Cyclic Orbifold Construction of Holomorphic Vertex Operator Algebras

Sven Möller

(joint work with Jethro van Ekeren and Nils Scheithauer)

Winter Seminar of the Darmstadt Algebra Group 2015, Manigod, France

March 2, 2015

Introduction

Orbifolding

Obtain holomorphic VOA \widetilde{V} from another holomorphic VOA V:

Development:

• [FLM88]: V^{\natural} as first example of \mathbb{Z}_2 -orbifold construction,

 $\xrightarrow[]{\sigma \in \mathsf{Aut}(V)} \widetilde{V}$

- [DGM90,...]: further \mathbb{Z}_2 -orbifold constructions,
- [Miy13]: \mathbb{Z}_3 -orbifold construction,

V

• [EMS]: general \mathbb{Z}_n -orbifold theory

Contents

Vertex Operator Algebras

- Definition
- Examples

2 Modules for Vertex Operator Algebras

- Modules
- "Nice" Vertex Operator Algebras
- Useful Tools: Fusion Rules and Modular Invariance
- Automorphisms and Twisted Modules
- 3 Cyclic Orbifold Construction
 - Modules for the Fixed-Point SubVOA
 - Main Results

4 Applications

Schellekens' List

Definition Examples

Vertex Operator Algebras

Definition (Vertex Operator Algebra, Data)

- (space of states) \mathbb{Z} -graded \mathbb{C} -vector space $V = \bigoplus_{n \in \mathbb{Z}} V_n$ with $V_n = 0$ for $n \ll 0$ and dim $(V_n) < \infty$ for all $n \in \mathbb{Z}$,
- (vacuum vector) non-zero vector $\mathbf{1} \in V_0$,
- (conformal vector) non-zero vector $\omega \in V_2$,
- (translation operator) linear operator $T: V \rightarrow V$ of weight 1,
- (vertex operators) linear map

$$Y(\cdot,z): V o \operatorname{End}(V)[[z^{\pm 1}]], \quad Y(a,z) = \sum_{n \in \mathbb{Z}} a_n z^{-n-1}$$

with $a_n b = 0$ for $n \gg 0$ and $\operatorname{wt}(a_n) = \operatorname{wt}(a) - n - 1$, $a, b \in V$

Definition Examples

Vertex Operator Algebras

Definition (Vertex Operator Algebra, Axioms)

- (vacuum axiom) $Y(\mathbf{1},z) = \mathrm{id}_V$ and $Y(a,z)\mathbf{1}|_{z=0} = a$, $a \in V$.
- (translation axiom) $[T, Y(a, z)] = \partial_z Y(a, z)$ and $T\mathbf{1} = 0$.
- (locality axiom) for $a, b \in V$ there is $N \gg 0$ s.t.

$$(z-w)^N[Y(a,z),Y(b,w)] = 0 \quad \in {
m End}(V)[[z^{\pm 1},w^{\pm 1}]].$$

• (Virasoro relations) $Y(\omega, z) =: \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$ satisfies

$$[L_m, L_n] = (m - n)L_{m+n} + \frac{m^3 - m}{12}\delta_{m+n,0}c$$

for some *central charge* $c \in \mathbb{C}$. In addition, $L_{-1} = T$ and $L_0a = na = wt(a)a$, $a \in V_n$.

Definition Examples

Examples of VOAs

Example (The Moonshine Module)

Frenkel, Lepowsky, Meurman constructed the VOA V^{\natural} of central charge 24 whose automorphism group is the Monster, i.e. $\operatorname{Aut}(V^{\natural}) \cong \mathbb{M}$. Used in Borcherds' proof of the Moonshine conjecture. The VOA V^{\natural} is "nice" and holomorphic.

Example (Lattice VOAs)

Let *L* be a positive-definite, even lattice. We can associate with it a VOA V_L of central charge $c = \operatorname{rk}(L)$. For any *L* the VOA V_L is "nice". The isomorphism classes of irreducible modules of V_L can be parametrised by the elements of L'/L. In particular, if *L* is unimodular, then V_L is holomorphic.

