On Böcherer's conjecture

Masaaki Furusawa (joint work with Kazuki Morimoto at Kobe University)

Osaka City University

September 18, 2019

"Modular Forms on Higher Rank Groups," TU Darmstadt, Germany

Plan of today's talk

- Böcherer's conjecture
- **2** Gross-Prasad conjecture
- **3** Refined Gross-Prasad conjecture

4 Final remark

Introduction

Definition (Siegel cusp forms of degree *n*)

A Siegel modular form of degree n with respect to $\operatorname{Sp}_n(\mathbb{Z})$ and weight k is a holomorphic function Φ on \mathfrak{H}_n satisfying

$$\Phi\left((\mathsf{A} Z+\mathsf{B})\,(\mathsf{c} Z+\mathsf{D})^{-1}
ight)=\det\left(\mathsf{C} Z+\mathsf{D}
ight)^k\Phi(Z)$$

for any $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}_n(\mathbb{Z})$ and $Z \in \mathfrak{H}_n$. If in addition, Φ vanishes at the cusps, then Φ is called a cusp form. Here

$$\begin{split} \operatorname{Sp}_{n}\left(\mathbb{Z}\right) &= \left\{ \gamma \in \operatorname{GL}_{2n}\left(\mathbb{Z}\right) : {}^{t}\gamma J_{n}\gamma = J_{n} \right\}, \quad J_{n} = \begin{pmatrix} 0 & 1_{n} \\ -1_{n} & 0 \end{pmatrix} \\ \mathfrak{H}_{n} &= \left\{ Z \in \operatorname{M}_{2}\left(\mathbb{C}\right) : {}^{t}Z = Z, \operatorname{Im}\left(Z\right) > 0 \right\}. \end{split}$$

We denote by S_k^n the space of Siegel cusp forms of degree n with respect to $\operatorname{Sp}_n(\mathbb{Z})$ and weight k.

Fourier coefficients of Hecke eigenforms

Let \mathcal{H}_n denote the Hecke algebra which acts on S_k^n . Since \mathcal{H}_n is commutative and $T \in \mathcal{H}_n$ is Hermitian with respect to the Petersson inner product \langle , \rangle , S_k^n has a basis consisting of Hecke eigenforms.

 $\frac{n=1}{Let \ \phi} \in S^1_k$ be a Hecke eigenform with the Fourier expansion

$$\phi(z) = \sum_{n=1}^{\infty} a(n, \phi) \exp\left(2\pi\sqrt{-1} nz\right).$$

Then a $(1, \phi) \neq 0$ and when we normalize ϕ so that a $(1, \phi) = 1$, we have

$$a(n,\phi) = \lambda(n) \quad \text{where } T(n)\phi = \lambda(n)\phi \text{ and}$$

$$\sum_{n \in n} a(n,\phi) n^{-s} = \sum_{n \geq 1} \lambda(n) n^{-s} = \prod_{n \in n \text{ integrating}} \frac{1}{(1 - \alpha_p(\phi) p^{-s})(1 - \beta_p(\phi) p^{-s})}$$

Let $\Phi \in S_k^2$ be a Hecke eigenform and assume that k is even. Then Φ has the Fourier expansion

$$\Phi\left(\mathcal{Z}
ight) = \sum_{\mathcal{T}\in\mathcal{P}_{2}\left(\mathbb{Z}
ight)} \mathsf{a}\left(\mathcal{T},\Phi
ight) \exp\left(2\pi\sqrt{-1}\operatorname{tr}\left(\mathcal{T}\mathcal{Z}
ight)
ight)$$

where

$$\mathcal{P}_2\left(\mathbb{Z}
ight):=\left\{egin{array}{cc} T=egin{array}{cc} a&b/2\b/2&c \end{array}
ight):a,b,c\in\mathbb{Z},\ T ext{ is positive definite}
ight\}.$$

For $S, T \in \mathcal{P}_2(\mathbb{Z})$, we say $S \sim T$ when $T = {}^t \gamma S \gamma$ for some $\gamma \in \mathrm{SL}_2(\mathbb{Z})$. Then

$$S \sim T \quad \Rightarrow \quad a(S, \Phi) = a(T, \Phi).$$

Relation between Hecke eigenvalues and Fourier coefficients

Suppose that $-\det(2T) = -D$ is a discriminant of $E = \mathbb{Q}(\sqrt{-D})$.

- Recall the Gauss composition law for binary quadratic forms.
- Let h_E be the class number of the imaginary quadratic fields E.
- Let {T_i : 1 ≤ i ≤ h_E} be a set of representatives of equivalence classes of T ∈ P₂(Z) with − det (2T) = −D.

Definition (Bessel period of type (E, χ) **)**

For a character χ of the ideal class group of E,

$$B(\Phi; E, \chi) := w_E^{-1} \sum_{i=1}^{h_E} \chi(T_i) a(T_i, \Phi) \quad \text{Bessel period of type}(E, \chi)$$

where w_E denotes the number of roots of unity in E.

Let $\lambda(m)$ be the eigenvalue of $T(m) \in \mathcal{H}_2$ for Φ , i.e. $T(m)\Phi = \lambda(m)\Phi$. Then:

$$\sum_{m\geq 1}\lambda(m)\,m^{-s}=\zeta\left(2s-2k+4\right)^{-1}\,L\left(s,\Phi,{\rm spin}\right)$$

where $L(s, \Phi, spin)$ is the spin L-function of degree 4.

