Finding all paramodular Borcherds products and applications

with emphasis on rigorous computations

David S. Yuen

Modular Forms on Higher Rank Groups Technical University of Darmstadt, September 19 2019

The take away of this talk

Joint work with Jerry Shurman and Cris Poor

- We developed an algorithm to find every (degree 2) paramodular cusp form of a fixed weight k and level N that is a Borcherds product. (Prior to spanning the space S_k (K(N)) of paramodular cusp forms.)
- 2. We implemented this algorithm and ran some examples and applications.

Joint work with Jerry Shurman and Cris Poor

- We developed an algorithm to find every (degree 2) paramodular cusp form of a fixed weight k and level N that is a Borcherds product. (Prior to spanning the space S_k (K(N)) of paramodular cusp forms.)
- 2. We implemented this algorithm and ran some examples and applications.

Preprint: Poor, Shurman, and Yuen, *Finding all Borcherds products paramodular cusp forms of a given weight and level*, arXiv (2018).

Joint work with Jerry Shurman and Cris Poor

- We developed an algorithm to find every (degree 2) paramodular cusp form of a fixed weight k and level N that is a Borcherds product. (Prior to spanning the space S_k (K(N)) of paramodular cusp forms.)
- 2. We implemented this algorithm and ran some examples and applications.

Preprint: Poor, Shurman, and Yuen, *Finding all Borcherds products paramodular cusp forms of a given weight and level*, arXiv (2018).

Acknowledgement: Thank you to Valery Gritsenko for teaching us how to make Borcherds products!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Sine function (Euler)

$$\sin(\pi z) = \pi z \prod_{n \in \mathbb{N}} \left(1 - \frac{z^2}{n^2} \right)$$

2

<ロト < 同ト < ヨト < ヨト

• Sine function (Euler)

$$\sin(\pi z) = \pi z \prod_{n \in \mathbb{N}} \left(1 - \frac{z^2}{n^2} \right)$$

• Dedekind Eta function $\eta \in S_{1/2}\left(\mathsf{SL}(2,\mathbb{Z}),\epsilon\right) = J^{\mathrm{cusp}}_{1/2,0}(\epsilon)$

$$\eta(au)=q^{1/24}\prod_{n\in\mathbb{N}}(1-q^n)$$

 $[\epsilon \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in e\left(\frac{1}{24}\right)$ is chosen to make $\epsilon \begin{pmatrix} a & b \\ c & d \end{pmatrix} \sqrt{c\tau + d}$ a factor of automorphy on SL(2, \mathbb{Z}) $\times \mathcal{H}_1$.]

イロト イポト イヨト ・ヨー

• Sine function (Euler)

$$\sin(\pi z) = \pi z \prod_{n \in \mathbb{N}} \left(1 - \frac{z^2}{n^2} \right)$$

• Dedekind Eta function $\eta \in S_{1/2}\left(\mathsf{SL}(2,\mathbb{Z}),\epsilon\right) = J^{\mathrm{cusp}}_{1/2,0}(\epsilon)$

$$\eta(au)=q^{1/24}\prod_{n\in\mathbb{N}}(1-q^n)$$

 $[\epsilon \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in e\left(\frac{1}{24}\right)$ is chosen to make $\epsilon \begin{pmatrix} a & b \\ c & d \end{pmatrix} \sqrt{c\tau + d}$ a factor of automorphy on SL(2, \mathbb{Z}) $\times \mathcal{H}_1$.]

• Are there useful infinite products in many variables?

イロト イポト イヨト イヨト 三日

Infinite Products II

• Yes!

• Odd Jacobi Theta function $artheta\in J^{\mathrm{cusp}}_{1/2,1/2}(\epsilon^3 v_{H})$

$$artheta(au, z) = q^{1/8} \left(\zeta^{1/2} - \zeta^{-1/2}
ight) \prod_{n \in \mathbb{N}} (1 - q^n) (1 - q^n \zeta) (1 - q^n \zeta^{-1})$$

•
$$(au,z)\in\mathcal{H}_1 imes\mathbb{C},\ q=e(au),\ \zeta=e(z)$$

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Infinite Products II

Yes!

• Odd Jacobi Theta function $artheta\in J^{\mathrm{cusp}}_{1/2,1/2}(\epsilon^3 v_{H})$

$$artheta(au, z) = q^{1/8} \left(\zeta^{1/2} - \zeta^{-1/2}
ight) \prod_{n \in \mathbb{N}} (1 - q^n) (1 - q^n \zeta) (1 - q^n \zeta^{-1})$$

•
$$(au,z) \in \mathcal{H}_1 imes \mathbb{C}, \ q = e(au), \ \zeta = e(z)$$

• The theta function vanishes only on $(\tau, z) \in (\tau, \mathbb{Z}\tau + \mathbb{Z})$. $\zeta = 1 \text{ or } \exists n \in \mathbb{N} : q^n \zeta^{\pm 1} = 1 \iff z \in \mathbb{Z}\tau + \mathbb{Z}$

イロト イポト イヨト ・ヨ

Infinite Products II

Yes!

• Odd Jacobi Theta function $artheta\in J^{\mathrm{cusp}}_{1/2,1/2}(\epsilon^3 v_{H})$

$$artheta(au, z) = q^{1/8} \left(\zeta^{1/2} - \zeta^{-1/2}
ight) \prod_{n \in \mathbb{N}} (1 - q^n) (1 - q^n \zeta) (1 - q^n \zeta^{-1})$$

•
$$(au,z) \in \mathcal{H}_1 imes \mathbb{C}, \ q = e(au), \ \zeta = e(z)$$

- The theta function vanishes only on $(\tau, z) \in (\tau, \mathbb{Z}\tau + \mathbb{Z})$. $\zeta = 1 \text{ or } \exists n \in \mathbb{N} : q^n \zeta^{\pm 1} = 1 \iff z \in \mathbb{Z}\tau + \mathbb{Z}$
- Richard Borcherds has a theory of infinite products that are automorphic forms for O(2, n).

イロト 不得 トイヨト イヨト 二日

Definition of Siegel Modular Forms

- Siegel Upper Half Space: $\mathcal{H}_n = \{Z \in M^{sym}_{n \times n}(\mathbb{C}) : \text{Im } Z > 0\}.$
- Symplectic group: $\sigma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}_n(\mathbb{R})$ acts on $Z \in \mathcal{H}_n$ by $\sigma \cdot Z = (AZ + B)(CZ + D)^{-1}$.
- $\Gamma \subseteq Sp_n(\mathbb{R})$ such that $\Gamma \cap Sp_n(\mathbb{Z})$ has finite index in Γ and $Sp_n(\mathbb{Z})$
- Slash action: For $f : \mathcal{H}_n \to \mathbb{C}$ and $\sigma \in \operatorname{Sp}_n(\mathbb{R})$, $(f|_k \sigma)(Z) = \det(CZ + D)^{-k} f(\sigma \cdot Z).$
- Siegel Modular Forms: $M_k(\Gamma)$ is the \mathbb{C} -vector space of holomorphic $f : \mathcal{H}_n \to \mathbb{C}$ that are "bounded at the cusps" and that satisfy $f|_k \sigma = f$ for all $\sigma \in \Gamma$.
- Cusp Forms: $S_k(\Gamma) = \{ f \in M_k(\Gamma) \text{ that "vanish at the cusps"} \}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Definition of paramodular form

