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Introduction

Macdonald identities

Macdonald identity associated to an irreducible root system R

∏
n≥1

(1− X n)dimR
∏
r∈R

(1− X ner )

=
∑
x∈M

X (|x+w |2−|w |2)/4h
∑

g∈W (R) sn(g) eg(x+w)∑
g∈W (R) sn(g) egw

Notations

w : half sum of positive roots

W (R): Weyl group

sn(g): determinant of g

M: lattice generated by hr∨ (r∨ = 2r/|r |2)

h: 1
2(|α + w |2 − |w |2) (α highest root)
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Introduction

Specializations of the Macdonald identities

Setting er = 1 and X = e2πiτ :

η(τ)dimR+|R| =
∑

x∈w+M

d(x)X |x |
2/2h (d(x) =

∏
r∈R+

(x , r)

(w , r)
).

Clearing the denominator and using the Weyl denominator formula∑
g∈W (R)

sn(g) e−gw =
∏
r∈R+

(er/2 − e−r/2),

the Macdonald id. can be viewed as generalization of Weyl’s formulas.

Taking R = A1 yields the Jacobi triple product identity:∏
n≥1

(1− X n)(1− X neα)(1− X ne−α) =
∑
m∈Z

(−1)mXm(m−1)/2e−mα.
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Introduction

Jacobi’s theta function I

Jacobi triple product identity

ϑ(τ, z) =
∑
r∈Z

(−4
r

)
q

r2

8 ζ
r
2 = η(τ)q

1
12 (ζ

1
2 − ζ−

1
2 )
∏
n≥1

(1− qnζ)(1− qnζ−1)

η(τ) = q
1
24

∏
n≥1

(1− qn) (q = e(τ) = e2πiτ , ζ = e(z), τ ∈ H, z ∈ C).

Note

ϑ(τ, z) = η(τ)3σ(τ, z),

where σ(τ, z) is the Weierstrass σ-function of Zτ + Z.

This explains in essence the Jacobi triple product identity.
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Introduction

Jacobi’s theta function II

Question

Can the cited Macdonald identities also interpreted and explained along
these lines?
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Introduction

Anticipated answer

Observation

The formal power series occurring in the Macdonald identities can
indeed be interpreted as distinguished functions: Jacobi forms of
lattice index.

They are of singular weight: Such functions are rare, they are
essentially invariants of Weil representations.

The theory of Jacobi forms of lattice index will provide a simple
explanation for the product expansion (without even referring to zeros
or divisors).
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Introduction

Plan

Plan of the talk

Describe “precisely” Jacobi forms of lattice index.

Describe how product expansions just “happen” by pulling back
Jacobi forms of the simplest type.

Describe the Jacobi forms proof of the Macdonald identities.

Discuss some natural questions emerging from that proof.

Give some puzzling applications to explicit number theory (elliptic
curves over the rationals).
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Jacobi forms of lattice index

The group Mp(2,Z)

Mp(2,Z) :=
{

(A,w) : A =
[
a b
c d

]
∈ SL(2,Z), w(τ) = ±

√
cτ + d

}
,

where (A,w) · (B, v) = (AB,w(Bτ)v(τ)), defines an extension of
SL(2,Z):

1→ {(1,±1)} ⊂−→ Mp(2,Z)
(A,w)7→A−−−−−−→ SL(2,Z)→ 1.

The application
ε(A,w) := η(Aτ)/w(τ)η(τ)

defines a linear character ε : Mp(2,Z)→ µ24.

Theorem

The group of linear characters of Mp(2,Z) is cyclic of order 24, generated
by ε.
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Jacobi forms of lattice index

Lattices

Basic notions

(Integral positive) Lattice L = (L, β):

Finite free Z-module L,
symmetric, positive definite Z-bilinear map β : L× L→ Z.

Set

β(x) :=
1

2
β(x , x).

L is even if β(x) integral for all x in L, odd otherwise.

x 7→ β(x) mod Z defines a linear character L→ 1
2Z/Z.

The shadow of L is

L• = {s ∈ Q⊗ L : β(s, x) ≡ β(x) mod Z for all x in L}.

(L• equals the dual L] of L if L is even.)

