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Winter term 2023/2024

The goal of the seminar is to provide an introduction to the theory of motives in rigid analytic
geometry developed by Ayoub, and to apply it to explain the presence of Frobenii and monodromy
operators on p-adic cohomology theories following the work of Binda, Gallauer and Vezzani.

Motives are meant to be a geometric avatar for the cohomological data attached to a variety. One
approach is via motivic homotopy theory, which combines sheaf theory and classical homotopy theory
using the framework developed in [Lur09]. Roughly speaking, the homotopy type of a motive over
a variety S is built up by ∞-sheaves. Since every ∞-groupoid is the fundamental infinity groupoid
of a topological space, ∞-sheaves simultaneously generalize homotopy types of spaces via constant
sheaves and smooth varieties over S via the Yoneda embedding. After A1-localization (forcing A1

to be contractible) and P1-stabilization (which is an analogue of the classical construction of spectra
for the “motivic sphere” P1 ∼= S1 × Gm) of ∞-sheaves, one can construct motivic Eilenberg-MacLane
spectra associated to sufficiently nice rings Λ, which represents motivic cohomology with Λ-coefficients.
The category DA(S, Λ) is defined to be the subcategory of EM(Λ)-modules in P1-spectra, satisfying
a 6-functor formalism, which describes the compatibility of the symmetric monoidal structure of
DA(S, Λ) with functoriality in S and their right adjoints. This produces a unified framework for
studying cohomological “realization” functors RΓ : DA(S) → D.

There are analogous constructions of motivic homotopy categories for formal schemes and rigid
analytic varieties. Morever, there are some quite robust comparison theorems between such categories
and DA of the special fibre, which provides a more subtle version of a six functor formalism for rigid
analytic motives, developed in [AGV22]. The categories RigDA(−) can even be defined for analytic
adic spaces and hence diamonds via pro-étale descent, allowing for some techniques from perfectoid
geometry found in [BV21]. The formalism of motivic homotopy theory also allows a lot of flexibility
in nonarchimedean geometry; for instance, rigid analytic motives carry a canonical †-structure up to
homotopy, which is used to define an overconvergent de Rham realization functor in [BV21].

The second part of the seminar will focus on [BGV23], which provides a framework for studying
and explaining the presence of frobenii and monodromy operator on p-adic cohomology theories. Let p
be a prime number. For a finite field extension K/Qp and a smooth proper variety X → Spec(K), one
can consider the de Rham cohomology H∗

dR(X), a finite dimensional K-vector space. Fontaine and
Jannsen conjecture that H∗

dR(X) is canonically obtained via extension of scalars from a vector space
over the maximal unramified subextension K0, denoted H∗

HK(X), equipped with a (φ, N)-module
structure, consisting of:

• a Frobenius semi-linear isomorphism φ : H∗
HK(X) ≃ H∗

HK(X) and

• a nilpotent endomorphism N : H∗
HK(X) → H∗

HK(X)(−1), i.e. satisfying Nφ = p · φN .
The modules H∗

HK(X), called Hyodo-Kato cohomology, have been constructed in increasing generality
(including for rigid analytic varieties X) by Hyodo–Kato, Mokrane, Große–Klönne, Beilinson, Ertl–
Yamada, and Colmez–Niziol. The constructions involve choices of suitable integral models of X over
OK and make nontrivial use of methods from log-geometry, which raises the question of independence
and make functoriality properties difficult to prove.

The manuscript [BGV23] gives a construction of the Hyodo–Kato cohomology relying on the theory
of rigid analytic motives developed in [Ayo15; AGV22]. A key ingredient in the construction is an
equivalence of categories

RigDA(Cp) ≃ DAN (F̄p), M 7→ (ΨM, NΨM : ΨM → ΨM(−1)),
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where RigDA(Cp) is the category of rigid analytic motives over Cp, DAN (F̄p) is the category of
algebraic motives over F̄p together with an (ind-)nilpotent operator N , and Ψ is the motivic nearby
cycles functor of Ayoub; notably, the equivalence is only on the categorical level in the sense that it
does not carry effective rigid motives to effective motives over the special fibre. Objects of the target
category are canonically equipped with an action under pullback by the absolute Frobenius φ, and
the φ-equivariant objects define the category of motivic (φ, N)-modules.

Composing with suitable realization functors (e.g. ℓ-adic or Hodge realizations in case K = C((t)))
allows one to extend various algebraic cohomology theories to analytic cohomology theories equipped
with frobenius and monodromy data. Using the de Rham realization from Le Bras–Vezzani [BV21],
this allows for a canonical construction of rigid cohomology in characteristic p and yields a new
definition of Hyodo-Kato cohomology for rigid spaces, naturally defined on the generic fibre and
independent of the choice of integral models, as conjectured.

