadt in December of 2011. The third author would like to acknowledge the support of
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of these institutions. Finally, this work was supported by an NSERC Discovery Grant and

DFG grant BR-2163/4-1 within the research unit Symmetry, Geometry, and Arithmetic.

2. Background

2.1. Notation. Let W , 〈 , 〉 be a symplectic vector space of dimension 2n over Q with

standard basis e1, . . . , en, f1, . . . , fn with 〈 ei, fj 〉 = δij and 〈 ei, ej 〉 = 〈 fi, fj 〉 = 0. Let

G = Sp(W ) ' Spn/Q. Following the tradition of [25] and [26], we view W as a space of row

vectors with G acting on the right. The Siegel parabolic P is the stabilizer of the subspace

spanned by the fj ’s, and we write P = MN with Levi subgroup

(2.1) M =

{
m(a) =

(
a

ta−1

)
| a ∈ GLn

}
,

and unipotent radical

(2.2) N =

{
n(b) =

(
1 b

1

)
| b ∈ Symn

}
.

The stabilizer in G(R) = Spn(R) of the point i · 1n ∈ Hn, the Siegel space of genus n, is the

maximal compact subgroup

(2.3) K =

{
k =

(
A B
−B A

)
| k = A+ iB ∈ U(n)

}
.

Note that if g = nm(a)k, then g = nm(ak0)k−1
0 k, where k0 ∈ O(n). In particular, in such a

decomposition, we can always assume that det(a) > 0. Let

(2.4) w =

(
1n

−1n

)
,

so that w corresponds to i 1n ∈ U(n) and lies in the center of K. For τ ∈ Hn and g ∈ G,

g =

(
a b
c d

)
, we let j(g, τ) = det(cτ + d) be the standard scalar automorphy factor. Note

that j(gk, i) = j(g, i) det(k)−1.
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2.2. Weil representations. Let V , ( , ) be a non-degenerate inner product space over Q
of signature (p, q). If dimV = m = p + q is even, Spn(R) × O(V (R)) acts on the space of

Schwartz functions S(V (R)n) via the Weil representation:

ω(m(a))ϕ(x) = χV (det(a)) |det(a)|
m
2 ϕ(xa)

ω(n(b))ϕ(x) = e(tr(Q(x)b))ϕ(x)

ω(w)ϕ(x) = γ(V )

∫
V (R)n

e(tr((x, y))ϕ(y) dy,

and ω(h)ϕ(x) = ϕ(h−1x) for h ∈ O(V )(R). Here χV (t) = (sgn(t))
1
2

(p−q) and

γ(V ) = e(1
8(p− q)).

Let D(V ) be the space of oriented negative q-planes in V (R). For z ∈ D, let ( , )z be the

majorant of ( , ) defined by

(x, x)z = (x, x)− 2(prz(x), prz(x)),

and let ϕ0(·, z) ∈ S(V (R)n), given by

ϕ0(x, z) = exp(−π tr((x, x)z)),

be the associated Gaussian. It is an eigenfunction for K with

ω(k)ϕ0(·, z) = det(k)
p−q

2 ϕ0(·, z).

2.3. The degenerate principal series. ForG = Spn(R) and the Siegel parabolic P = NM ,

with notation as in Section 2.1, let Ism(s, χ) be the degenerate principal series representation

given by right multiplication on the space of smooth functions φ on G with

(2.5) φ(n(b)m(a)g) = χ(det(a)) |det(a)|s+ρ φ(g),

where ρ = ρn = 1
2(n + 1). In the case of interest to us, χ(t) = sgn(t)ν for ν = 0, 1. We let

I(s) = I(s, χ) be the space of K-finite functions; it is the (g,K)-module associated to Ism(s).

The structure of I(s) is known, [16], [17], [18]. We review the facts that we need and refer

the reader to these papers for more information.

2.4. The infinitesimal character. Let h ⊂ g = Lie(G)C be a Cartan subalgebra of k =

Lie(K)C and hence also of g. Let z(g) be the center of the universal enveloping algebra U(g)

and let

γ : z(g)
∼−→ S(h)W

be the Harish-Chandra isomorphism, [10]. For λ ∈ h∗, let χλ be the character of z(g) given

by χλ(Z) = γ(Z)(λ). Following the notation of [16], for x = (x1, . . . , xn) ∈ Cn, we write

d(x) = diag(x1, . . . , xn), h(x) =

(
−i d(x)

i d(x)

)
,

and take h = {h(x) | x ∈ Cn}. Then Hj = h(ej) is a basis for h with dual basis εj ∈ h∗,

1 ≤ j ≤ n. Then the infinitesimal character of I(s) is χλ(s)+ρG , where

(2.6) λ(s) = (s− ρ)
∑
j

εj
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and ρG =
∑

j(n − j + 1)εj , cf. [10], Theorem 4, p. 76, for example. Let C be the Casimir

operator of g. Then C acts in I(s) by the scalar

(2.7) χλ(s)+ρG(C) = 〈λ(s) + ρG, λ(s) + ρG 〉 − 〈 ρG, ρG 〉 =
1

8
(s+ ρ)(s− ρ).

This is consistent with the fact that the trivial representation of G is a constituent on I(s)

at the points s = ±ρ.

Note that the Killing form on g ⊂M2n(C) is given by

〈X,Y 〉g = 4n tr(XY ),

so that, since tr(p+(x)p−(y)) = tr(xy),

(2.8) C = Ck +
1

4n

∑
α

p+(eα) p−(e∨α) + p−(e∨α) p+(eα),

where Ck is the k component of C.

2.5. K-types. For further details, cf. [16]. As a representation of K, we have

I(s) ' IndKM∩K(χ) ' Ind
U(n)
O(n)sgn(det)ν .

Thus the K-types of I(s) have multiplicity one and an irreducible representation (σ,Vσ) of

K occurs precisely when its highest weight has the form

(`1, . . . , `n), `1 ≥ · · · ≥ `n, `j ∈ ν + 2Z,

or, equivalently, precisely when its restriction to O(n) 'M ∩K contains the representation

(det)ν . For such σ,

(2.9) dim HomK(σ, I(s)) = dim[ I(s)⊗ σ∨]K = 1.

Suppose that v0 ∈ σ∨ is an eigenvector for O(n), so that σ∨(k)v0 = det(k)νv0 for all k ∈ O(n).

The vector v0 is unique up to a non-zero scalar. A standard basis element for [I(s) ⊗ σ∨]K

is then given by

φs,σ(nm(a)k) = χ(det(a)) |det(a)|s+ρ σ∨(k−1) v0.

For example, for an integer `, with ` ≡ ν mod 2, the unique function φs,` ∈ I(s) with scalar

K-type det(k)` is given by

(2.10) φs,`(n(b)m(a)k) = χ(det(a))| det(a)|s+ρ det(k)`.

2.6. Submodules. For s /∈ ν+2Z, the (g,K)-module I(s) is irreducible. At points s ∈ ν+2Z,

nontrivial submodules arise via the coinvariants for the Weil representation. For a quadratic

space V over R of signature (p, q), p+q even, with associated Weil representation (ω, S(V n)),

for the additive character x 7→ e(x), there is an equivariant map

λV : S(V n) −→ I(s0), ϕ 7→ (ω(g)ϕ)(0),
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where s0 = 1
2(p + q) − ρ and ν ≡ 1

2(p − q) mod 2. The image, R(p, q), is the (g,K)-

submodule of I(s0) generated by the scalar K-type (det)` with ` = 1
2(p− q). Moreover, the

vector φs0, 12 (p−q) is the image of the Gaussian ϕ0
V ∈ S(V n), where

ωV (k)ϕ0
V = det(k)

1
2

(p−q) ϕ0
V .

For example, for signature (m+2, 0) with m+2 > 2n+2, R(m+2, 0) ⊂ I(s0) is a holomorphic

discrete series representation with scalar K-type (det)κ, κ = m
2 + 1. In particular, the vector

φs0,κ for s0 = κ− ρ is killed by p−.

On the other hand, for signature (m, 2), the vector

ϕKM ∈ [S(V n)⊗ ∧(n,n)(p∗H)]KH ,

satisfies

ω(k)ϕKM = det(k)κ ϕKM .

The image of this vector under the map λm,2 is again φs0,κ, so that we have submodules

R(m+ 2, 0) ⊂ R(m, 2) ⊂ I(s0), s0 = κ− ρ.

Note that, by [16], R(p, q) is the largest quotient of S(V n) on which the orthogonal group

O(V ) = O(p, q) acts trivially, i.e., the space of O(V )-coinvariants.

3. Goodman-Wallach operators

In our discussion of both conical and Whittaker vectors, we will only consider the degenerate

principal series representation I(s) and the Siegel parabolic P = NM . In this case, the

simple example for SL2(R) worked out in the introduction of Goodman-Wallach [13] provides

an adequate template. An essential feature is that the various classical special functions

occurring there are replaced by their matrix argument generalizations. These results seem to

be new; at least we could not find such explicit formulas in the literature. Since we work with

intertwining operators which express our functions via integral representations, we derive, as

a consequence, the behavior of our functions under the differential operators coming from

the center of the enveloping algebra z(g), whereas, in the case of SL2(R) one can work with

classical solutions of the second order ode satisfied by the radial part. For discussion of

the more general theory including general results about the existence of Goodman-Wallach

operators, cf. [20].

3.1. Conical and Whittaker vectors. Suppose that (π,V) is a continuous representation

of G on a Banach space V and that

Fcon : V −→ Ian(s)

is a G-equivariant linear map. Here Ian(s) is the space of real analytic functions on G

satisfying (2.5). The linear functional µcon ∈ V∗ defined by µcon(v) = Fcon(v)(e) satisfies

µcon(π(nm(a))v) = χ(det(a)) | det(a)|s+ρ µcon(v).
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We refer to such a vector as a conical vector2 in V∗ of type (P, s+ ρ). Conical vectors in the

dual Ian(s)∗ are given by

(3.1) c1(φ) = φ(e),

and

(3.2) cw(φ) = (A(s, w)φ)(e) =

∫
N
φ(wn(b)) db,

where, for Re(s) > ρ, the intertwining operator A(s, w) : I(s) −→ I(−s) is defined by the

integral

(3.3) (A(s, w)φ)(g) =

∫
N
φ(wng) dn,

for w given by (2.4). It has a meromorphic analytic continuation. According to our termi-

nology, these are of type (P, s+ ρ) and (P,−s+ ρ) respectively.

