Arakelov intersections on modular curves

M. Grados

HU Berlin

March 8, 2016

Notation

- $\Gamma \subset \mathrm{SL}_2(\mathbb{Z})$ congruence subgroup
- v_{Γ} hyperbolic volume of a fundamental domain of Γ
- $X(\Gamma) = \overline{\Gamma \backslash \mathbb{H}}$ compact Riemann surface of genus $g_{\Gamma} \geq 2$
- $S_2(\Gamma)$ cusp forms of weight 2 of Γ

Notation

Let $\{f_1, \ldots, f_{g_{\Gamma}}\}$ be an ONB of $\mathcal{S}_2(\Gamma)$. We define

$$egin{aligned} F_{\Gamma}(z) &:= rac{\mathrm{Im}(z)^2}{g_{\Gamma}} \sum_{j=1}^{g_{\Gamma}} |f_j(z)|^2 \ \mu_{\mathrm{can}}(z) &:= F_{\Gamma}(z) \, \mu_{\mathrm{hyp}}(z) \end{aligned}$$

Denote by $g_{\rm can}(z,w)$ the canonical Green's function associated with $\mu_{\rm can}(z)$.

Self-intersection of dualizing sheaf

<u>Fact 1</u>: there exists a smooth algebraic curve X_{Γ}/K over a number field K such that

$$X_{\Gamma}(\mathbb{C}) \simeq X(\Gamma).$$

<u>Fact 2</u>: there exists an arithmetic surface $\mathscr{X}_{\Gamma}/\mathcal{O}_{K}$ such that $(\mathscr{X}_{\Gamma})_{\eta}\simeq$

 X_{Γ} . This arithmetic surface is unique if it is minimal.

Pictures

Self-intersection of dualizing sheaf

On the arithmetic surface $\mathscr{X}_{\Gamma}/\mathcal{O}_{K}$ one has

- the canonical bundle: ω_{Γ} ,
- Arakelov intersection theory.

It makes sense to talk about $\overline{\omega}_{\Gamma}^2$.

The case $\Gamma = \Gamma(N)$

For $N \ge 3$ odd and square-free integer

$$\frac{1}{\varphi(N)}\overline{\omega}_{\Gamma}^2 = \text{geometric} + \text{analytic}$$

Today, we will talk about

analytic =
$$4g_{\Gamma}(g_{\Gamma}-1)g_{\operatorname{can}}^{\Gamma}(0,\infty)$$
.

The case $\Gamma = \Gamma(N)$

Theorem (

For N > 3 odd and square-free, we have

$$4g_{\Gamma}(g_{\Gamma}-1)g_{\operatorname{can}}^{\Gamma}(0,\infty)-\kappa_{N}=4g_{\Gamma}\log(N)+o(g_{\Gamma}\log(N)),$$

where

$$\kappa_{N} = \frac{4\pi^{2}g_{\Gamma}}{N^{2}\varphi(N)}\Big(1 - \frac{6}{N}\Big)\sum_{\substack{\chi \neq \chi_{0} \ \text{even}}} \frac{L(1,\chi)}{L(2,\chi)}.$$

Previous results

Mayer (2012):
$$\Gamma = \Gamma_1(N)$$

$$4g_{\Gamma}(g_{\Gamma}-1)g_{\operatorname{can}}^{\Gamma}(0,\infty)-\kappa_{N}^{*}=2g_{\Gamma}\log(N)+o(g_{\Gamma}\log(N)).$$

Abbes–Ullmo (1997):
$$\Gamma = \Gamma_0(N)$$

$$4g_{\Gamma}(g_{\Gamma}-1)g_{\operatorname{can}}^{\Gamma}(0,\infty)=2g_{\Gamma}\log(N)+o(g_{\Gamma}\log(N)).$$

Furthermore,

$$\overline{\omega}_{\Gamma}^2 = 3g_{\Gamma}\log(N) + o(g_{\Gamma}\log(N)).$$

Spectral interpretation of $g_{can}(z, w)$

$$g_{\text{can}}^{\Gamma}(0,\infty) = -2\pi \mathscr{C}_{0\infty}^{\Gamma} - \frac{2\pi}{\nu_{\Gamma}} + 4\pi \mathscr{R}_{\infty}^{\Gamma} + 2\pi \lim_{s \to 1} \left(\frac{\nu_{\Gamma}^{-1}}{s(s-1)} + \int\limits_{X(\Gamma) \times X(\Gamma)} G_{s}^{\Gamma}(z,w) \mu_{\text{can}}(z) \mu_{\text{can}}(w) \right).$$

- $\mathscr{C}_{0\infty}^{\Gamma}$: scattering constant.
- $\mathscr{R}_{\infty}^{\Gamma}$: constant term in the Laurent expansion of Rankin–Selberg transform of F_{Γ} at s=1.
- $G_s^{\Gamma}(z, w)$: automorphic Green's function.

Scattering constants

$$\Gamma=\Gamma_0(N)$$

$$\mathscr{C}_{\infty 0}^{\Gamma_0(N)}=2\nu_{\Gamma_0(N)}^{-1}\times(\mathrm{factor}),$$

$$\begin{split} \Gamma &= \Gamma(N) \\ \mathscr{C}_{\infty 0}^{\Gamma(N)} &= 2 v_{\Gamma(N)}^{-1} \bigg(\mathrm{factor} + \kappa_N - \frac{1}{2} \log(N) \bigg), \end{split}$$

The constant $\mathscr{R}^{\Gamma}_{\infty}$

Main tools:

- spectral expansion of automorphic kernels of weight 0 and 2
- In the hyperbolic contribution, we obtain identities of the type

$$\zeta_{\Gamma}(s) = (factor) \times \zeta(s, \mathfrak{c}),$$

where $\mathfrak c$ is a narrow-ray ideal class. E.g., for $\Gamma = \Gamma(N)$ we have

$$\zeta_{\Gamma}(s) = \frac{1}{N^s} \zeta(s, \mathfrak{c}).$$