Lev. denotes the kernel of x 7→ β(x) mod Z: maximal even sublattice.
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Jacobi forms of lattice index

Jacobi forms of lattice index I

Definition

Jk,L
(
εh
)

(k integral or haf-integral, h integer mod 24): space of
holomorphic functions φ(τ, z) (τ ∈ H, z ∈ C⊗Z L) such that:

1 For all (A,w) in Mp(2,Z),

{φ|k,L(A, s)}(τ, z) := φ

(
aτ + b

cτ + d
,

z

cτ + d

)
e

(
−cβ(z)

cτ + d

)
w(τ)−2k

= ε(A,w)h φ(τ, z).

2 For x , y ∈ L,

φ(τ, z + τx + y) e
(
τβ(x) + β(z , x)

)
= e (β(x + y)) φ(τ, z).

3 φ holomorphic at infinity.
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Jacobi forms of lattice index

Jacobi forms of lattice index II

Fourier expansion

φ is called holomorphic at infinity if its Fourier expansion is of the form

φ =
∑

n∈ h
24
+Z, r∈L•

n≥β(r)

cφ(n, r) qn e
(
β(r , z)

)
.

Theta expansion

For λ : L•/Lev. → C such that λ(y + x) = λ(y)e (β(x)) for all y ∈ L•,
x ∈ L, set

ϑL,λ :=
∑
r∈L•

λ(r)qβ(r) e (β(r , z))

and let
Θ(L) := spanC

{
ϑL,λ : λ as above

}
.
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Jacobi forms of lattice index

Jacobi forms of lattice index II

Theta expansion (cont.)

Mp(2,Z) acts on Θ(L) via (g , θ) 7→ θ| n
2
,Lg−1. One has

Jk,L

(
εh
)
∼=
(

Mk− n
2

(Γ(`))⊗Θ(L)⊗ C
(
εh
))Mp(2,Z)

,

where n = rank L, ` =level of L.

Consequences

Jk,L
(
εh
)

is finite dimensional.

Jk,L
(
εh
)

= 0 for k < n
2 .

J n
2
,L

(
εh
)

=
(
Θ(L)⊗ C

(
εh
))Mp(2,Z)

.
(n2 : singular weight; Θ(L) Weil representations associated to the
discriminant module of L (for even L . . . ).
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Jacobi forms of lattice index

Examples

Let Z(2m) := (Z, (x , y) 7→ 2mxy). Then Jk,Z(2m)(1) equals
“classical” Jk,m.

ϑ(τ, z) defines an element of J 1
2
, 1
2

(
ε3
)
.

Set
ZN =

(
ZN , (x , y) 7→ x · y

)
.

The function

ϑZN (τ, z) := ϑ(τ, z1)ϑ(τ, z2) · · ·ϑ(τ, zN)

(z = (z1, z2, . . . , zN) ∈ C⊗ ZN) defines an element of JN
2
,ZN

(
ε3N
)
.
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Jacobi forms of lattice index

A useful construction

A simple effective construction method

Any isometric embedding α : L→ L′ yields a map (pullback)

α∗ : Jk,L′
(
εh
)
→ Jk,L

(
εh
)
, {α∗φ}(τ, z) = φ(τ, α(z)).

In particular, any
α = (α1, . . . , αN) : L→ ZN

yields the Jacobi form

{α∗ϑZN}(τ, z) := ϑ(τ, α1(z)) · · ·ϑ(τ, αN(z))

in JN
2
,L

(
ε3N
)
.
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Jacobi forms of lattice index

Some remarks on embeddings

Remarks

The number of N and embeddings α : L→ ZN is finite — if one does
not permit embeddings with some αj identically zero.
(Indeed, if zj are coordinate functions with respect to a Z-basis of L,
the αj(z) become linear forms in zj with integral coefficients whose
squares add up to the quadratic form β(z).)

Q: Which lattices permit embeddings into ZN (Conway-Sloane:
integrable lattices)?

A (Conway-Sloane): All of rank ≤ 5. The lattice E6 is not integrable.

