The Macdonald identities and Jacobi forms of lattice index

Nils Skoruppa

Universität Siegen

September 17, 2019

Modular Forms on Higher Rank Groups September 17–20, 2019 TU Darmstadt

Macdonald identities

Macdonald identities

Macdonald identity associated to an irreducible root system R

$$\prod_{n\geq 1} (1-X^n)^{\dim R} \prod_{r\in R} (1-X^n e^r)$$

= $\sum_{x\in M} X^{(|x+w|^2-|w|^2)/4h} \frac{\sum_{g\in W(R)} \operatorname{sn}(g) e^{g(x+w)}}{\sum_{g\in W(R)} \operatorname{sn}(g) e^{gw}}$

Notations

- w: half sum of positive roots
- W(R): Weyl group
- sn(g): determinant of g
- M: lattice generated by hr^{\vee} $(r^{\vee}=2r/|r|^2)$
- h: $\frac{1}{2}(|\alpha + w|^2 |w|^2)$ (α highest root)

Specializations of the Macdonald identities

• Setting
$$e^r = 1$$
 and $X = e^{2\pi i \tau}$:

$$\eta(au)^{\dim R+|R|} = \sum_{x \in w+M} d(x) X^{|x|^2/2h} \quad (d(x) = \prod_{r \in R^+} \frac{(x,r)}{(w,r)}).$$

Clearing the denominator and using the Weyl denominator formula

$$\sum_{g \in W(R)} \operatorname{sn}(g) e^{-gw} = \prod_{r \in R^+} (e^{r/2} - e^{-r/2}),$$

the Macdonald id. can be viewed as generalization of Weyl's formulas.
Taking R = A₁ yields the Jacobi triple product identity:

$$\prod_{n\geq 1} (1-X^n)(1-X^n e^{\alpha})(1-X^n e^{-\alpha}) = \sum_{m\in\mathbb{Z}} (-1)^m X^{m(m-1)/2} e^{-m\alpha}.$$

Specializations of the Macdonald identities

• Setting
$$e^r = 1$$
 and $X = e^{2\pi i \tau}$:

$$\eta(\tau)^{\dim R+|R|} = \sum_{x \in w+M} d(x) X^{|x|^2/2h} \quad (d(x) = \prod_{r \in R^+} \frac{(x,r)}{(w,r)}).$$

• Clearing the denominator and using the Weyl denominator formula

$$\sum_{g \in W(R)} \operatorname{sn}(g) e^{-gw} = \prod_{r \in R^+} (e^{r/2} - e^{-r/2}),$$

the Macdonald id. can be viewed as generalization of Weyl's formulas.

• Taking $R = A_1$ yields the Jacobi triple product identity:

$$\prod_{n\geq 1} (1-X^n)(1-X^n e^{\alpha})(1-X^n e^{-\alpha}) = \sum_{m\in\mathbb{Z}} (-1)^m X^{m(m-1)/2} e^{-m\alpha}.$$

Specializations of the Macdonald identities

• Setting
$$e^r = 1$$
 and $X = e^{2\pi i \tau}$:

$$\eta(au)^{\dim R+|R|} = \sum_{x \in w+M} d(x) X^{|x|^2/2h} \quad (d(x) = \prod_{r \in R^+} \frac{(x,r)}{(w,r)}).$$

• Clearing the denominator and using the Weyl denominator formula

$$\sum_{g \in W(R)} \operatorname{sn}(g) e^{-gw} = \prod_{r \in R^+} (e^{r/2} - e^{-r/2}),$$

the Macdonald id. can be viewed as generalization of Weyl's formulas.

• Taking $R = A_1$ yields the Jacobi triple product identity:

$$\prod_{n\geq 1} (1-X^n)(1-X^n e^{\alpha})(1-X^n e^{-\alpha}) = \sum_{m\in\mathbb{Z}} (-1)^m X^{m(m-1)/2} e^{-m\alpha}.$$

Nils Skoruppa

Jacobi's theta function I

Jacobi triple product identity

$$artheta(au, z) = \sum_{r \in \mathbb{Z}} \left(rac{-4}{r}
ight) q^{rac{r^2}{8}} \zeta^{rac{r}{2}} = \eta(au) q^{rac{1}{12}} (\zeta^{rac{1}{2}} - \zeta^{-rac{1}{2}}) \prod_{n \ge 1} (1 - q^n \zeta) (1 - q^n \zeta^{-1})$$

 $\eta(au) = q^{rac{1}{24}} \prod_{n \ge 1} (1 - q^n) \qquad (q = \mathrm{e}(au) = \mathrm{e}^{2\pi i au}, \ \zeta = \mathrm{e}(z), \ au \in \mathbb{H}, \ z \in \mathbb{C}).$

Note

$$\vartheta(\tau, z) = \eta(\tau)^3 \sigma(\tau, z),$$

where $\sigma(\tau, z)$ is the Weierstrass σ -function of $\mathbb{Z}\tau + \mathbb{Z}$.

• This explains in essence the Jacobi triple product identity.

Jacobi's theta function I

Jacobi triple product identity

$$artheta(au, z) = \sum_{r \in \mathbb{Z}} \left(rac{-4}{r}
ight) q^{rac{r^2}{8}} \zeta^{rac{r}{2}} = \eta(au) q^{rac{1}{12}} (\zeta^{rac{1}{2}} - \zeta^{-rac{1}{2}}) \prod_{n \ge 1} (1 - q^n \zeta) (1 - q^n \zeta^{-1})$$

 $\eta(au) = q^{rac{1}{24}} \prod_{n \ge 1} (1 - q^n) \qquad (q = \mathrm{e}(au) = \mathrm{e}^{2\pi i au}, \ \zeta = \mathrm{e}(z), \ au \in \mathbb{H}, \ z \in \mathbb{C}).$

Note

۲

$$\vartheta(\tau, z) = \eta(\tau)^3 \sigma(\tau, z),$$

where $\sigma(\tau, z)$ is the Weierstrass σ -function of $\mathbb{Z}\tau + \mathbb{Z}$.