• A *paramodular form* is a Siegel modular form for a paramodular group. In degree 2, the paramodular group of level *N*, is

$$\Gamma = \mathcal{K}(\mathcal{N}) = \begin{pmatrix} * & \mathcal{N}* & * & * \\ * & * & * & */\mathcal{N} \\ * & \mathcal{N}* & * & * \\ \mathcal{N}* & \mathcal{N}* & \mathcal{N}* & * \end{pmatrix} \cap \mathsf{Sp}_2(\mathbb{Q}), \quad * \in \mathbb{Z},$$

Definition of paramodular form

• A *paramodular form* is a Siegel modular form for a paramodular group. In degree 2, the paramodular group of level *N*, is

$$\Gamma = K(N) = \begin{pmatrix} * & N* & * & * \\ * & * & * & */N \\ * & N* & * & * \\ N* & N* & N* & * \end{pmatrix} \cap \operatorname{Sp}_2(\mathbb{Q}), \quad * \in \mathbb{Z},$$

- K(N) is the stabilizer in $Sp_2(\mathbb{Q})$ of $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus N\mathbb{Z}$.
- ${}^{T}K(N) \setminus \mathcal{H}_2$ is a moduli space for complex abelian surfaces with polarization type (1, N). (*T* is "transpose" here.)
- The paramodular Fricke involution splits paramodular forms into plus and minus spaces.

$$S_k(K(N)) = S_k(K(N))^+ \oplus S_k(K(N))^-$$

Fourier-Jacobi expansion (FJE)

$$\mathsf{FJE:} f(\begin{smallmatrix} \tau & z \\ z & \omega \end{smallmatrix}) = \sum_{m \in \mathbb{Z}: m \ge 0} \phi_m(\tau, z) e(\mathsf{Nm}\omega)$$

The Fourier-Jacobi expansion of a paramodular form is fixed *term-by-term* by the following subgroup of the paramodular group K(N):

$$P_{2,1}(\mathbb{Z}) = egin{pmatrix} * & 0 & * & * \ * & * & * & * \ * & 0 & * & * \ 0 & 0 & 0 & * \end{pmatrix} \cap \mathsf{Sp}_2(\mathbb{Z}), \quad * \in \mathbb{Z},$$

• $P_{2,1}(\mathbb{Z})/\{\pm I\} \cong SL_2(\mathbb{Z}) \ltimes Heisenberg(\mathbb{Z})$

Thus the coefficients ϕ_m are automorphic forms in their own right and easier to compute than Siegel modular forms. This is one motivation for the introduction of Jacobi forms.

Definition of Jacobi Forms: Automorphicity

Level one

• Assume $\phi : \mathcal{H} \times \mathbb{C} \to \mathbb{C}$ is holomorphic.

$$\begin{aligned} \mathsf{E}_{\mathsf{m}}\phi &: \mathcal{H}_{2} \to \mathbb{C} \\ \begin{pmatrix} \tau & z \\ z & \omega \end{pmatrix} \mapsto \phi(\tau, z) \mathsf{e}(\mathsf{m}\omega) \end{aligned}$$

• Assume that $E_m \phi$ transforms by $\chi \det(CZ + D)^k$ for

$$P_{2,1}(\mathbb{Z}) = egin{pmatrix} * & 0 & * & * \ * & * & * & * \ * & 0 & * & * \ 0 & 0 & 0 & * \end{pmatrix} \cap \mathsf{Sp}_2(\mathbb{Z}), \quad * \in \mathbb{Z},$$

 Jacobi forms are tagged with additional adjectives to reflect the support supp(φ) = {(n, r) ∈ Q² : c(n, r; φ) ≠ 0} of the Fourier expansion

$$\phi(\tau,z) = \sum_{n,r\in\mathbb{Q}} c(n,r;\phi)q^n\zeta^r, \qquad q = e(\tau), \zeta = e(z).$$

• $\phi \in J_{k,m}^{\text{cusp}}$: automorphic and $c(n,r;\phi) \neq 0 \implies 4mn - r^2 > 0$

Yuen

 Jacobi forms are tagged with additional adjectives to reflect the support supp(φ) = {(n, r) ∈ Q² : c(n, r; φ) ≠ 0} of the Fourier expansion

$$\phi(\tau,z) = \sum_{n,r\in\mathbb{Q}} c(n,r;\phi)q^n\zeta^r, \qquad q = e(\tau), \zeta = e(z).$$

• $\phi \in J_{k,m}^{\text{cusp}}$: automorphic and $c(n,r;\phi) \neq 0 \implies 4mn - r^2 > 0$ • $\phi \in J_{k,m}$: automorphic and $c(n,r;\phi) \neq 0 \implies 4mn - r^2 \ge 0$

 Jacobi forms are tagged with additional adjectives to reflect the support supp(φ) = {(n, r) ∈ Q² : c(n, r; φ) ≠ 0} of the Fourier expansion

$$\phi(\tau,z) = \sum_{n,r\in\mathbb{Q}} c(n,r;\phi)q^n\zeta^r, \qquad q = e(\tau), \zeta = e(z).$$

• $\phi \in J_{k,m}^{cusp}$: automorphic and $c(n,r;\phi) \neq 0 \implies 4mn - r^2 > 0$ • $\phi \in J_{k,m}$: automorphic and $c(n,r;\phi) \neq 0 \implies 4mn - r^2 \ge 0$ • $\phi \in J_{k,m}^{weak}$: automorphic and $c(n,r;\phi) \neq 0 \implies n \ge 0$

イロト 不得 トイヨト イヨト 二日

 Jacobi forms are tagged with additional adjectives to reflect the support supp(φ) = {(n, r) ∈ Q² : c(n, r; φ) ≠ 0} of the Fourier expansion

$$\phi(\tau,z) = \sum_{n,r\in\mathbb{Q}} c(n,r;\phi)q^n\zeta^r, \qquad q = e(\tau), \zeta = e(z).$$

φ ∈ J^{cusp}_{k,m}: automorphic and c(n, r; φ) ≠ 0 ⇒ 4mn - r² > 0
φ ∈ J_{k,m}: automorphic and c(n, r; φ) ≠ 0 ⇒ 4mn - r² ≥ 0
φ ∈ J^{weak}_{k,m}: automorphic and c(n, r; φ) ≠ 0 ⇒ n ≥ 0
φ ∈ J^{wh}_{k,m}: automorphic and c(n, r; φ) ≠ 0 ⇒ n ≥ -∞ ("wh" stands for *weakly holomorphic*)

イロト 不得 トイヨト イヨト 二日

Borcherds Product Summary

Theorem (Borcherds, Gritsenko, Nikulin)

Given $\psi \in J_{0,N}^{wh}(\mathbb{Z})$, a weakly holomorphic weight zero, index N Jacobi form with integral coefficients

$$\psi(\tau, z) = \sum_{n, r \in \mathbb{Z}: n \ge -N_o} c(n, r) q^n \zeta^r$$

there is a weight $k' \in \mathbb{Z}$, a character χ , and a meromorphic paramodular form $Borch(\psi) \in M_{k'}^{mero}(K(N))(\chi)$

$$\mathsf{Borch}(\psi)(Z) = q^A \zeta^B \xi^C \prod_{n,m,r \in \mathbb{Z}} \left(1 - q^n \zeta^r \xi^{Nm} \right)^{c(nm,r)}$$

converging in a nbhd of infinity and defined by analytic continuation.