Modules

"Nice" Vertex Operator Algebras Useful Tools: Fusion Rules and Modular Invariance Automorphisms and Twisted Modules

Modules for VOAs

Definition (VOA Module)

Let V be a VOA. A V-module W is:

- \mathbb{C} -graded \mathbb{C} -vector space $W = \bigoplus_{\lambda \in \mathbb{C}} W_{\lambda}$ with $W_{\lambda} = 0$ for $\operatorname{Re}(\lambda) \ll 0$ and $\dim(V_{\lambda}) < \infty$ for all $\lambda \in \mathbb{C}$,
- equipped with linear map

$$Y_W(\cdot,z): V o \operatorname{End}(W)[[z^{\pm 1}]], \quad Y_W(a,z) = \sum_{n \in \mathbb{Z}} a_n z^{-n-1}$$

with $a_n b = 0$ for $n \gg 0$

- s.t. all the defining properties of a VOA that make sense hold
- (but replace locality axiom by Jacobi identity).

Modules "Nice" Vertex Operator Algebras Useful Tools: Fusion Rules and Modular Invariance Automorphisms and Twisted Modules

"Nice" Vertex Operator Algebras

Definition ("Niceness")

A VOA V is called "nice" if it is

- *rational*, i.e. the category of *V*-modules is semisimple with finitely many irreducible objects (up to isomorphism),
- C₂-cofinite, i.e. $\dim(V/\{v_{-2}w|v,w\in V\})<\infty$,
- simple, i.e. V has no non-trivial ideal,
- of CFT-type, i.e. $V = \bigoplus_{n \in \mathbb{Z}_{>0}} V_n$ and dim $(V_0) = 1$,
- self-contragredient, i.e. $V \cong V'$ (as modules).

Definition (Holomorphicity)

A VOA V is called *holomorphic* if V is rational with exactly one irreducible module (up to isomorphism).

Modules "Nice" Vertex Operator Algebras Useful Tools: Fusion Rules and Modular Invariance Automorphisms and Twisted Modules

Examples of VOAs, revisited

Example (The Moonshine Module)

Frenkel, Lepowsky, Meurman constructed the VOA V^{\natural} of central charge 24 whose automorphism group is the Monster, i.e. $\operatorname{Aut}(V^{\natural}) \cong \mathbb{M}$. Used in Borcherds' proof of the Moonshine conjecture. The VOA V^{\natural} is "nice" and holomorphic.

Example (Lattice VOAs)

Let *L* be a positive-definite, even lattice. We can associate with it a VOA V_L of central charge $c = \operatorname{rk}(L)$. For any *L* the VOA V_L is "nice". The isomorphism classes of irreducible modules of V_L can be parametrised by the elements of L'/L. In particular, if *L* is unimodular, then V_L is holomorphic.

Modules "Nice" Vertex Operator Algebras Useful Tools: Fusion Rules and Modular Invariance Automorphisms and Twisted Modules

Fusion Rules

Theory of *fusion products* (tensor products) of modules for VOAs (Huang-Lepowsky, Li):

- VOA V rational: fusion product for V-modules exists.
- Fusion algebra: let V have irred. modules W^1, \ldots, W^r :

$$W^i \boxtimes_V W^j \cong \bigoplus_{k=1}^r \underbrace{(W^k \oplus \ldots \oplus W^k)}_{N^k_{ij} \text{ times}} = \bigoplus_{k=1}^r N^k_{ij} W^k.$$

Theorem

Let V be a "nice" VOA. Then the associated fusion algebra $\mathcal{V}(V)$ is a finite-dimensional, commutative, associative, unital \mathbb{C} -algebra (with unit V).

• Simple-current case: $\mathcal{V}(V) = \mathbb{C}[E]$ with fusion group E.