• This explains in essence the Jacobi triple product identity.

Jacobi's theta function II

Question

Can the cited Macdonald identities also interpreted and explained along these lines?

Anticipated answer

Observation

- The formal power series occurring in the Macdonald identities can indeed be interpreted as distinguished functions: Jacobi forms of lattice index.
- They are of singular weight: Such functions are rare, they are essentially invariants of Weil representations.
- The theory of Jacobi forms of lattice index will provide a simple explanation for the product expansion (without even referring to zeros or divisors).

Plan

Plan of the talk

- Describe "precisely" Jacobi forms of lattice index.
- Describe how product expansions just "happen" by *pulling back Jacobi forms* of the simplest type.
- Describe the Jacobi forms proof of the Macdonald identities.
- Discuss some natural questions emerging from that proof.
- Give some puzzling applications to explicit number theory (elliptic curves over the rationals).

The group $Mp(2,\mathbb{Z})$

$$\mathsf{Mp}(2,\mathbb{Z}) := \left\{ (A,w) : A = \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right] \in \mathsf{SL}(2,\mathbb{Z}), \ w(\tau) = \pm \sqrt{c\tau + d} \right\},$$

where $(A, w) \cdot (B, v) = (AB, w(B\tau)v(\tau))$, defines an extension of SL(2, \mathbb{Z}):

$$1 \to \{(1, \pm 1)\} \xrightarrow{\subset} \mathsf{Mp}(2, \mathbb{Z}) \xrightarrow{(A, w) \mapsto A} \mathsf{SL}(2, \mathbb{Z}) \to 1.$$

The application

$$\varepsilon(A, w) := \eta(A\tau)/w(\tau)\eta(\tau)$$

defines a linear character arepsilon : $\mathsf{Mp}(2,\mathbb{Z}) o \mu_{24}.$

Theorem

The group of linear characters of $Mp(2,\mathbb{Z})$ is cyclic of order 24, generated by ε .

Nils Skoruppa

The group $Mp(2,\mathbb{Z})$

$$\mathsf{Mp}(2,\mathbb{Z}) := \left\{ (A,w) : A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathsf{SL}(2,\mathbb{Z}), \ w(\tau) = \pm \sqrt{c\tau + d} \right\},$$

where $(A, w) \cdot (B, v) = (AB, w(B\tau)v(\tau))$, defines an extension of $SL(2, \mathbb{Z})$:

$$1 \to \{(1,\pm 1)\} \xrightarrow{\subset} \mathsf{Mp}(2,\mathbb{Z}) \xrightarrow{(A,w) \mapsto A} \mathsf{SL}(2,\mathbb{Z}) \to 1.$$

The application

$$arepsilon(\mathsf{A},\mathsf{w}):=\eta(\mathsf{A} au)/\mathsf{w}(au)\eta(au)$$

defines a linear character $\varepsilon : Mp(2, \mathbb{Z}) \to \mu_{24}$.

Theorem

The group of linear characters of $Mp(2,\mathbb{Z})$ is cyclic of order 24, generated by ε .

Nils Skoruppa

Macdonald identities

The group $Mp(2,\mathbb{Z})$

$$\mathsf{Mp}(2,\mathbb{Z}) := \left\{ (A,w) : A = \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right] \in \mathsf{SL}(2,\mathbb{Z}), \ w(\tau) = \pm \sqrt{c\tau + d} \right\},$$

where $(A, w) \cdot (B, v) = (AB, w(B\tau)v(\tau))$, defines an extension of SL(2, \mathbb{Z}):

$$1 \to \{(1,\pm 1)\} \xrightarrow{\subset} \mathsf{Mp}(2,\mathbb{Z}) \xrightarrow{(A,w) \mapsto A} \mathsf{SL}(2,\mathbb{Z}) \to 1.$$

The application

$$arepsilon(\mathsf{A},\mathsf{w}):=\eta(\mathsf{A} au)/\mathsf{w}(au)\eta(au)$$

defines a linear character $\varepsilon : Mp(2, \mathbb{Z}) \to \mu_{24}$.

Theorem

The group of linear characters of $Mp(2, \mathbb{Z})$ is cyclic of order 24, generated by ε .

Nils Skoruppa

Macdonald identities

Lattices

Basic notions

- (Integral positive) Lattice $\underline{L} = (L, \beta)$:
 - Finite free \mathbb{Z} -module L,
 - symmetric, positive definite \mathbb{Z} -bilinear map $\beta: L \times L \to \mathbb{Z}$.

Set

$$\beta(x) := \frac{1}{2}\beta(x, x).$$

- \underline{L} is even if $\beta(x)$ integral for all x in L, odd otherwise.
- $x \mapsto \beta(x) \mod \mathbb{Z}$ defines a linear character $L \to \frac{1}{2}\mathbb{Z}/\mathbb{Z}$.

• The shadow of <u>L</u> is

 $L^{\bullet} = \{s \in \mathbb{Q} \otimes L : \beta(s, x) \equiv \beta(x) \mod \mathbb{Z} \text{ for all } x \text{ in } L\}.$

(L^{\bullet} equals the dual L^{\sharp} of L if \underline{L} is even.)

• $L_{\mathsf{ev.}}$ denotes the kernel of $x \mapsto \beta(x)$ mod \mathbb{Z} : maximal even sublattice.

Lattices

Basic notions

- (Integral positive) Lattice $\underline{L} = (L, \beta)$:
 - Finite free \mathbb{Z} -module L,
 - symmetric, positive definite \mathbb{Z} -bilinear map $\beta: L \times L \to \mathbb{Z}$.