• A, B, C are explicitly calculated from the q^0 term of ψ .

$$A = 1/24 \sum_{r \in \mathbb{Z}} c(0, r)$$
$$B = 1/2 \sum_{r \in \mathbb{Z}_{\geq 1}} rc(0, r)$$
$$C = 1/2 \sum_{r \in \mathbb{Z}_{\geq 1}} r^2 c(0, r)$$

3

• A, B, C are explicitly calculated from the q^0 term of ψ .

$$egin{aligned} A &= 1/24 \sum_{r \in \mathbb{Z}} c(0,r) \ B &= 1/2 \sum_{r \in \mathbb{Z}_{\geq 1}} rc(0,r) \ C &= 1/2 \sum_{r \in \mathbb{Z}_{\geq 1}} r^2 c(0,r) \end{aligned}$$

• No character if $A \in \mathbb{Z}$

• A, B, C are explicitly calculated from the q^0 term of ψ .

$$A = 1/24 \sum_{r \in \mathbb{Z}} c(0, r)$$

 $B = 1/2 \sum_{r \in \mathbb{Z}_{\geq 1}} rc(0, r)$
 $C = 1/2 \sum_{r \in \mathbb{Z}_{\geq 1}} r^2 c(0, r)$

- No character if $A \in \mathbb{Z}$
- Weight k' is $\frac{1}{2}c(0,0)$

• A, B, C are explicitly calculated from the q^0 term of ψ .

$$egin{aligned} A &= 1/24 \sum_{r \in \mathbb{Z}} c(0,r) \ B &= 1/2 \sum_{r \in \mathbb{Z}_{\geq 1}} rc(0,r) \ C &= 1/2 \sum_{r \in \mathbb{Z}_{\geq 1}} r^2 c(0,r) \end{aligned}$$

- No character if $A \in \mathbb{Z}$
- Weight k' is $\frac{1}{2}c(0,0)$
- Divisors (Humbert surfaces) and multiplicities explicitly calculated from the singular part of ψ .

• A, B, C are explicitly calculated from the q^0 term of ψ .

$$egin{aligned} A &= 1/24 \sum_{r \in \mathbb{Z}} c(0,r) \ B &= 1/2 \sum_{r \in \mathbb{Z}_{\geq 1}} rc(0,r) \ C &= 1/2 \sum_{r \in \mathbb{Z}_{\geq 1}} r^2 c(0,r) \end{aligned}$$

- No character if $A \in \mathbb{Z}$
- Weight k' is $\frac{1}{2}c(0,0)$
- Divisors (Humbert surfaces) and multiplicities explicitly calculated from the singular part of ψ .
- Whether Borch(ψ) is a Fricke plus or minus form is calculated from the principal part of ψ .

- Dedekind Eta function $\eta \in J^{\mathrm{cusp}}_{1/2,0}(\epsilon)$
- Odd Jacobi Theta function $artheta \in J^{\mathrm{cusp}}_{1/2,1/2}(\epsilon^3 v_H)$

- Dedekind Eta function $\eta \in J^{\mathrm{cusp}}_{1/2,0}(\epsilon)$
- Odd Jacobi Theta function $\vartheta \in J_{1/2,1/2}^{\text{cusp}}(\epsilon^3 v_H)$
- Shorthand notation: $0^e = \eta(\tau)^e$ and $d^e = (\vartheta(\tau, dz)/\eta(\tau))^e$
- Theta block $0^{2k}d_1^{e_1}d_2^{e_2}\cdots d_\ell^{e_\ell} \in J_{k,m}^{\operatorname{mero}}(\epsilon^{2k+2\sum_i e_i})$ where $2m = e_1d_1^2 + e_2d_2^2 + \cdots + e_\ell d_\ell^2$ and $d_i \in \mathbb{N}$, $e_i \in \mathbb{Z}$.

- Dedekind Eta function $\eta \in J^{\mathrm{cusp}}_{1/2,0}(\epsilon)$
- Odd Jacobi Theta function $\vartheta \in J_{1/2,1/2}^{\text{cusp}}(\epsilon^3 v_H)$
- Shorthand notation: $0^e = \eta(\tau)^e$ and $d^e = (\vartheta(\tau, dz)/\eta(\tau))^e$
- Theta block $0^{2k}d_1^{e_1}d_2^{e_2}\cdots d_\ell^{e_\ell} \in J_{k,m}^{\mathrm{mero}}(\epsilon^{2k+2\sum_i e_i})$ where $2m = e_1d_1^2 + e_2d_2^2 + \cdots + e_\ell d_\ell^2$ and $d_i \in \mathbb{N}, e_i \in \mathbb{Z}$.
- There is no character if $24|(2k+2\sum_i e_i)$.
- Theorem (G.-S.-Z.) on when a theta block is in $J_{k,m}^{\text{cusp}}$

Yuen

- Dedekind Eta function $\eta \in J^{\mathrm{cusp}}_{1/2,0}(\epsilon)$
- Odd Jacobi Theta function $\vartheta \in J_{1/2,1/2}^{\text{cusp}}(\epsilon^3 v_H)$
- Shorthand notation: $0^e = \eta(\tau)^e$ and $d^e = (\vartheta(\tau, dz)/\eta(\tau))^e$
- Theta block $0^{2k}d_1^{e_1}d_2^{e_2}\cdots d_\ell^{e_\ell} \in J_{k,m}^{\operatorname{mero}}(\epsilon^{2k+2\sum_i e_i})$ where $2m = e_1d_1^2 + e_2d_2^2 + \cdots + e_\ell d_\ell^2$ and $d_i \in \mathbb{N}$, $e_i \in \mathbb{Z}$.
- There is no character if $24|(2k+2\sum_i e_i)$.
- Theorem (G.-S.-Z.) on when a theta block is in $J_{k,m}^{\text{cusp}}$

• For example, $\phi_1, \phi_2, \phi_3 \in J_{2,277}^{cusp}$

$$\phi_1 = 0^4 1^2 2^2 3^2 4^1 5^1 14^1 17^1$$

$$\phi_2 = 0^4 1^1 3^1 4^2 5^1 6^1 8^1 9^2 15^1$$

$$\phi_3 = 0^4 1^1 2^1 3^1 4^2 5^1 7^1 8^1 9^1 17^1$$

(日) (同) (三) (三) (三)

• A paramodular cusp form of weight 2 and paramodular level 277

Borch
$$(\psi)(Z) = q \zeta^{28} \xi^{277} \prod_{(m,n,r) \ge 0} (1 - q^n \zeta^r \xi^{277m})^{c(nm,r)}$$

• A paramodular cusp form of weight 2 and paramodular level 277

$$\mathsf{Borch}(\psi)(Z) = q\,\zeta^{28}\xi^{277} \prod_{(m,n,r)\geq 0} (1 - q^n \zeta^r \xi^{277m})^{c(nm,r)}$$

• Here $Z = \begin{pmatrix} \tau & z \\ z & \omega \end{pmatrix}$ and $\xi = e^{2\pi i \omega}$. The product is over $m, n, r \in \mathbb{Z}$ such that $m \ge 0$, and if m = 0 then $n \ge 0$, and if m = n = 0 then r < 0.

