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Introduction

Definition (Siegel cusp forms of degree n)

A Siegel modular form of degree n with respect to Spn (Z) and weight k is
a holomorphic function Φ on Hn satisfying

Φ
(
(AZ + B) (cZ + D)−1

)
= det (CZ + D)k Φ (Z )

for any

(
A B
C D

)
∈ Spn (Z) and Z ∈ Hn. If in addition, Φ vanishes at the

cusps, then Φ is called a cusp form. Here

Spn (Z) =
{
γ ∈ GL2n (Z) : tγJnγ = Jn

}
, Jn =

(
0 1n

−1n 0

)
Hn =

{
Z ∈ M2 (C) : tZ = Z , Im (Z ) > 0

}
.

We denote by Sn
k the space of Siegel cusp forms of degree n with respect

to Spn (Z) and weight k.

Masaaki Furusawa (OCU) On Böcherer’s conjecture Darmstadt 2019 3 / 25



Fourier coefficients of Hecke eigenforms

Let Hn denote the Hecke algebra which acts on Sn
k .

Since Hn is commutative and T ∈ Hn is Hermitian with respect to the
Petersson inner product ⟨ , ⟩, Sn

k has a basis consisting of Hecke
eigenforms.

n = 1
Let ϕ ∈ S1

k be a Hecke eigenform with the Fourier expansion

ϕ (z) =
∞∑
n=1

a (n, ϕ) exp
(
2π

√
−1 nz

)
.

Then a (1, ϕ) ̸= 0 and when we normalize ϕ so that a (1, ϕ) = 1, we have

a (n, ϕ) = λ (n) where T (n)ϕ = λ (n)ϕ and∑
n≥1

a (n, ϕ) n−s =
∑
n≥1

λ (n) n−s =
∏

p:prime

1

(1− αp (ϕ) p−s) (1− βp (ϕ) p−s)
.
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Degree 2 case

Let Φ ∈ S2
k be a Hecke eigenform and assume that k is even. Then Φ has

the Fourier expansion

Φ (Z ) =
∑

T∈P2(Z)

a (T , Φ) exp
(
2π

√
−1 tr (TZ )

)
where

P2 (Z) :=
{
T =

(
a b/2

b/2 c

)
: a, b, c ∈ Z, T is positive definite

}
.

For S ,T ∈ P2 (Z), we say S ∼ T when T = tγSγ for some γ ∈ SL2 (Z).
Then

S ∼ T ⇒ a (S , Φ) = a (T , Φ) .
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Relation between Hecke eigenvalues and Fourier
coefficients

Suppose that − det (2T ) = −D is a discriminant of E = Q
(√

−D
)
.

Recall the Gauss composition law for binary quadratic forms.

Let hE be the class number of the imaginary quadratic fields E .

Let {Ti : 1 ≤ i ≤ hE} be a set of representatives of equivalence
classes of T ∈ P2 (Z) with − det (2T ) = −D.

Definition (Bessel period of type (E , χ))

For a character χ of the ideal class group of E ,

B (Φ;E , χ) := w−1
E

hE∑
i=1

χ (Ti ) a (Ti , Φ) Bessel period of type (E , χ)

where wE denotes the number of roots of unity in E .
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Let λ (m) be the eigenvalue of T (m) ∈ H2 for Φ, i.e. T (m)Φ = λ (m)Φ.
Then: ∑

m≥1

λ (m)m−s = ζ (2s − 2k + 4)−1 L (s, Φ, spin)

where L (s, Φ, spin) is the spin L-function of degree 4.

Then for any character χ of the ideal class group of E , we have

L (s − k + 2, χ) ·
hE∑
i=1

∑
n≥1

a (nTi , Φ) n
−s

 = wE ·B (Φ;E , χ) L (s, Φ, spin) .

In particular, when the class number hE = 1, we have∑
n≥1

a (nT , Φ) n−s = a (T , Φ)
∑
m≥1

λ (m)m−s .
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Böcherer’s conjecture

Conjecture (Böcherer, circa 1986)

There exists a constant CΦ which depends only on Φ such that

|B (Φ;E )|2 = CΦ · Dk−1 · L
(
1

2
, π (Φ)× χE

)
for any imaginary quadratic field E where

B (Φ;E ) := B (Φ;E , 1) = w−1
E

hE∑
i=1

a (Ti , Φ)

is the Special Bessel period of type E of Φ,

π (Φ) is the automorphic representation of PGSp2 (A) attached to Φ

χE is the quadratic chracter of A×

L (s, π (Φ)× χE ) is the complete spin L-function normalized so that
the functional equation is with respect to s 7→ 1− s.
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Remark

Böcherer verified the conjecture for Saito-Kurokawa lifts.