• Set

$$\beta(x) := \frac{1}{2}\beta(x,x).$$

- \underline{L} is even if $\beta(x)$ integral for all x in L, odd otherwise.
- $x \mapsto \beta(x) \mod \mathbb{Z}$ defines a linear character $L \to \frac{1}{2}\mathbb{Z}/\mathbb{Z}$.
- The shadow of <u>L</u> is

$$L^{ullet} = \{ s \in \mathbb{Q} \otimes L : \beta(s, x) \equiv \beta(x) \mod \mathbb{Z} \text{ for all } x \text{ in } L \}.$$

(L^{\bullet} equals the dual L^{\sharp} of L if \underline{L} is even.)

• $L_{ev.}$ denotes the kernel of $x \mapsto \beta(x) \mod \mathbb{Z}$: maximal even sublattice.

Definition

 $J_{k,\underline{L}}(\varepsilon^{h})$ (k integral or haf-integral, h integer mod 24): space of holomorphic functions $\phi(\tau,z)$ ($\tau \in \mathbb{H}$, $z \in \mathbb{C} \otimes_{\mathbb{Z}} L$) such that:

• For all (A, w) in Mp $(2, \mathbb{Z})$,

$$\{\phi|_{k,\underline{L}}(A,s)\}(\tau,z) := \phi\left(\frac{a\tau+b}{c\tau+d},\frac{z}{c\tau+d}\right) e\left(\frac{-c\beta(z)}{c\tau+d}\right) w(\tau)^{-2k}$$
$$= \varepsilon(A,w)^h \phi(\tau,z).$$

2 For $x, y \in L$,

$$\phi(\tau, z + \tau x + y) e(\tau \beta(x) + \beta(z, x)) = e(\beta(x + y)) \phi(\tau, z).$$

• ϕ holomorphic at infinity.

Fourier expansion

 ϕ is called $\mathit{holomorphic}$ at $\mathit{infinity}$ if its Fourier expansion is of the form

$$\phi = \sum_{\substack{n \in \frac{h}{24} + \mathbb{Z}, \ r \in L^{\bullet} \\ n \ge \beta(r)}} c_{\phi}(n, r) q^{n} e\left(\beta(r, z)\right).$$

Theta expansion

For $\lambda : L^{\bullet}/L_{ev.} \to \mathbb{C}$ such that $\lambda(y + x) = \lambda(y)e(\beta(x))$ for all $y \in L^{\bullet}$, $x \in L$, set

$$\vartheta_{\underline{L},\lambda} := \sum_{r \in L^{\bullet}} \lambda(r) q^{\beta(r)} e(\beta(r,z))$$

and let

$\Theta(\underline{L}) := \operatorname{span}_{\mathbb{C}} \left\{ \vartheta_{\underline{L},\lambda} : \lambda \text{ as above} \right\}.$

Nils Skoruppa

Macdonald identities

Fourier expansion

 ϕ is called *holomorphic at infinity* if its Fourier expansion is of the form

$$\phi = \sum_{\substack{n \in \frac{h}{24} + \mathbb{Z}, \ r \in L^{\bullet} \\ n \ge \beta(r)}} c_{\phi}(n, r) q^{n} e\left(\beta(r, z)\right).$$

Theta expansion

For $\lambda : L^{\bullet}/L_{ev.} \to \mathbb{C}$ such that $\lambda(y + x) = \lambda(y)e(\beta(x))$ for all $y \in L^{\bullet}$, $x \in L$, set

$$\vartheta_{\underline{l},\lambda} := \sum_{r \in L^{\bullet}} \lambda(r) q^{\beta(r)} e(\beta(r,z))$$

and let

$$\Theta(\underline{L}) := \operatorname{span}_{\mathbb{C}} \left\{ \vartheta_{\underline{L},\lambda} : \lambda \text{ as above} \right\}.$$

Nils Skoruppa

Theta expansion (cont.) Mp(2, \mathbb{Z}) acts on $\Theta(\underline{L})$ via $(g, \theta) \mapsto \theta|_{\frac{n}{2}, \underline{L}}g^{-1}$. One has

$$J_{k,\underline{L}}\left(\varepsilon^{h}\right)\cong\left(M_{k-\frac{n}{2}}\left(\Gamma(\ell)\right)\otimes\Theta(\underline{L})\otimes\mathbb{C}\left(\varepsilon^{h}\right)\right)^{\mathsf{Mp}(2,\mathbb{Z})}$$

where $n = \operatorname{rank} \underline{L}$, $\ell = \operatorname{level} \operatorname{of} \underline{L}$.

Consequences

- $J_{k,\underline{L}}(\varepsilon^h)$ is finite dimensional.
- $J_{k,\underline{L}}(\varepsilon^h) = 0$ for $k < \frac{n}{2}$.
- J_{n/2} (ε^h) = (Θ(<u>L</u>) ⊗ C (ε^h))^{Mp(2,ℤ)}. (^{n/2}/₂: singular weight; Θ(<u>L</u>) Weil representations associated to the discriminant module of <u>L</u> (for even <u>L</u>...).

Theta expansion (cont.) Mp(2, \mathbb{Z}) acts on $\Theta(\underline{L})$ via $(g, \theta) \mapsto \theta|_{\frac{n}{2}, \underline{L}} g^{-1}$. One has

$$J_{k,\underline{L}}\left(\varepsilon^{h}\right)\cong\left(M_{k-\frac{n}{2}}\left(\Gamma(\ell)\right)\otimes\Theta(\underline{L})\otimes\mathbb{C}\left(\varepsilon^{h}\right)\right)^{\mathsf{Mp}(2,\mathbb{Z})},$$

where $n = \operatorname{rank} \underline{L}$, $\ell = \text{level of } \underline{L}$.

Consequences

- $J_{k,L}(\varepsilon^h)$ is finite dimensional.
- $J_{k,\underline{L}}(\varepsilon^h) = 0$ for $k < \frac{n}{2}$.
- J_{n/2} (ε^h) = (Θ(L) ⊗ C (ε^h))^{Mp(2,Z)}. (n/2: singular weight; Θ(L) Weil representations associated to the discriminant module of L (for even L ...).