This framework also explains how weight filtrations arise from categorical weight structures on
motives, and allows for the construction of a p-adic Clemens–Schmid chain complex, whose exactness
would be implied by the p-adic weight monodromy conjecture.

There is a connection with the de Rham–Fargues–Fontaine cohmology of [BV21]: Namely, let
∆ be the locus p ̸= 0 in (SpfAinf)rig, so ∆ = Y(0,∞](C♭

p) in the notation of Fargues–Scholze. Let
x∞ be its closed point Spa(Q̆p) → ∆ and ∆∗ its complement. In [BV21], the authors construct a
functor RigDA(Cp) → RigDA(∆∗). Informally, it associates to (the motive of) a rigid analytic space
X the family of relative de Rham cohomology groups H∗

dR(XC/C) over points xC → ∆∗. Any module
with φ-action on ∆∗ extends uniquely to ∆, and taking the fibre at x∞ recovers the Hyodo–Kato
cohomology, to be thought of as the “limit” of the groups H∗

dR(XC/C) as xC → x∞. This allows
for a reinterpretation of monodromy operators as limit structures on cohomology and generalises
phenomena appearing in complex geometry.

Structure of talks and prerequisites:

Roughly, the first half of the talks provides the background material for [BGV23] and the second half
studies the manuscript. The program assumes familiarity with algebraic geometry, and to some extent
∞-categories and non-archemedian geometry. Necessary prerequisites are listed below each talk. The
talks labelled by ⋆ are independant of the other talks and suitable for advanced master’s students.
These are talks 4, 5 and 8. In case you are interested in participating but not sure what talk to
give, please feel free to contact one of the organizers.

Time and place:

The seminar takes place in a hybrid format jointly organized by Darmstadt and Frankfurt.

• Thursdays, 15:00 – 16:30 during the winter term 2023/24. No talk on December 07 (Ruth
Moufang Lecture) and on January 25 (GAUS colloquium).

• Start: October 19, end: February 08

• The last session on Feb 08 is a double session with 2 talks between 14:00 – 18:00. Afterwards
there will be a joint dinner. Details will be announced later.

• The seminar will take place in Darmstadt, Room S215 244.

• Zoom meeting ID: 612 2072 7363, Password: Largest six digit prime number.

1 Leitfaden (Oct 19)

An overview talk (20–30 minutes) given by one of the organizers explaining the interrelation of talks
and the structure of the seminar.
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2 Infinity sheaves (Oct 19)

Talk 1: (only 60 minutes due to the Leitfaden) The talk collects some results on ∞-sheaves. We
restrict to the context used in [AGV22].

Prerequisites: Familiarity with ∞-categories.

• State the universal property of localizations [Lur09, Proposition 5.5.4.20].

• Fix a commutative, unital (ordinary) ring Λ. For a 1-category define the ∞-category of Λ-
presheaves PSh(C, Λ) as functors from C to D(Λ).

• For a 1-site (C, τ) define the ∞-category of Λ-hypersheaves Sh∧
τ (C, Λ) as the localization of

PSh(C, Λ) with respect to τ -hypercoverings, see [AGV22, Definition 2.3.1]. Discuss the adjunc-

tion PSh(C, Λ)
Lτ

⇄
incl

Sh∧
τ (C, Λ), see [AGV22, Remark 2.3.3 (2)].

• Sketch that there is a t-exact equivalence Sh∧
τ (C, Λ) ∼= D(Sh∧

τ (C, Λ)♡), see [Lur, Theorem 2.1.2.2,
Definition 2.1.0.1].

3 Algebraic étale motives

Review the construction of motives for schemes with a view towards the construction for rigid analytic
varieties: Among the different constructions of categories of motives Ayoub’s category of étale motives
[Ayo14b] seems most convenient for the purposes of the seminar. The talks construct the category
from an ∞-categorical (as opposed to a model categorical) view point, the six functors and sketch
finer properties of the category like localization and the comparison with Chow groups.

Prerequisites: Familiarity with sheaves and six functors. Ideally, one of the speakers has some
familiarity with ∞-categories and/or motives.

3.1 Algebraic étale motives I (Oct 26)

Talk 2: Follow [AGV22, Section 2] but restrict to the case of schemes, compare [Ayo14b, Section
3]: Fix a commutative unital (ordinary) ring Λ. The aim of the talk is to construct the category
DA(X) = DAét(X, Λ) of étale motives on a scheme X with coefficients in Λ. The reference [Ayo14b,
Section 3] is written in the language of model categories, see also [Ayo14a] for a survey. Fortunately,
[AGV22, Section 2] explains the relevant constructions also for schemes.