Böcherer did not speculate on the nature of the constant CΦ.

In particular, the equality above implies that

B (Φ;E ) ̸= 0 ⇒ L (1/2, π (Φ)× χE ) ̸= 0.

Some natural questions arise:

Can we describe the constant CΦ explicitly?

Is there such a formula also for B (Φ;E , χ) when χ is a non-trivial
character? . . . Generalized Böcherer conjecture
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Gross-Prasad conjecture and its refinement

F : a number field

(V , ( , )V ): a non-degenerate quadratic space over F .

W : a non-degenerate subspace of V such that
dimV ̸≡ dimW (mod 2).

(Π,VΠ): cuspidal representation of SO (V ,A).
(π,Vπ): cuspidal representation of SO (W ,A).

Then a certain period integral BV ,W : VΠ × Vπ → C, called Bessel period,
is defined.

Conjecture (Gross-Prasad, co-dimension one case (1992),
co-dimension general (1994), Canad. J. Math.)

BV ,W ̸≡ 0 ⇒ L (1/2,Π× π) ̸= 0.

The opposite direction, i.e. the non-vanishing of the L-value implies
the non-vanishing of a related Bessel period.

Local counterparts.
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Conjecture (Ichino-Ikeda, 2010, GAFA)

They formulated a refinement of the Gross-Prasad conjecture, which gives
an explicit identity between BV ,W ( , ) and L (1/2,Π× π) when
BV ,W ( , ) ̸≡ 0, and dimW = dimV − 1.

Conjecture (Generalization of Ichino-Ikeda conjecture by Yifeng Liu,
2016, Crelle)

By overcoming the convergence issue, he succeeded in formulating the
generalization of the Ichino-Ikeda conjecture to the general co-dimension
case.

Recall that PGSp2 ≃ SO (3, 2).

Theorem (Dickson, Pitale, Saha & Schmidt, to appear in JMSJ)

By computing the ramified local integrals explicitly, they have shown that
Yifeng Liu’s conjecture for SO (3, 2) ⊃ SO (2) yields a refinement of the
(generalized) Böcherer conjecture in the square-free level case when Φ is
not a Saito-Kurokawa lift.
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In particular, Dickson, Pitale Saha & Schmidt have shown that if Yifeng
Liu’s conjecture holds, then the constant CΦ in Böcherer’s conjecture is
given by

CΦ =
24k−4 · π2k+1

(2k − 2)!
· L (1/2, π (Φ))

L (1, π (Φ) ,Ad)
· ⟨Φ,Φ⟩ .

Hence

|B (Φ;E )|2

⟨Φ,Φ⟩
= Dk−1 · 22k−5 · L (1/2, π (Φ)) L (1/2, π (Φ)× χE )

L (1, π (Φ) ,Ad)
.

F & Morimoto have shown that Yifeng Liu’s conjecture holds under some
conditions for the special Bessel models concerning SOn,n+1 ⊃ SO (2). As
its consequence, a refined form of Böcherer’s conjecture holds by the result
above of Dickson, Pitale, Saha & Schmidt.
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Notation

F : a number field.

E : a quadratic extension of F .

χE : quadratic character of A×/F× corresponding to E .

All global L-functions are complete L-functions.

ξF =
∏

v : all ζFv (s): complete Dedekind zeta of F .

(V , ⟨ , ⟩): a quadratic space such that dimV = 2n + 1 (n ≥ 2),

V = Hn−1 ⊕ L (orthogonal sum) with H: hyperbolic plane

and
dim L = 3, L ⊃

(
E ,NE/F

)
as quadratic spaces.

Gn := F -isomorphism classes of SO (V ) for such V .

We identify SO (V ) with its F -isomorphism class in Gn.

We specify G = Gn = SO (Vn) ∈ Gn to denote the split one.
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Bessel subgroup

For G = SO (V ) ∈ Gn, we have SO (E ) ⊂ G .
But SO (E ) is “too small.”

Definition (Bessel subgroup)

Taking a certain unipotent subgroup S, a Bessel subgroup RE is defined by

RE := TE ⋉ S with TE := SO (E ),

which is contained in a maximal parabolic subgroup of G whose Levi
component is GL (n − 1)× SO (L).