Theta expansion (cont.)

 $Mp(2,\mathbb{Z})$ acts on $\Theta(\underline{L})$ via $(g,\theta) \mapsto \theta|_{\frac{n}{2},\underline{L}}g^{-1}$. One has

$$J_{k,\underline{L}}\left(\varepsilon^{h}\right)\cong\left(M_{k-\frac{n}{2}}\left(\Gamma(\ell)\right)\otimes\Theta(\underline{L})\otimes\mathbb{C}\left(\varepsilon^{h}\right)\right)^{\mathsf{Mp}(2,\mathbb{Z})},$$

where $n = \operatorname{rank} \underline{L}$, $\ell = \text{level of } \underline{L}$.

Consequences

Examples

- Let $\underline{\mathbb{Z}}(2m) := (\mathbb{Z}, (x, y) \mapsto 2mxy)$. Then $J_{k,\underline{\mathbb{Z}}(2m)}(1)$ equals "classical" $J_{k,m}$.
- $\vartheta(\tau, z)$ defines an element of $J_{\frac{1}{2}, \frac{1}{2}}(\varepsilon^3)$.
- Set

$$\underline{\mathbb{Z}}^{N} = \left(\mathbb{Z}^{N}, (x, y) \mapsto x \cdot y\right).$$

The function

$$\begin{split} \vartheta_{\underline{\mathbb{Z}}^N}(\tau,z) &:= \vartheta(\tau,z_1)\vartheta(\tau,z_2)\cdots\vartheta(\tau,z_N)\\ (z = (z_1,z_2,\ldots,z_N) \in \mathbb{C}\otimes\mathbb{Z}^N) \text{ defines an element of } J_{\underline{N}_2,\underline{\mathbb{Z}}^N}\left(\varepsilon^{3N}\right). \end{split}$$

A useful construction

A simple effective construction method

Any isometric embedding $\alpha : \underline{L} \to \underline{L}'$ yields a map (*pullback*)

$$\alpha^*: J_{k,\underline{l}'}\left(\varepsilon^h\right) \to J_{k,\underline{l}}\left(\varepsilon^h\right), \quad \{\alpha^*\phi\}(\tau,z) = \phi(\tau,\alpha(z)).$$

In particular, any

$$\alpha = (\alpha_1, \ldots, \alpha_N) : \underline{L} \to \underline{\mathbb{Z}}^N$$

yields the Jacobi form

$$\{\alpha^*\vartheta_{\underline{\mathbb{Z}}^N}\}(\tau,z):=\vartheta(\tau,\alpha_1(z))\cdots\vartheta(\tau,\alpha_N(z))$$

in $J_{\frac{N}{2},\underline{L}}(\varepsilon^{3N})$.

Remarks

- The number of N and embeddings α : <u>L</u> → <u>Z</u>^N is finite if one does not permit embeddings with some α_j identically zero. (Indeed, if z_j are coordinate functions with respect to a Z-basis of L, the α_j(z) become linear forms in z_j with integral coefficients whose squares add up to the quadratic form β(z).)
- Q: Which lattices permit embeddings into <u>Z</u>^N (Conway-Sloane: integrable lattices)?
- A (Conway-Sloane): All of rank ≤ 5 . The lattice E_6 is not integrable.
- How does one compute effectively all embeddings of a given lattice?

Remarks

- The number of N and embeddings α : <u>L</u> → <u>Z</u>^N is finite if one does not permit embeddings with some α_j identically zero. (Indeed, if z_j are coordinate functions with respect to a Z-basis of L, the α_j(z) become linear forms in z_j with integral coefficients whose squares add up to the quadratic form β(z).)
- Q: Which lattices permit embeddings into <u>Z</u>^N (Conway-Sloane: integrable lattices)?
- A (Conway-Sloane): All of rank ≤ 5 . The lattice E_6 is not integrable.
- How does one compute effectively all embeddings of a given lattice?

Remarks

- The number of N and embeddings α : <u>L</u> → <u>Z</u>^N is finite if one does not permit embeddings with some α_j identically zero. (Indeed, if z_j are coordinate functions with respect to a Z-basis of L, the α_j(z) become linear forms in z_j with integral coefficients whose squares add up to the quadratic form β(z).)
- Q: Which lattices permit embeddings into <u>Z</u>^N (Conway-Sloane: *integrable lattices*)?
- A (Conway-Sloane): All of rank \leq 5. The lattice E_6 is not integrable.

• How does one compute effectively all embeddings of a given lattice?

Remarks

- The number of N and embeddings α : <u>L</u> → <u>Z</u>^N is finite if one does not permit embeddings with some α_j identically zero. (Indeed, if z_j are coordinate functions with respect to a Z-basis of L, the α_j(z) become linear forms in z_j with integral coefficients whose squares add up to the quadratic form β(z).)
- Q: Which lattices permit embeddings into <u>Z</u>^N (Conway-Sloane: *integrable lattices*)?
- A (Conway-Sloane): All of rank \leq 5. The lattice E_6 is not integrable.
- How does one compute effectively all embeddings of a given lattice?

A related non-trivial problem I

• Q: Given $\alpha : \underline{L} \to \underline{Z}^N$, by what power η^l can we divide such that $\alpha^* \vartheta_{\underline{Z}^N} / \eta^l$ is still holomorphic at infinity, and defines therefore a Jacobi form in $J_{\underline{N-l},\underline{L}} (\varepsilon^{3N-l})$? (The best we can have is l = N - n.)

