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Motivation

Three important problems in the structure theory of vertex
operator algebras:
o Orbifold problem: Properties of V€ for a vertex operator
algebra V' and a group G of automorphisms of V.
@ Extension problem: Build vertex operator algebra V' from the
modules of a smaller vertex operator algebra.
@ Classification problem: Classify all vertex operator algebras V
with given properties.
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Niemeier Lattices

Lattices

@ A lattice L is a free abelian group (free Z-module) of finite
rank (dimension) with a non-degenerate, symmetric bilinear
form (-,-): Lx L — Q.

The norm of a lattice vector o € L is (o, @) /2 and the
distance of two lattice vectors o, 5 € Lis (o — ,« — [3)/2.
The dual lattice L’ of a lattice L is given by

'={ael®;Q|{a,pB)eZforall BelL}

A lattice L is called integral if (o, ) € Z for all o, B € L, i.e.
if LC L.

A lattice L is called even if (o, ) € 2Z for all a € L.

A lattice L is called positive definite if the linear extension of
(-,-) to L®z Ris.

@ A lattice L is called unimodular if L = L.
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Positive Definite, Even, Unimodular Lattices

@ The dimension of a positive definite, even, unimodular lattice

is in SZZ().
@ Classification known up to dimension 24:

Dimension | No. of Lattices Lattices
0 1 {0}
8 1 Eg
16 2 EZ, Dfy
24 24 24 Niemeier lattices
32 > 1160000000

@ Interesting case of Niemeier lattices in dimension 24
[Nie73, Ven80, CS99].
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The Niemeier Lattices

@ The roots of an even, unimodular lattice L are exactly the
vectors a € L of norm (o, ) /2 = 1.

@ The roots of a Niemeier lattice form a (simply-laced) root
system ®.

@ The Niemeier lattices are classified by their root systems ¢:
0, A3%, AL, A8, AS, AiD., DS, At A2DZ, A3, A3Ds, D¢,
A11D7Es, EE, A3y, D3, A1sDo, A17E7, D1gE?, D?,, Aos, E3,
Di6Esg, Dog.

@ Denote by N(®) the up to isomorphism unique Niemeier
lattice with root system ®.

@ The Leech lattice N = N() is the unique Niemeier lattice
without roots.
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Deep-Hole Construction of 23 Niemeier lattices

@ A hole of a positive definite lattice L is a point in L ®7z R
where the minimal distance to any lattice vector has a local
maximum. In a deep hole this is a global maximum.

@ The vertices of a hole are the vectors in L closest to the hole.
@ The Leech lattice A has 23 orbits under Aut(A) of deep holes
with minimal distance to any lattice vector of 1 [CS99].

@ The vertices V of the deep holes in the Leech lattice A form
extended affine Dynkin diagrams by joining two vertices by

e no edge if they have a distance of 2,
e a simple edge if they have a distance of 3,
e a double edge if they have a distance of 4.
@ The corresponding finite Dynkin diagrams describe exactly the
23 root systems ® of the Niemeier lattices [CS99].
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Deep-Hole Construction of 23 Niemeier lattices

i n | 1V] o | n ||V
A 2| 48 E: 12 | 28
Al2 3| 36 6

2 A2 13| 26
A8 4 | 32 12

3 D3 14 | 27
A9 5| 30 8
A AisDg | 16 | 26
AED, 6 | 29
D 6 | 30 Ai7E; | 18 | 26
. DioE? | 18 | 27
As |28 D? 22 | 26
A2D32 8 | 28 12
g Ay | 25| 25
A o1 E3 |30] 27
AiDs | 10| 27 8
4 DigEs | 30 | 26
D¢ 10 | 28 b 16 | o5
A D.Eg | 12| 27 24
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Definition (Vertex Operator Algebra)

e graded (by weights) C-vector space

V=@V, with dim(V,)< oo
n=0
and vacuum V5 = C1,
@ state-field correspondence

Y(-,z): V= End(V)[[z,z7Y]],
v Y(v,z) Z vyz "1
nez
with v,u = 0 for n > 0 and wt(v,) = wt(v) —n—1,
@ axioms: vacuum axiom, translation axiom, generalised

commutativity and associativity,
@ central charge c € C
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Examples

Example (The Moonshine Module)

@ vertex operator algebra V¥ of central charge ¢ = 24,
@ automorphism group Aut(V%) = M, Monster group,
@ constructed by Frenkel, Lepowsky, Meurman [FLM88],

@ needed for Borcherds’ proof [Bor92] of the Moonshine
conjecture

Example (Lattice Vertex Operator Algebras [FLM88, Don93])

o L positiv definite, even lattice,

o lattice vertex operator algebra V| of central charge ¢ = rk(L)

