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SL2(Z) acts on the set of
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How many SL2(Z)-orbits? Sizes?



Square-tiled surfaces

Glue d unit squares.

d = 5

I

I

II

II

III

III

IV

IV
− −

= =

Question
How many possibilities?

SL2(Z) acts on the set of
square-tiled surfaces.

More involved question
How many SL2(Z)-orbits? Sizes?



Square-tiled surfaces

Glue d unit squares.

d = 5

I

I

II

II

III

III

IV

IV
− −

= =

Question
How many possibilities?

SL2(Z) acts on the set of
square-tiled surfaces.

More involved question
How many SL2(Z)-orbits? Sizes?



Square-tiled surfaces

Glue d unit squares.

d = 5

( 1 1
0 1 )

Question
How many possibilities?

SL2(Z) acts on the set of
square-tiled surfaces.

More involved question
How many SL2(Z)-orbits? Sizes?



Square-tiled surfaces

Glue d unit squares.

d = 5

( 1 1
0 1 )

Question
How many possibilities?

SL2(Z) acts on the set of
square-tiled surfaces.

More involved question
How many SL2(Z)-orbits? Sizes?



Square-tiled surfaces

Glue d unit squares.

d = 5

( 1 1
0 1 )

= I

IV

II

I

III

II

IV

III

Question
How many possibilities?

SL2(Z) acts on the set of
square-tiled surfaces.

More involved question
How many SL2(Z)-orbits? Sizes?



Square-tiled surfaces

Glue d unit squares.

d = 5

( 1 1
0 1 )

= I

IV

II

I

III

II

IV

III

Question
How many possibilities?

SL2(Z) acts on the set of
square-tiled surfaces.

More involved question
How many SL2(Z)-orbits? Sizes?



Arithmetic Teichmüller curves

Let A ∈ SL2(R).

A

X A · X

Defines a map

Mg

Γ(X ) = StabSL2(Z)(X )



Arithmetic Teichmüller curves

Let A ∈ SL2(R).

A

X A · X

Defines a map

Mg

Γ(X ) = StabSL2(Z)(X )



Arithmetic Teichmüller curves

Let A ∈ SL2(R).

A

X A · X

Defines a map

SL2(R) Mg

Γ(X ) = StabSL2(Z)(X )



Arithmetic Teichmüller curves

Let A ∈ SL2(R).

A

X A · X

Defines a map

MgH = SO(2)\ SL2(R)

Γ(X ) = StabSL2(Z)(X )



Arithmetic Teichmüller curves

Let A ∈ SL2(R).

A

X A · X

Defines a map

MgH /Γ(X )

Γ(X ) = StabSL2(Z)(X )



Arithmetic Teichmüller curves

H /Γ(X )

I

IV

II

I

III

II

IV

III

More involved question’
How many arithmetic Teichmüller curves?
What are their Euler characteristics?

Note: size(SL2(Z)-orbit) = [SL2(Z) : Γ(X )] = −6 · χ(H /Γ(X )).
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s. th. p ramified over at most 1 point.
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A square-tiled surface p : X → E is called primitive, if there are
no intermediate covers
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Genus 2, two simple ramification points

Conjecture (Zmiaikou)
For d ≥ 7 there exist 2 orbits of primitive d-square-tiled surfaces of
genus 2 with 2 simple ramification points.

The associated Teichmüller curves Td ,ε satisfy

χ(Td ,ε) =

{
− 1

144(d2 − 8d + 15)#SL2(Z /d Z)
d , ε = 3

− 1
48(d2 − 4d + 3)#SL2(Z /d Z)

d , ε = 1

(here: case d odd)

d = 7
ε = 1 ε = 3

Theorem (Möller-K)
The counting part of Zmiaikou’s conjecture holds.
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The Jacobian

X a compact Riemann surface, g = 2

Definition (Jacobian)
J(X ) = C2 /ΠZ4, Π = (

∫
γj
ωi )