• A: $lpha^*artheta_{Z^N}/\eta^I$ is holomorphic at infinity if and only if

$$B_{\alpha}(x) := \sum_{j=1}^{N} B\left(\alpha_{j}(x)\right) \geq \frac{l}{24}$$

for all x in $\mathbb{R} \otimes L$. Here

$$B(x) = \frac{1}{2}\left(y - \frac{1}{2}\right)^2$$
, where $y \equiv x \mod \mathbb{Z}, \ 0 \le y \le 1$

A related non-trivial problem I

Q: Given α : <u>L</u> → <u>Z</u>^N, by what power η^l can we divide such that α^{*}ϑ_Z/η^l is still holomorphic at infinity, and defines therefore a Jacobi form in J_{N-l} (ε^{3N-l})? (The best we can have is l = N - n.)
A: α^{*}ϑ_Z/η^l is holomorphic at infinity if and only if

$$B_{lpha}(x) := \sum_{j=1}^{N} B\left(lpha_{j}(x)
ight) \geq rac{l}{24}$$

for all x in $\mathbb{R} \otimes L$. Here

$$B(x) = rac{1}{2}\left(y - rac{1}{2}
ight)^2$$
, where $y \equiv x \mod \mathbb{Z}, \ 0 \leq y \leq 1$.

A related non-trivial problem II

Question

Is there an effective way to compute the minimum of the continuous, piecewise differentiable, piecewise quadratic, and periodic function B_{α} ?

Eutactic stars I

Remark

For every embedding $\alpha = (\alpha_1, \ldots, \alpha_N)$ there exist s_j in L^{\sharp} such that $\alpha_j(x) = \beta(s_j, x)$.

Proposition

For any family $s = \{s_j\}_{1 \le j \le N}$ of elements in L^{\sharp} the following are equivalent:

1
$$\beta(x,x) = \sum_{j=1}^{N} \beta(s_j,x)^2$$
 for all x in L.
2 $\beta(x,y) = \sum_{j=1}^{N} \beta(s_j,x)\beta(s_j,y)$ for all x in L.
3 $x = \sum_{j=1}^{N} \beta(s_j,x)s_j$ for all x in L.

Definition

A family $s = \{s_j\}_j$ of nonzero elements s_j in L satisfying prop. (1)–(3) is called *eutactic star on* L.

Nils Skoruppa

Macdonald identities

Eutactic stars II

Note

For any eutactic star s on L,

- the map $x \mapsto (\beta(s_1, x), \dots, \beta(s_N, x))$ defines an embedding $\alpha : \underline{L} \to \underline{Z}^N$.
- The function

$$\vartheta_{s}(\tau, z) := \vartheta\left(\tau, \beta_{1}(s_{1}, z)\right) \cdots \vartheta\left(\tau, \beta_{1}(s_{N}, z)\right)$$

defines an element of $J_{\frac{N}{2},\underline{L}}(\varepsilon^{3N})$ (since it equals $\alpha^* \vartheta_{\underline{\mathbb{Z}}^N}$).

• We look for extremal eutactic stars, i.e., for those such that

$$\min_{x \in \mathbb{R} \otimes L} \sum_{j=1}^{N} B\left(\beta(s_j, x)\right) \geq \frac{N-n}{24}$$

Extremal eutactic stars I

• Let G be a subgroup of g in $O(\underline{L})$ leaving the s_j invariant up to sign and including multiplicities (i.e., of g for which there exists a permutation σ and signs ϵ_j such that $gs_j = \epsilon_j s_{\sigma(j)}$). For g in G set

$$\operatorname{sn}(g) = \prod_{j=1}^N \epsilon_j.$$

- This is independent of the choice of σ , and defines a linear character of G.
- Note: $O(\underline{L})$ (and, in particular, G) acts on $\Theta(\underline{L})$ and on every $J_{k,\underline{L}}(\varepsilon^h)$ via pullback.
- This action intertwines with the action of $Mp(2,\mathbb{Z})$.
- One has

$$g^*\vartheta_s = \operatorname{sn}(g)\vartheta_s.$$

Nils Skoruppa

Extremal eutactic stars I

• Let G be a subgroup of g in $O(\underline{L})$ leaving the s_j invariant up to sign and including multiplicities (i.e., of g for which there exists a permutation σ and signs ϵ_j such that $gs_j = \epsilon_j s_{\sigma(j)}$). For g in G set

$$\operatorname{sn}(g) = \prod_{j=1}^{N} \epsilon_j.$$

- This is independent of the choice of σ , and defines a linear character of G.
- Note: $O(\underline{L})$ (and, in particular, G) acts on $\Theta(\underline{L})$ and on every $J_{k,\underline{L}}(\varepsilon^h)$ via pullback.
- This action intertwines with the action of $Mp(2,\mathbb{Z})$.
- One has

$$g^*\vartheta_s = \operatorname{sn}(g)\vartheta_s.$$

Nils Skoruppa

Extremal eutactic stars II

Definition

s is called G-extremal if

$$\Theta(\underline{L})^{\mathcal{G},\mathsf{sn}} := \{ heta \in \Theta(\underline{L}) : g^* heta = \mathsf{sn}(g) heta\}$$

is one-dimensional.

Remark

1. $\Theta(\underline{L})^{G,sn}$ is at least one-dimensional. (It contains $\vartheta_{\underline{L},\lambda_D}$, where $\lambda_D(r)$ is the coefficient of $q^{\beta(r)-D} e(\beta(z,r))$ in ϑ_s .)

2. *s* is *G*-extremal if there is only one orbit with respect to the natural action of *G* on *L*•/*L*_{ev.} whose elements have stabilizers contained in the kernel of sn.

Extremal eutactic stars II

Definition

s is called G-extremal if

$$\Theta(\underline{L})^{{\mathcal{G}},{\mathsf{sn}}} := \{ heta \in \Theta(\underline{L}) : g^* heta = {\mathsf{sn}}(g) heta \}$$

is one-dimensional.

Remark

1. $\Theta(\underline{L})^{G,sn}$ is at least one-dimensional. (It contains $\vartheta_{\underline{L},\lambda_D}$, where $\lambda_D(r)$ is the coefficient of $q^{\beta(r)-D} e(\beta(z,r))$ in ϑ_s .)