イロト 不得 トイヨト イヨト 三日

• A paramodular cusp form of weight 2 and paramodular level 277

$$\mathsf{Borch}(\psi)(Z) = q\,\zeta^{28}\xi^{277} \prod_{(m,n,r)\geq 0} (1 - q^n \zeta^r \xi^{277m})^{c(nm,r)}$$

- Here $Z = \begin{pmatrix} \tau & z \\ z & \omega \end{pmatrix}$ and $\xi = e^{2\pi i \omega}$. The product is over $m, n, r \in \mathbb{Z}$ such that $m \ge 0$, and if m = 0 then $n \ge 0$, and if m = n = 0 then r < 0.
- The c(n, r) are given by a certain weakly holomorphic Jacobi cusp form $\psi \in J^{\mathrm{wh}}_{0,277}(\mathbb{Z})$

$$\psi = -\frac{\phi_1|V_2}{\phi_1} - \frac{\phi_2|V_2}{\phi_2} + \frac{\phi_3|V_2}{\phi_3}, \qquad \psi(\tau, z) = \sum_{n,r\in\mathbb{Z}} c(n,r)q^n\zeta^r.$$

• A paramodular cusp form of weight 2 and paramodular level 277

Borch
$$(\psi)(Z) = q \zeta^{28} \xi^{277} \prod_{(m,n,r) \ge 0} (1 - q^n \zeta^r \xi^{277m})^{c(nm,r)}$$

- Here $Z = \begin{pmatrix} \tau & z \\ z & \omega \end{pmatrix}$ and $\xi = e^{2\pi i \omega}$. The product is over $m, n, r \in \mathbb{Z}$ such that $m \ge 0$, and if m = 0 then $n \ge 0$, and if m = n = 0 then r < 0.
- The c(n, r) are given by a certain weakly holomorphic Jacobi cusp form $\psi \in J_{0,277}^{\mathrm{wh}}(\mathbb{Z})$

$$\psi = -\frac{\phi_1|V_2}{\phi_1} - \frac{\phi_2|V_2}{\phi_2} + \frac{\phi_3|V_2}{\phi_3}, \qquad \psi(\tau, z) = \sum_{n,r\in\mathbb{Z}} c(n,r)q^n\zeta^r.$$

• We use the index raising operator $V_2: J_{k,m} \rightarrow J_{k,2m}$ from Eichler-Zagier.

Yuen

Sept 19, 2019 13 / 37

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The expansion of the weakly holomorphic Jacobi form

$$\begin{split} \psi(\tau,z) &= \sum_{n,r\in\mathbb{Z}} c(n,r)q^n \zeta^r, \\ &= 4 + 2\zeta + \zeta^2 + 2\zeta^3 + \zeta^4 + \zeta^5 + \zeta^6 - \zeta^7 + \zeta^9 + \zeta^{14} + \zeta^{15} \\ &+ q(\zeta^{34} + \zeta^{35} + \zeta^{36} + \cdots) + q^2(\zeta^{48} + \cdots) + q^3(-\zeta^{58} + \cdots) \\ &+ q^5\zeta^{75} - q^9\zeta^{100} + q^{11}\zeta^{111} + q^{12}\zeta^{116} + q^{14}\zeta^{125} + q^{20}\zeta^{149} \\ &+ q^{31}\zeta^{186} + q^{35}\zeta^{197} + q^{36}\zeta^{200} + \cdots \\ (\text{only singular terms shown}) \end{split}$$

Yuen

A 3 A

Image: A matrix and a matrix

• The expansion of the weakly holomorphic Jacobi form

$$\begin{split} \psi(\tau,z) &= \sum_{n,r\in\mathbb{Z}} c(n,r)q^n \zeta^r, \\ &= 4 + 2\zeta + \zeta^2 + 2\zeta^3 + \zeta^4 + \zeta^5 + \zeta^6 - \zeta^7 + \zeta^9 + \zeta^{14} + \zeta^{15} \\ &+ q(\zeta^{34} + \zeta^{35} + \zeta^{36} + \cdots) + q^2(\zeta^{48} + \cdots) + q^3(-\zeta^{58} + \cdots) \\ &+ q^5\zeta^{75} - q^9\zeta^{100} + q^{11}\zeta^{111} + q^{12}\zeta^{116} + q^{14}\zeta^{125} + q^{20}\zeta^{149} \\ &+ q^{31}\zeta^{186} + q^{35}\zeta^{197} + q^{36}\zeta^{200} + \cdots \\ (\text{only singular terms shown}) \end{split}$$

• Borch(ψ) vanishes on 23 Humbert surfaces, 19 with order one, and the rest with orders 2, 4, 5, 10. For example,

$$Hum_{277}(29, 197) = \{ Z = \begin{pmatrix} \tau & z \\ z & \omega \end{pmatrix} : 35\tau + 197z + 277\omega = 0 \}$$

(Note here $29 = 197^2 - 4 \cdot 35 \cdot 277.$)

Image: A matrix

The algorithm: Summary

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

(Details of these steps to follow.)

Yuen

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●
Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

Step 1 Bound the number of initial Fourier-Jacobi coefficients that can vanish in $S_k(K(N))$.

(Details of these steps to follow.)

・ロット (雪) (日) (日) (日)

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- Step 1 Bound the number of initial Fourier-Jacobi coefficients that can vanish in $S_k(K(N))$.
- Step 2 Find all theta blocks $\phi \in J_{k,cN}^{cusp}$ that could be the leading Fourier-Jacobi coefficient of a Borcherds product in $S_k(K(N))$.

(Details of these steps to follow.)

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- Step 1 Bound the number of initial Fourier-Jacobi coefficients that can vanish in $S_k(K(N))$.
- Step 2 Find all theta blocks $\phi \in J_{k,cN}^{cusp}$ that could be the leading Fourier-Jacobi coefficient of a Borcherds product in $S_k(K(N))$.
- Step 3 Find (initial expansions of) all $\phi_2 \in J_{k,(c+1)N}^{cusp}$ with ϕ_2/ϕ holomorphic

(Details of these steps to follow.)

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- Step 1 Bound the number of initial Fourier-Jacobi coefficients that can vanish in $S_k(K(N))$.
- Step 2 Find all theta blocks $\phi \in J_{k,cN}^{cusp}$ that could be the leading Fourier-Jacobi coefficient of a Borcherds product in $S_k(K(N))$.
- Step 3 Find (initial expansions of) all $\phi_2 \in J_{k,(c+1)N}^{\text{cusp}}$ with ϕ_2/ϕ holomorphic
- Step 4 Integer programming problem: Find (initial expansions of) all quotients $\psi_{\text{maybe}} = -\phi_2/\phi$ whose associated Humbert multiplicities are nonnegative.

(Details of these steps to follow.)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- Step 1 Bound the number of initial Fourier-Jacobi coefficients that can vanish in $S_k(K(N))$.
- Step 2 Find all theta blocks $\phi \in J_{k,cN}^{cusp}$ that could be the leading Fourier-Jacobi coefficient of a Borcherds product in $S_k(K(N))$.
- Step 3 Find (initial expansions of) all $\phi_2 \in J_{k,(c+1)N}^{\text{cusp}}$ with ϕ_2/ϕ holomorphic
- Step 4 Integer programming problem: Find (initial expansions of) all quotients $\psi_{maybe} = -\phi_2/\phi$ whose associated Humbert multiplicities are nonnegative.
- Step 5 If $\psi \in J_{0,N}^{\mathrm{wh}}(\mathbb{Z})$ really exists then $\Delta^{j}\psi \in J_{12j,N}^{\mathrm{cusp}}$ for $j > -\operatorname{ord}(\psi_{\mathrm{maybe}})$. Span $J_{12j,N}^{\mathrm{cusp}}$ and see if any of the initial expansions match $\Delta^{j}\psi_{\mathrm{maybe}}$.