Similarly, for T ∈ Symn(C), suppose that

Fwh : V −→ WT (G)an

is a G-equivariant linear map, where WT (G)an is the space of real analytic functions on G

satisfying (1.4). The linear functional µwh ∈ V∗ defined by µwh(v) = Fwh(v)(e) satisfies

µwh(π(n(b))v) = e(tr(Tb))µwh(v).

We refer to such a vector in V∗ as a Whittaker vector (of type (N,T )).

We can make analogous definitions for V an irreducible U(g)-module, and now explain an

essential idea of [13] relating conical and Whittaker vectors in V∗. Our goal is to motivate

the explicit construction given below; for a more careful treatment cf. [13] and [20].

Let n = Lie(N)C, m = Lie(M)C, and let n̄ = Lie(N̄)C where N̄ is the unipotent radical of the

opposite maximal parabolic P̄ = MN̄ . Let C(s + ρ) be the one dimensional representation

of m determined by the representation |det |s+ρ of M and extend it to a representation of

m + n, trivial on n. Define the generalized Verma modules

V (P, s+ ρ) = U(g)⊗U(m+n) C(s+ ρ)

and

V̄ (P̄ ,−s− ρ) = C(−s− ρ)⊗U(m+n̄) U(g).

By the Poincaré-Birkoff-Witt theorem,

V (P, s+ ρ) = U(n̄)⊗C C(s+ ρ), and V̄ (P̄ ,−s− ρ) = C(−s− ρ)⊗C U(n).

There is a natural pairing

〈〈 , 〉〉 : V̄ (P̄ ,−s− ρ)⊗C V (P, s+ ρ) −→ V̄ (P̄ ,−s− ρ)⊗U(g) V (P, s+ ρ)
∼−→ C,

and, for Z ∈ U(g), ū ∈ V̄ (P̄ ,−s− ρ) and u ∈ V (P, s+ ρ),

〈〈u∗Z, u〉〉 = 〈〈u∗, Zu〉〉.

2Here we are introducing a compressed version of the standard terminology, [13] and [20], convenient for
our special case.
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This pairing is non-degenerate precisely when V (P, s+ρ) is irreducible, [20], Section 3.1. For

the rest of our discussion, we suppose that this is the case. Note that, since n and n̄ are

abelian

(3.4) U(n̄) = S(n̄) =
⊕
d≥0

S(n̄)d

is the symmetric algebra on n̄, graded by degree, and the completion

(3.5) S(n̄)[n̄] = U(n̄)[n̄] = lim
←−

U(n̄)/n̄kU(n̄) '
∏
d≥0

S(n̄)d,

is the ring of formal power series in such elements. Let

V̂ (P, s+ ρ) = V (P, s+ ρ)[n̄] = U(n̄)[n̄] ⊗C C(s+ ρ)

be the n̄-completion of V (P, s + ρ). The pairing 〈〈 , 〉〉 extends to this space and induces an

isomorphism

(3.6) V̂ (P, s+ ρ)
∼−→ V̄ (P̄ ,−s− ρ)∗.

Then, following the notation of [20], for an admissible3 character ψ of n, the spaces

(3.7) Wh∗n,ψ(V̄ (P̄ ,−s− ρ)) = {w ∈ V̄ (P̄ ,−s− ρ)∗ | X · w = ψ(X)w, ∀X ∈ n},

and

(3.8) Whn,ψ(V̂ (P, s+ ρ)) = {w ∈ V̂ (P, s+ ρ) | X · w = ψ(X)w, ∀X ∈ n}

are isomorphic via (3.6). If we extend ψ to an algebra homomorphism ψ : U(n) −→ C, then

there is an obvious basis for the space (3.7) given by the functional 1⊗ψ on V̄ (P̄ ,−s− ρ) '
C(−s− ρ)⊗C U(n). We write gwψ

s for the corresponding element of V̂ (P, s+ ρ), viewed as a

formal power series in the elements of n̄, and we refer to it as the Goodman-Wallach element.

It is characterized by

〈〈A, gwψ
s 〉〉 = ψ(A), for all A ∈ U(n).

Returning to the irreducible U(g)-module (π,V), we let U(g) act on V∗ on the left by Z ·µ =

µ · tZ, where t : U(g) −→ U(g) is the involution restricting to X 7→ −X on g. We assume

that V is finitely generated as a U(n)-module. For a conical vector µ ∈ V∗ of type (P, s+ ρ),

we have a homomorphism

V̂ (P,−s− ρ) −→ V∗, Z 7→ Z · µ.

Then, for the Goodman-Wallach element gwψ
s ∈ V̂ (P,−s− ρ), and for X ∈ n, we have

(gwψ
s · µ) ·X = (µ · tgwψ

s ) ·X = µ · t(−Xgwψ
s ) = −ψ(X) gwψ

s · µ.

Thus, gwψ
s · µ is a Whittaker vector of type (N,−ψ). Of course, we have only given a

rough sketch of the idea here, including the restriction to the case where V (P, s + ρ) is

irreducible. After removing this restriction, a main point of the Goodman-Wallach theory is

to give estimates on the growth of the components of the power series gwψ
s so that it can be

used to define G-intertwining operators – the Goodman-Wallach operators – from principal

series representations to spaces of Whittaker functions preserving Gevrey classes, i.e., certain

3In our situation, for X ∈ n ' Symn(C), and ψ(X) = tr(TX), this simply means that det(T ) 6= 0.
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function spaces between real analytic and C∞, cf. the remark on p. 228 of [20] for a more

precise statement.

3.2. An explicit formula for the Goodman-Wallach operator for Spn(R). We now

describe the matrix argument Bessel function giving the Goodman-Wallach operator.

For φ ∈ I(s), the function Ψ(φ) defined by (1.12) and its Fourier transform (1.13) satisfy

(3.9) Ψ(x;π(m(a))φ) = det(a)s+ρ Ψ(taxa;φ),

and

(3.10) Ψ̂(y;π(m(a))φ) = det(a)s−ρ Ψ̂(a−1yta−1;φ).

The conical vectors c1 and cw defined by (3.1) and (3.2) can be written as

(3.11) 〈 c1, φ 〉 =

∫
S

Ψ̂(y;φ) dy = Ψ(0;φ),

and

(3.12) 〈 cw, φ 〉 =

∫
S

Ψ(y;π(w)φ) dy = Ψ̂(0;π(w)φ).

Here note that ∫
S
φ(wn(b)) db =

∫
S
φ(n−(−b)w) db =

∫
S
φ(n−(b)w) db.

We next define the relevant Bessel type function on S, specializing some of the notation of

[12] and [22] to the present case. This notation is summarized in Appendix 1, which the

reader should consult for things not explained here.

For z and w ∈ SC, the function GWs(z, w) defined by (1.15) coincides with the J-Bessel

function

(3.13) GWs(z, w) = Js+ρ(z, w),

in the notation of [22], p. 818 and p. 823. Note that Φm(z, w) is the function on SC × SC
described in [22], Lemma 1.11. In particular, this function is holomorphic in z, antiholo-

morphic in w, and satisfies Φm(z, 1n) = Φm(z), where Φm(z) is the spherical polynomial in

[12], Chapter XI, Section 3. Also recall that Φm(z) is homogeneous of degree |m| =
∑

imi.

Moreover, for a ∈ GLn(C),

(3.14) Φm(a · z, w) = Φm(z, tā · w),

and Φm(z, w) = Φm(w, z). The invariance (3.14) is inherited by GWs(z, w).

Theorem 3.1. For φ ∈ I(s), let

(3.15) ω1(φ) =

∫
S

GWs(2πy, 2πw) Ψ̂(y;φ) dy.

For X ∈ Symn(R), let

n+(X) =

(
0 X

0

)
.
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Then,

(3.16) ω1(π(n+(X))φ) = 2πi tr(Xw̄)ω1(φ).

Corollary 3.2. For Y ∈ Symn(C) ' n̄, view GWs(2πY, 2πw) as a power series4 in S(n̄)[n̄].

Then this power series defines the Goodman-Wallach-Matumoto operator in V̂ (P,−s−ρ) for

the Siegel parabolic P of G = Spn(R) and the character n+(X) 7→ 2πi tr(Xw̄) of n.

Definition 3.3. For T ∈ Symn(R) with det(T ) 6= 0, let ωT1 be the Whittaker functional

constructed from the conical vector c1, so that

(3.17) ωT1 (φ) =

∫
S

GWs(2πy, 2πT ) Ψ̂(y;φ) dy.

and

ωT1 (φ)(n(b)g) = e(tr(Tb))ωT1 (φ)(g).

3.3. Proof of the Goodman-Wallach identity. We want to prove (3.16) and so we con-

sider

(3.18) ω1(n+(X)φ) =

∫
S

GWs(2πy, 2πw) Ψ̂(y;n+(X)φ) dy.

We adopt some of the notation and setup from [12] and [22]. Recall that S is a simple

Euclidean Jordan algebra with product x ·y = 1
2(xy+yx). Endomorphisms P (x) and P (x, y)

of S are defined by, [22], p.794,

P (x)z = xzx, P (x, y)z = xzy + yzx.

Let eα be a basis for S and let e∨α be the dual basis with respect to the trace form, cf. Appendix

1. In particular, we write x =
∑

α xαeα. Define vector-valued differential operators as follows.

The gradient operator
∂

∂x
=
∑
α

∂

∂xα
e∨α,

is characterized by

∂a = tr(a
∂

∂x
),

where, for a ∈ S, ∂a is the directional derivative associated to the constant vector field a.

For a complex scalar λ, the Bessel operator Bλ is defined by

Bλ = P (
∂

∂x
)x+ λ

∂

∂x
=

∂

∂x
x
∂

∂x
+ λ

∂

∂x
.

Thus, if f is a C2 function on S, then Bλf is an S-valued function on S.

