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The take away of this talk
Joint work with Jerry Shurman and Cris Poor

1. We developed an algorithm to find every (degree 2) paramodular cusp
form of a fixed weight k and level N that is a Borcherds product.
(Prior to spanning the space Sk (K (N)) of paramodular cusp forms.)

2. We implemented this algorithm and ran some examples and
applications.

Preprint: Poor, Shurman, and Yuen, Finding all Borcherds products
paramodular cusp forms of a given weight and level, arXiv (2018).

Acknowledgement: Thank you to Valery Gritsenko for teaching us
how to make Borcherds products!
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Infinite Products I

Sine function (Euler)

sin(πz) = πz
∏
n∈N

(
1− z2

n2

)

Dedekind Eta function η ∈ S1/2 (SL(2,Z), ε) = Jcusp1/2,0(ε)

η(τ) = q1/24
∏
n∈N

(1− qn)

[ε
(
a b
c d

)
∈ e

(
1
24

)
is chosen to make ε

(
a b
c d

)√
cτ + d a factor of

automorphy on SL(2,Z)×H1.]

Are there useful infinite products in many variables?
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Infinite Products II

Yes!

Odd Jacobi Theta function ϑ ∈ Jcusp1/2,1/2(ε3vH)

ϑ(τ, z) = q1/8
(
ζ1/2 − ζ−1/2

)∏
n∈N

(1− qn)(1− qnζ)(1− qnζ−1)

(τ, z) ∈ H1 × C, q = e(τ), ζ = e(z)

The theta function vanishes only on (τ, z) ∈ (τ,Zτ + Z).
ζ = 1 or ∃n ∈ N : qnζ±1 = 1 ⇐⇒ z ∈ Zτ + Z

Richard Borcherds has a theory of infinite products that are
automorphic forms for O(2, n).
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Definition of Siegel Modular Forms

Siegel Upper Half Space: Hn = {Z ∈ Msym
n×n(C) : ImZ > 0}.

Symplectic group: σ =
(
A B
C D

)
∈ Spn(R) acts on Z ∈ Hn by

σ · Z = (AZ + B)(CZ + D)−1.

Γ ⊆ Spn(R) such that Γ ∩ Spn(Z) has finite index in Γ and Spn(Z)

Slash action: For f : Hn → C and σ ∈ Spn(R),
(f |kσ) (Z ) = det(CZ + D)−k f (σ · Z ).

Siegel Modular Forms: Mk(Γ) is the C-vector space of holomorphic
f : Hn → C that are “bounded at the cusps” and that satisfy
f |kσ = f for all σ ∈ Γ.

Cusp Forms: Sk(Γ) = {f ∈ Mk(Γ) that “vanish at the cusps”}
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Definition of paramodular form

A paramodular form is a Siegel modular form for a paramodular
group. In degree 2, the paramodular group of level N, is

Γ = K (N) =


∗ N∗ ∗ ∗
∗ ∗ ∗ ∗/N
∗ N∗ ∗ ∗
N∗ N∗ N∗ ∗

 ∩ Sp2(Q), ∗ ∈ Z,

K (N) is the stabilizer in Sp2(Q) of Z⊕ Z⊕ Z⊕ NZ.
TK (N)\H2 is a moduli space for complex abelian surfaces with
polarization type (1,N). (T is “transpose” here.)

The paramodular Fricke involution splits paramodular forms into plus
and minus spaces.

Sk (K (N)) = Sk (K (N))+ ⊕ Sk (K (N))−
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Fourier-Jacobi expansion (FJE)

FJE: f ( τ z
z ω ) =

∑
m∈Z:m≥0

φm(τ, z)e(Nmω)

The Fourier-Jacobi expansion of a paramodular form is fixed term-by-term
by the following subgroup of the paramodular group K (N):

P2,1(Z) =


∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

 ∩ Sp2(Z), ∗ ∈ Z,

P2,1(Z)/{±I} ∼= SL2(Z) n Heisenberg(Z)

Thus the coefficients φm are automorphic forms in their own right and
easier to compute than Siegel modular forms. This is one motivation for
the introduction of Jacobi forms.
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Definition of Jacobi Forms: Automorphicity
Level one

Assume φ : H× C→ C is holomorphic.