(Details of these steps to follow.)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ● ●

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- Step 1 Bound the number of initial Fourier-Jacobi coefficients that can vanish in $S_k(K(N))$.
- Step 2 Find all theta blocks $\phi \in J_{k,cN}^{cusp}$ that could be the leading Fourier-Jacobi coefficient of a Borcherds product in $S_k(K(N))$.
- Step 3 Find (initial expansions of) all $\phi_2 \in J_{k,(c+1)N}^{\text{cusp}}$ with ϕ_2/ϕ holomorphic
- Step 4 Integer programming problem: Find (initial expansions of) all quotients $\psi_{maybe} = -\phi_2/\phi$ whose associated Humbert multiplicities are nonnegative.
- Step 5 If $\psi \in J_{0,N}^{\text{wh}}(\mathbb{Z})$ really exists then $\Delta^j \psi \in J_{12j,N}^{\text{cusp}}$ for $j > -\operatorname{ord}(\psi_{\text{maybe}})$. Span $J_{12j,N}^{\text{cusp}}$ and see if any of the initial expansions match $\Delta^j \psi_{\text{maybe}}$. Step 6 Create Borch $(\psi) \in M_k(\mathcal{K}(N))$ and check whether it is a cusp form.

(Details of these steps to follow.)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

 To determine the possible range of c above, bound the number of initial Fourier-Jacobi coefficients that can vanish in S_k (K(N)).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- To determine the possible range of c above, bound the number of initial Fourier-Jacobi coefficients that can vanish in S_k (K(N)).
- If the space S_k(K(N)) is not known, we can use the following theorem:

Theorem (Breeding, Poor, Yuen)

Let $f \in S_k(K(N))^{\pm}$. Let m be the minimum of some formulas too gnarly to typeset here. If the first m Fourier-Jacobi coefficients of f vanish, then f must vanish.

See: Breeding, Poor, Yuen, *Computations of Spaces of Paramodular Forms of General Level*, JKMS (2016).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- To determine the possible range of c above, bound the number of initial Fourier-Jacobi coefficients that can vanish in S_k (K(N)).
- If the space S_k(K(N)) is not known, we can use the following theorem:

Theorem (Breeding, Poor, Yuen)

Let $f \in S_k(K(N))^{\pm}$. Let m be the minimum of some formulas too gnarly to typeset here. If the first m Fourier-Jacobi coefficients of f vanish, then f must vanish.

See: Breeding, Poor, Yuen, *Computations of Spaces of Paramodular Forms of General Level*, JKMS (2016).

We now loop through the possible c.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

• The leading Fourier Jacobi coefficient must be a theta block.

イロト イポト イヨト イヨト 三日

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- The leading Fourier Jacobi coefficient must be a theta block.
- For each possible c from step 1, we find all theta blocks φ ∈ J^{cusp}_{k,cN}.
 One can find all finite sequences d₁, e₁,..., d_ℓ, e_ℓ of integers such that

$$2cN = e_1d_1^2 + \cdots + e_\ell d_\ell^2$$

that satisfy certain additional conditions when some e_i are negative, and satisfy the conditions for the theta block to be a Jacobi cusp form.

(Gory details omitted here.)

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- The leading Fourier Jacobi coefficient must be a theta block.
- For each possible c from step 1, we find all theta blocks $\phi \in J_{k,cN}^{cusp}$. One can find all finite sequences $d_1, e_1, \ldots, d_\ell, e_\ell$ of integers such that

$$2cN = e_1d_1^2 + \cdots + e_\ell d_\ell^2$$

that satisfy certain additional conditions when some e_i are negative, and satisfy the conditions for the theta block to be a Jacobi cusp form.

(Gory details omitted here.)

We now loop through the possible ϕ .

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

• From Borch(ψ) = $\phi \exp(-\operatorname{Grit}(\psi))$, we have $\psi = -\phi_2/\phi$. We now find candiate $\phi_2 \in J_{k,(c+1)N}^{\operatorname{cusp}}$ such that ϕ_2/ϕ is holomorphic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- From $\operatorname{Borch}(\psi) = \phi \exp(-\operatorname{Grit}(\psi))$, we have $\psi = -\phi_2/\phi$. We now find candiate $\phi_2 \in J_{k,(c+1)N}^{\operatorname{cusp}}$ such that ϕ_2/ϕ is holomorphic.
- Find a basis of $J_{k,(c+1)N}^{\text{cusp}}$ that have integer coefficients and expand to some finite truncation as a power series in q with coefficients that are Laurent polynomials in ζ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- From $\operatorname{Borch}(\psi) = \phi \exp(-\operatorname{Grit}(\psi))$, we have $\psi = -\phi_2/\phi$. We now find candiate $\phi_2 \in J_{k,(c+1)N}^{\operatorname{cusp}}$ such that ϕ_2/ϕ is holomorphic.
- Find a basis of $J_{k,(c+1)N}^{\text{cusp}}$ that have integer coefficients and expand to some finite truncation as a power series in q with coefficients that are Laurent polynomials in ζ .
- Find the subspace such that division by φ is "Laurent in ζ". All candidate φ₂ have initial expansions that live in this subspace. But note not every initial expansion is guaranteed to extend to a candidate φ₂ because the higher terms may not be divisible by φ.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- From $\operatorname{Borch}(\psi) = \phi \exp(-\operatorname{Grit}(\psi))$, we have $\psi = -\phi_2/\phi$. We now find candiate $\phi_2 \in J_{k,(c+1)N}^{\operatorname{cusp}}$ such that ϕ_2/ϕ is holomorphic.
- Find a basis of $J_{k,(c+1)N}^{\text{cusp}}$ that have integer coefficients and expand to some finite truncation as a power series in q with coefficients that are Laurent polynomials in ζ .
- Find the subspace such that division by φ is "Laurent in ζ". All candidate φ₂ have initial expansions that live in this subspace. But note not every initial expansion is guaranteed to extend to a candidate φ₂ because the higher terms may not be divisible by φ.

Theorem (Poor, Shurman, Yuen)

Let *m* be some formula in the d's and e's that make up the theta block ϕ . If the first *m* terms of ϕ_2 are divisible by ϕ , then ϕ_2 is divisible by ϕ .

• But in practice we do not use this theorem, and do Step 5 instead.

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

• We now have a space of initial expansions of candidate ψ .

イロト イポト イヨト イヨト 三日

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- We now have a space of initial expansions of candidate ψ .
- Find all integer coefficient elements ψ_{maybe} of this space whose associated Humbert multiplicities are nonnegative. Note the initial expansions of ψ must be out to at least $q^{N/4}$.