The key fact is the following (see also Proposition 3.3 in [15]):

Proposition 3.4. For X and Y ∈ Symn(R),

(i)

Ψ(x;π(n+(X))φ) = −tr(X
(
s x+ x

∂

∂x
x
)
Ψ(x;φ)),

4Concretely, write Y =
∑
α Yα e

∨
α and view GWs(2πY,w) as a power series in the Yα’s.
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(ii)

Ψ(x;π(n−(Y ))φ) = tr(Y
∂

∂x

)
Ψ(x;φ),

(iii)

Ψ̂(y;π(n+(X))φ) =
1

2πi
tr(XB−sΨ̂(y;φ)),

(iv)

Ψ̂(y;π(n−(Y ))φ) = −2πi tr(Y y) Ψ̂(y;φ).

Proof. First we note that(
1
x 1

)(
1 X

1

)
=

(
1 X
x 1 + xX

)
=

(
1 ∗

1

)(
tA−1

A

)(
1

A−1x 1

)
,

where A = 1 + xX and ∗ = X(1 + xX)−1. Here we are going to take tX in place of X so

that 1 + xX will be invertible for t sufficiently small. Thus, in this range,

φ(n−(x)n+(X)) = det(1 + xX)−s−ρ φ(n−((1 + xX)−1x)).

We now replace X by tX and take d/dt|t=0. First we have

d

dt
det(1 + txX)−s−ρ|t=0 = −(s+ ρ) tr(xX),

where we note that

det(1 + txX) = 1 + tr(txX) +O(t2).

Next, we let z = (1 + xtX)−1x and compute

0 =
d

dt

(
(1 + xtX)z)|t=0 = xXx+

dz

dt
|t=0,

so that, writing z =
∑

α zαeα, we have

dz

dt
|t=0 =

∑
α

dzα
dt

eα = −
∑
α

(xXx)αeα.

Therefore
d

dt
φ(z)|t=0 =

∑
α

∂φ

∂zα

dzα
dt
|t=0 = −tr(xXx

∂

∂x
)φ.

Thus we have proved that

Ψ(x;π(n+(X))φ) = −
(

(s+ ρ) tr(Xx) + tr(xXx
∂

∂x
)
)
Ψ(x;φ).

But we have5

tr(xXx
∂

∂x
) = tr(Xx

∂

∂x
x)− ρ tr(xX).

This gives (i).

5Indeed, writing • for the ‘evaluation’ product, we have

(
∑
α

∂

∂xα
e∨α) • (

∑
α

xαeα) =
∑
α

e∨α eα =
1

2
(n+ 1)

∑
i

eii.
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Now we consider the Fourier transform

−
∫
S
e(tr(xy))

(
s x+ x

∂

∂x
x
)
Ψ(x;φ) dx.

Note that if we write y =
∑

α yαe
∨
α, then (∂/∂y) =

∑
α(∂/∂yα) eα, and we have

∂

∂y
e(tr(xy)) = (

∑
α

∂

∂yα
eα)(e(

∑
α

xαyα)) = 2πi
∑
α

xαeα = 2πix.

Then the factor s x (resp. x2) can be obtained by applying

s

2πi

∂

∂y
, (resp. (2πi)−2

(
∂

∂y

)2

)

outside the integral. Also∫
S
e(tr(xy))

∂

∂x
Ψ(x;φ) dx = −2πi y

∫
S
e(tr(xy)) Ψ(x;φ) dx.

We obtain

−
∫
S
e(tr(xy))

(
s x+ x

∂

∂x
x
)
Ψ(x;φ) dx

= − 1

2πi

(
s
∂

∂y
− ∂

∂y
y
∂

∂y

)∫
S
e(tr(xy)) Ψ(x;φ) dx

=
1

2πi
B−s Ψ̂(y;φ).

This proves (iii) of Proposition 3.4. The proofs of (ii) and (iv) are easy and omitted. �

Now we return to (3.18) and, using (ii) of the previous proposition, obtain

ω1(π(n+(X))φ) =

∫
S

GWs(2πy, 2πw) Ψ̂(y;π(n+(X))φ) dy

=
1

2πi
tr(X

∫
S

GWs(2πy, 2πw)B−s Ψ̂(y;φ) dy )

=
1

2πi
tr(X

∫
S
B∗−s GWs(2πy, 2πw) Ψ̂(y;φ) dy )

=
1

2πi
tr(X

∫
S
Bs GWs(2πy, 2πw) Ψ̂(y;φ) dy ).

Here we use the fact that the adjoint of B−s is Bs. But now by (3.13) and Proposition 3.6 of

[22], we have

Bs GWs(2πy, 2πw) = −(2π)2 w̄ ·GWs(2πy, 2πw).

so that we obtain

ω1(n+(X)φ) = 2πi tr(Xw̄)ω1(φ),

as required. This proves Theorem 3.1.
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3.4. Proof of Corollary 3.2. To show that GWs(2πY, 2πw) is indeed the Goodman-Wallach

element, as claimed, we proceed as follows. The pairing

〈〈 , 〉〉 : V̄ (P̄ , s+ ρ)⊗C V̂ (P,−s− ρ) −→ C,

is characterized by

〈〈A · Z,B〉〉 = 〈〈A,Z ·B〉〉,
for A ∈ V̄ (P̄ , s+ ρ), B ∈ V̂ (P,−s− ρ), and Z ∈ U(g), and

〈〈1⊗ n+(X), n−(Y )⊗ 1〉〉 = (s+ ρ) tr(XY ).

For any function φ ∈ I(s), and for A ∈ S(n) and B ∈ U(g), we define

〈〈A,B〉〉φ = −
∫
S

Ψ̂(y; t(A ·B) · φ) dy = −Ψ(0; t(A ·B) · φ).

As a function of B this map factors through V (P,−s − ρ) and 〈〈A,B〉〉φ = 〈〈1, A · B〉〉φ.

Recall here that, as in 3.1, A 7→ tA is the involution of U(g) which is −1 on g. Moreover, we

have

〈〈n+(X), n−(Y )〉〉φ = −Ψ(0;n−(−Y )n+(−X) · φ)

= −Ψ(0; ([n−(−Y ), n+(−X)] + n+(−X)n−(−Y )) · φ)

= (s+ ρ) tr(XY ) Ψ(0;φ).

Taking φ with Ψ(0;φ) = φ(e) = 1, we have 〈〈 , 〉〉φ = 〈〈 , 〉〉 on U(n)× V (P,−s− ρ) . Now by

(iv) of Proposition 3.4, we take a power series gws ∈ S(n̄)[n̄] so that, for all φ,

Ψ̂(y; tgws · φ) = GWs(2πy, 2πw) Ψ̂(y;φ).

Then

〈〈A, gws〉〉 = −
∫
S

Ψ̂(y; t(A · gws) · φ) dy

= −
∫
S

GWs(2πy, 2πw) Ψ̂(y; tAφ) dy

= −ω1(tAφ)

= −ψ−2πiw̄(A)ω1(φ)

= ψ−2πiw̄(A) 〈〈1, gws〉〉,
where ψ−2πiw̄ : S(n) −→ C is the character determined by n+(X) 7→ −2πi tr(Xw̄). This in

fact shows that the Goodman-Wallach element is actually given by

gw\
s = 〈〈1, gws〉〉−1 gws.

4. Calculation of the ‘bad’ Whittaker function: the scalar case

In this section, we determine the Whittaker function ωT1 (φs,`) for φs,` ∈ I(s) with a scalar K-

type and for ε T ∈ Symn(R)>0 and ε = ±1. Whittaker functions for other K-types can then

be obtained by applying differential operators. In the case of SL2(R), i.e., for n = 1, the radial

part of the Whittaker function we obtain is essentially the classical confluent hypergeometric

function M(a, b; z) in the notation of [1], for example. On the other hand, again for n = 1,
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the Whittaker functional obtained by applying the Goodman-Wallach operator to the conical

vector cw yields a Whittaker function whose radial part is the classical function U(a, b; z).

Thus, this traditional basis for the solution space to the Whittaker ode arises in a natural

way from the pair of conical vectors c1 and cw. The calculation of this section constructs

the analogue of the M -Whittaker function for Spn(R). As noted earlier, we do not have a

corresponding evaluation for T of arbitrary signature, and we will indicate in the course of

the calculation where the assumption that T is definite is used.

For the standard vector φs,` with scalar K-type defined in (2.10), the Whittaker function

(4.1) fTs,`(g) := ωT1 (π(g)φs,`) =

∫
S

GWs(2πy, 2π T ) Ψ̂(y;π(g)φs,`) dy

satisfies

(4.2) fTs,`(n(b)m(a)k) = e(tr(Tb)) fTs,`(m(a)) det(k)`,

and hence is determined by its restriction to GLn(R). Note that we will frequently omitted

the T as a superscript to lighten the notation. By analogy with the one variable case, for

z ∈ SC and the a and b ∈ C with Re(a) > ρ− 1, Re(b) > ρ− 1, we let

(4.3) Mn(a, b; z) =
Γn(b)

Γn(a)Γn(b− a)

∫
t>0

1−t>0

etr(zt) det(t)a−ρ det(1− t)b−a−ρ dt.

This is the standard matrix argument hypergeometric function

(4.4) Mn(a, b; z) = 1F1(a; b; z).

as in [14], [12], etc. Our first main result is the following.

Theorem 4.1. Let v = ata, α = 1
2(s+ρ−ε`) and β = 1

2(s+ρ+ε`). Then, writing ε T = tcc,

fs,`(m(a)) = 2n(s−ρ+1) det(v)
1
2

(s+ρ) exp(−2πtr(ε Tv))Mn(α, α+ β; 4πcvtc).

For future reference, we give the full formula

(4.5)

fs,`(n(b)m(a)k) = c(n, s) det(v)
1
2

(s+ρ) e(tr(Tb)) exp(−2πtr(ε Tv))Mn(α, α+β; 4πcvtc) det(k)`,

where

(4.6) c(n, s) = 2n(s−ρ+1).

Remark 4.2. The hypergeometric function Mn(α, α+β; z) is given by a power series which is

everywhere convergent in z provided the values of s for which some factor (α+β)m = (s+ρ)m
in the denominator vanishes are excluded, [12]. The excluded values are thus Z<0 for n = 1

and

Z<0 ∪
(
− 1

2
+ Z<0)

for n ≥ 2.