Theorem
The Torelli map

M2 → A2, [X ] 7→ [J(X )]

is an embedding.
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Multiplication by od2

Let p : X → E primitive of g(X ) = 2 and deg(p) = d .

 induced map p∗ : J(X )→ J(E )∼=E
⇒ J(X ) is isogenuous to E × E ′ where E ′ = Ker p∗ has

exponent d .
⇔ od2 = {(a, b) ∈ Z2 | a≡ b mod d} ⊂ End(J(X ))

“J(X ) has multiplication by od2”



Pseudo-Hilbert modular surfaces

Definition
Xd2 = moduli space of p.p. abelian surfaces with mult. by od2

“pseudo-Hilbert modular surface”

Xd2 = H2 /Γd2 , where

Γ(d)× Γ(d) ⊂ Γd2 ⊂ SL2(Z)× SL2(Z)

⇒ Xd2 is sandwiched

X (d)× X (d) −→ Xd2 −→ X (1)× X (1)



Pseudo-Hilbert modular surfaces

Definition
Xd2 = moduli space of p.p. abelian surfaces with mult. by od2

“pseudo-Hilbert modular surface”

Xd2 = H2 /Γd2 , where

Γ(d)× Γ(d) ⊂ Γd2 ⊂ SL2(Z)× SL2(Z)

⇒ Xd2 is sandwiched

X (d)× X (d) −→ Xd2 −→ X (1)× X (1)



The universal family

Ad2

Xd2

π

= H2×C2 /semidirect product

x = [A]
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Find a subset C̃ ⊂ Ad2 such that π(C̃) = Td ,ε.
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Locating a ramification point

Let p : X → E be primitive of degree d .

u0 ∈ J(X ) is a ramification point of p ⇔

1 u0 = Φ(x0) for some x0 ∈ X .
2 For ω = p∗ωE , we have ω(x0) = 0.

3 p(x0) =

{
0 ∈ E
2-torsion point 6= 0
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wlog p is normalized: 3 Weierstraß points over 0.
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Theta functions

Definition (Classical theta function)

ϑ : H2×C2 → C, (Z , u) 7→
∑

x∈Z2

eπi(xT Zx)+2πixT u

eats period matrices in the form Π = (Z , I).
ϑ = 0 is well-defined condition on C2 /ΠZ4.

Theorem
In g = 2, the image of the Abel-Jacobi map is the zero locus of ϑ

Φ(X ) = {ϑ = 0}
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Locating a ramification point

Abel-Jacobi map

Φ : p 7→
(∫ p

p0
ω1,

∫ p

p0
ω2
)
mod ΠZ4

 choose ω1 = ω = p∗ωE

Proposition

ω(x0) = 0 if and only if ∂ϑ

∂u2
(Φ(x0)) = 0

Proof.

0 =

∂

∂x

ϑ(Φ(x0))

=
∂ϑ

∂u1
(Φ(x0)) · ω(x0) +

∂ϑ

∂u2
(Φ(x0)) · ω2(x0)
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π

= H2×C2 /semidirect product
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In PicQ(Xd2),

π∗(

Θ ∩ D2Θ ∩ N(1)

) = 2 · Td ,ε=3 + 3 ·Wd2,ε=3 + Pd2,ε=3

union of Teichm. curves
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Push forward is section of Hodge bundle

Theorem ([Möller-K])
In PicQ(Xd2),

π∗(Θ ∩ D2Θ ∩ N(1)) = 2 · Td ,ε=3 + 3 ·Wd2,ε=3 + Pd2,ε=3

= (d − 3)λ1 + (2d − 2)λ2

Corollary
For odd d, the counting part of Zmiaikou’s conjecture holds.

Proof.
Pair with −λ⊗ 2

1 =
[dx1∧dy1

y2
1

]
:

2χ(Td ,ε=3) + 3χ(Wd2,ε=3) + χ(Pd2,ε=3) = (1− d)

∫
Xd2
dvol



Thank you very much for your attention!