How does one compute effectively all embeddings of a given lattice?
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Jacobi forms of lattice index

A related non-trivial problem I

Q: Given α : L→ ZN , by what power ηl can we divide such that
α∗ϑZN/ηl is still holomorphic at infinity, and defines therefore a

Jacobi form in JN−l
2
,L

(
ε3N−l

)
? (The best we can have is l = N − n.)

A: α∗ϑZN/ηl is holomorphic at infinity if and only if

Bα(x) :=
N∑
j=1

B (αj(x)) ≥ l

24

for all x in R⊗ L. Here

B(x) =
1

2

(
y − 1

2

)2

, where y ≡ x mod Z, 0 ≤ y ≤ 1.
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Jacobi forms of lattice index

A related non-trivial problem II

Question

Is there an effective way to compute the minimum of the continuous,
piecewise differentiable, piecewise quadratic, and periodic function Bα?
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Eutactic Stars

Eutactic stars I

Remark

For every embedding α = (α1, . . . , αN) there exist sj in L] such that
αj(x) = β(sj , x).

Proposition

For any family s = {sj}1≤j≤N of elements in L] the following are
equivalent:

1 β(x , x) =
∑N

j=1 β(sj , x)2 for all x in L.

2 β(x , y) =
∑N

j=1 β(sj , x)β(sj , y) for all x in L.

3 x =
∑N

j=1 β(sj , x) sj for all x in L.

Definition

A family s = {sj}j of nonzero elements sj in L satisfying prop. (1)–(3) is
called eutactic star on L.
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Eutactic Stars

Eutactic stars II

Note

For any eutactic star s on L,

the map x 7→ (β(s1, x), . . . , β(sN , x)) defines an embedding
α : L→ ZN .

The function

ϑs(τ, z) := ϑ (τ, β1(s1, z)) · · ·ϑ (τ, β1(sN , z))

defines an element of JN
2
,L

(
ε3N
)

(since it equals α∗ϑZN ).

We look for extremal eutactic stars, i.e., for those such that

min
x∈R⊗L

N∑
j=1

B (β(sj , x)) ≥ N − n

24
.
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Eutactic Stars

Extremal eutactic stars I

Let G be a subgroup of g in O(L) leaving the sj invariant up to sign
and including multiplicities (i.e., of g for which there exists a
permutation σ and signs εj such that gsj = εjsσ(j)). For g in G set

sn(g) =
N∏
j=1

εj .

This is independent of the choice of σ, and defines a linear character
of G .

Note: O(L) (and, in particular, G ) acts on Θ(L) and on every
Jk,L

(
εh
)

via pullback.

This action intertwines with the action of Mp(2,Z).

One has
g∗ϑs = sn(g)ϑs .
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Eutactic Stars

Extremal eutactic stars II

Definition

s is called G -extremal if

Θ(L)G ,sn := {θ ∈ Θ(L) : g∗θ = sn(g)θ}

is one-dimensional.

Remark

1. Θ(L)G ,sn is at least one-dimensional. (It contains ϑL,λD , where λD(r) is
the coefficient of qβ(r)−D e (β(z , r)) in ϑs .)
2. s is G -extremal if there is only one orbit with respect to the natural
action of G on L•/Lev. whose elements have stabilizers contained in the
kernel of sn.
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Eutactic Stars

The Macdonald type identities generating theorem

Theorem

Let L = (L, β) be an integral lattice of rank n, let s be a G-extremal
eutactic star on L. Then there is a constant γ and a vector w in L• such
that

ηn−N
N∏
j=1

ϑ
(
τ, β(sj , z)

)
= γ

∑
x∈w+Lev.

qβ(x)
∑
g∈G

sn(g) e
(
β(gx , z)

)
.

In particular, the product on the left defines an element of the space of
Jacobi forms Jn/2,L(εn+2N).
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Eutactic Stars

Sketch of proof

Proof.

Right hand side is obviously in Θ(L)G ,sn; by assumption there is a w
such that the RHS is nonzero: call this function φs .

For any k and h, one has

Jk,L

(
εh
)G ,sn

= Modular form on SL(2,Z)× φs .

Modular form on SL(2,Z) means polynomial in η, E4 and E6. (This
follows from carefully looking at the theta decomposition.)