By construction, the Whittaker function fs,` is an eigenfunction for the center z(g) of the

universal enveloping algebra U(g) with the same eigencharacter as I(s).
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Corollary 4.3. For all Z ∈ z(g),

Z · fs,` = χλ(s)+ρG(Z) fs,`,

where χλ(s)+ρG is the character of z(g) given by (2.6). In particular, for the Casimir operator

C, by (2.7),

C · fs,` =
1

8
(s+ ρ)(s− ρ) fs,`.

Proof of Theorem 4.1. This amounts to a long calculation. We first simplify by eliminating

T . Writing 2π ε T = c2 for c = tc > 0, we have, by (3.14),

GWs(2πy, 2π T ) = GWs(2πε
tcyc, 1n).

Then, using (3.10), and setting GWs(z) = GWs(z, 1n), we have∫
S

GWs(2πy, 2πT ) Ψ̂(y;π(m(a))φ) dy = |det(2πT )|−
1
2

(s+ρ)

∫
S

GWs(2πεy) Ψ̂(y;π(m(ca))φ) dy.

Remark 4.4. Note that it is at this point that we use the fact that T is definite in an essential

way.

Therefore, it suffices to compute

(4.7) ωε1(π(m(a))φ) :=

∫
S

GWs(2πεy) Ψ̂(y;π(m(a))φ) dy.

We write this as

ωε1(π(m(a))φ) =
∑
p+q=n

ωε1(π(m(a))φ)p,q,

where

(4.8) ωε1(π(m(a))φ)p,q =

∫
Sp,q

GWs(2πεy) Ψ̂(y;π(m(a))φ) dy

for Sp,q the subset of invertible matrices in S of signature (p, q).

Specializing to the case φ = φs,`, the first step is the following.

Proposition 4.5. For y ∈ Sp,q,

Ψ̂(y;π(m(a))φ`,s) =
(2π)nρ 2−n(ρ−1)

Γn(α)Γn(β)
det(v)−

1
2

(s+ρ) | det(y)|s (2π)ns 2ns

×
∫

x+εp>0

x+ε′q>0

e−2πtr(tcv−1c (1+2x)) det(x+ εp)
α−ρ det(x+ ε′q)

β−ρ dx,(4.9)

where y = cεp,q
tc and v = ata. Here, as in [23], α = 1

2(s + ρ + `), β = 1
2(s + ρ − `),

εp = diag(1p, 0), and ε′q = diag(0, 1q).

Proof. If we write n−(x) = nmk for k = k(n−(x)) ∈ K, then

Ψ(x;φ) = det(1 + x2)−
1
2

(s+ρ)φ(k(n−(x))).



22 JAN BRUINIER, JENS FUNKE, AND STEPHEN KUDLA

and

Ψ(x;φ`,s) = det(1 + ix)−α det(1− ix)−β,

where we are now using Shimura’s convention where α = 1
2(s+ ρ+ `) and β = 1

2(s+ ρ− `),
so that, for example, α+ β = s+ ρ. Then

Ψ̂(y;φ`,s) =

∫
S
e(tr(xy)) det(1 + ix)−α det(1− ix)−β dx,

and, following the standard manipulations on pp. 274-5 of [23], we have

Ψ̂(y;π(m(a))φ`,s) = det(a)s−ρ
∫
S
e(tr(xa−1yta−1)) det(1 + ix)−α det(1− ix)−β dx

= det(a)s−ρ
∫
S
e(−tr(xa−1yta−1)) det(1− ix)−α det(1 + ix)−β dx

= in(α−β) det(a)s−ρ ξ(1, h;α, β)

= det(a)s−ρ (2π)nρ 2−n(ρ−1) Γn(α)−1Γn(β)−1

×
∫
u>0,u>2πh

e2tr(πh−u) det(u)α−ρ det(u− 2πh)β−ρ du

= det(a)s−ρ (2π)nρ 2−n(ρ−1) Γn(α)−1Γn(β)−1 η(2, πh;α, β),

where h = a−1yta−1, cf. the top of p. 275 of [23]. Here η is the function defined in (1.26) of

loc.cit. Recalling (3.1) of loc. cit., for any a′ ∈ GLn(R)+,

η(g, a′hta′;α, β) = det(a′)2s η(ta′ga′, h;α, β),

and writing πy = cεp,q
tc so that πh = a−1cεp,q

tcta−1, we have

η(2, πa−1yta−1;α, β) = det(a)−2s |det(πy)|sη(2tcta−1a−1c, εp,q;α, β).

Next recall that Shimura writes, p. 288,

η(g, εp,q;α, β) = 2n(α+β−ρ)ζp,q(2g;α, β),

where

ζp,q(g;α, β) = e−
1
2

tr(g)

∫
x+εp>0

x+ε′q>0

e−tr(gx) det(x+ εp)
α−ρ det(x+ ε′q)

β−ρ dx.

Altogether this gives the claimed expression. �

Now we return to the integral (4.8), using the expression just given for Ψ̂(y;π(m(a))φ`,s).

If we substitute the series expansion for GWs(2πεy) and switch the order of integration, we
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obtain the expression

ωε1(π(m(a))φ`,s)p,q =
(2π)nρ 2−n(ρ−1)

Γn(α)Γn(β)
det(v)−

1
2

(s+ρ) (2π)ns 2ns

×
∫

x+εp>0

x+ε′q>0

det(x+ εp)
α−ρ det(x+ ε′q)

β−ρ(4.10)

×
(∑

m≥0

dm(−2πε)|m|

(ρ)m (s+ ρ)m

×
∫
Sp,q

e−2πtr(tcv−1c (1+2x)) | det(y)|s Φm(y) dy

)
dx.

Before proceeding, we observe that, in the expression y = cεp,q
tc, there is an ambiguity in the

choice of c, i.e., only the coset cO(p, q) is well defined. More precisely, we have the following

basic structural observations where, in particular, (a) implies that the ambiguity in the choice

of c has no effect on the double integral. The value of the inner integral does depend on the

choice of c, however!

Lemma 4.6. (a) There is a bijection

Xp,q = {x ∈ S | x+ εp > 0, x+ ε′q > 0 }
↓

Zp,q = {z ∈ S | z + εp,q > 0, z − εp,q > 0 }

given by x 7→ 2x + 1 = z. The action of G = GLn(R) on S induces an action of the group

O(p, q) on Zp,q. Since z + εp,q = 2(x+ εp) and z− εp,q = 2(x+ ε′q), the quantities det(x+ εp)

and det(x+ e′q) are constant on the O(p, q)-orbits in Zp,q.

(b) Let

Wp,q = {w ∈ Sp,q | 1− w > 0, w + 1 > 0} = Sp,q ∩ S(−1,1),

where

S(−1,1) = {x ∈ S | 1− x > 0 and 1 + x > 0 }.
The action of G = GLn(R) on S induces an action of the group O(n) on Wp,q. Moreover,

there is a bijection on orbits

O(p, q)\Zp,q ←→ O(n)\Wp,q

defined as follows. For z ∈ Zp,q, write z = ζtζ and let w = ζ−1εp,q
tζ−1. Then w ∈ Wp,q, w

depends only on the O(p, q)-orbit of z, and the O(n)-orbit of w is independent of the choice

of ζ. Conversely, for w ∈ Wp,q, write w = ηεp,q
tη and let z = η−1tη−1. Then z ∈ Zp,q, z

depends only on the O(n)-orbit of w, and the O(p, q)-orbit of z is independent of the choice

of η.

Proof. First note that

x+ εp + x+ ε′q = 2x+ 1,
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so that 2x+ 1 is automatically positive definite. This also follows from the given conditions

on z, viz

z + εp,q + z − εp,q = 2z > 0.

Now, given x ∈ Xp,q, we have

2x+ 1 + εp,q = 2(x+ εp) > 0, 2x+ 1− εp,q = 2(x+ ε′q) > 0,

so that 2x+ 1 lies in Zp,q. Conversely, if z ∈ Zp,q, then

1

2
(z − 1) + εp =

1

2
(z + εp,q) > 0,

1

2
(z − 1) + ε′q =

1

2
(z − εp,q) > 0,

so that 1
2(z − 1) lies in Xp,q. This proves (a).

To prove (b), we first note that w ∈ Sp,q, by construction. We have

1± w = 1± ζ−1εp,qζ
−1 = ζ−1(ζtζ ± εp,q)tζ−1 = ζ−1(z ± εp,q)tζ−1 > 0,

so that w ∈ Sp,q ∩ S(−1,1), as claimed. The other direction is analogous. �

Remark 4.7. It will be useful to note that, under the bijection of part (b),

2n det(x+ εp) = det(z + εp,q),

2n det(x+ ε′q) = det(z − εp,q),

and

det(z ± εp,q) = |det(w)|−1 det(1± w).

We can make one simplification in the inner integral in (4.10) as follows. Writing v = ata =

aktkta with k ∈ O(n) and setting z = 1 + 2x, as in (a) of the previous lemma, we have∫
Sp,q

e−2πtr(tcta−1a−1c z) | det(y)|s Φm(y) dy(4.11)

= det(a)2(s+ρ)

∫
Sp,q

e−2πtr(tcc z) | det(y)|s Φm(ak · y) dy.

Since the whole expression is independent of k, integrating over O(n) has no effect, but

bringing the O(n) integration inside the Sp,q-integral, we have∫
O(n)

Φm(ak · y) dk = Φm(a · 1n) Φm(y) = Φm(v) Φm(y),

by Corollary XI.3.2 in [12]. Thus (4.11) is equal to

det(v)s+ρ Φm(v)

∫
Sp,q

e−2πtr(tcc z) | det(y)|s Φm(y) dy.
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Noting that dz = 2nρ dx, for (4.10) we have

ωε1(π(m(a))φ`,s)p,q =
(2π)nρ 2−n(ρ−1)

Γn(α)Γn(β)
det(v)

1
2

(s+ρ) (2π)ns

×
∫
Zp.q

det(z + εp,q)
α−ρ det(z − εp,q)β−ρ(4.12)

(
×
∑
m≥0

dm(−2πε)|m|

(ρ)m (s+ ρ)m
Φm(v)

×
∫
Sp,q

e−2πtr(tcc z) |det(y)|s Φm(y) dy

)
dz.