@ The vertex operator algebras in the two examples are “nice”.
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Nice Vertex Operator Algebras

Regularity assumptions on nice vertex operator algebras V:

@ Rationality: Every V-module is completely reducible and the
set Irr(V) of isomorphism classes of irreducible V-modules is
finite.

e Cy-cofiniteness: The linear span ({a_2b | a,b € V'}) has finite
codimension in V.

e Simplicity

o Self-duality

Vertex operator algebras with trivial representation theory:

@ Holomorphicity: V has only one irreducible module, namely V
itself.
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Proposition (Consequence of [Zhu96])

Let V be a nice, holomorphic vertex operator algebra. Then the
central charge c of V is in 8Z~y.

° c=8 Vg, c=16: Vi, Vi (only lattice theories)

Theorem ([Sch93, EMS15])

Let V' be a nice, holomorphic vertex operator algebra of central
charge c = 24. Then the Lie algebra V1 is isomorphic to one of the
71 Lie algebras on Schellekens’ list (V/®, 24 lattice theories, etc.
with chy (1) = j(7) — 744 4+ dim(\4) ).

@ ¢ = 32: already more than 1160000000 lattice theories
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Constructions

@ Orbifold constructions give all 71 cases on Schellekens’ list
[FLM88, DGM90, Don93, DGM96, Lam11, LS12, LS15,
Miy13, SS16, EMS15, M616, LS16b, LS16a, LL16]

Theorem (Classification 1)

There is a nice, holomorphic vertex operator algebra V of central
charge ¢ = 24 with Lie algebra V1 if and only if V1 is isomorphic
to one of the 71 Lie algebras on Schellekens’ list.

Conjecture (Classification 1)

There are up to isomorphism exactly 71 nice, holomorphic vertex
operator algebras V of central charge ¢ = 24.

o Uniqueness essentially proved for all cases except V/*
[DMO04, LS16¢c, KLL16, LS15, LL16, EMS17, LS17].
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Orbifold Construction [M616, EMS17]

@ Let V be a nice, holomorphic vertex operator algebra and
G = (g) a finite, cyclic subgroup of Aut(V) of order n.

@ Then V¢ is nice and the fusion algebra of V¢ is the group
algebra of a central extension of Z, by Z,.

@ Obtain new holomorphic vertex operator algebras by adding
V' ¢-modules corresponding to maximal isotropic subgroups:

fixed poik Ansion

VG

The Moonshine module V¥ is an orbifold of Vj of order 2 [FLM8S].
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Orbifolds of the Leech Lattice Vertex Operator Algebra

o Automorphisms in Aut(Vj) are of the form g = pe(?™)ho for
he 7Tl,(f)) where h = A®y C = (V/\)l.
@ Search for finite-order automorphisms g such that:

o (VE); = m,(h) is a Cartan subalgebra of (V™°(®));,
e the conformal weights

p(Va(g)) = pyi+ _min  (a,a)/2
a€m,i(N)+ih
for i € Z, \ {0} are large, e.g. all equal to 1.
@ Observations for “extremal” cases:

o dim((V"®),) is determined by dimension formulae in
[EMS17] (even when not applicable).

o The lattice AV := {a € A | va = «, (i, h) € Z} is related to
the orbit lattices in [H5617]. (Note that Vjus C V§.)
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Special Case: Deep Holes

o Automorphism of the form g = 2™k for h € h =2 (Vj);.
Orbifold must yield a Niemeier lattice vertex operator algebra.

o V¥ = Vp with A" ={a €| {a,h) €Z}.

@ Let h be a deep hole of A with nh € A. Then

p(Va(g)) = min (a,)/2=1.

o Then A" C A =N C (AP and (M"Y = spany{A, h}.
o Irreducible V-modules are indexed by (A")'/Ah = 72.
@ There are two (trivially intersecting) maximal isotropic
subgroups
lo=N/N"and I = | (An+ ih)/A" = N/A
i€Zn

for Niemeier lattice N(®) from above.

@ Sum of modules corresponding to [ is V,frb(g) = Vi(o)-
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Results and Open Questions

@ So far, we have constructed 57 (63) cases on Schellekens’ list
as cyclic orbifolds of Vj.

Each of the 71 vertex operator algebras on Schellekens’ list is a
cyclic orbifold of the Leech lattice vertex operator algebra (in a
certain uniform way).

@ Try to find a uniform description of all the cases on
Schellekens’ list.

@ Relate to the work of [H5617].
o Fully relate the deep-hole construction of Vjy¢) to that of
N(®).
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