For a non-trivial character ψ : A/F → C×, we have a character on S (A)
also denoted by ψ , by abuse of notation, which is stable under the
conjugate action of TE (A).
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Bessel period & Special Bessel period

Definition (Bessel period)

Let χ be a character of TE (A) /TE (F ). Note: TE ≃ E×/F×.
Then for an automorphic form ϕ on SO (V ,A), BE ,χ,ψ (ϕ), a Bessel period
of type (E , χ, ψ) is defined by

BE ,χ,ψ (ϕ) :=

∫
TE (F )\TE (A)

∫
S(F )\S(A)

ϕ (ts)χ−1 (t) ψ−1 (s) dt ds.

Definition (Special Bessel period)

When χ is trivial, the Bessel period of type (E , 1, ψ) is called the special
Bessel period of type E and denoted by BE (ϕ), i.e.

BE (ϕ) :=

∫
TE (F )\TE (A)

∫
S(F )\S(A)

ϕ (ts) ψ−1 (s) dt ds.
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Gross-Prasad conjecture for special Bessel periods

Theorem (F & Morimoto, Math. Ann., 2017)

π = ⊗v πv : an irreducible cuspidal automorphic representation of
G (A) for G ∈ Gn. Let Vπ be its space of automorphic forms.

Assume that a local component πw at some finite place w is generic.

Suppose that BE ̸≡ 0 on Vπ.
Then

L (1/2, π) L (1/2, π × χE ) ̸= 0.

Moreover:

∃π◦: globally generic irreducible cuspidal automorphic representation
of G (A) which is nearly equivalent to π, i.e. π◦v ≃ πv for almost all v .

Dihua Jiang & Lei Zhang: recently proved a more general theorem
assuming the extension of Arthur’s result to the non quasi-split case.
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Theorem above follows from the following theorem.

Theorem (F & Morimoto, Math. Ann., 2017)

π: an irreducible cuspidal automorphic representation of G (A) with
G ∈ Gn. Suppose that BE ̸≡ 0 on Vπ.

Suppose moreover that:

σ := Θn (π, ψ): theta lift of π from G to S̃pn (A) with respect to ψ,

Π := ΘVn

(
σ, ψ−λ): theta lift of σ to Gn (A) with respect to ψ−λ

are both non-zero and cuspidal. Note E = F
(√

−λ
)
and ψa (x) = ψ (ax).

Then we have:
L (1/2, π) L (1/2, π × χE ) ̸= 0

and ∃π◦: globally generic irreducible cuspidal automorphic representation
of Gn (A) nearly equivalent to π.

Remark

This line of thought concerning special Bessel periods goes back to
Waldspurger (n = 1) and Piatetski-Shapiro & Soudry (n = 2).
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As a corollary, we have shown that:

Theorem (F-Morimoto, Math. Ann., 2017)

For a Hecke eigenform Φ ∈ S2
k , we have

B (Φ;E ) ̸= 0 ⇐⇒ L (1/2, π (Φ)) L (1/2, π (Φ)× χE ) ̸= 0.

Actually the equivalence is proved for full modular vector valued Siegel
cusp forms.
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Refined Gross-Prasad conjecture

Set Up

π: an irreducible tempered cuspidal automorphic representation of
G (A) with G ∈ Gn.

All global measures are Tamagawa measures.

⟨ϕ1, ϕ2⟩ :=
∫
G(F )\G(A)

ϕ1 (g) ϕ2 (g) dg, Petersson product on Vπ.

⟨ , ⟩v : Gv -invariant Hermitian inner product on Vπv such that

⟨ϕ1, ϕ2⟩ =
∏
v

⟨ϕ1,v , ϕ2,v ⟩v for ϕi = ⊗v ϕi ,v ∈ Vπ.
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Set Up (continued)

dgv : measure on Gv such that Vol (Kv , dgv ) = 1 for almost all v .

dtv : similarly taken measure on TE ,v := SO (E )v .

Haar measure constants: dg = CG ·
∏

v dgv , dt = CE ·
∏

v dtv .

Local integral αv (ϕv , ϕ
′
v ):

αv

(
ϕv , ϕ

′
v

)
:=

∫
TE ,v

∫ st

Sv

⟨
πv (sv tv )ϕv , ϕ

′
v

⟩
v
ψ−1
v (s) dtv dsv .

Here

∫ st

Sv

denotes the stable integration on Sv defined by Liu.