More precisely, for a scheme X denote by C = Sm/X the full subcategory of schemes over X
consisting of X-smooth maps. This gives a site (C, τ) := (Sm/X , ét) when equipped with the étale
topology. Denote PSh(C) := PSh(C; Λ) and Sh∧

τ (C) := Sh∧
τ (C; Λ) as in the previous talk. Follow

[AGV22, Section 2] and the references therein to discuss the following points:

• Elaborate on the following diagram to define DA(X) as time permits (to abbreviate we drop Λ
from the notation):

PSh(C)
Lτ

⇄
incl

Sh∧
τ (C)

LA1
⇄
incl

DAeff(X)
Σ∞

⇄
Ω∞

DA(X)

Here, Lτ and LA1 denote the localization with respect to étale hypercoverings and the set of
maps A1

Y → Y for all objects Y ∈ Sm/X , respectively. Their right adjoints incl are the inclusion
functors. The functor Σ∞ : DAeff(X) → DA(X) is the initial functor in PrL sending Gm[−1] =
Λ(1) to an invertible object. Its right adjoint is denoted Ω∞. So DA(X) is the colimit in PrL of
the filtered diagram

DAeff(X) −⊗Λ(1)→ DAeff(X) −⊗Λ(1)→ DAeff(X) → · · · .

Under the equivalence (PrR)op ∼= PrL one has DA(X) ∼= limHom(Λ(1),−) DAeff(X).
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• The category DA(X) is a stable ∞-category with a symmetric monoidal closed structure. It is
generated under colimits (up to shifts and twists) by the objects M(U) := Σ∞LA1Λ[HomX(−, U))]
for all qcqs U ∈ Sm/X . The objects are compact if all U have finite Λ-cohomological étale di-
mension, see [Ayo14b, Proposition 3.19] and [AGV22, Lemma 2.4.5 ff].

• For any map f : Y → X of schemes there is an adjunction f∗ : DA(X) ⇄ DA(Y ) : f∗ where f∗

is characterized as the stable colimit-preserving symmetric monoidal functor with f∗M(U) =
M(U ×X Y ).

• For a map f : Y → X locally of finite type there is an adjunction f! : DA(Y ) ⇄ DA(X) : f !. The
functor f! is characterized by the properties: it satisfies étale descent; if f is an open immersion,
then f! is left-adjoint to f∗; for any factorization f = f̄ ◦ j with j an open immersion and f̄
proper one has f! = j!f∗.

3.2 Algebraic étale motives II (Nov 02)

Talk 3: Continue the discussion from the previous talk. The speaker is free to make some choices
among the following properties:

• The association X 7→ DA(eff)(X), f 7→ f∗ extends to a functor Schemesop → CAlg(PrL) that is
finitary (when restricted to (Λ, ét)-admissible qcqs schemes) and satisfies étale hyperdescent, see
[AGV22, Propositions 2.1.21, 2.5.11 (2), Theorem 2.4.3].

• The functors DA(eff)(−) satisfy localization. In particular, DA(−) together with the pairs of
functors (f∗, f∗), (f!, f !) and (− ⊗ −, Hom(−, −)) satisfy a six functors formalism.

• Let X be a scheme and ℓ a prime number invertible in OX . The map of sites (Sm/X , ét) →
(Ét/X , ét) =: Xét induces a symmetric monoidal equivalence D(Xét, Λ)ℓ-nil ∼= DA(X, Λ)ℓ-nil com-
patible with the six functors [AGV22, Theorem 2.10.4].

• Let k be a field and p : X → Spec(k) a separated map of finite type. Assume X is geometrically
unibranch (for example, normal) and Λ = Q. Then, H0HomDA(X)(Q(n)[2n], f !Q) = CHn(X)⊗Q
for all n ∈ Z. See [CD16, Corollary 5.5.5] for the comparison with étale motives with transfers
(respectively, h-motives) and [Cis21, Theorem 1.4.3].

4 Rigid Analytic Geometry

These two talks are meant to serve as an introduction to non-archimedian geometry. The main source
is [Bos14]. The first talk presents Tate’s rigid analytic varieties over a non-archimedian field. The
second talk then aims to compare the classical theory with Raynaud’s approach via formal models, in
order to motivate and reach the general definition of rigid analytic space.

4.1 ⋆Rigid analytic spaces I - Tate’s rigid analytic varieties (Nov 09)

Talk 4: Following [Bos14], introduce the classical theory of rigid analytic varieties over a non-
archimedian field.