We need some additional structural information. Let

R+
p,q = {δ = diag(δ1, . . . , δn) | δ1 > · · · > δp > 0, δn > · · · > δp+1 > 0}.

There is then a map

(4.13) O(n)×R+
p,q −→ Sp,q, (u, δ) 7→ u · δεp,q = uδεp,q

tu = y

with open dense image, and, by TheoremVI.2.3 of [12],

dy = Ξp,q(δ) dδ du

where

Ξp,q(δ) = c00

∏
1≤i<j≤p

or
p<i<j≤n

|δi − δj |
∏
i≤p<j

(δi + δj),

and

dδ = dδ1 . . . dδn.

Here c00 is a certain positive constant depending only on n. Note that the map (4.13) is 2n

to 1, due to the fact that the stabilizer in O(n) of an element δεp,q is the diagonal subgroup,

isomorphic to (µ2)n.

Let

A+
p,q = {δ

1
2 | δ ∈ R+

p,q}.
Then we have a map

O(n)×A+
p,q ×O(p, q) −→ G, (u, a, h) 7→ uah = g

with open dense image, and a left invariant measure dg on G has pullback

(4.14) dg = det(g)−2ρ Ξp,q(δ) dδ du dh,

where a2 = δ and dh is a Haar measure on H = O(p, q).

Let

R+0
p,q = {δ ∈ R+

p,q | δj ∈ (0, 1) for all j }.
Then (4.13) restricts to a map

O(n)×R+0
p,q −→Wp,q
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with open dense image and we have an injection R+0
p,q ↪→ O(n)\Wp,q. Similarly, we have a

map

O(p, q)×R+0
p,q −→ Zp,q, (h, δ) 7→ h · δ−1 = h δ−1th,

with open dense image and an injection R+0
p,q ↪→ O(p, q)\Zp,q.

We now return to (4.12) and write z = h · δ−1
w with h ∈ O(p, q) so that

dz = Ξp,q(δ
−1
w ) d(δ−1

w ) dh = det(δw)−2ρ Ξp,q(δw) dδw dh.

The double integral becomes∫
R+0
p,q

det(δ−1
w + εp,q)

α−ρ det(δ−1
w − εp,q)β−ρ det(δw)−2ρ Ξp,q(δw)

×
∫

O(p,q)

∫
Sp,q

e−2πtr(ch·δ−1
w ) |det(y)|s Φm(c · εp,q, 1n) dy dδw dh.

Writing g = ch, we have dy dh = (det g)2ρ dg and this becomes∫
R+0
p,q

det(δ−1
w + εp,q)

α−ρ det(δ−1
w − εp,q)β−ρ det(δw)−2ρ Ξp,q(δw)

×
∫
G

e−2πtr(g·δ−1
w ) |det(g)|2s Φm(g · εp,q, 1n) (det g)2ρ dg dδw.

Now we put gδ
1
2
w for g and have∫

R+0
p,q

det(δ−1
w + εp,q)

α−ρ det(δ−1
w − εp,q)β−ρ det(δw)s−ρ Ξp,q(δw)

×
∫
G

e−2πtr(gtg) |det(g)|2s Φm(g · δwεp,q, 1n) (det g)2ρ dg dδw.

This is∫
R+0
p,q

det(δ−1
w + εp,q)

α−ρ det(δ−1
w − εp,q)β−ρ det(δw)s−ρ Ξp,q(δw)

×
∫
G

e−2πtr(tgg) |det(g)|2s Φm(δwεp,q,
tgg) (det g)2ρ dg dδw,

and so, setting y∨ = tgg, we arrive at the expression∫
R+0
p,q

det(δ−1
w + εp,q)

α−ρ det(δ−1
w − εp,q)β−ρ det(δw)s−ρ Ξp,q(δw)

×
∫
Sn,0

e−2πtr(y∨) det(y∨)s Φm(δwεp,q, y
∨) dy∨ dδw.
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By the inversion formula, cf. Lemma XI.2.3 of [12], we have∫
Sn,0

e−2πtr(y∨) det(y∨)s Φm(δwεp,q, y
∨) dy∨

= Γm(s+ ρ) (2π)−n(s+ρ)(2π)−|m|Φm(δwεp,q, 1n).

Returning to the inner sum in (4.12) and canceling the gamma factor, we have

(4.15) Γn(s+ ρ) (2π)−n(s+ρ)
∑
m≥0

(−ε)|m|dm
(ρ)m

Φm(v) Φm(δwεp,q).

Now, for v = ata, we write

Φm(v) Φm(δwεp,q) =

∫
O(n)

Φm(ak · δwεp,q) dk,

so that (4.15) becomes the integral over O(n) of

Γn(s+ ρ) (2π)−n(s+ρ)
∑
m≥0

(−ε)|m|dm
(ρ)m

Φm(ak · δwεp,q)

= Γn(s+ ρ) (2π)−n(s+ρ) exp(−εtr(ak · δwεp,q)),

via the standard expansion of exp(tr(z)), Proposition XII.1.3 (i) of [12]. But now the last

three lines of (4.12) amount to

Γn(s+ ρ) (2π)−n(s+ρ)

∫
O(n)

∫
R+0
p,q

det(δ−1
w + εp,q)

α−ρ det(δ−1
w − εp,q)β−ρ exp(−εtr(ak · δwεp,q))

× det(δw)s−ρ Ξp,q(δw) dk dδw

=Γn(s+ ρ) (2π)−n(s+ρ)

∫
Wp,q

| det(w)|−(α+β−2ρ) det(1 + w)α−ρ det(1− w)β−ρ exp(−εtr(a · w))

× | det(w)|s−ρ dw.

Here the exponent of | det(w)| is

2ρ− α− β + s− ρ = 0. (!!!)

Taking a with a = ta, we get simply

Γn(s+ ρ) (2π)−n(s+ρ)

∫
Wp,q

det(1 + w)α−ρ det(1− w)β−ρ exp(−εtr(vw)) dw,

and, altogether:

ωε1(π(m(a))φ`,s)p,q = Bn(α, β)−1 2−n(ρ−1) det(v)
1
2

(s+ρ)

×
∫

Wp,q

det(1 + w)α−ρ det(1− w)β−ρ exp(−εtr(vw)) dw.(4.16)
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Summing over the signatures, we have

ωε1(π(m(a))φs,`) = Bn(α, β)−1 2−n(ρ−1) det(v)
1
2

(s+ρ)

×
∫

1±w>0

det(1 + w)α−ρ det(1− w)β−ρ exp(−εtr(vw)) dw.

In the integral here we put 2r = 1 + w and obtain

2ns exp(εtr(v))

∫
r>0

1−r>0

exp(−2εtr(vr)) det(r)α−ρ det(1− r)β−ρ dr.

For ε = −1, this gives

ωε1(π(m(a))φs,`) = 2n(s−ρ+1) det(v)
1
2

(s+ρ) exp(−tr(v))Mn(α, α+ β; 2v).

and for ε = +1, this is

2ns exp(−tr(v))

∫
r>0

1−r>0

exp(tr(2v(1− r)) det(r)α−ρ det(1− r)β−ρ dr,

and hence

ωε1(π(m(a))φs,`) = 2n(s−ρ+1) det(v)
1
2

(s+ρ) exp(−tr(v))Mn(β, α+ β; 2v).

Finally, taking into account the scaling transformation used to eliminate T , we obtain the

claimed expression. This completes the proof of Theorem 4.1. �

5. The ξ-operator

In this section, we construct the ξ-operator, analogous to that defined in [7] and [6], in

our present situation. This operator is a slight modification of the ∂̄-operator and is best

expressed in terms of differential forms and the Hodge ∗-operator for homogeneous vector

bundles on the Siegel space Hn. Here, as before, we write τ = u + iv, v > 0, for an element

of Hn.

5.1. Homogeneous bundles and differential forms. For a representation (µ,Vµ) of K,

let Lµ be the homogeneous vector bundle

Lµ = (G× Vµ)/K −→ G/K = Hn.

Here K acts by (g, v) · k = (gk, µ(k)−1v), and the C∞-sections are given by

(5.1) Γ(Hn,Lµ) ' [C∞(G)⊗ Vµ]K , µ(k)φ(gk) = φ(g).

If Γ is a discrete subgroup6 of Spn(R), we use the same notation for the quotient bundle7

on X = Γ\Hn. We write Lr = Ldet−r with Vdet−r = C(−r), so that sections of Lr satisfy

6The main cases of interest will be Γ ⊂ Spn(Z) an arithmetic subgroup, the intersection of such a subgroup
with N , or the trivial subgroup.

7Here we should use orbifolds/stacks.
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φ(gk) = det(k)r φ(g). Note that the function j(g, i)−r defines a smooth section of Lr on Hn.

If φ is any section, we can write

φ(g) = j(g, i)−rf(τ),

where f(g(i)) = j(g, i)r φ(g), and invariance of φ under left multiplication by an element

γ ∈ Γ is equivalent to the invariance of f under the corresponding weight r slash operator

for γ. The Petersson metric on Lr is given by |φ(g)|2 = |f(τ)|2 det(v)r. More generally,

suppose that the representation µ of K on Vµ extends to a representation of KC ' GLn(C).

Let J(g, τ) = cτ + d be the canonical automorphy factor J : G× Hn −→ KC. Note that

J(k, i) = A− iB = k = tk−1.

A general smooth section of Lµ on Hn can be written as

φ(g) = µ(tJ(g, i)) f(τ),

where f is a smooth Vµ-valued function of Hn. The left invariance of the section φ under

γ ∈ G is equivalent to the invariance

(5.2) f(γτ) = µ(tJ(γ, τ)−1) f(τ).

Now suppose, moreover, that 〈 , 〉µ is a hermitian inner product on Vµ such that µ(a)∗ = µ(tā)

for all a ∈ GLn(C). Such an inner product is ‘admissible’ in the terminology of [4], p. 47.

Then we can define the Petersson metric on Lµ by

(5.3) ||φ(g)||2µ = 〈φ(g), φ(g) 〉µ = 〈 f(τ), µ(v−1)f(τ) 〉µ, v = Im(τ) = Im(g(i)).