Modules "Nice" Vertex Operator Algebras Useful Tools: Fusion Rules and Modular Invariance Automorphisms and Twisted Modules

Zhu's Modular Invariance

[Zhu96] Consider "nice" VOA V with irreducible modules W^1, \ldots, W^r :

• Have holomorphic trace functions

$$T_{W^i}(\boldsymbol{v},\tau) := \operatorname{tr}|_{W^i} o(\boldsymbol{v}) q^{L_0 - c/24},$$

$$o(v)=v_{ ext{wt}(v)-1}$$
, $q= ext{e}^{2\pi ext{i} au}$, $au\in\mathbb{H}.$

Modular invariance: let γ = (^{a b}_{c d}) ∈ SL₂(ℤ): there is a complex (r × r)-matrix M(γ) = (m_{i,j})^r_{i,j=1} s.t.

$$\frac{1}{(c\tau+d)^k}T_{W^i}(v,\frac{a\tau+b}{c\tau+d})=\sum_{j=1}^r m_{i,j}T_{W^j}(v,\tau)$$

for all $k \in \mathbb{Z}_{\geq 0}$, $\tau \in \mathbb{H}$, $v \in V_{[k]}$. • Important case: $\gamma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in SL_2(\mathbb{Z}) \rightsquigarrow S$ -Matrix.

Modules "Nice" Vertex Operator Algebras Useful Tools: Fusion Rules and Modular Invariance Automorphisms and Twisted Modules

Verlinde Formula

Theorem (Verlinde, Huang)

Let V be a "nice" VOA. Let $W^1 = V, W^2, ..., W^r$ be the irreducible modules of V. Then S is symmetric and the square S^2 is a permutation matrix which shifts i to i' where $W^{i'} := (W^i)'$. Moreover, we have the following formula

$$\mathcal{N}_{i,j}^k = \sum_{l=1}^r rac{S_{il}S_{jl}S_{lk'}}{S_{1l}}$$
 (Verlinde formula)

for the fusion rules $N_{i,j}^k$ of V.

• In simple-current situation: combine Verlinde formula and $STS = T^{-1}ST^{-1}$ from modular invariance to compute S- and T-matrix of the VOA (and hence the fusion rules).

Modules "Nice" Vertex Operator Algebras Useful Tools: Fusion Rules and Modular Invariance Automorphisms and Twisted Modules

Automorphisms of VOAs

Definition (VOA Automorphism)

Let V be a VOA. A VOA automorphism g of V is an automorphism of the \mathbb{C} -vector space V such that

• $gY(a,z)g^{-1} = Y(ga,z)$ for $a \in V$,

•
$$g\omega = \omega$$
 (g is grade-preserving),

•
$$g\mathbf{1} = \mathbf{1}$$
.

• decompose V into eigenspaces

$$V = \bigoplus_{r \in \mathbb{Z}_n} V^r = \{ a \in V | ga = e^{(2\pi i)r/n}a \}$$

with $n = \operatorname{ord}(g)$

• fixed-point subVOA: $V^g = V^0$

Modules "Nice" Vertex Operator Algebras Useful Tools: Fusion Rules and Modular Invariance Automorphisms and Twisted Modules

Properties of Fixed-Point SubVOAs

Inherited properties of V^{G} from V:

Proposition

- Let V be a simple, self-contragredient VOA of CFT-type and let G be a finite group of automorphisms of V. Then the fixed-point subVOA V^G is again simple [DM97], self-contragredient and of CFT-type.
- If in addition V is C₂-cofinite and G is solvable, then V^G is also C₂-cofinite [Miy13].
- If in addition (to both points) V is rational and G is cyclic, then V^G is also rational [Miy10].
- In total: If V is "nice", then so is V^g for $g \in Aut(V)$.