In particular ϑs = f × φs for some modular form f .

Since ϑs does not vanish identically in z for any τ , it follows f is an
η-power.

The theorem is now obvious.
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Eutactic Stars

A simple example

Example

S : s1 = 1 defines an eutactic star on Z. Let G = O(Z ) = {±1}. We have
Zev. = 2Z and Z• = 1

2Z, and L•/Lev. = {12 + 2Z,−1
2 + 2Z}. So there is

only one orbit anyway and the assumptions of the theorem are trivially
fulfilled.
The resulting identity is the triple product identity.
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JF proof of the Macdonald identities

Root systems as eutactic stars

Let R be an irreducible root system with ambient Euclidean space
(R, (·, ·)), R+ a system of positive roots.

Well-known identity: h (x , x) =
∑

r∈R+(r , x)2 (x ∈ E ), where
h = 1

n

∑
r∈R+(r , r).

Set R = (W , (·, ·)/h) where
W =

{
x ∈ E : (x , r)/h ∈ Z for all r ∈ R

}
.

Thus: R+ is an eutactic star on R.

Let G be the Weyl group of R.

Theorem

The eutactic star R+ on R is extremal with respect to the Weyl group G
of R.
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JF proof of the Macdonald identities

Proof that R+ is Weyl group extremal

It suffices to show:

The stabilizer of w + Wev. (under G ) is contained in the kernel of sn.

Any class not in the Weyl group orbit of w + Wev. is stabilized by a
reflection.

Lemma

Let v be any element in W • which has minimal length among all elements
in v + Wev..

1 One has (α, v) ≤ h.

2 If (α, v) = h then v ≡ gα(v) mod Wev., where gα is the reflection
through the hyperplane perpendicular to α.

3 If (α, v) < h and v ∈ C , then v = w.

(Here α is the highest root and C the Weyl chamber associated to R+.)
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JF proof of the Macdonald identities

The Macdonald identities as identity for Jacobi forms

Theorem

Let R be an irreducible root system with a choice of positive roots R+,
and let w be the half sum of the positive roots of R. Then, in the
notations of the preceding paragraphs, we have

ϑR(τ, z) := η(τ)n−N
∏
r∈R+

ϑ
(
τ, (r , z)/h

)
=

∑
x∈w+Wev.

q(x ,x)/2h
∑
g∈G

sn(g) e
(
(gx , z)/h

)
for all τ is the upper half plane and all z in C⊗W . The function ϑR
defines in particular a holomorphic Jacobi form in Jn/2,R(εn+2N).
(Here n = dim E , N = |R+|.)
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Questions and applications

Construction of classical Jacobi forms I

We have seen ϑR in J n
2
,R

(
εn+2N

)
(n = dim R, N = |R+|.)

Especially interesting: n = 4, N ≡ −2 mod 12, since then
ϑR ∈ J2,R(1), and

every a in Rev. yields embedding αa : Z ((a, a)/h)→ R (via x 7→ xa),
and

thus α∗aϑR = α∗a

(
α∗R+ϑZ|R+|

)
/ηn−N is an element of J2,(a,a)/2h, which

is a space of classical Jacobi forms closely connected to the arithmetic
theory of modular forms (and e.g., elliptic curves over the rationals).
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Questions and applications

Construction of classical Jacobi forms II

Table: The four infinite families ϑR (τ, (a, b, c , d)z) of theta blocks of weight 2
and trivial character associated to root systems (We write ϑn for ϑ(τ, nz).)

R ϑR (τ, (a, b, c , d)z)

A4 η−6 ϑa ϑa+b ϑa+b+c ϑa+b+c+d ϑb ϑb+c ϑb+c+d ϑc ϑc+d ϑd
G2 ⊕ B2 η−6 ϑa ϑ3a+b ϑ3a+2b ϑ2a+b ϑa+b ϑb ϑc ϑc+d ϑc+2d ϑd
A1 ⊕ B3 η−6 ϑa ϑb ϑb+c ϑb+2c+2d ϑb+c+d ϑb+c+2d ϑc ϑc+d ϑc+2d ϑd
A1 ⊕ C3 η−6 ϑa ϑb ϑ2b+2c+d ϑb+c ϑb+2c+d ϑb+c+d ϑc ϑ2c+d ϑc+d ϑd