Emφ : H2 → C
( τ z
z ω ) 7→ φ(τ, z)e(mω)

Assume that Emφ transforms by χ det(CZ + D)k for

P2,1(Z) =


∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

 ∩ Sp2(Z), ∗ ∈ Z,
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Definition of Jacobi Forms: Support

Jacobi forms are tagged with additional adjectives to reflect the
support supp(φ) = {(n, r) ∈ Q2 : c(n, r ;φ) 6= 0} of the Fourier
expansion

φ(τ, z) =
∑
n,r∈Q

c(n, r ;φ)qnζr , q = e(τ), ζ = e(z).

φ ∈ Jcuspk,m : automorphic and c(n, r ;φ) 6= 0 =⇒ 4mn − r2 > 0

φ ∈ Jk,m: automorphic and c(n, r ;φ) 6= 0 =⇒ 4mn − r2 ≥ 0

φ ∈ Jweakk,m : automorphic and c(n, r ;φ) 6= 0 =⇒ n ≥ 0

φ ∈ Jwh
k,m: automorphic and c(n, r ;φ) 6= 0 =⇒ n� −∞

(“wh” stands for weakly holomorphic)
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Borcherds Product Summary

Theorem (Borcherds, Gritsenko, Nikulin)

Given ψ ∈ Jwh
0,N(Z), a weakly holomorphic weight zero, index N Jacobi

form with integral coefficients

ψ(τ, z) =
∑

n,r∈Z: n≥−No

c (n, r) qnζr

there is a weight k ′ ∈ Z, a character χ, and a meromorphic paramodular
form Borch(ψ) ∈ Mmero

k ′ (K (N))(χ)

Borch(ψ)(Z )=qAζBξC
∏

n,m,r∈Z

(
1− qnζrξNm

)c(nm,r)
converging in a nbhd of infinity and defined by analytic continuation.
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Borcherds Product Theorem Details

A,B,C are explicitly calculated from the q0 term of ψ.

A = 1/24
∑
r∈Z

c(0, r)

B = 1/2
∑

r∈Z≥1

rc(0, r)

C = 1/2
∑

r∈Z≥1

r2c(0, r)

No character if A ∈ Z
Weight k ′ is 1

2c(0, 0)

Divisors (Humbert surfaces) and multiplicities explicitly calculated
from the singular part of ψ.

Whether Borch(ψ) is a Fricke plus or minus form is calculated from
the principal part of ψ.
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Theta Blocks: a great way to make Jacobi forms
due to Gritsenko, Skoruppa, and Zagier

Dedekind Eta function η ∈ Jcusp1/2,0(ε)

Odd Jacobi Theta function ϑ ∈ Jcusp1/2,1/2(ε3vH)

Shorthand notation: 0e = η(τ)e and de = (ϑ(τ, dz)/η(τ))e

Theta block 02kde1
1 de2

2 · · · d
e`
` ∈ Jmero

k,m (ε2k+2
∑

i ei )

where 2m = e1d
2
1 + e2d

2
2 + · · ·+ e`d

2
` and di ∈ N, ei ∈ Z.

There is no character if 24|(2k + 2
∑

i ei ).

Theorem (G.-S.-Z.) on when a theta block is in Jcuspk,m

For example, φ1, φ2, φ3 ∈ Jcusp2,277

φ1 = 041222324151141171

φ2 = 0411314251618192151

φ3 = 041121314251718191171
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An example of a Borcherds product in S2(K (277))

A paramodular cusp form of weight 2 and paramodular level 277

Borch(ψ)(Z ) = q ζ28ξ277
∏

(m,n,r)≥0

(1− qnζrξ277m)c(nm,r)

Here Z = ( τ z
z ω ) and ξ = e2πiω. The product is over m, n, r ∈ Z such

that m ≥ 0, and if m = 0 then n ≥ 0, and if m = n = 0 then r < 0.

The c(n, r) are given by a certain weakly holomorphic Jacobi cusp
form ψ ∈ Jwh

0,277(Z)

ψ = −φ1|V2

φ1
− φ2|V2

φ2
+
φ3|V2

φ3
, ψ(τ, z) =

∑
n,r∈Z

c(n, r)qnζr .