• Define the Tate algebra Tn and affinoid algebras over non-archimedian fields [Bos14, Section 2.2].
Eventually choose some properties of affinoid algebras in [Bos14, Section 2.2-2.3] to be explained
in more or less details.

• Define the set Sp(A) for an affinoid algebra A [Bos14, Section 3.2], describe Sp(Tn) [Bos14,
Corollary 11, Section 2.2].

• Introduce affinoid subdomains and rational subdomains. State Gerritzen–Grauert’s theorem
[Bos14, Theorem 20, Section 3.3]. State Tate’s acyclicity theorem [Bos14, Section 4.3].
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• Define the strong Grothendieck topology on affinoid spaces [Bos14, Definition 4, Section 5.1] and
rigid analytic varieties [Bos14, Definition 4, Section 5.3].

• Sketch the construction of the analytification functor (−)an as in [Bos14, p. 111]. State the
analogue of GAGA’s theorem [Bos14, Theorem 11-13, Section 6.4].

4.2 ⋆Rigid analytic spaces II - Raynaud’s rigid spaces (Nov 16)

Talk 5: Buidling up on the previous talk, discuss formal models of rigid analytic varieties and in-
troduce Raynaud’s rigid spaces. The speaker should also explain some statements and constructions
appearing in [AGV22, Section 1] that will be used later. We suggest to follow [Bos14] subject to the
restrictions [Bos14, p. 162], namely we work either over a formal affine admissible noetherian base, or
over Spf(OK) for K a non-archimedian field.

Prerequisites: Familiarity with formal schemes, rigid varieties and/or adic spaces can be useful.

• Recollection on formal schemes. Define admissible formal schemes [Bos14, Section 7.4] and
admissible blowups [Bos14, Section 8.2].

• Explain the construction of the rigid analytic fibre Xrig of a formal scheme X locally of topolo-
gically finite type over Spf(OK) [Bos14, Proposition 3, Section 7.3]. Discuss the comparaison
(X̂)rig ↪→ (XK)an for a scheme X/OK [Bos14, p. 161]. Sketch the proof of the equivalence of
categories between rigid analytic varieties and admissible formal schemes up to admissible formal
blowups [Bos14, Theorem 3, Section 8.4].

• Define the category of rigid analytic spaces [AGV22, Definition 1.1.3]. Explain the relation
with uniform adic spaces [AGV22, Corollary 1.2.7]. Define the analytification functor [AGV22,
Construction 1.1.15]. Define etale and smooth morphisms of rigid spaces.

5 Rigid analytic motives

Following [AGV22], for an rigid analytic space X, construct the category RigDA(X) of rigid analytic
motives over X. Discuss the 6 functors and comparaison theorems with categories of algebraic and
formal motives.

Prerequisites: Familiarity with sheaves and six functor. Knowledge of ∞-categories and/or al-
gebraic motives will help.

5.1 Rigid analytic motives I: definition, analytification, and 6 functors (Nov 23)

Talk 6: The reference is [AGV22, Sections 2 and 4].

• Construct RigDA following [AGV22, Section 2]. The construction is analogous to DA reviewed
in Section 3. Discuss the 5 functors and f♯.

• Explain the analytification of algebraic motives (2.13). Discuss the remaining sixth functor f! on
the analytification of a scheme (Proposition 2.2.7). Eventually mention the existence for weakly
compactifiable morphisms (Definition 4.3.4), and compare to Huber’s compactifications as in
section 4.2.

• If time allows, discuss the compatibility of the six functor formalism with analytification as in
section 4.6.
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5.2 Rigid analytic motives II: comparing categories of motives (Nov 30)

Talk 7: The reference is [AGV22, Section 3].

• State and prove the equivalence in [AGV22, Theorem 3.1.10] relating categories of formal motives
over a formal scheme and algebraic motives over the special fibre.

• State [AGV22, Theorem 3.3.3] and sketch the proof. This will be important for proving [BGV23,
Corollary 4.12] in talk 9. Pay special attention to the case when S = Spf OK is the ring of
integers of a complete nonarchimedean field K. Always restrict to the case where Λ is the
spectrum associated to an ordinary ring.

6 ⋆Interlude on (Co-)Modules and monodromy operators (Dec 14)

Talk 8: Follow [BGV23, Section 2]. Modules over a split square zero extension 1⊕ t[−1] are identified
with the full subcategory of the lax fixed points under − ⊗ t of (ind-)nilpotent operators.

Prerequisites: Familiarity with ∞-categories. Some knowledge of Higher Algebra will also be useful.