Nils Skoruppa Macdonald identities September 17, 2019 29 / 32



Questions and applications

Table: The 42 one-dimensional J2,m generated by a newform, given as pullback,
and associated elliptic curve.

m CL Curve Theta block

37 37a1 y2 + y = x3 − x ϑ31ϑ
3
2ϑ

2
3ϑ4ϑ5

43 43a1 y2 + y = x3 + x2 ϑ31ϑ
2
2ϑ

2
3ϑ

2
4ϑ5

53 53a1 y2 + xy + y = x3 − x2 ϑ31ϑ
2
2ϑ

2
3ϑ4ϑ5ϑ6

57 57a1 y2 + y = x3 − x2 − 2x + 2 ϑ21ϑ
2
2ϑ

3
3ϑ4ϑ5ϑ6

58 58a1 y2 + xy = x3 − x2 − x + 1 ϑ21ϑ
3
2ϑ3ϑ

2
4ϑ5ϑ6

61 61a1 y2 + xy = x3 − 2x + 1 ϑ21ϑ
3
2ϑ

2
3ϑ4ϑ5ϑ7

65 65a1 y2 + xy = x3 − x ϑ21ϑ
2
2ϑ

2
3ϑ4ϑ

2
5ϑ6

77 77a1 y2 + y = x3 + 2x ϑ21ϑ
2
2ϑ

2
3ϑ4ϑ5ϑ6ϑ7

79 79a1 y2 + xy + y = x3 + x2 − 2x ϑ21ϑ
2
2ϑ

2
3ϑ4ϑ

2
5ϑ8

82 82a1 y2 + xy + y = x3 − 2x ϑ1ϑ
3
2ϑ3ϑ

2
4ϑ5ϑ6ϑ7

83 83a1 y2 + xy + y = x3 + x2 + x ϑ21ϑ2ϑ
2
3ϑ

2
4ϑ5ϑ6ϑ7

88 88a1 y2 = x3 − 4x + 4 ϑ21ϑ
2
2ϑ3ϑ

2
4ϑ5ϑ6ϑ8

89 89a1 y2 + xy + y = x3 + x2 − x ϑ31ϑ2ϑ3ϑ4ϑ5ϑ
2
6ϑ7

92 92b1 y2 = x3 − x + 1 ϑ1ϑ
2
2ϑ

2
3ϑ

2
4ϑ5ϑ6ϑ8

99 99a1 y2 + xy + y = x3 − x2 − 2x ϑ21ϑ2ϑ
2
3ϑ

2
4ϑ5ϑ6ϑ9

101 101a1 y2 + y = x3 + x2 − x − 1 ϑ21ϑ2ϑ3ϑ4ϑ
2
5ϑ

2
6ϑ7

102 102a1 y2 + xy = x3 + x2 − 2x ϑ1ϑ
2
2ϑ

2
3ϑ4ϑ5ϑ

2
6ϑ8

112 112a1 y2 = x3 + x2 + 4 ϑ1ϑ
2
2ϑ3ϑ

2
4ϑ5ϑ6ϑ7ϑ8

117 117a1 y2 + xy + y = x3 − x2 + 4x + 6 ϑ1ϑ
2
2ϑ

2
3ϑ4ϑ5ϑ6ϑ7ϑ9

118 118a1 y2 + xy = x3 + x2 + x + 1 ϑ21ϑ
2
2ϑ4ϑ5ϑ

2
6ϑ7ϑ8

121 121b1 y2 + y = x3 − x2 − 7x + 10 ϑ1ϑ
2
2ϑ

2
3ϑ4ϑ

2
5ϑ7ϑ10

124 124a1 y2 = x3 + x2 − 2x + 1 ϑ21ϑ2ϑ
2
4ϑ5ϑ

2
6ϑ7ϑ8

128 128a1 y2 = x3 + x2 + x + 1 ϑ1ϑ
2
2ϑ3ϑ

2
4ϑ5ϑ6ϑ8ϑ9

131 131a1 y2 + y = x3 − x2 + x ϑ21ϑ
2
2ϑ

2
3ϑ4ϑ5ϑ7ϑ12

135 135a1 y2 + y = x3 − 3x + 4 ϑ1ϑ2ϑ
2
3ϑ4ϑ

2
5ϑ6ϑ8ϑ9

136 136a1 y2 = x3 + x2 − 4x ϑ1ϑ
2
2ϑ3ϑ4ϑ5ϑ6ϑ7ϑ

2
8

138 138a1 y2 + xy = x3 + x2 − x + 1 ϑ1ϑ2ϑ
2
3ϑ

2
4ϑ

2
6ϑ7ϑ10

143 143a1 y2 + y = x3 − x2 − x − 2 ϑ21ϑ2ϑ3ϑ4ϑ5ϑ6ϑ7ϑ8ϑ9