Liu showed that when v is “good,” we have

αv

(
ϕv , ϕ

′
v

)
=

L
(
1
2 , πv

)
L
(
1
2 , πv × χE ,v

)∏n
j=1 ζFv (2j)

L (1, πv ,Ad) L (1, χE ,v )
.
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Theorem (F & Morimoto, J. Eur. Math. Soc. (JEMS), to appear)

F : totally real number field.

π = ⊗v πv : irreducible cuspidal tempered automorphic representation
of G (A) for G ∈ Gn.

At any archimedean place v, πv is a discrete series representation.

Suppose that BE ̸≡ 0 on Vπ.
Then:

For any v, ∃ϕ′v ∈ Vπv : KG ,v -finite vector such that αv (ϕ
′
v , ϕ

′
v ) ̸= 0.

For any non-zero ϕ ∈ Vπ of the form ϕ = ⊗v ϕv , we have

|BE (ϕ)|2

⟨ϕ, ϕ⟩
= 2−ℓCE

×
L
(
1
2 , π

)
L
(
1
2 , π × χE

)∏n
j=1 ξF (2j)

L (1, π,Ad) L (1, χE )
·
∏
v

α♮v (ϕv , ϕv )

⟨ϕv , ϕv ⟩
.

(Recall that all L-functions are complete L-functions.)
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(Theorem continued) Here

α♮v (ϕv , ϕv ) :=
L (1, πv ,Ad) L (1, χE ,v )

L (1/2, πv ) L (1/2, πv × χE ,v )
∏n

j=1 ζFv (2j)
· αv (ϕv , ϕv )

and hence α♮
v (ϕv ,ϕv )
⟨ϕv ,ϕv ⟩v

= 1 for almost all v .

π has a weak lift Π to GL2n (A), i.e. Π = ⊗v Πv is an irreducible
automorphic representation of GL2n (A) such that Πv is a local
Langlands lift of πv at all archimedean and almost all
non-archimedean v. Then Π is of the form Π = ⊞ℓ

i=1πi (isobaric
sum) such that

πi : irreducible cuspidal automorphic representation of GL2ni (A) such
that L

(
s, πi ,∧2

)
has a pole at s = 1,

∑k
i=1 ni = n, πi ̸≃ πj (i ̸= j).

(Indeed the existence of such Π readily follows from the previous
theorem.)

When n = 2, Theorem above has been proved by Liu for endoscopic
Yoshida lifts and by Corbett for non-endoscopic Yoshida lifts.
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Skeleton of the proof of Theorem

First:

We define the generic character ψλ for S̃pn (A) by

ψλ

[(
u

tu−1

)(
1n S

1n

)]
:= ψ

(
u1,2 + · · ·+ un−1,n +

λ

2
sn,n

)
.

Then:

Definition (ψλ-Whittaker period)

For an automorphic form ϕ̃ on S̃pn (A),

W
(
ϕ̃, ψλ

)
:=

∫
Un(F )\Un(A)

∫
Vn(F )\Vn(A)

ψλ

[(
u

tu−1

)(
1n S

1n

)]
× ϕ

[(
u

tu−1

)(
1n S

1n

)]
du dS .
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In the following, A =
a.a.

B implies that A = B up to multiplication by a

product of finitely many local factors.

1 Global pull-back formula of Bessel periods by F (Crelle, 1995):

W (ϕ̃;ψλ) =
a.a.

CGC
−1
E · BE (ϕ) where ϕ̃ := θφψ (ϕ).

2 Explicit formula for metaplectic Whittaker periods by Lapid-Mao:

|W (ϕ̃;ψλ)|2

< ϕ̃, ϕ̃ >
=
a.a.

2−ℓ ·
L(1/2, π × χE )

∏n
j=1 ξF (2j)

L(1, π,Ad)
.

3 Precise Rallis inner product formula by Gan-Takeda:

< ϕ̃, ϕ̃ >

< ϕ, ϕ >
=
a.a.

CG · L(1/2, π)∏n
j=1 ξF (2j)

.

=⇒ We are reduced to proving a pull-back formula for the local
metaplectic Whittaker pairing.
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Final remark

(F-Morimoto, in preparation)

1 Generalization to B (Φ;E , χ) where χ is not necessarily trivial of the
explicit L-value formula conjectured by Dickson, Pitale, Saha &
Schmidt.

2 Generalization of the L-value formula to the vector valued case.

3 Generalization of the L-value formula to the weight two case.
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