

Winter seminar of the Darmstadt algebra group

March 01 - March 08, 2015

SCHEDULE

	Monday	Tuesday	Wednesday	Thursday	Friday
08.00 - 08.45	Breakfast	Breakfast	Breakfast	Breakfast	Breakfast
09.00 - 13.00	Working/Skiing in groups	Working/Skiing in groups	Working/Skiing in groups	Working/Skiing in groups	Working/Skiing in groups
13.00 - 14.30	Lunch break	Lunch break	Lunch break	Lunch break	Lunch break
14.30 - 15.30	Bruinier	Möller, M.	Scheithauer	Kramer	Li
15.30 - 16.00	Coffee break	Coffee break	Coffee break	Coffee break	Coffee break
16.00 - 16.30	Kappes	Veneziano	D':-h	Alfes	Costantini
16.30 - 16.45	Break	Break	Pippicn	Break	
16.45 - 17.15	Schwagenscheidt	Möller, S.	Informal discussions Informal discussions Informal discussions	Opitz	T., f.,
17.15 - 18.45	Informal	Informal		discussions	
	discussions	discussions		discussions	
19.00 - 20.00	discussions Dinner	discussions Dinner	Dinner	Dinner	Dinner
19.00 - 20.00 20.00 - 20.30	Dinner	Information discussions Dinner Völz	Dinner	Dinner	Dinner

TITLES AND ABSTRACTS

Claudia	Harmonic Maass forms and periods
Alfes	
	In this talk we present some recent work on the connection between coefficients of harmonic Maass forms and periods of associated differentials.

Jan	Kudla's modularity conjecture and formal Fourier-Jacobi series
Bruinier	
	A famous theorem of Gross, Kohnen, and Zagier states that the generating series of Heegner divisors on a modular curve is an elliptic modular form of weight $3/2$ with values in the Picard group. This result can be viewed as an elegant description of the relations among Heegner divisors. More generally, Kudla conjectured that the generating series of codimension g special cycles on an orthogonal Shimura variety of dimension n is a Siegel modular form of genus g and weight $1 + n/2$ with coefficients in the Chow group of codimension g cycles. We report on joint work with Martin Raum on the modularity of formal Fourier-Jacobi series, which, when combined with a result of Wei Zhang, leads to a proof of Kudla's modularity conjecture.

Matteo	Lyapunov exponents of families of K3 surfaces
Costantini	
	Lyapunov exponents are numbers describing the dynamics of some special dynamical systems. In particular, they can be associated to the dynamics of variations of Hodge structures. I will present the relation between Lyapunov exponents associated to one dimensional families of K3 surfaces and some Chern classes, describing in particular the situation in some specific modular examples.

André	Cutting out arithmetic Teichmüller curves in genus 2 with theta functions
Kappes	
	(Joint work with Martin Möller.) A square-tiled surface is a closed surface obtained from finitely many unit squares in the plane by gluing their sides by translations. Affinely deforming the squares yields an algebraic curve in the moduli space of compact Riemann surfaces of genus g , called arithmetic Teichmüller curve. It is a hard problem to determine the number of different Teichmüller curves for a fixed number of squares and gluing combinatorics. For genus 2, we propose a description of these Teichmüller curves using theta functions and their derivatives. As the Jacobians of square-tiled surfaces of genus 2 all have multiplication by a pseudo-quadratic order, they correspond to points in a pseudo-Hilbert modular surface X , which in fact is a quotient of the direct product of two modular curves. To determine the class of a Teichmüller curve in the Picard group of X , we cut out a locus in the universal family of abelian surfaces that projects to it. As one result of our description, we determine the Euler characteristics of the Teichmüller curves (but not the irreducibility) for fixed combinatorics.

Jürg	Kronecker limit formulae, revisited
Kramer	
	In our talk, we will discuss an alternative approach to the Kronecker limit formula for $SL_2(\mathbb{Z})$, which permits a generalization to higher dimensions.

Yingkun	The span of restrictions of coherent Eisenstein series
Li	
	In the theory of modular forms, Eisenstein series plays an important role because of its explicit Fourier coefficients. It is well-known that the algebra of modular forms on $SL_2(\mathbb{Z})$ is generated by the classical Eisenstein series E_4 and E_6 . For a fixed weight k, Kohnen and Zagier showed that it suffices to consider the span of the products of two Eisenstein series E_ℓ and $E_{k-\ell}$. In this talk, we will look at a related question, first raised by Tonghai Yang, about the span of the restrictions of coherent Eisenstein series. We will discuss the construction of these Eisenstein series, its relationship to special values of L-function, and other related open problems.