152 152a1 y2 = x3 + x2 − x + 3 ϑ1ϑ2ϑ

2
3ϑ

2
4ϑ6ϑ7ϑ8ϑ10

156 156a1 y2 = x3 − x2 − 5x + 6 ϑ1ϑ
2
2ϑ

2
3ϑ4ϑ5ϑ6ϑ8ϑ12

160 160a1 y2 = x3 + x2 − 6x + 4 ϑ1ϑ2ϑ3ϑ
2
4ϑ5ϑ6ϑ7ϑ8ϑ10

162 162a1 y2 + xy = x3 − x2 − 6x + 8 ϑ1ϑ2ϑ3ϑ
2
4ϑ5ϑ

2
6ϑ9ϑ10

192 192a1 y2 = x3 − x2 − 4x − 2 ϑ1ϑ2ϑ3ϑ4ϑ5ϑ
2
6ϑ7ϑ8ϑ12

196 196a1 y2 = x3 − x2 − 2x + 1 ϑ1ϑ2ϑ3ϑ
2
4ϑ5ϑ7ϑ

2
8ϑ12

200 200b1 y2 = x3 + x2 − 3x − 2 ϑ1ϑ2ϑ3ϑ4ϑ5ϑ6ϑ
2
8ϑ9ϑ10

210 210d1 y2 + xy = x3 + x2 − 3x − 3 ϑ1ϑ2ϑ3ϑ4ϑ5ϑ
2
6ϑ7ϑ10ϑ12

216 216a1 y2 = x3 − 12x + 20 ϑ22ϑ3ϑ4ϑ5ϑ6ϑ7ϑ8ϑ9ϑ12
220 220a1 y2 = x3 + x2 − 45x + 100 ϑ22ϑ3ϑ4ϑ

2
5ϑ7ϑ8ϑ10ϑ12

240 240c1 y2 = x3 − x2 + 4x ϑ1ϑ2ϑ3ϑ4ϑ5ϑ6ϑ8ϑ9ϑ10ϑ12
252 252b1 y2 = x3 − 12x + 65 ϑ1ϑ2ϑ3ϑ4ϑ6ϑ7ϑ8ϑ9ϑ10ϑ12
300 300d1 y2 = x3 − x2 − 13x + 22 ?
360 360e1 y2 = x3 − 18x − 27 ϑ2ϑ3ϑ4ϑ5ϑ6ϑ7ϑ9ϑ10ϑ12ϑ16
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Questions and applications

Open questions

Are there extremal eutactic stars other than the root systems?

One could think of a systematic search: 40,000 lattices in the
Sloane-Nebe database . . .

How does one compute effectively all embeddings of a given lattice
into ZN?

For a given integral quadratic form Q in n variables find all
decompositions as sum of squares of integral linear forms.
Naive search: computationally expensive. (Expon. in the determinant.)
So far I only could do this for lattices with determinant ≤ 100.

To be sure not to miss any Macdonald type identity one would need
to compute minx∈R⊗L

∑N
j=1 B (αj(x)) for any given embedding

α : L→ ZN . But . . .

How many modular forms of weight 2 and trivial character can one
obtain via pullback based on

Z(2m)→ R → Z10 (R = A4,G2 ⊕ B2,A1 ⊕ B3,A1 ⊕ C3)?
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Questions and applications

Thank you!
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