We use the index raising operator V2 : Jk,m → Jk,2m from
Eichler-Zagier.
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An example of a Borcherds product in S2(K (277)) II

The expansion of the weakly holomorphic Jacobi form

ψ(τ, z) =
∑
n,r∈Z

c(n, r)qnζr ,

= 4 + 2ζ + ζ2 + 2ζ3 + ζ4 + ζ5 + ζ6 − ζ7 + ζ9 + ζ14 + ζ15

+ q(ζ34 + ζ35 + ζ36 + · · · ) + q2(ζ48 + · · · ) + q3(−ζ58 + · · · )
+ q5ζ75 − q9ζ100 + q11ζ111 + q12ζ116 + q14ζ125 + q20ζ149

+ q31ζ186 + q35ζ197 + q36ζ200 + · · ·
(only singular terms shown)

Borch(ψ) vanishes on 23 Humbert surfaces, 19 with order one, and
the rest with orders 2, 4, 5, 10. For example,

Hum277(29, 197) = {Z = ( τ z
z ω ) : 35τ + 197z + 277ω = 0}

(Note here 29 = 1972 − 4 · 35 · 277.)
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The algorithm: Summary

Goal: Make Borch(ψ) = φξcN + φ2ξ
(c+1)N + · · · ∈ Sk(K (N)).

Step 1 Bound the number of initial Fourier-Jacobi coefficients that can
vanish in Sk (K (N)).

Step 2 Find all theta blocks φ ∈ Jcuspk,cN that could be the leading
Fourier-Jacobi coefficient of a Borcherds product in Sk (K (N)).

Step 3 Find (initial expansions of) all φ2 ∈ Jcuspk,(c+1)N with φ2/φ holomorphic

Step 4 Integer programming problem:
Find (initial expansions of) all quotients ψmaybe = −φ2/φ whose
associated Humbert multiplicities are nonnegative.

Step 5 If ψ ∈ Jwh
0,N(Z) really exists then ∆jψ ∈ Jcusp12j ,N for j > − ord(ψmaybe).

Span Jcusp12j ,N and see if any of the initial expansions match ∆jψmaybe.

Step 6 Create Borch(ψ) ∈ Mk (K (N)) and check whether it is a cusp form.

(Details of these steps to follow.)
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The algorithm: Step 1

Goal: Make Borch(ψ) = φξcN + φ2ξ
(c+1)N + · · · ∈ Sk(K (N)).

To determine the possible range of c above, bound the number of
initial Fourier-Jacobi coefficients that can vanish in Sk (K (N)).

If the space Sk(K (N)) is not known, we can use the following
theorem:

Theorem (Breeding, Poor, Yuen)

Let f ∈ Sk(K (N))±. Let m be the minimum of some formulas too gnarly
to typeset here. If the first m Fourier-Jacobi coefficients of f vanish, then
f must vanish.

See: Breeding, Poor, Yuen, Computations of Spaces of Paramodular
Forms of General Level, JKMS (2016).

We now loop through the possible c.
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The algorithm: Step 2

Goal: Make Borch(ψ) = φξcN + φ2ξ
(c+1)N + · · · ∈ Sk(K (N)).

The leading Fourier Jacobi coefficient must be a theta block.

For each possible c from step 1, we find all theta blocks φ ∈ Jcuspk,cN .
One can find all finite sequences d1, e1, . . . , d`, e` of integers such that

2cN = e1d
2
1 + · · ·+ e`d

2
`

that satisfy certain additional conditions when some ei are negative,
and satisfy the conditions for the theta block to be a Jacobi cusp
form.
(Gory details omitted here.)

We now loop through the possible φ.
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The algorithm: Step 3

Goal: Make Borch(ψ) = φξcN + φ2ξ
(c+1)N + · · · ∈ Sk(K (N)).

From Borch(ψ) = φ exp(−Grit(ψ)), we have ψ = −φ2/φ. We now
find candiate φ2 ∈ Jcuspk,(c+1)N such that φ2/φ is holomorphic.

Find a basis of Jcuspk,(c+1)N that have integer coefficients and expand to
some finite truncation as a power series in q with coeffients that are
Laurent polynomials in ζ.

Find the subspace such that division by φ is “Laurent in ζ”. All
candidate φ2 have initial expansions that live in this subspace. But
note not every initial expansion is guaranteed to extend to a
candidate φ2 because the higher terms may not be divisible by φ.

Theorem (Poor, Shurman, Yuen)

Let m be some formula in the d’s and e’s that make up the theta block φ.
If the first m terms of φ2 are divisible by φ, then φ2 is divisible by φ.