Martin	Counting covers with Siegel–Veech weight and quasimodular forms
Moner	
	The generating function for counting torus coverings is known to be a quasimodular form. The proof in the simple case by Kaneko–Zagier relies on product expansions of theta functions and the general case by Bloch–Okounkov on q -brackets of shifted symmetric functions. Counting covers with Siegel–Veech weight is motivated from problems in polygonal billards. The resulting counting functions are no shifted symmetric, and yet the generating functions are quasimodular forms. In the talk we will mainly explain basic properties of shifted symmetric functions, q -brackets and their relation to theta functions.

Sven Möller	Cyclic orbifold construction of holomorphic VOAs
	We describe a theory of orbifolds of VOAs by automorphisms of arbitrary finite order. This generalises previous results by Frenkel, Lepowsky and Meurman and Miyamoto on orbifolds of order 2 and 3, respectively.

Sebastian	Discriminant forms and vector valued modular forms
Opitz	
	A given space of vector valued for the Weil representation associated to an even lattice only depends on the discriminant form of the lattice. The dimension of this space can be computed from the representation numbers of the quadratic form of the discriminant form. As the discriminant form decomposes orthogonally into p -adic Jordan components, it suffices to compute the representation numbers of these Jordan components. We give formulas for the representation numbers of small 2-adic Jordan components, generalizing a result of Scheithauer. If p is odd, the representation numbers of the p -adic Jordan components can be obtained by decomposing the discriminant form into orbits with respect to the action of its own othogonal group. It suffices to know the length of each orbit, this length can be computed recursively by formulas of Scheithauer which we simplify.

Anna	Kronecker limit formulae and regularized determinants
von Pippich	
	The classical Kronecker limit formula describes the derivative at $s = 0$ of the non-holomorphic Eisenstein series for $SL_2(\mathbb{Z})$ in terms of the Dedekind Delta function. In our talk, we will explain how this formula can be used to compute the regularized determinant of the Laplacian on an elliptic curve. Moreover, we will discuss corresponding results for hyperbolic Riemann surfaces.

Nils Scheithauer

Automorphic products of singular weight

We give a simple characterisation of Borcherds function Φ_{12} and describe the classification of reflective automorphic products of singular weight on lattices of prime level.

Stefan
SchmidSingular moduli that are S-unitsSchmidIt is a well-known fact, that singular moduli are algebraic integers. In 2011 David Masser asked
if there were any algebraic units among them and if so, if there were only finitely many. The last
part of the question was answered affirmatively by Philipp Habegger. Instead of looking at the
algebraic integers, which are integers for all places of \mathbb{Q} , we consider subsets S of places of \mathbb{Q} and
investigate singular moduli which are S-units.

Markus	Siegel modular forms of degree 2
Schwagenscheidt	
	We give a short introduction to the theory of Siegel modular forms of degree 2. We define the spinor zeta function associated to a Hecke eigenform F and formulate Andrianov's fundamental equation relating the Hecke eigenvalues and the Fourier coefficients of F . Further, we state Böcherer's conjecture which roughly says that the central critical value of the twisted spinor zeta function of an eigenform F is proportional to the square of a weighted sum of Fourier coefficients of F . If time permits, we present Böcherer's proof of his conjecture in the case of Saito–Kurokawa lifts.

Francesco	Torsion-anomalous intersections
Veneziano	
	Anomalous intersections are a framework introduced by Bombieri, Masser and Zannier, which comprises and generalises a vast body of problems and conjectures in arithmetic geometry. Let V be a variety contained in a group variety G , which is usually taken to be an abelian variety or a torus. When intersecting V with an algebraic subgroup B , if the intersection $V \cap B$ has a component of dimension strictly greater than "expected", then such a component is said to be torsion-anomalous. In analogy with many fundamental results in the field, there are conjectures giving geometrical conditions for the variety V to have only finitely many (maximal) torsion-anomalous subvarieties. I will present partial results in this direction. Joint work with S. Checcoli and E. Viada.

Fabian	Hyperbolic and elliptic Eisenstein series
Völz	
	In 1979 Kudla and Millson introduced a hyperbolic Eisenstein series generalising the classical (parabolic) non-holomorphic Eisenstein series. Instead of being associated to cusps these are coming from hyperbolic elements of the underlying modular group. Following this idea Kramer and Jorgenson considered elliptic Eisenstein series being based on elliptic elements. In this talk, we revisit these two types of generalised Eisenstein series and discuss some of their properties. In particular, we try to establish them as theta lifts by integrating a certain weighted Poincare series against Siegel's theta function of signature (1, 2).