Modules "Nice" Vertex Operator Algebras Useful Tools: Fusion Rules and Modular Invariance Automorphisms and Twisted Modules

Twisted Modules for VOAs

Definition (Twisted VOA Module)

g-twisted module W for a VOA V: like untwisted module but

• linear map

[DLM00].

$$Y_W(\cdot,z):V
ightarrow {
m End}(W)[[z^{\pm 1/n}]], \quad Y_W(a,z)=\sum_{k\in \mathbb{Q}}a_kz^{-k-1}$$

with
$$Y_W(a,z) = \sum_{k \in -r/n + \mathbb{Z}} a_k z^{-k-1}$$
 for $a \in V^r$,

• replace Jacobi identity by "twisted version".

A g-twisted V-module is an untwisted (ordinary) V^g-module.
Let V be holomorphic. Then V posesses a unique (up to isomorphism) irreducible g-twisted module, call it V(g)

Modules for the Fixed-Point SubVOA Main Results

Automorphism of the Twisted Modules

Proposition

Let V be a "nice" holomorphic VOA and let $G = \langle \sigma \rangle$ be a cyclic group of automorphisms of V of order n. Then for each $h \in G$ there is a unique (up to root of unity) representation

$$\phi_h: G \to \operatorname{Aut}_{\mathbb{C}}(V(h))$$

of G on the vector space V(h) such that

$$\phi_h(g) Y_{V(h)}(v,z) \phi_h^{-1}(g) = Y_{V(h)}(gv,z)$$

for all $g \in G$ and $v \in V$.

• Clearly one can take $\phi_e(g) = g$ on V = V(e).

Modules for the Fixed-Point SubVOA Main Results

Modules for the Fixed-Point SubVOA

Theorem (Classification of Irreducible Modules [Miy10,...])

Let V be a "nice" holomorphic VOA and let $G = \langle \sigma \rangle$ be a finite, cyclic group of automorphisms of V of order n. Then, every V^{G} -module is completely reducible and, up to isomorphism, there are exactly n^{2} distinct irreducible V^{G} -modules, namely $W^{(i,j)}$, $i, j \in \mathbb{Z}_{n}$. $W^{(i,j)}$ is the eigenspace in $V(\sigma^{i})$ of $\phi_{\sigma^{i}}(\sigma)$ corresponding to the eigenvalue ξ_{n}^{j} .

Next steps:

- Show that all the modules are simple currents, i.e. we have group-like fusion.
- Use twisted version of Zhu's modular invariance [DLM00].
- Compute the S- and T-matrix and fusion rules of V^{σ} .

Modules for the Fixed-Point SubVOA Main Results

Main Result

Theorem (Main Result I [EMS])

Let V be a "nice" holomorphic VOA and let σ be an automorphism of V of order n. Then the fusion algebra of V^g is the group algebra $\mathbb{C}[E]$ of a group E, which is a central extension

$$1 \leftarrow \mathbb{Z}_n \leftarrow E \leftarrow \mathbb{Z}_n \leftarrow 1,$$

i.e. we have

$$W^{(i,j)} \boxtimes W^{(l,k)} \cong W^{(i+l,j+k+c(i,l))}$$

for some 2-cocycle $c \in Z^2(\mathbb{Z}_n, \mathbb{Z}_n)$.

• The class $r \in \mathbb{Z}_n \cong H^2(\mathbb{Z}_n, \mathbb{Z}_n)$ of the 2-cocycle is known. We say σ is of type $n\{r\}$.

Modules for the Fixed-Point SubVOA Main Results

Main Result

Theorem (Main Result II [EMS])

Let V as in the above theorem and of type n{0}. The direct sum of irreducible V^{\sigma}-modules

$$\widetilde{V} := igoplus_{i \in \mathbb{Z}_n} W^{(i,0)}$$

admits the structure of a "nice" holomorphic VOA extending the VOA structure of V^{σ} .

- The sum $V = \bigoplus_{j \in \mathbb{Z}_n} W^{(0,j)}$ gives back the original VOA V.
- Uses deep sitting results by Huang, Dong, Lepowsky,... on abelian intertwining algebras, modular tensor categories,...
- Closely related to "cohomology of abelian groups" by Eilenberg and Mac Lane.