But in practice we do not use this theorem, and do Step 5 instead.
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The algorithm: Step 4

Goal: Make Borch(ψ) = φξcN + φ2ξ
(c+1)N + · · · ∈ Sk(K (N)).

We now have a space of initial expansions of candidate ψ.

Find all integer coefficient elements ψmaybe of this space whose
associated Humbert multiplicities are nonnegative. Note the initial
expansions of ψ must be out to at least qN/4.

This is an integer programming problem of the form Mx ≥ b where
M is a rectangular matrix and b is a vector and the inequality is taken
coordinate-wise.

Now loop over all candidates ψmaybe.
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The algorithm: Step 5

Goal: Make Borch(ψ) = φξcN + φ2ξ
(c+1)N + · · · ∈ Sk(K (N)).

We need to verify that ψmaybe is really the truncation of some
ψ ∈ Jwh

0,N(Z). This is because it is usually intractable to expand to the
required guaranteeing length in Step 3.

We can calculate a number ord(ψmaybe) such that if ψ does exist,
then ∆jψ ∈ Jcusp12j ,N for j > − ord(ψmaybe).

Span Jcusp12j ,N and see if any of the initial expansions match ∆jψmaybe.
If yes, then we have found a ψ such that Borch(ψ) ∈ Mk(K (N)). If
no, then ψmaybe can be discarded.
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The algorithm: Step 6

Goal: Make Borch(ψ) = φξcN + φ2ξ
(c+1)N + · · · ∈ Sk(K (N)).

We now have a set of ψ where Borch(ψ) ∈ Mk(K (N)). This set
includes all the possible ψ for which Borch(ψ) ∈ Sk(K (N)).

Test whether each of these Borch(ψ) is a cusp form by using the
following theorem.

Theorem (Poor, Shurman, Yuen)

An f ∈ Mk(K (N)) is a cusp form if and only if some explicit set of finitely
many Fourier coefficients of the form

a(nδ

[
1 −m
−m m2

]
; f )

are zero, for a certain set of (n, δ,m) that depend on k and N.

End of algorithm.
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Example: All Borcherds products in S9(K (16))

(Screenshot from our website www.siegelmodularforms.org)

Note 2cN =
∑

i eid
2
i and 2k + 2

∑
i ei = 24(c + t), where k = 9,

N = 16 here. We omitted the 018 part of each theta block.
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Application: Finding supercuspidal representations
Role of Borcherds products

Borcherds products were used to span and determine the space
S9(K (16)). This was extra challenging because 16 is highly
non-square-free.

An eigenform in S9(K (16)) was found to have eigenvalues that proves
it generates an automorphic representation with a supercuspidal
2-component. As far as we know, this is the first example of
generating a supercuspidal component. Level 16 is the smallest level
where this can happen, and weight 9 is the lowest weight where such
an eigenform exists.
(See: Cris Poor, Ralf Schmidt, David Yuen: Paramodular forms of
level 16 and supercuspidal representations, to appear in Moscow
Journal of Combinatorics and Number Theory.)
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Application: Modularity of Abelian Surfaces
Degree 1: All elliptic curves E/Q are modular

Modularity Theorem

(Wiles; Wiles & Taylor; Breuil, Conrad, Diamond & Taylor)

Let N ∈ N. To each elliptic curve E/Q with conductor N there exists a
normalized Hecke eigenform f ∈ S2(Γ0(N))new with rational eigenvalues
such that

L(E , s,Hasse) = L(f , s,Hecke).

Eichler (1954) proved the first examples
L(X0(11), s,Hasse) = L(η(τ)2η(11τ)2, s,Hecke).
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Application: Modularity of Abelian Surfaces
Degree 2: Paramodular conjecture

“All abelian surfaces A/Q with a minimal endomorphism group over Q are
paramodular.”

Paramodular Conjecture (Brumer and Kramer 2009)

Let N ∈ N. To each abelian surface A/Q with conductor N and
endomorphism ring EndQ(A) = Z, there exists a Hecke eigenform
f ∈ S2(K (N))new that has rational eigenvalues and is not a Gritsenko lift
from Jcusp2,N such that

L(A, s,Hasse-Weil) = L(f , s, spin).