• State Theorem 2.1 and explain its proof in Sections 2.2–2.5 of the reference.

• Discuss the example of (φ, N)-modules in Section 2.6. If time permits, also discuss the example
of unipotent motives in Section 2.7.

7 Motivic (φ, N)-modules and Hyodo–Kato cohomology

Follow [BGV23] to construct the Hyodo–Kato cohomology. A key input is the de Rham realisation
functor from [BV21].

7.1 Rigid motives as algebraic motives with monodromy (Dec 21)

Talk 9: The reference is [BGV23, Sections 3.1, 4.1, 4.2].

• Explain the proof of the equivalence RigDAgr(K) ≃ DAN (k) in Corollary 4.12. Besides the
previous talk the main ingredient is Proposition 4.9. Discuss its proof as time permits and
remark the identification of Mcoh(Gm) via cohomological purity [AGV22, Corollary 3.8.32]. Also,
mention that all motives have good reduction if K is algebraically closed and discuss the proof
as time permits.

• Introduce the notation in Definition 4.13.

• Identify the motive of the Tate curve, see Proposition 4.19. This will require a brief discussion
on the Kummer motive from section 3.1.

7.2 Weight structures (Jan 11)

Talk 10: The reference is [BGV23, Sections 3.3, 4.3].

• Prove Corollary 3.29. Give the example 3.30. For this introduce the heart of a weight structure
in Definition 3.20. Elaborate on Remarks 3.21, 3.22 as time permits.

• Introduce the Chow weight structure on categories of motives and prove Proposition 4.22.

• If time permits, discuss Corollary 3.29.
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7.3 Extending realization functors (Jan 18)

Talk 11: Following [BGV23, Sections 3.2, 4.5], the speaker should present the general principle of
extending cohomological realisation functors from the category of algebraic motives in characteristic
p to the category of rigid analytic motives. This is needed in future talks for the discussion around
ℓ-adic cohomology and the construction of Hyodo–Kato cohomology. The speaker should coordinate
with the speaker from talk 13 (7.5).

• Explain the construction of F̂ and prove the uniqueness result Corollary 3.17.

• Prove Corollaries 4.29 and 4.34. If time permits mention Corollary 4.33 which uses (φ, N)-
modules.

• If time permits, mention the ℓ-adic case in Remark 4.49 and the Hodge case in Remark 4.50,
especially the weight filtrations.

7.4 The de Rham realisation functor (Feb 1)

Talk 12: The reference is [BV21]. Sketch the construction of the de Rham realisation dR: RigDA(K)ω →
D(K)op, see also [BGV23, Definition 4.36]. It would be nice to explain the relation with de Rham
cohomology of algebraic varieties which seems to be implicitly contained in [BV21, Theorem 6.10].

Prerequisites: Knowledge of the theory of adic spaces, diamonds, and solid modules is required.
This will be a very difficult talk to prepare and give since many details will have to be abbreviated or
omitted.

7.5 The Hyodo–Kato cohomology (Feb 8)

Talk 13: Follow [BGV23, Sections 4.6, 4.7]. The speaker should coordinate with the speaker from
talk 11 (7.3).

• Introduce the Hyodo–Kato cohomology R̂Γrig and prove Theorem 4.42.

• Prove corollary 4.46 and explain the identification of the monodromy action on the cohomology
of the Tate curve.

• If it has not been done yet in Talk 11 (Section 7.3), mention the ℓ-adic case in Remark 4.49 and
the Hodge case in Remark 4.50, especially the weight filtrations.

8 The de Rham–Fargues–Fontaine cohomology (Feb 8)

Talk 14: Following [BV21], discuss the de Rham–Fargues–Fontaine cohomology and the relation with
the paper [BGV23].

Prerequisites: Knowledge of the adic Fargues–Fontaine curve is required.

• For K/Qp algebraically closed, sketch the construction of the de Rham–Fargues–Fontaine co-
homology

dRFF
K : RigDA(K) ∼= RigDA(K♭) D−→ RigDA(XK) dR−−→ Qcoh(XK)op.

• Explain the comparison with overconvergent de Rham cohomology [BV21, Corollary 5.14]

RigDA(K) Qcoh(Spa(K))

Qcoh(X ))
dRF F

K
∞∗

dRK
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and with rigid cohomology [BV21, Section 6.3]

DA(k) RigDA(K) VB(XK)

Isoc(Q̆p, φ)
Hi

rig(−)

ξ Hi
F F (−/XK)

• Explain the relation with Hyodo–Kato cohomology, building on the comparaison with rigid
cohomology. Compare with [BGV23, Remark 1.2].
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