2. *s* is *G*-extremal if there is only one orbit with respect to the natural action of *G* on $L^{\bullet}/L_{ev.}$ whose elements have stabilizers contained in the kernel of sn.

Extremal eutactic stars II

Definition

s is called G-extremal if

$$\Theta(\underline{L})^{{\mathcal{G}},{\mathsf{sn}}} := \{ heta \in \Theta(\underline{L}) : g^* heta = {\mathsf{sn}}(g) heta \}$$

is one-dimensional.

Remark

1. $\Theta(\underline{L})^{G,sn}$ is at least one-dimensional. (It contains $\vartheta_{\underline{L},\lambda_D}$, where $\lambda_D(r)$ is the coefficient of $q^{\beta(r)-D} e(\beta(z,r))$ in ϑ_s .)

2. s is G-extremal if there is only one orbit with respect to the natural action of G on $L^{\bullet}/L_{ev.}$ whose elements have stabilizers contained in the kernel of sn.

The Macdonald type identities generating theorem

Theorem

Let $\underline{L} = (L, \beta)$ be an integral lattice of rank n, let s be a G-extremal eutactic star on \underline{L} . Then there is a constant γ and a vector w in L^{\bullet} such that

$$\eta^{n-N}\prod_{j=1}^N\vartheta(\tau,\beta(s_j,z))=\gamma\sum_{x\in w+L_{ev.}}q^{\beta(x)}\sum_{g\in G}\operatorname{sn}(g)e(\beta(gx,z)).$$

In particular, the product on the left defines an element of the space of Jacobi forms $J_{n/2,\underline{L}}(\varepsilon^{n+2N})$.

Sketch of proof

Proof.

- Right hand side is obviously in $\Theta(\underline{L})^{G,sn}$; by assumption there is a w such that the RHS is nonzero: call this function ϕ_s .
- For any k and h, one has

$$J_{k,\underline{L}}\left(arepsilon^{m{h}}
ight)^{m{G},{sn}}={
m Modular}\ {
m form}\ {
m on}\ {
m SL}(2,\mathbb{Z}) imes\phi_{m{s}}.$$

Modular form on SL(2, \mathbb{Z}) means polynomial in η , E_4 and E_6 . (This follows from carefully looking at the theta decomposition.)

- In particular $\vartheta_s = f \times \phi_s$ for some modular form f.
- Since ϑ_s does not vanish identically in z for any τ , it follows f is an η -power.

The theorem is now obvious.

A simple example

Example

 $S: s_1 = 1$ defines an eutactic star on $\underline{\mathbb{Z}}$. Let $G = O(\underline{Z}) = \{\pm 1\}$. We have $Z_{\text{ev.}} = 2\mathbb{Z}$ and $\mathbb{Z}^{\bullet} = \frac{1}{2}\mathbb{Z}$, and $L^{\bullet}/L_{\text{ev.}} = \{\frac{1}{2} + 2\mathbb{Z}, -\frac{1}{2} + 2\mathbb{Z}\}$. So there is only one orbit anyway and the assumptions of the theorem are trivially fulfilled.

The resulting identity is the triple product identity.

Root systems as eutactic stars

- Let R be an irreducible root system with ambient Euclidean space $(R, (\cdot, \cdot))$, R^+ a system of positive roots.
- Well-known identity: $h(x,x) = \sum_{r \in R^+} (r,x)^2$ ($x \in E$), where $h = \frac{1}{n} \sum_{r \in R^+} (r,r)$.
- Set $\underline{R} = (W, (\cdot, \cdot)/h)$ where $W = \{x \in E : (x, r)/h \in \mathbb{Z} \text{ for all } r \in R\}.$
- Thus: *R*⁺ is an eutactic star on <u>*R*</u>.
- Let G be the Weyl group of R.

Theorem

The eutactic star R^+ on <u>R</u> is extremal with respect to the Weyl group G of R.

Root systems as eutactic stars

- Let R be an irreducible root system with ambient Euclidean space $(R, (\cdot, \cdot))$, R^+ a system of positive roots.
- Well-known identity: $h(x,x) = \sum_{r \in R^+} (r,x)^2$ $(x \in E)$, where $h = \frac{1}{n} \sum_{r \in R^+} (r,r)$.
- Set $\underline{R} = (W, (\cdot, \cdot)/h)$ where $W = \{x \in E : (x, r)/h \in \mathbb{Z} \text{ for all } r \in R\}.$
- Thus: *R*⁺ is an eutactic star on <u>*R*</u>.
- Let G be the Weyl group of R.

Theorem

The eutactic star R^+ on <u>R</u> is extremal with respect to the Weyl group G of R.

Proof that R^+ is Weyl group extremal

It suffices to show:

- The stabilizer of $w + W_{ev.}$ (under G) is contained in the kernel of sn.
- Any class not in the Weyl group orbit of $w + W_{ev.}$ is stabilized by a reflection.

Lemma

Let v be any element in W^{\bullet} which has minimal length among all elements in $v + W_{ev.}$.

- One has $(\alpha, v) \leq h$.
- (a) If $(\alpha, v) = h$ then $v \equiv g_{\alpha}(v) \mod W_{ev.}$, where g_{α} is the reflection through the hyperplane perpendicular to α .
- If $(\alpha, v) < h$ and $v \in C$, then v = w.

(Here lpha is the highest root and C the Weyl chamber associated to R+.)

Proof that R^+ is Weyl group extremal

It suffices to show:

- The stabilizer of $w + W_{ev.}$ (under G) is contained in the kernel of sn.
- Any class not in the Weyl group orbit of $w + W_{ev.}$ is stabilized by a reflection.

Lemma

Let v be any element in W^\bullet which has minimal length among all elements in $v+W_{ev.}.$

- One has $(\alpha, \mathbf{v}) \leq h$.
- 2 If $(\alpha, v) = h$ then $v \equiv g_{\alpha}(v) \mod W_{ev.}$, where g_{α} is the reflection through the hyperplane perpendicular to α .
- Solution If $(\alpha, v) < h$ and $v \in C$, then v = w.