Note: the original converse of this conjecture has been amended.
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Modularity proven for N = 277, 353, 587−

(On the paramodularity of typical abelian surfaces, Brumer, Pacetti, Poor,
Tornar̀ıa, Voight, Yuen - on arXiv and soon to be published in the Journal
of Algebra and Number Theory)

Generalize method of Faltings-Serre to GSp(4).

Need residual representation at p = 2 irreducible.

Class field theory computer calculations classifying extensions with
prescribed ramification and Galois group contained in GSp(4,F2).

Hecke eigenvalue computer calculations for paramodular eigenforms
written as rational functions of Gritsenko lifts and Borcherds products.

Galois representations associated to automorphic representations
whose archimedian component is a holomorphic limit of discrete
series.
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The role of Borcherds products in this application

Gritsenko lifts always land in the symmetric (plus for even weights
and minus for odd weights) Fricke space. Borcherds products can
land in either the symmetric or antisymmetric Fricke space.

For S2(K (587))− and S2(K (353)), the Borcherds product method
was the method used to prove the existence of a nonlift eigenform.

Borcherds products can be used to compute many more eigenvalues
in conjunction with the restriction to modular curves method. This
was essential for S2(K (587))−.

We expect Borcherds products to play a crucial role in future
modularity proofs.

Yuen Finding all Borcherds products Sept 19, 2019 27 / 37



The role of Borcherds products in this application

Gritsenko lifts always land in the symmetric (plus for even weights
and minus for odd weights) Fricke space. Borcherds products can
land in either the symmetric or antisymmetric Fricke space.

For S2(K (587))− and S2(K (353)), the Borcherds product method
was the method used to prove the existence of a nonlift eigenform.

Borcherds products can be used to compute many more eigenvalues
in conjunction with the restriction to modular curves method. This
was essential for S2(K (587))−.

We expect Borcherds products to play a crucial role in future
modularity proofs.

Yuen Finding all Borcherds products Sept 19, 2019 27 / 37



The role of Borcherds products in this application

Gritsenko lifts always land in the symmetric (plus for even weights
and minus for odd weights) Fricke space. Borcherds products can
land in either the symmetric or antisymmetric Fricke space.

For S2(K (587))− and S2(K (353)), the Borcherds product method
was the method used to prove the existence of a nonlift eigenform.

Borcherds products can be used to compute many more eigenvalues
in conjunction with the restriction to modular curves method. This
was essential for S2(K (587))−.

We expect Borcherds products to play a crucial role in future
modularity proofs.

Yuen Finding all Borcherds products Sept 19, 2019 27 / 37



The role of Borcherds products in this application

Gritsenko lifts always land in the symmetric (plus for even weights
and minus for odd weights) Fricke space. Borcherds products can
land in either the symmetric or antisymmetric Fricke space.

For S2(K (587))− and S2(K (353)), the Borcherds product method
was the method used to prove the existence of a nonlift eigenform.

Borcherds products can be used to compute many more eigenvalues
in conjunction with the restriction to modular curves method. This
was essential for S2(K (587))−.

We expect Borcherds products to play a crucial role in future
modularity proofs.

Yuen Finding all Borcherds products Sept 19, 2019 27 / 37



Weight k = 2

Paramodular Conjecture of Brumer and Kramer: the modularity of
abelian surfaces defined over Q with minimal endomorphisms is shown
by weight two nonlift paramodular newforms with rational eigenvalues.

N dim Jcusp2,N dimS2 (K (N)) various comments

249 5 6 BP+Grit; Jac

277 10 11 modular! Q/L; Jac

295 6 7 BP+Grit; Jac

349 11 12 BP+Grit; Jac

353 11 12 modular! BP+Grit; Jac

Poor, Shurman, Yuen have some (partly rigorous, partly heuristic)
tables up to N ≤ 1000
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Heuristic tables: k = 2 paramodular newforms: N ≤ 800.

+new nonlift = dim
(

(S2(K (N))new)+ /Grit
(
Jcusp2,N

))
−new = dim (S2(K (N))new)− .

The “=” means “proven.”