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- We now have a space of initial expansions of candidate ψ .
- Find all integer coefficient elements ψ_{maybe} of this space whose associated Humbert multiplicities are nonnegative. Note the initial expansions of ψ must be out to at least $q^{N/4}$.
- This is an integer programming problem of the form Mx ≥ b where M is a rectangular matrix and b is a vector and the inequality is taken coordinate-wise.

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- We now have a space of initial expansions of candidate ψ .
- Find all integer coefficient elements ψ_{maybe} of this space whose associated Humbert multiplicities are nonnegative. Note the initial expansions of ψ must be out to at least $q^{N/4}$.
- This is an integer programming problem of the form Mx ≥ b where M is a rectangular matrix and b is a vector and the inequality is taken coordinate-wise.

Now loop over all candidates ψ_{maybe} .

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

• We need to verify that ψ_{maybe} is really the truncation of some $\psi \in J_{0,N}^{\text{wh}}(\mathbb{Z})$. This is because it is usually intractable to expand to the required guaranteeing length in Step 3.

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- We need to verify that ψ_{maybe} is really the truncation of some $\psi \in J^{\text{wh}}_{0,N}(\mathbb{Z})$. This is because it is usually intractable to expand to the required guaranteeing length in Step 3.
- We can calculate a number $\operatorname{ord}(\psi_{\operatorname{maybe}})$ such that if ψ does exist, then $\Delta^{j}\psi \in J_{12j,N}^{\operatorname{cusp}}$ for $j > -\operatorname{ord}(\psi_{\operatorname{maybe}})$.

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- We need to verify that ψ_{maybe} is really the truncation of some $\psi \in J^{\text{wh}}_{0,N}(\mathbb{Z})$. This is because it is usually intractable to expand to the required guaranteeing length in Step 3.
- We can calculate a number $\operatorname{ord}(\psi_{\operatorname{maybe}})$ such that if ψ does exist, then $\Delta^{j}\psi \in J_{12j,N}^{\operatorname{cusp}}$ for $j > -\operatorname{ord}(\psi_{\operatorname{maybe}})$.
- Span $J_{12j,N}^{\text{cusp}}$ and see if any of the initial expansions match $\Delta^{j}\psi_{\text{maybe}}$. If yes, then we have found a ψ such that $\text{Borch}(\psi) \in M_k(\mathcal{K}(N))$. If no, then ψ_{maybe} can be discarded.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

We now have a set of ψ where Borch(ψ) ∈ M_k(K(N)). This set includes all the possible ψ for which Borch(ψ) ∈ S_k(K(N)).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- We now have a set of ψ where Borch(ψ) ∈ M_k(K(N)). This set includes all the possible ψ for which Borch(ψ) ∈ S_k(K(N)).
- Test whether each of these $\operatorname{Borch}(\psi)$ is a cusp form by using the following theorem.

Theorem (Poor, Shurman, Yuen)

An $f \in M_k(K(N))$ is a cusp form if and only if some explicit set of finitely many Fourier coefficients of the form

$$a(n\delta \begin{bmatrix} 1 & -m \\ -m & m^2 \end{bmatrix}; f)$$

are zero, for a certain set of (n, δ, m) that depend on k and N.

くロ とくぼ とくほ とくほ とうしょ

Goal: Make Borch $(\psi) = \phi \xi^{cN} + \phi_2 \xi^{(c+1)N} + \cdots \in S_k(K(N)).$

- We now have a set of ψ where Borch(ψ) ∈ M_k(K(N)). This set includes all the possible ψ for which Borch(ψ) ∈ S_k(K(N)).
- Test whether each of these $\operatorname{Borch}(\psi)$ is a cusp form by using the following theorem.

Theorem (Poor, Shurman, Yuen)

An $f \in M_k(K(N))$ is a cusp form if and only if some explicit set of finitely many Fourier coefficients of the form

$$a(n\delta \begin{bmatrix} 1 & -m \\ -m & m^2 \end{bmatrix}; f)$$

are zero, for a certain set of (n, δ, m) that depend on k and N.

End of algorithm.

Yuen

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Example: All Borcherds products in $S_9(K(16))$

• (Screenshot from our website www.siegelmodularforms.org)

$φ \in J_{9,c \cdot 16}^{cusp}$ $q^{c+t} \parallel φ$	t = 0	t = 1
c = 1	$1^{-5}2^{7}3^{1}$: S S S M M M $1^{-1}2^{2}3^{1}4^{1}$: S S S S	1 ¹¹ 2 ³ 3 ¹ : S
c = 2	$\begin{array}{c} 1^{2}2^{11}3^{2}:S\\ 1^{7}2^{3}3^{5}:S\ M\\ 1^{6}2^{6}3^{2}4^{1}:S\ S\\ 1^{10}2^{1}3^{2}4^{2}:S\\ 1^{9}2^{3}3^{2}5^{1}:S\ M\\ 1^{11}2^{2}3^{1}6^{1}:\emptyset\end{array}$	1 ¹⁸ 2 ⁷ 3 ² : Ø
c = 3	$\begin{array}{c} 1^{13}2^{10}3^{3}4^{1}:S\\ 1^{14}2^{7}3^{6}: \emptyset\\ 1^{17}2^{5}3^{3}4^{2}: \emptyset\\ 1^{16}2^{7}3^{3}5^{1}: \emptyset\\ 1^{18}2^{6}3^{2}6^{1}: \emptyset \end{array}$	

Note $2cN = \sum_{i} e_i d_i^2$ and $2k + 2\sum_{i} e_i = 24(c + t)$, where k = 9, N = 16 here. We omitted the 0¹⁸ part of each theta block.

Yuen

Application: Finding supercuspidal representations Role of Borcherds products

• Borcherds products were used to span and determine the space $S_9(K(16))$. This was extra challenging because 16 is highly non-square-free.

Application: Finding supercuspidal representations Role of Borcherds products

- Borcherds products were used to span and determine the space $S_9(K(16))$. This was extra challenging because 16 is highly non-square-free.
- An eigenform in S₉(K(16)) was found to have eigenvalues that proves it generates an automorphic representation with a supercuspidal 2-component. As far as we know, this is the first example of generating a supercuspidal component. Level 16 is the smallest level where this can happen, and weight 9 is the lowest weight where such an eigenform exists.

(See: Cris Poor, Ralf Schmidt, David Yuen: *Paramodular forms of level 16 and supercuspidal representations*, to appear in Moscow Journal of Combinatorics and Number Theory.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Degree 1: All elliptic curves E/\mathbb{Q} are modular

Modularity Theorem

(Wiles; Wiles & Taylor; Breuil, Conrad, Diamond & Taylor)

Let $N \in \mathbb{N}$. To each elliptic curve E/\mathbb{Q} with conductor N there exists a normalized Hecke eigenform $f \in S_2(\Gamma_0(N))^{\mathrm{new}}$ with rational eigenvalues such that

L(E, s, Hasse) = L(f, s, Hecke).

Degree 1: All elliptic curves E/\mathbb{Q} are modular

Modularity Theorem

(Wiles; Wiles & Taylor; Breuil, Conrad, Diamond & Taylor)

Let $N \in \mathbb{N}$. To each elliptic curve E/\mathbb{Q} with conductor N there exists a normalized Hecke eigenform $f \in S_2(\Gamma_0(N))^{\mathrm{new}}$ with rational eigenvalues such that

$$L(E, s, \text{Hasse}) = L(f, s, \text{Hecke}).$$

• Eichler (1954) proved the first examples $L(X_0(11), s, \text{Hasse}) = L(\eta(\tau)^2 \eta(11\tau)^2, s, \text{Hecke}).$

Degree 2: Paramodular conjecture

"All abelian surfaces A/\mathbb{Q} with a minimal endomorphism group over \mathbb{Q} are paramodular."