Since

v(γ(τ)) = t(cτ + d)−1 v (cτ̄ + d)−1,

the right side of (5.3) is γ-invariant if f satisfies (5.2).

If (λ, Fλ) is a finite dimensional unitary representation of Γ, there is an associated flat bundle

Fλ on X defined by

Fλ = Γ\(Hn × Fλ),

with hermitian metric given by the norm on Fλ.

The bundle ΩN of top degree holomorphic differential forms on Hn is Ln+1. Here N =
1
2n(n+ 1). Writing τ =

∑
α τα eα, we let

dµ(τ) = ∧αdτα
and note that

dµ(g(τ)) = j(g, τ)−2ρ dµ(τ), ρ =
1

2
(n+ 1).

If φ is a section of Ln+1, the corresponding section of ΩN is

φ(g) j(g, i)2ρ dµ(τ) = f(τ) dµ(τ).

Let Ea,b be the bundle of differential forms of type (a, b) on Hn. We use the same notation

for the corresponding bundle on X. Let

g = k + p+ + p−
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be the Harish-Chandra decomposition of g = Lie(G)⊗R C. Then we have an isomorphism

(5.4) Γ(Hn, Ea,b) = A(a,b)(Hn)
∼−→ [C∞(G)⊗ ∧a(p∗+)⊗ ∧b(p∗−) ]K .

More explicit coordinates can be given as follows. Let S = Symn(R) with basis eα and dual

basis8 e∨α with respect to the trace form. There are isomorphisms

(5.5) p± : SC
∼−→ p±, p±(X) =

1

2

(
X ±iX
±iX −X

)
.

Then we have a basis Lα = p−(e∨α) for p−, and we write η′α ∈ p∗− for the dual basis. The

operator on the right side of (5.4) corresponding to ∂̄ is then

(5.6) ∂̄ =
∑
α

p−(e∨α)⊗ η′α,

where η′α acts on ∧•(p∗) by exterior multiplication.

Suppose that E is any hermitian vector bundle on X, and let ν : E
∼−→ E∗ be the conjugate

linear isomorphism determined by the hermitian inner product. Recall that the Hodge ∗-
operator gives a conjugate linear operator, [27], Chapter V, Section 2,

∗̄E : Ea,b ⊗ E −→ EN−a,N−b ⊗ E∗, α⊗ h 7→ (∗ ᾱ)⊗ ν(h).

Definition. For a hermitian vector bundle E on X, the ξ-operator is defined as

(5.7) ξ = ξE = ∗̄E ∂̄ : Γ(X, Ea,b ⊗ E) −→ Γ(X, EN−a,N−b−1 ⊗ E∗).

If E = Fλ⊗Lµ for a unitary flat bundle Fλ and for Lµ with the Petersson metric defined by

(5.3), then E∗ ' Fλ∨ ⊗ Lµ∨ where λ∨ and µ∨ are the contragredients of λ and µ.

For example, for an integer κ, a C∞-section f of the bundle

(5.8) Fλ ⊗ E0,N−1 ⊗ Ln+1−κ.

can be viewed as an Fλ-valued (0, N − 1)-form on Hn of weight n + 1 − κ. Then ξ(f) is a

section of

Fλ∨ ⊗ EN,0 ⊗ Lκ−n−1 ' Fλ∨ ⊗ Lκ.

For n = 1, this coincides with the ξ-operator defined in [7].

From now on, to simplify things slightly, we will omit the flat bundle Fλ.

8Recall that we take ejj , 1 ≤ j ≤ n and eij + eji, 1 ≤ i < j ≤ n, as basis for S with dual basis is ejj and
1
2
(eij + eji).
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It is useful to note that we have the diagram

Γ(X, Ea,b ⊗ Lµ) //

ξ

��

[C∞(Γ\G)⊗ Vµ ⊗ ∧a(p∗+)⊗ ∧b(p∗−) ]K

∂̄
��

[C∞(Γ\G)⊗ Vµ ⊗ ∧a(p∗+)⊗ ∧b+1(p∗−) ]K

∗̄
��

Γ(X, EN−a,N−b−1 ⊗ Lµ∨) // [C∞(Γ\G)⊗ Vµ∨ ⊗ ∧N−a(p∗+)⊗ ∧N−b−1(p∗−) ]K

and that the two maps on the right are given explicitly by (5.6) and

(5.9) ∗̄ : φ⊗ x⊗ ω 7−→ φ̄⊗ ν(x)⊗ ∗ ω̄,

where ν : Vµ
∼−→ Vµ∨ is the conjugate linear isomorphism determined by 〈 , 〉µ.

5.2. Whittaker forms. As explained earlier, we consider a version of these operators in-

volving Whittaker forms.

For T ∈ Symn(R), recall that WT (G) is the space of smooth functions φ on G such that

φ(n(b)g) = e(tr(Tb))φ(g). Define the space of Whittaker forms valued in Lµ as

(5.10) W−T (Ea,b ⊗ Lµ)
∼−→ [W−T (G)⊗ Vµ ⊗ ∧a(p∗+)⊗ ∧b(p∗−) ]K .

There is a corresponding ξ-operator described by the diagram

W−T (Ea,b ⊗ Lµ) //

ξ

��

[W−T (G)⊗ Vµ ⊗ ∧a(p∗+)⊗ ∧b(p∗−) ]K

∂̄
��

[W−T (G)⊗ Vµ ⊗ ∧a(p∗+)⊗ ∧b+1(p∗−) ]K

∗̄
��

WT (EN−a,N−b−1 ⊗ Lµ∨) // [WT (G)⊗ Vµ∨ ⊗ ∧N−a(p∗+)⊗ ∧N−b−1(p∗−) ]K ,

where the maps in the right column are given by (5.6) and (5.9).

Our Whittaker functionals (3.17) provide a supply of elements in these spaces via the diagram[
I(s)⊗ Vµ ⊗ ∧a(p∗+)⊗ ∧b(p∗−)

]K

ξ

!!

ω−Ts //

∂̄
��

[
W−T (G)⊗ Vµ ⊗ ∧a(p∗+)⊗ ∧b(p∗−)

]K
∂̄
��

ξ

}}

[
I(s)⊗ Vµ ⊗ ∧a(p∗+)⊗ ∧b+1(p∗−)

]K ω−Ts //

∗̄
��

[
W−T (G)⊗ Vµ ⊗ ∧a(p∗+)⊗ ∧b+1(p∗−)

]K
∗̄
��[

I(s̄)⊗ Vµ∨ ⊗ ∧N−a(p∗+)⊗ ∧N−b−1(p∗−)
]K ωTs̄ //

[
WT (G)⊗ Vµ∨ ⊗ ∧N−a(p∗+)⊗ ∧N−b−1(p∗−)

]K
.

Here the maps in the left column are again given by (5.6) and (5.9). We can utilize the fact

that the K-spectrum of I(s) is multiplicity free to produce various examples.
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5.3. Some particular vectors. In the construction of Whittaker forms, we will be inter-

ested in the following functions in I(s).

The isomorphism (5.5) satisfies

(5.11) Ad(k) p+(X) = p+(k ·X), k ·X = kXtk.

Similarly, p−(X) = p+(X) and

Ad(k) p−(X) = p−(k̄ ·X) = p−(tk−1 ·X).

The trace pairing

〈 p+(X), p−(Y ) 〉 = tr(XY )

is then invariant under the adjoint action of K, so that p∗± ' p∓ as K-modules. Note that

∧N (p+)
∼−→ C(2ρ)

as K-modules, where N = nρ = dim p±.

For the fixed integer κ, let r = κ− n− 1, and consider the space

(5.12)
[
I(s)⊗ ∧N−1(p∗−)⊗ C(r) ]K .

Fixing a basis vector ω̄ for ∧N (p∗−), we have a pairing

∧N−1(p∗−)⊗ p∗− −→ ∧N (p∗−)
∼−→ C(2ρ),

and hence an isomorphism

(5.13) ∧N−1(p∗−)
∼−→ p− ⊗ C(2ρ).

Thus

σ∨ := ∧N−1(p∗−)⊗ C(r) ' Symn(C)⊗ C(κ).

Note that the vector v0 = 1n ∈ Symn(C) is O(n)-invariant, and so, via (5.13), we have the

standard function

(5.14) φs,σ(nm(a)k) = χ(det(a)) |det(a)|s+ρ det(k)−κ tk k

in (5.12). By (2.9), it is characterized by the invariance property

π(k)φs,σ = det(k)−κ tk · φs,σ,

together with the normalization φs,σ(e) = 1n.

For generic s, the function φ = φs,σ can also be obtained by applying a certain differential

operator to φs,−κ. Here we use the conventions described in more detail in Section 3.3. Let

eα be a basis for S = Symn(R) and let e∨α be the dual basis with respect to the trace form.

Let

(5.15) D =
∑
α

p+(eα)⊗ e∨α ∈ p+ ⊗ S ⊂ U(g)⊗ S.

This operator has the following invariance property.

Lemma 5.1. For k ∈ K,

Ad(k)D = tk ·D = tkD k.
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Proof. We compute using (5.11)

Ad(k)D =
∑
α

p+(k · eα)⊗ e∨α =
∑
α

∑
β

tr((k · eα)e∨β ) p+(eβ)⊗ e∨α

=
∑
β

p+(eβ)⊗
∑
α

tr(eα(tk · e∨β )) e∨α =
∑
β

p+(eβ)⊗ tk · e∨β = tk ·D.

�

Now consider the function π(D)φs,−κ ∈ I(s)⊗ Symn(C). For k ∈ K, we have

π(k)π(D)φs,−κ = π(Ad(k)D)π(k)φs,−κ

= det(k)−κ tk · π(D)φs,−κ.

Thus π(D)φs,−κ is a multiple of φs,σ, and it remains to calculate the constant of proportion-

ality.

Lemma 5.2.

π(D)φs,−κ =
1

2
(s+ ρ− κ)φs,σ = α(s)φs,σ.

Proof. An easy calculation shows that

p+(X)φs,`(e) =
1

2
(s+ ρ+ `) tr(X).

Therefore

Dφs,−κ =
1

2
(s+ ρ− κ) 1n.