N +new nl −new various comments

249 = 1 BP+Grit; Jac

277 = 1 modular! Q/L; Jac

295 = 1 BP+Grit; Jac

349 = 1 BP+Grit; Jac

353 = 1 modular! BP+Grit; Jac

388 1 Jac
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N +new nl −new various comments

389 = 1 BP+Grit; Jac

394 1 Jac

427 1 Jac

461 = 1 Tr(BP)+Grit; Jac

464 1 Jac

472 1 Jac

511 2 quad pair,
√

5; 4-dim A/Q?

523 = 1 BP+Grit; Jac

550 1 Prym (A. Sutherland)
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N +new nl −new various comments

555 1 Jac

561 1 Prym

574 1 Jac

587 = 1 = 1 modular ! Tr(BP)+Grit and BP-; Jacs

597 1 Jac

603 1 Jac

604 1 Jac

623 1 Jac

633 1 Jac
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N +new nl −new various comments

637 2 quad pair,
√

2; 4-dim A/Q?

644 1 Jac

645 2 quad pair,
√

2; 4-dim A/Q?

657 ≥ 1 modular!∗ WR: E(9ζ6−8)/Q(
√
−3)

665 1 Prym

688 1 Jac

691 1 Jac

702 1 Prym (A. Sutherland)

ζ6 = exp(2πi 16)
∗ via the lift of Berger, Dembélé, Pacetti, Seguin from a Bianchi modular
form to a paramodular form
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N +new nl −new various comments

704 1 Jac

708 1 Jac

709 1 Jac

713 1 ≥ 1 BP-; Jacs

731 = 1
Berger and Klosin: modular!∗

Poor, Shurman, Yuen Jac

737 1 Prym

741 1 Jac

743 1 Jac

∗ Tobias Berger and Krzysztof Klosin: Deformations of Saito-Kurokawa
type and the Paramodular Conjecture, with appendix by Poor, Shurman,
Yuen, on arXiv and to appear in American Journal of Math.
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N +new nl −new various comments

745 1 Jac

760 1 Prym (A. Sutherland)

762 1 Jac

763 1 Jac

768 1 Jac

775 ≥ 1 modular!∗ WR: E(5φ−2)/Q(
√

5)

797 1 Jac

φ = (1 +
√

5)/2
∗ via the lift of Johnson-Leung and Roberts from a Hilbert modular form
to a paramodular form
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The Paramodular conjecture 2.0 (2018)

An abelian fourfold B/Q has quaternionic multiplication (QM) if EndQ(B)
is an order in a non-split quaternion algebra over Q. A cuspidal, nonlift
Siegel paramodular newform f ∈ S2(K (N)) with rational Hecke
eigenvalues will be called a suitable paramodular form of level N.

Paramodular Conjecture (Brumer–Kramer)

Let N ∈ N. Let AN be the set of isogeny classes of abelian surfaces A/Q
of conductor N with EndQ A = Z. Let BN be the set of isogeny classes of
QM abelian fourfolds B/Q of conductor N2. Let PN be the set of suitable
paramodular forms of level N, up to nonzero scaling. There is a bijection
AN ∪ BN ↔ PN such that

L(C , s,H-W) =

{
L(f , s, spin), if C ∈ AN ,

L(f , s, spin)2, if C ∈ BN .

Brumer and Kramer: QM implies N = M2s with s | gcd(30,M).

Yuen Finding all Borcherds products Sept 19, 2019 35 / 37



The Paramodular conjecture 2.0 (2018)

An abelian fourfold B/Q has quaternionic multiplication (QM) if EndQ(B)
is an order in a non-split quaternion algebra over Q. A cuspidal, nonlift
Siegel paramodular newform f ∈ S2(K (N)) with rational Hecke
eigenvalues will be called a suitable paramodular form of level N.

Paramodular Conjecture (Brumer–Kramer)

Let N ∈ N. Let AN be the set of isogeny classes of abelian surfaces A/Q
of conductor N with EndQ A = Z. Let BN be the set of isogeny classes of
QM abelian fourfolds B/Q of conductor N2. Let PN be the set of suitable
paramodular forms of level N, up to nonzero scaling. There is a bijection
AN ∪ BN ↔ PN such that

L(C , s,H-W) =

{
L(f , s, spin), if C ∈ AN ,

L(f , s, spin)2, if C ∈ BN .

Brumer and Kramer: QM implies N = M2s with s | gcd(30,M).

Yuen Finding all Borcherds products Sept 19, 2019 35 / 37



siegelmodularforms.org

Our website: www.siegelmodularforms.org
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