(Here α is the highest root and C the Weyl chamber associated to R⁺.)

The Macdonald identities as identity for Jacobi forms

Theorem

Let R be an irreducible root system with a choice of positive roots R^+ , and let w be the half sum of the positive roots of R. Then, in the notations of the preceding paragraphs, we have

$$\vartheta_{R}(\tau, z) := \eta(\tau)^{n-N} \prod_{r \in R^{+}} \vartheta(\tau, (r, z)/h)$$
$$= \sum_{x \in w + W_{ev.}} q^{(x, x)/2h} \sum_{g \in G} \operatorname{sn}(g) e((gx, z)/h)$$

for all τ is the upper half plane and all z in $\mathbb{C} \otimes W$. The function ϑ_R defines in particular a holomorphic Jacobi form in $J_{n/2,\underline{R}}(\varepsilon^{n+2N})$. (Here $n = \dim E$, $N = |R^+|$.)

Construction of classical Jacobi forms I

- We have seen ϑ_R in $J_{\underline{2},\underline{R}}(\varepsilon^{n+2N})$ $(n = \dim R, N = |R^+|.)$
- Especially interesting: n = 4, $N \equiv -2 \mod 12$, since then $\vartheta_R \in J_{2,\underline{R}}(1)$, and
- every *a* in <u>*R*</u>_{ev.} yields embedding $\alpha_a : \underline{\mathbb{Z}}((a, a)/h) \to \underline{R}$ (via $x \mapsto xa$), and
- thus $\alpha_a^* \vartheta_{\underline{R}} = \alpha_a^* \left(\alpha_{\underline{R}^+}^* \vartheta_{\underline{\mathbb{Z}}^{|\underline{R}^+|}} \right) / \eta^{n-N}$ is an element of $J_{2,(a,a)/2h}$, which is a space of classical Jacobi forms closely connected to the arithmetic theory of modular forms (and e.g., elliptic curves over the rationals).

Construction of classical Jacobi forms II

Table: The four infinite families $\vartheta_R(\tau, (a, b, c, d)z)$ of theta blocks of weight 2 and trivial character associated to root systems (We write ϑ_n for $\vartheta(\tau, nz)$.)

R	$\vartheta_R(\tau, (a, b, c, d)z)$
A_4	$\eta^{-6} \vartheta_{a} \vartheta_{a+b} \vartheta_{a+b+c} \vartheta_{a+b+c+d} \vartheta_{b} \vartheta_{b+c} \vartheta_{b+c+d} \vartheta_{c} \vartheta_{c+d} \vartheta_{d}$
$G_2\oplus B_2$	$\eta^{-6} \vartheta_{a} \vartheta_{3a+b} \vartheta_{3a+2b} \vartheta_{2a+b} \vartheta_{a+b} \vartheta_{b} \vartheta_{c} \vartheta_{c+d} \vartheta_{c+2d} \vartheta_{d}$
$A_1\oplus B_3$	$\eta^{-6} \vartheta_{a} \vartheta_{b} \vartheta_{b+c} \vartheta_{b+2c+2d} \vartheta_{b+c+d} \vartheta_{b+c+2d} \vartheta_{c} \vartheta_{c+d} \vartheta_{c+2d} \vartheta_{d}$
$A_1 \oplus C_3$	$\eta^{-6} \vartheta_a \vartheta_b \vartheta_{2b+2c+d} \vartheta_{b+c} \vartheta_{b+2c+d} \vartheta_{b+c+d} \vartheta_c \vartheta_{2c+d} \vartheta_{c+d} \vartheta_d$

Table: The 42 one-dimensional $J_{2,m}$ generated by a newform, given as pullback, and associated elliptic curve.

т	CL	Curve	Theta block
37	37a1	$y^2 + y = x^3 - x$	$\vartheta_1^3 \vartheta_2^3 \vartheta_3^2 \vartheta_4 \vartheta_5$
43	43a1	$y^2 + y = x^3 + x^2$	$\vartheta_1^{\bar{3}}\vartheta_2^{\bar{2}}\vartheta_3^{\bar{2}}\vartheta_4^2\vartheta_5$
53	53a1	$y^2 + xy + y = x^3 - x^2$	$\vartheta_1^{\bar{3}}\vartheta_2^{\bar{2}}\vartheta_3^{\bar{2}}\vartheta_4\vartheta_5\vartheta_6$
57	57a1	$y^2 + y = x^3 - x^2 - 2x + 2$	$\vartheta_1^2 \vartheta_2^2 \vartheta_3^3 \vartheta_4 \vartheta_5 \vartheta_6$
58	58a1	$y^2 + xy = x^3 - x^2 - x + 1$	$\vartheta_1^{\overline{2}}\vartheta_2^{\overline{3}}\vartheta_3^{\overline{2}}\vartheta_3^2\vartheta_4^2\vartheta_5\vartheta_6$
61	61a1	$y^2 + xy = x^3 - 2x + 1$	$\vartheta_1^{\bar{2}} \vartheta_2^{\bar{3}} \vartheta_3^2 \vartheta_4 \vartheta_5 \vartheta_7$
65	65a1	$y^2 + xy = x^3 - x$	$\vartheta_1^2 \vartheta_2^2 \vartheta_3^2 \vartheta_4 \vartheta_5^2 \vartheta_6$
77	77a1	$y^2 + y = x^3 + 2x$	$\vartheta_1^2 \vartheta_2^2 \vartheta_3^2 \vartheta_4 \vartheta_5 \vartheta_6 \vartheta_7$
79	79a1	$y^2 + xy + y = x^3 + x^2 - 2x$	$\vartheta_1^2 \vartheta_2^2 \vartheta_3^2 \vartheta_4 \vartheta_5^2 \vartheta_8$
82	82a1	$y^2 + xy + y = x^3 - 2x$	$\vartheta_1 \vartheta_2^3 \vartheta_3 \vartheta_4^2 \vartheta_5 \vartheta_6 \vartheta_7$
83	83a1	$y^2 + xy + y = x^3 + x^2 + x$	$\vartheta_1^2\vartheta_2\vartheta_3^2\vartheta_4^2\vartheta_5\vartheta_6\vartheta_7$
88	88a1	$y^2 = x^3 - 4x + 4$	$\vartheta_1^2 \vartheta_2^2 \vartheta_3 \vartheta_4^2 \vartheta_5 \vartheta_6 \vartheta_8$
89	89a1	$v^2 + xv + v = x^3 + x^2 - x$	$\vartheta_1^{\bar{3}}\vartheta_2^{-}\vartheta_3\vartheta_4\vartheta_5\vartheta_2^2\vartheta_7$
	Nils Skoruppa	Macdonald identities	September 17, 2019 30 / 32