�

In particular, for s0 = κ − ρ, we have p+(X)φs0,−κ = 0, so that φs0,−κ is a highest weight

vector. But this was already clear since this vector is the generator of R(0,m + 2), i.e.,

the image in I(s0) of the Gaussian for the negative definite space of dimension m + 2, cf.

section 2.6.

Thus we have basis vectors φs,−κ and φs,σ in the 1-dimensional spaces on the upper left side

of the diagram

(5.16)
[
I(s)⊗ C(κ)

]K ω−T1 //

D
��

[
W−T (G)⊗ C(κ)

]K
D
��[

I(s)⊗ ∧N−1(p∗−)⊗ C(r)
]K ω−T1 //

ξ
��

[
W−T (G)⊗ ∧N−1(p∗−)⊗ C(r)

]K
ξ
��[

I(s̄)⊗ ∧N (p∗+)⊗ C(−r)
]K

o
��

ωT1 //
[
WT (G)⊗ ∧N (p∗+)⊗ C(−r)

]K
o
��[

I(s̄)⊗ C(−κ)
]K ωT1 //

[
WT (G)⊗ C(−κ)

]K
.
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5.4. Calculation of ∂̄ and ξ. We now compute the image of φs,σ under the operator ξ on

the left side of (5.16).

Proposition 5.3.

∂̄ φs,σ = n(s− ρ+ κ)φs,−κ · dµ(τ̄),

and

ξ(φs,σ) = n(s̄− ρ+ κ)φs̄,κ.

Here we are slightly abusing notation and writing dµ(τ̄) for the basis element of ∧N (p∗−)

arising as the restriction of this global form to the tangent space at i.

Proof. First we apply ∂̄:[
I(s)⊗ ∧N−1(p∗−)⊗ C(n+ 1− κ) ]K

∂̄−→
[
I(s)⊗ ∧N (p∗−)⊗ C(n+ 1− κ) ]K ,

noting that both spaces are 1-dimensional. Using (5.6), and (5.15),

∂̄ φs,σ = α(s)−1 ∂̄ ·Dφs,−κ = α(s)−1
∑
α

p−(e∨α) p+(eα)φs,−κ · dµ(τ̄).

The second order operator occurring here has the following expression in terms of the Casimir

operator (2.8). We have∑
α

p+(eα) p−(e∨α) + p−(e∨α) p+(eα) = 2
∑
α

p−(e∨α) p+(eα) + [p+(eα), p−(e∨α)]

= ρH + 2
∑
α

p−(e∨α) p+(eα),

where H =
∑

j Hj , for Hj as in Subsection 2.4. On the other hand, a short calculation shows

that Ck acts by 1
8 κ

2, whereas H acts by −nκ. Thus we have

2
∑
α

p−(e∨α) p+(eα)φs,−κ =
(

4n(C − Ck)− ρH
)
φs,−κ

=
1

2
n(s2 − ρ2 + 2ρκ− κ2)φs,−κ

=
1

2
n(s− ρ+ κ)(s+ ρ− κ)φs,−κ

This gives the first identity. Then

∗̄ ∂̄ φs,σ = n (s̄− ρ+ κ)φs̄,κ · dµ(τ),

so the second identity is immediate. �

5.5. Vector valued Whittaker functions. Now we can apply the Whittaker functionals to

obtain Whittaker forms on the right side of (5.16). Recall that fs,−κ(g) = ω−T1 (π(m(g))φs,−κ)

and let

(5.17) fs,σ(g) = ω−T1 (π(m(g))φs,σ).
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Then by Lemma 5.2,

(5.18) α(s)fs,σ(g) = Dfs,−κ(g) =
∑
α

p+(eα)fs,−κ(g) e∨α,

where α(s) = 1
2(s− s0) = 1

2(s+ ρ− κ). Thus fs,σ is S-valued and, by Lemma 5.1, satisfies

(5.19) fs,σ(gk) = det(k)−κ tkfs,σ(g) k.

Note that the scaling relation

(5.20) f−Ts,σ (m(c)g) = det(c)s+ρ f−c T
tc

s,σ (g), c ∈ GLn(R)+,

holds for fs,σ = f−Ts,σ , where we include the normally omitted superscript.

As a consequence of our constructions, we have obtained the following.

Theorem 5.4. The Whittaker forms fs,σ defined by (5.18) lie in the space[
W−T (G)⊗ ∧N−1(p∗−)⊗ C(r)

]K
.

(i) The infinitesimal character of fs,σ is χλ(s)+ρG. In particular, for the Casimir operator C,

C · fs,σ =
1

8
(s+ ρ)(s− ρ)fs,σ.

(ii) For the ξ-operator,

ξ(fs,σ) = n (s̄− ρ+ κ) fs,−κ

(iii)9 At s = s0 = κ− ρ,

ξ(fs0,σ)(g) = c(n, s0)W T
κ (g),

where

(5.21) W T
κ (n(b)m(a)k) = det(k)κ det(a)κ e(tr(Tτ)) = j(g, i)−κ qT ,

v = ata, τ = b+ iv, and

c(n, s0) = 2n(κ−2ρ+1).

Proof. The first two statements follow from the commutativity of (5.16) and the correspond-

ing results for the vectors on the left side. In particular,

ξ(fs,σ) = n (s̄− ρ+ κ) fs,−κ.

By (4.5), we have

fs,−κ(n(b)m(a)k) = c(n, s̄) qT det(v)
1
2

(s̄+ρ) det(k)κMn(α, α+ β; 4πcvtc).

But, at s = s0 = κ−ρ, α = 0 and Mn(0, s0; 4πcvtc) = 1, so we get the claimed expression. �

9Here note that, although α = α(s0) = 0, the calculations of Section 5.6 show that the right side of (5.18)
is divisible by α and that fs0,σ is given by a nice convergent power series in v.
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5.6. Some explicit formulas. In this section, we calculate the function fs,σ more explicitly.

In view of the scaling relation (5.20), it suffices to consider the case T = 1n. Recall that

Mn(α, α+ β; z) =
∑
m≥0

(α)m
(s+ ρ)m

dm
(ρ)m

Φm(z),

where m = (m1, . . . ,mn) with m1 ≥ m2 ≥ · · · ≥ mm ≥ 0. Since

(α)m = (α)m1(α− 1

2
)m2 . . . (α−

1

2
(n− 1))mn ,

we have (α)0 = 1 and (0)m = 0 for m 6= 0. In particular, Mn(0, β; z) = 1. For m 6= 0, let

[0]m = (α−1(α)m))|α=0.

Then

[0]m =

{
(1)m1−1(−1

2)m2 (−1
2)r(r + 1)!, if m = (m1,m2, 1, . . . , 1, 0, . . . , 0),

0 otherwise.

Here in the first case m > 0 with m3 ≤ 1 and with a string of r 1’s following m2. With this

notation, we can state our result.

Proposition 5.5. (i) For a ∈ GLn(R)+,

fs,σ(m(a)) = c(n, s) e−2πtr(v) det(v)
1
2

(s+ρ)Bn(α, β)−1(5.22)

×
∫
t>0

1−t>0

(
1n + α(s)−1 4π ta t a

)
e4πtr(tv) det(t)α−ρ det(1− t)β−ρ dt.

Recall that c(n, s) = 2n(s−ρ+1).

(ii) For n = 1,

fs0,σ(m(a)) = 2κ−1 4π e2πv v
1
2
κ+1

∫ 1

0
e−4πtv tκ−1 dt.

(iii) For n ≥ 2,

fs0,σ(m(a)) = 2n(κ−n) e−2πtr(v) det(v)
1
2
κ

(
1n +

∑
m>0

[0]m
(κ)m

dm
(ρ)m

ta
∂

∂v

{
Φm(4πv)

}
a

)
.

Here v = ata, as usual.

Remark 5.6. In the case n = 1, we recover the basic formula from [6]. Notice that, in the

case n ≥ 2, we do not yet have a complete evaluation of fs0,σ(m(a)); it would be interesting

to have a nicer closed formula.

Proof. Recalling (5.18), we begin by computing some derivatives.

Lemma 5.7. For X ∈ S,

p+(X)fs,`(m(a)) =
1

2

(
DX + ` tr(X) + 4π tr(aXta)

)
· fs,`(m(a)).

Here, for a function h on GLn(R),

DXh(a) =
d

dt
(h(a exp(tX)) ) |t=0.
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In particular, for a function of v = ata,

DX = 2 tr(aXta
∂

∂v
).

This follows from a simple direct calculation. Then, recalling the expression of the function

fs,` given in Theorem 4.1, we have the nice expression for our Whittaker form

α(s)fs,σ(m(a)) =
∑
α

p+(eα)fs,−κ(m(a)) e∨α

= c(n, s) e−2πtr(v) det(v)
1
2

(s+ρ)Bn(α, β)−1(5.23)

×
∫
t>0

1−t>0

(
α(s) 1n + 4π ta t a

)
e4πtr(tv) det(t)α−ρ det(1− t)β−ρ dt.

This gives statement (i).

When n = 1, (5.23) amounts to

fs,σ(m(a)) = c(1, s) e−2πv v
1
2

(s+1) α(s)−1B(α, β)−1(5.24)

×
∫ 1

0

(
α(s) + 4πtv

)
e4πtv tα−1 (1− t)β−1 dt.

Lemma 5.8.

α−1B(α, β)−1

∫ 1

0

(
α(s) + 4πtv

)
e4πtv tα−1 (1− t)β−1 dt = M(α+ 1, s+ 1; 4πv).

Proof. Initially, we have

α−1B(α, β)−1

∫ 1

0

(
α(s) + 4πtv

)
e4πtv tα−1 (1− t)β−1 dt

= M(α, s+ 1; 4πv) + α−1 v
∂

∂v
{M(α, s+ 1; 4πv)}.

But by 13.4.10 of [1],

4πvM ′(α, s+ 1; 4πv) = −αM(α, s+ 1; 4πv) + αM(α+ 1, s+ 1; 4πv).

�

Thus

fs,σ(m(a)) = 2s e−2πv v
1
2

(s+1)M(α+ 1, s+ 1; 4πv).