Paramodular Conjecture (Brumer and Kramer 2009)

Let $N \in \mathbb{N}$. To each abelian surface A/\mathbb{Q} with conductor N and endomorphism ring $\operatorname{End}_{\mathbb{Q}}(A) = \mathbb{Z}$, there exists a Hecke eigenform $f \in S_2(K(N))^{\operatorname{new}}$ that has rational eigenvalues and is not a Gritsenko lift from $J_{2,N}^{\operatorname{cusp}}$ such that

$$L(A, s, \text{Hasse-Weil}) = L(f, s, \text{spin}).$$

Degree 2: Paramodular conjecture

"All abelian surfaces A/\mathbb{Q} with a minimal endomorphism group over \mathbb{Q} are paramodular."

Paramodular Conjecture (Brumer and Kramer 2009)

Let $N \in \mathbb{N}$. To each abelian surface A/\mathbb{Q} with conductor N and endomorphism ring $\operatorname{End}_{\mathbb{Q}}(A) = \mathbb{Z}$, there exists a Hecke eigenform $f \in S_2(K(N))^{\operatorname{new}}$ that has rational eigenvalues and is not a Gritsenko lift from $J_{2,N}^{\operatorname{cusp}}$ such that

$$L(A, s, \text{Hasse-Weil}) = L(f, s, \text{spin}).$$

Note: the original converse of this conjecture has been amended.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

(*On the paramodularity of typical abelian surfaces,* Brumer, Pacetti, Poor, Tornaria, Voight, Yuen - on arXiv and soon to be published in the Journal of Algebra and Number Theory)

• Generalize method of Faltings-Serre to GSp(4).

(*On the paramodularity of typical abelian surfaces,* Brumer, Pacetti, Poor, Tornaria, Voight, Yuen - on arXiv and soon to be published in the Journal of Algebra and Number Theory)

- Generalize method of Faltings-Serre to GSp(4).
- Need residual representation at p = 2 irreducible.

(*On the paramodularity of typical abelian surfaces,* Brumer, Pacetti, Poor, Tornaria, Voight, Yuen - on arXiv and soon to be published in the Journal of Algebra and Number Theory)

- Generalize method of Faltings-Serre to GSp(4).
- Need residual representation at p = 2 irreducible.
- Class field theory computer calculations classifying extensions with prescribed ramification and Galois group contained in GSp(4, F₂).
(*On the paramodularity of typical abelian surfaces,* Brumer, Pacetti, Poor, Tornaria, Voight, Yuen - on arXiv and soon to be published in the Journal of Algebra and Number Theory)

- Generalize method of Faltings-Serre to GSp(4).
- Need residual representation at p = 2 irreducible.
- Class field theory computer calculations classifying extensions with prescribed ramification and Galois group contained in GSp(4, F₂).
- Hecke eigenvalue computer calculations for paramodular eigenforms written as rational functions of Gritsenko lifts and <u>Borcherds products</u>.

・ロト ・ 一下 ・ ト ・ ト ・ ト

(*On the paramodularity of typical abelian surfaces,* Brumer, Pacetti, Poor, Tornaria, Voight, Yuen - on arXiv and soon to be published in the Journal of Algebra and Number Theory)

- Generalize method of Faltings-Serre to GSp(4).
- Need residual representation at p = 2 irreducible.
- Class field theory computer calculations classifying extensions with prescribed ramification and Galois group contained in GSp(4, F₂).
- Hecke eigenvalue computer calculations for paramodular eigenforms written as rational functions of Gritsenko lifts and <u>Borcherds products</u>.
- Galois representations associated to automorphic representations whose archimedian component is a holomorphic limit of discrete series.

イロト イポト イヨト イヨト 三日

• Gritsenko lifts always land in the symmetric (plus for even weights and minus for odd weights) Fricke space. Borcherds products can land in either the symmetric or antisymmetric Fricke space.

- Gritsenko lifts always land in the symmetric (plus for even weights and minus for odd weights) Fricke space. Borcherds products can land in either the symmetric or antisymmetric Fricke space.
- For S₂(K(587))⁻ and S₂(K(353)), the Borcherds product method was the method used to prove the existence of a nonlift eigenform.

- Gritsenko lifts always land in the symmetric (plus for even weights and minus for odd weights) Fricke space. Borcherds products can land in either the symmetric or antisymmetric Fricke space.
- For S₂(K(587))⁻ and S₂(K(353)), the Borcherds product method was the method used to prove the existence of a nonlift eigenform.
- Borcherds products can be used to compute many more eigenvalues in conjunction with the restriction to modular curves method. This was essential for $S_2(K(587))^-$.

- Gritsenko lifts always land in the symmetric (plus for even weights and minus for odd weights) Fricke space. Borcherds products can land in either the symmetric or antisymmetric Fricke space.
- For $S_2(K(587))^-$ and $S_2(K(353))$, the Borcherds product method was the method used to prove the existence of a nonlift eigenform.
- Borcherds products can be used to compute many more eigenvalues in conjunction with the restriction to modular curves method. This was essential for $S_2(K(587))^-$.
- We expect Borcherds products to play a crucial role in future modularity proofs.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Weight k = 2

• Paramodular Conjecture of Brumer and Kramer: the modularity of abelian surfaces defined over \mathbb{Q} with minimal endomorphisms is shown by weight two nonlift paramodular newforms with rational eigenvalues.

Ν	dim $J_{2,N}^{\mathrm{cusp}}$	$\dim S_2(K(N))$	various comments
249	5	6	BP+Grit; Jac
277	10	11	modular! Q/L ; Jac
295	6	7	BP+Grit; Jac
349	11	12	BP+Grit; Jac
353	11	12	modular! BP+Grit; Jac

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Weight k = 2

• Paramodular Conjecture of Brumer and Kramer: the modularity of abelian surfaces defined over \mathbb{Q} with minimal endomorphisms is shown by weight two nonlift paramodular newforms with rational eigenvalues.

Ν	dim $J_{2,N}^{\mathrm{cusp}}$	$\dim S_2(K(N))$	various comments
249	5	6	BP+Grit; Jac
277	10	11	modular! Q/L ; Jac
295	6	7	BP+Grit; Jac
349	11	12	BP+Grit; Jac
353	11	12	modular! BP+Grit; Jac

• Poor, Shurman, Yuen have some (partly rigorous, partly heuristic) tables up to $N \le 1000$

Yuen

Finding all Borcherds products

Sept 19, 2019 28 / 37

Heuristic tables: k = 2 paramodular newforms: $N \le 800$.

+new nonlift = dim
$$\left((S_2(K(N))^{\text{new}})^+ / \text{Grit} \left(J_{2,N}^{\text{cusp}} \right) \right)$$

-new = dim $(S_2(K(N))^{\text{new}})^-$.
The "=" means "proven."