- Are there extremal eutactic stars other than the root systems?
- One could think of a systematic search: 40,000 lattices in the Sloane-Nebe database . . .
- How does one compute effectively all embeddings of a given lattice into <u>Z</u>^N?
 - For a given integral quadratic form *Q* in *n* variables find all decompositions as sum of squares of integral linear forms.
 - Naive search: computationally expensive. (Expon. in the determinant.)
 - So far I only could do this for lattices with determinant \leq 100.
- To be sure not to miss any Macdonald type identity one would need to compute min_{x∈ℝ⊗L} ∑_{j=1}^N B(α_j(x)) for any given embedding α : <u>L</u> → <u>Z</u>^N. But . . .
- How many modular forms of weight 2 and trivial character can one obtain via pullback based on

- Are there extremal eutactic stars other than the root systems?
- One could think of a systematic search: 40,000 lattices in the Sloane-Nebe database . . .
- How does one compute effectively all embeddings of a given lattice into <u></u>^{*N*}?
 - For a given integral quadratic form *Q* in *n* variables find all decompositions as sum of squares of integral linear forms.
 - Naive search: computationally expensive. (Expon. in the determinant.)
 - So far I only could do this for lattices with determinant \leq 100.
- To be sure not to miss any Macdonald type identity one would need to compute min_{x∈ℝ⊗L} ∑_{j=1}^N B(α_j(x)) for any given embedding α : <u>L</u> → <u>Z</u>^N. But . . .
- How many modular forms of weight 2 and trivial character can one obtain via pullback based on

- Are there extremal eutactic stars other than the root systems?
- One could think of a systematic search: 40,000 lattices in the Sloane-Nebe database . . .
- How does one compute effectively all embeddings of a given lattice into <u></u>^{*N*}?
 - For a given integral quadratic form *Q* in *n* variables find all decompositions as sum of squares of integral linear forms.
 - Naive search: computationally expensive. (Expon. in the determinant.)
 - ${\scriptstyle \bullet}\,$ So far I only could do this for lattices with determinant \leq 100.
- To be sure not to miss any Macdonald type identity one would need to compute min_{x∈ℝ⊗L} ∑_{j=1}^N B(α_j(x)) for any given embedding α : <u>L</u> → <u>Z</u>^N. But ...
- How many modular forms of weight 2 and trivial character can one obtain via pullback based on

- Are there extremal eutactic stars other than the root systems?
- One could think of a systematic search: 40,000 lattices in the Sloane-Nebe database . . .
- How does one compute effectively all embeddings of a given lattice into <u></u>^{*N*}?
 - For a given integral quadratic form *Q* in *n* variables find all decompositions as sum of squares of integral linear forms.
 - Naive search: computationally expensive. (Expon. in the determinant.)
 - So far I only could do this for lattices with determinant \leq 100.
- To be sure not to miss any Macdonald type identity one would need to compute min_{x∈ℝ⊗L} ∑_{j=1}^N B (α_j(x)) for any given embedding α : <u>L</u> → <u>Z</u>^N. But ...
- How many modular forms of weight 2 and trivial character can one obtain via pullback based on

- Are there extremal eutactic stars other than the root systems?
- One could think of a systematic search: 40,000 lattices in the Sloane-Nebe database . . .
- How does one compute effectively all embeddings of a given lattice into <u></u>^{*N*}?
 - For a given integral quadratic form *Q* in *n* variables find all decompositions as sum of squares of integral linear forms.
 - Naive search: computationally expensive. (Expon. in the determinant.)
 - So far I only could do this for lattices with determinant \leq 100.
- To be sure not to miss any Macdonald type identity one would need to compute min_{x∈ℝ⊗L} ∑_{j=1}^N B(α_j(x)) for any given embedding α : <u>L</u> → <u>Z</u>^N. But ...
- How many modular forms of weight 2 and trivial character can one obtain via pullback based on

- Are there extremal eutactic stars other than the root systems?
- One could think of a systematic search: 40,000 lattices in the Sloane-Nebe database . . .
- How does one compute effectively all embeddings of a given lattice into <u></u>^{*N*}?
 - For a given integral quadratic form *Q* in *n* variables find all decompositions as sum of squares of integral linear forms.
 - Naive search: computationally expensive. (Expon. in the determinant.)
 - So far I only could do this for lattices with determinant \leq 100.
- To be sure not to miss any Macdonald type identity one would need to compute min_{x∈ℝ⊗L} ∑_{j=1}^N B (α_j(x)) for any given embedding α : <u>L</u> → <u>Z</u>^N. But ...
- How many modular forms of weight 2 and trivial character can one obtain via pullback based on

$$\underline{\mathbb{Z}}(2m) \rightarrow \underline{R} \rightarrow \mathbb{Z}^{10} \quad (R = A_4, G_2 \oplus B_2, A_1 \oplus B_3, A_1 \oplus C_3)?$$

Thank you!