This agrees with the Whittaker form for m = 1 in [6], up to a simple factor. To evaluate at

s = s0 we return to the original expression (5.24). Since

α−1B(α, β)−1 =
Γ(s+ 1)

Γ(α+ 1)Γ(β)
,
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we can plug in s0 = κ− 1 so that α0 = 0 and β0 = κ, and obtain the following expression

fs0,σ(g) = c0 e
−2πv v

1
2
κ

∫ 1

0

(
4πtv

)
e4πtv t−1 (1− t)κ−1 dt

= c0 4π e−2πv v
1
2
κ+1

∫ 1

0
e4πtv (1− t)κ−1 dt

= c0 4π e2πv v
1
2
κ+1

∫ 1

0
e−4πtv tκ−1 dt

= c0 4π e2πv v
1
2
κ+1

[
(4πv)−κΓ(κ)−

∫ ∞
1

e−4πtv tκ−1 dt
]
,

where c0 = c(1, s0) = 2κ−1. The last expression here is in some ways more enlightening,

although we do note record it in the statement (ii) of the proposition.

Finally, for general n ≥ 2, we want to evaluate (5.22) at s0 = κ− ρ. The term associated to

1n is given by the scalar matrix

c(n, s) e−2πtr(v) det(v)
1
2

(s+ρ)Bn(α, β)−1

×
∫
t>0

1−t>0

e4πtr(tv) det(t)α−ρ det(1− t)β−ρ dt · 1n

= c(n, s) e−2πtr(v) det(v)
1
2

(s+ρ)Mn(α, α+ β; 4πv) · 1n.

Since Mn(0, κ; z) = 1, we obtain a contribution

2n(κ−n) e−2πtr(v) det(v)
1
2
κ · 1n.

The other contribution is the value of

c(n, s) e−2πtr(v) det(v)
1
2

(s+ρ)

× ta
(
α−1Bn(α, β)−1

∫
t>0

1−t>0

4πt e4πtr(tv) det(t)α−ρ det(1− t)β−ρ dt
)
a

at s0. The inner integral here is just

α−1 ∂

∂v

{
Mn(α, α+ β; 4πv)

}
=
∑
m>0

α−1 (α)m
(s+ ρ)m

dm
(ρ)m

∂

∂v

{
Φm(4πv)

}
,

where we can omit the term m = 0 since Φ0(z) = 1 is killed by ∂/∂v. Note that, for m 6= 0,

α−1(α)m is finite at α = 0 and vanishes if m3 > 1. With the notation explained above, we

arrive at the expression given in (iii). �

6. A global construction

In this section, we define the space of Whittaker forms and discuss the ‘global’ ξ-operator.

For simplicity, we restrict to the case of Γ = Spn(Z) and a positive even integer κ.
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For T ∈ Symn(Z)∨>0, we consider the basic Whittaker form

(6.1) f−Ts,σ ∈
[
W−T (G)⊗ ∧N−1(p∗−)⊗ C(κ− n− 1)

]K
.

These forms are the analogues of those considered in Section 4 of [6] in the case of SL2(R),

i.e., n = 1. By construction, they are invariant under the translation subgroup Γu∞ of Spn(Z).

Setting s = s0, we have Whittaker forms f−Ts0,σ satisfying

C · f−Ts0,σ =
1

8
κ(κ− n− 1)f−Ts0,σ,

where C is the Casimir operator for G.

Let

Hn+1−κ(G) ⊂ [C∞(G)⊗ ∧N−1(p∗−)⊗ C(κ− n− 1)
]K

be the subspace spanned by these forms as T varies over Symn(Z)∨>0. Clearly, the basic

forms f−Ts0,σ are linearly independent. Let Mκ(G) be the subspace of C∞(G) spanned by the

functions W κ
T given by (5.21) as T varies over Symn(Z)∨>0. By (iii) of Theorem 5.4, the

ξ-operator induces an isomorphism

ξ : Hn+1−κ(G)
∼−→ Mκ(G).

On the other hand, if κ > 2n, the classical theory of Poincaré series, [19], implies that the

series

PTκ (g) =
∑

Γu∞\Γ

W T
κ (γg)

converges absolutely and uniformly on compact subsets of G. The resulting functions are

‘holomorphic’ cusp forms and span the space Sκ(Γ) of such forms. Thus we have constructed

a diagram

Hn+1−κ(G)
ξ

∼
//

ξΓ && &&

Mκ(G)

PΓ����
Sκ(Γ).

(6.2)

For example, assume that Sκ(Γ) is one-dimensional and let χ be a generator (this is for

instance the case for n = 2 and κ = 10 or 12, where Sκ(Γ) is spanned by the Igusa cusp form

χ10 or χ12). Then, using the fundamental formula (7) of [19], it is easily seen that

ξΓ(f−Ts0,σ) = A · (detT )
n+1

2
−κ

ε(T )
aT (χ) · χ

‖χ‖2
,

where A is a non-zero constant independent of T , and ε(T ) is the order of the stabilizer of T

in GLn(Z). Moreover, aT (χ) denotes the T -th Fourier coefficient of χ, and ‖χ‖ its Petersson

norm.
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7. Appendix: Notation

We summarize the slight variation of the notation from [12] and [22] used in this paper. In

particular, we specialize to the case of the formally real Jordan algebra S = Symn(R). Here

is a list of notation:

G = Spn(R)

S = Symn(R)

For g ∈ GLn(C) and x ∈ SC = Symn(C), g · x = gx tg.

ρ =
1

2
(n+ 1)

P(SC) = polynomial functions, `(g)f(z) = f(g−1 · z)
∆j(z) = principal j × j-minor of z ∈ SC, ∆n(z) = det(z)

m = (m1 ≥ m2 ≥ · · · ≥ mn), mj ∈ Z

∆m(z) = ∆1(z)m1−m2 . . .∆j(z)
mn−1−mn∆n(z)mn

Pm(SC) = subspace generated by GLn(C)-translates of ∆m, m ≥ 0

dm = dimC Pm(SC)

Φm(z) =

∫
O(n)

∆m(k · z) dk

Γn(s) = (2π)
1
4
n(n−1) Γ(s)Γ(s− 1

2
) . . .Γ(s− 1

2
(n− 1))

Bn(α, β) =
Γn(α)Γn(β)

Γn(α+ β)

Γm(λ) = Γn(λ+ m) =
n∏
i=1

Γ(λ+mi −
1

2
(i− 1))

Γm(λ) = (λ)m Γn(λ)

(λ)m =

n∏
i=1

(
λ− 1

2
(i− 1)

)
mi

(s)m = s(s+ 1) . . . (s+m− 1) =
Γ(s+m)

Γ(s)
.

Note that the notation Γm(λ) does not seem to be standard, but it is frequently convenient.

The function Φm(z, w) on SC×SC defined in [22] Lemma 1.11 is characterized by the following

two properties:

(i) Φm(z, 1n) = Φm(z).

(ii) For a ∈ GLn(C),

Φm(a · z, w) = Φm(z, tā · w).
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For the trace form 〈x, y 〉 = tr(xy) on S and the standard basis

{eα} = {eii, eij + eji | 1 ≤ i ≤ n, i < j}

the dual basis is

{e∨α} = {eii,
1

2
(eij + eji) | 1 ≤ i ≤ n, i < j}.

At several points in the calculations, we need the following inversion formula, [12], Chapter

XI, Lemma XI.2.3. For p ∈ Pm(SC), and Re(λ) > ρ− 1,∫
x>0

e−tr(xy)p(x) det(x)λ−ρ dx = Γn(λ+ m) det(y)−λ p(y−1).

We also recall that

etr(zw̄) =
∑
m≥0

dm
(ρ)m

Φm(z, w),

and that, for λ ∈ C with (λ)m 6= 0 for all m ≥ 0, z, w ∈ SC the J-Bessel function is defined

by, [22], p.818,

Jλ(z, w) =
∑
m≥0

(−1)|m|
dm

(λ)m (ρ)m
Φm(z, w).

7.1. An estimate. The following classical estimate will be useful.

Lemma 7.1. (i) For Re(α) > ρ and Re(β − α) > ρ,

|1F1(α, β; v)| ≤ etr(v) det(v)Re(α−β)Γn(Re(β − α))|Bn(α, β − α)|−1.

(ii) Suppose that α and β are real with α > ρ and β−α > ρ. Then for any ε with 0 < ε < 1,

|1F1(α, β; v)| ≥ Cε e(1−ε)tr(v),

where Cε > 0 depends on ε, α and β and can be taken uniformly for α and β in a compact

set.

Proof. Suppose that v = a2 where a = ta, and, using (4.3), consider

1F1(α, β; v) = Bn(α, β − α)−1

∫
t>0

1−t>0

etr(vt) det(t)α−ρ det(1− t)β−α−ρ dt

= Bn(α, β − α)−1 etr(v)

∫
t>0

1−t>0

e−tr(v(1−t)) det(t)α−ρ det(1− t)β−α−ρ dt

= Bn(α, β − α)−1 etr(v)

∫
r>0

1−r>0

e−tr(vr) det(1− r)α−ρ det(r)β−α−ρ dr

= Bn(α, β − α)−1 etr(v) det(v)α−β
∫
r>0
v−r>0

e−tr(r) det(1− a−1ra−1)α−ρ det(r)β−α−ρ dr.
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Now 1 ≥ a−1ra−1 > 0 so that, for Re(α) > ρ, the factor det(1 − a−1ra−1)α−ρ lies in (0, 1)

and we have

|1F1(α, β; v)| ≤ |Bn(α, β − α)|−1 etr(v) det(v)Re(α−β)

∫
r>0
v−r>0

e−tr(r) det(r)Re(β−α)−ρ dr.

The integral here is bounded by∫
r>0

e−tr(r) det(r)Re(β−α)−ρ dr = Γn(Re(β − α)).

For the lower bound, we have

|1F1(α, β; v)| ≥ |Bn(α, β − α)|−1 etr(v)

∫
r> 1

2
ε1n

ε1n−r>0

e−tr(vr) det(1− r)α−ρ det(r)β−α−ρ dr

≥ |Bn(α, β − α)|−1 e(1−ε)tr(v)

∫
r> 1

2
ε1n

ε1n−r>0

det(1− r)α−ρ det(r)β−α−ρ dr.

�
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