Schellekens' List

Schellekens' List (Existence)

Proposition ([Zhu96])

Let V be a "nice" holomorphic VOA. Then the central charge of V is a positive multiple of 8.

Theorem ([Sch93, EMS])

Let V be a "nice" holomorphic VOA of central charge 24. Then the Lie algebra structure of V_1 has to be isomorphic to one of the 71 Lie algebras on Schellekens' list.

Conjecture

The Lie algebra structure determines the VOA uniquely (up to isomorphism), i.e. there are at most 71 "nice" holomorphic VOAs of central charge 24.

Schellekens' List

Schellekens' List (Construction)

Construction of 69 of the 71 VOAs in Schellekens' list:

- 24: lattice VOAs associated to the 24 Niemeier lattices [Bor86, FLM88, Don93],
- 15: \mathbb{Z}_2 -orbifolds for V_L and $-1 \in \operatorname{Aut}(L)$ [FLM88, DGM96],
- 17: repeated \mathbb{Z}_2 -orbifolds (framed VOAs) [Lam11, LS12],
- 3: \mathbb{Z}_3 -orbifolds for V_L [Miy13, SS13],
- 5: \mathbb{Z}_2 -orbifolds using inner automorphisms [LS15],
- 5: \mathbb{Z}_n -orbifolds for V_L (n = 4, 5, 6, 10) [EMS]

Conjecture

Every of the 71 VOAs in Schellekens' list exists.

D. Rk.	0	24	36	48	60	72	84	96	108	120	132	144	156	168	192	216	240	264	288	300	312	336	360	384	408	456	552	624	744	1128
0	0																													5
4			C4,10																						\bigcirc	N	iemeier	lattice	2	
6		1	A _{2,6} D _{4,12}	A _{6,7} A _{1,2} D _{5,8}	A _{2,2} F _{4,6}																				\bigcirc	(-	–1)-inv	olution	orbifo	-ld
																									\bigcirc	Z	\mathbb{Z}_3 -orbifold			
8				A _{1,2} A _{5,} B _{2,3}	•	A ² D6,5																			\bigcirc	fr	amed c	onstru	ction	
				A ² _{4,5}	[(A1 C5,3 G2,2									inner aut						omorp	hisms								
				A1.2	(A ³ ₁ A _{7,4}		A ₂ B ₂																		new lattice orbifold not yet constructed				
10				A3,4		A ₁ ² C _{3,2} D _{5,4}		E _{6,4}		A3C7,2															\bigcirc					
12			112	16	$ \begin{array}{c} A_{2,2} \\ D_{4,4} \end{array} $	A ₁ ³	$A^2_{4,2}$ C _{4,2}	A ²		A ₃ D _{7,3} G ₂			02	As													1			
			Ai.4	A _{2,3}	B _{2,2}	A _{5,3} D _{4,3}	B ⁴ _{3,2}	A8,3	B _{4,2}	E6,3G2	4 _{8,2} F4,1	2)	B _{6,2}	E7,3						B _{12,2}										
								A2 A2		12 = 2	(A4A9,2 B3					BEE7 2													
16				A16 1,2		$A_1^4 A_{3,2}^4$		B2		A3D5,2	$\langle \rangle$	B ₃ ² C ₄ D _{6.2}		A ₅ C ₅ E _{6.2}	B ₄ D _{8,2}	A ₇ D _{9,2}	F ₄	2	B ₆ C ₁₀					B ₈ E _{8,2}						
								B2D4,2		C_{3}^{2}		C4		\square	$B_4C_6^2$		C ₈ F ₄ ²													
-												((A ₅ ⁴ D ₄		12-2		A2 D6		(A ₁₁ D ₇ E ₆					A ₁₇ E			E38	
24		C ²⁴				(A124)		A22		(A ^o ₃)		(A4)		D_4^6	(A ₆) (A7D5	(A ²)	D_6^4			E_6^4	A12			A15D9	D ₁₀ E		(A ₂₄)	D ₁₆ E ₈	

Thank you for your attention!