Ν +new nl various comments -new 249 = 1BP+Grit: Jac 277 = 1modular! Q/L; Jac BP+Grit: Jac 295 = 1349 = 1BP+Grit: Jac 353 = 1modular! BP+Grit; Jac 388 1 Jac

Sept 19, 2019 29 / 37

3

Yuen

N	+new nl	-new	various comments
389	=1		BP+Grit; Jac
394	1		Jac
427	1		Jac
461	=1		Tr(BP)+Grit; Jac
464	1		Jac
472	1		Jac
511	2		quad pair, $\sqrt{5}$; 4-dim A/\mathbb{Q} ?
523	=1		BP+Grit; Jac
550	1		Prym (A. Sutherland)

N	+new nl	-new	various comments
555	1		Jac
561	1		Prym
574	1		Jac
587	=1	= 1 modular!	Tr(BP)+Grit and BP-; Jacs
597	1		Jac
603	1		Jac
604	1		Jac
623	1		Jac
633	1		Jac

N	+new nl	-new	various comments
637	2		quad pair, $\sqrt{2}$; 4-dim A/\mathbb{Q} ?
644	1		Jac
645	2		quad pair, $\sqrt{2}$; 4-dim A/\mathbb{Q} ?
657	≥ 1		modular!* WR: $E_{(9\zeta_6-8)}/\mathbb{Q}(\sqrt{-3})$
665	1		Prym
688	1		Jac
691	1		Jac
702	1		Prym (A. Sutherland)

 $\zeta_6 = \exp(2\pi i \frac{1}{6})$

* via the lift of Berger, Dembélé, Pacetti, Seguin from a Bianchi modular form to a paramodular form

э

医下颌 医下

N	+new nl	-new	various comments
704	1		Jac
708	1		Jac
709	1		Jac
713	1	≥ 1	BP-; Jacs
731	=1		Berger and Klosin: modular!* Poor, Shurman, Yuen Jac
737	1		Prym
741	1		Jac
743		1	Jac

* Tobias Berger and Krzysztof Klosin: *Deformations of Saito-Kurokawa type and the Paramodular Conjecture*, with appendix by Poor, Shurman, Yuen, on arXiv and to appear in American Journal of Math.

N	+new nl	-new	various comments
745	1		Jac
760	1		Prym (A. Sutherland)
762	1		Jac
763	1		Jac
768	1		Jac
775	≥ 1		modular!* WR: $E_{(5\phi-2)}/\mathbb{Q}(\sqrt{5})$
797	1		Jac

 $\phi = (1 + \sqrt{5})/2$

* via the lift of Johnson-Leung and Roberts from a Hilbert modular form to a paramodular form

イロト イボト イヨト イヨト

The Paramodular conjecture 2.0 (2018)

An abelian fourfold B/\mathbb{Q} has quaternionic multiplication (QM) if $\operatorname{End}_{\mathbb{Q}}(B)$ is an order in a non-split quaternion algebra over \mathbb{Q} . A cuspidal, nonlift Siegel paramodular newform $f \in S_2(K(N))$ with rational Hecke eigenvalues will be called a *suitable* paramodular form of level N.

Paramodular Conjecture (Brumer-Kramer)

Let $N \in \mathbb{N}$. Let \mathcal{A}_N be the set of isogeny classes of abelian surfaces A/\mathbb{Q} of conductor N with $\operatorname{End}_{\mathbb{Q}} A = \mathbb{Z}$. Let \mathcal{B}_N be the set of isogeny classes of QM abelian fourfolds B/\mathbb{Q} of conductor N^2 . Let \mathcal{P}_N be the set of suitable paramodular forms of level N, up to nonzero scaling. There is a bijection $\mathcal{A}_N \cup \mathcal{B}_N \leftrightarrow \mathcal{P}_N$ such that

・ コット (雪) ・ (目) ・ (目)

The Paramodular conjecture 2.0 (2018)

An abelian fourfold B/\mathbb{Q} has quaternionic multiplication (QM) if $\operatorname{End}_{\mathbb{Q}}(B)$ is an order in a non-split quaternion algebra over \mathbb{Q} . A cuspidal, nonlift Siegel paramodular newform $f \in S_2(K(N))$ with rational Hecke eigenvalues will be called a *suitable* paramodular form of level N.

Paramodular Conjecture (Brumer-Kramer)

Let $N \in \mathbb{N}$. Let \mathcal{A}_N be the set of isogeny classes of abelian surfaces A/\mathbb{Q} of conductor N with $\operatorname{End}_{\mathbb{Q}} A = \mathbb{Z}$. Let \mathcal{B}_N be the set of isogeny classes of QM abelian fourfolds B/\mathbb{Q} of conductor N^2 . Let \mathcal{P}_N be the set of suitable paramodular forms of level N, up to nonzero scaling. There is a bijection $\mathcal{A}_N \cup \mathcal{B}_N \leftrightarrow \mathcal{P}_N$ such that

Brumer and Kramer: QM implies $N = M^2 s$ with $s \mid gcd(30, M)$.

siegelmodularforms.org

• Our website: www.siegelmodularforms.org

0	Siege	I Modi	ular Fo	rms		×	+												-			×	
<u>,</u>	\rightarrow	C	()	Not se	cure	sieg	elmo	dularform	ns.org											☆	D	:	
	Siegel Modular Forms Computation Pages																						
	Cris Poor Jerry Shurman, David S. Yuen																						
									Par	amod	ular Fo	orm	s										
				we	eight 2,	pro	<u>gress</u>	of all le	vels up	to 1000	0			Cris	Poor I	David	S. Y	uen					
				we	ig <u>hts u</u> j	p to	<u>14, le</u>	vel 16 n	onlift n	ewforn	ns		Cris P	oor R	alf Scl	hmidt	Dav	vid S.	Yuer	L			
		W	<u>reight</u>	t <u>2, lev</u>	el 731	non	lift co	nstructio	on and e	eigenfo	rm analy	<u>ysis</u>	Cris Po	oor Je	rry Sh	urman	Da	vid S.	. Yue	n			
			v	veight	<u>2, prim</u>	ie let	vel up	to 600	nonlift	constru	<u>ctions</u>		Cris Po	oor Je	rry Sh	urman	Da	vid S.	. Yue	n			
					the	gra	nd the	eta block	formu	la			Cris Po	oor Je	rry Sh	urman	Da	vid S.	. Yue	n			
			find	<u>ing all</u>	Borch	erds	prod	icts of a	<u>given</u> v	weight	and leve	<u>el</u>	Cris Po	oor Je	rry Sh	urman	Da	vid S.	. Yue	n			
				<u>weig</u>	<u>ht 2, sc</u>	<u>quar</u>	efree	composi	ite level	l up to 3	<u>300</u>		Cris Po	oor Je	rry Sh	urman	Da	vid S.	. Yue	n			
					wei	g <u>ht (</u>	2, pri	ne level	up to 6	00				Cris	Poor I	David	S. Y	uen					
					<u>a far</u>	nily	of an	tisymme	etric for	ms				Cris	Poor I	David	S. Y	uen					
		_																					

Siegel Modular Forms of Level 1

degree 3, weight up to 22	Cris Poor Jerry Shurman David S. Yuen
degree 4, weight up to 16; degree 5, weight 8 and 10; degree 6, weight 8	Cris Poor David S. Yuen
degree 4 Ikeda (DII) lifts, weight up to 16	Cris Poor David S. Yuen

Finding all Borcherds products

Sept 19, 2019 36 / 37

Thank you!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─ 臣