Then for any character χ of the ideal class group of E, we have

$$L(s-k+2,\chi)\cdot\sum_{i=1}^{h_E}\left(\sum_{n\geq 1}a(nT_i,\Phi)n^{-s}\right)=w_E\cdot B(\Phi;E,\chi)L(s,\Phi,\mathrm{spin}).$$

In particular, when the class number $h_E = 1$, we have

$$\sum_{n\geq 1} a(nT,\Phi) n^{-s} = a(T,\Phi) \sum_{m\geq 1} \lambda(m) m^{-s}.$$

Böcherer's conjecture

Conjecture (Böcherer, circa 1986)

There exists a constant C_{Φ} which depends only on Φ such that

$$|B(\Phi; E)|^{2} = C_{\Phi} \cdot D^{k-1} \cdot L\left(\frac{1}{2}, \pi(\Phi) \times \chi_{E}\right)$$

for any imaginary quadratic field E where

$$B\left(arPhi; E
ight) := B\left(arPhi; E, 1
ight) = w_{E}^{-1} \sum_{i=1}^{h_{E}} \mathsf{a}\left(\mathit{T}_{i}, \varPhi
ight)$$

is the Special Bessel period of type E of Φ ,

• $\pi(\Phi)$ is the automorphic representation of $PGSp_2(\mathbb{A})$ attached to Φ

- χ_E is the quadratic chracter of \mathbb{A}^{\times}
- L(s, π(Φ) × χ_E) is the complete spin L-function normalized so that the functional equation is with respect to s → 1 − s.

Remark

- Böcherer verified the conjecture for Saito-Kurokawa lifts.
- Böcherer did not speculate on the nature of the constant C_{Φ} .
- In particular, the equality above implies that

 $B(\Phi; E) \neq 0 \Rightarrow L(1/2, \pi(\Phi) \times \chi_E) \neq 0.$

Some natural questions arise:

- Can we describe the constant C_{Φ} explicitly?
- Is there such a formula also for B (Φ; E, χ) when χ is a <u>non-trivial</u> character? ... Generalized Böcherer conjecture

Gross-Prasad conjecture and its refinement

- F: a number field
- $(V, (,)_V)$: a non-degenerate quadratic space over F.
- W: a non-degenerate subspace of V such that dim V ≠ dim W (mod 2).
- (Π, V_{Π}) : cuspidal representation of SO (V, \mathbb{A}) .
- (π, V_{π}) : cuspidal representation of SO (W, \mathbb{A}) .

Then a certain period integral $B_{V,W}$: $V_{\Pi} \times V_{\pi} \to \mathbb{C}$, called Bessel period, is defined.

Conjecture (Gross-Prasad, co-dimension one case (1992), co-dimension general (1994), Canad. J. Math.)

- $B_{V,W} \not\equiv 0 \Rightarrow L(1/2, \Pi \times \pi) \neq 0.$
- The opposite direction, i.e. the non-vanishing of the L-value implies the non-vanishing of a related Bessel period.
- Local counterparts.

Conjecture (Ichino-Ikeda, 2010, GAFA)

They formulated a refinement of the Gross-Prasad conjecture, which gives an explicit identity between $B_{V,W}(,)$ and $L(1/2, \Pi \times \pi)$ when $B_{V,W}(,) \not\equiv 0$, and dim $W = \dim V - 1$.

Conjecture (Generalization of Ichino-Ikeda conjecture by Yifeng Liu, 2016, Crelle)

By overcoming the convergence issue, he succeeded in formulating the generalization of the Ichino-Ikeda conjecture to the general co-dimension case.

Recall that $PGSp_2 \simeq SO(3,2)$.

Theorem (Dickson, Pitale, Saha & Schmidt, to appear in JMSJ)

By computing the ramified local integrals explicitly, they have shown that Yifeng Liu's conjecture for $SO(3,2) \supset SO(2)$ yields a refinement of the (generalized) Böcherer conjecture in the square-free level case when Φ is not a Saito-Kurokawa lift.

Masaaki Furusawa (OCU)

On Böcherer's conjecture

In particular, Dickson, Pitale Saha & Schmidt have shown that if Yifeng Liu's conjecture holds, then the constant C_{Φ} in Böcherer's conjecture is given by

$$C_{\varPhi} = \frac{2^{4k-4} \cdot \pi^{2k+1}}{(2k-2)!} \cdot \frac{L\left(1/2, \pi\left(\varPhi\right)\right)}{L\left(1, \pi\left(\varPhi\right), \mathrm{Ad}\right)} \cdot \left\langle \varPhi, \varPhi \right\rangle.$$

Hence

$$\frac{\left|B\left(\Phi;E\right)\right|^{2}}{\left\langle\Phi,\Phi\right\rangle} = D^{k-1} \cdot 2^{2k-5} \cdot \frac{L\left(1/2,\pi\left(\Phi\right)\right)L\left(1/2,\pi\left(\Phi\right)\times\chi_{E}\right)}{L\left(1,\pi\left(\Phi\right),\mathrm{Ad}\right)}$$

F & Morimoto have shown that Yifeng Liu's conjecture holds under some conditions for the special Bessel models concerning $SO_{n,n+1} \supset SO(2)$. As its consequence, a refined form of Böcherer's conjecture holds by the result above of Dickson, Pitale, Saha & Schmidt.

Notation

- F: a number field.
- E: a quadratic extension of F.
- χ_E : quadratic character of $\mathbb{A}^{\times}/F^{\times}$ corresponding to E.
- All global *L*-functions are complete *L*-functions.
- $\xi_F = \prod_{v: all} \zeta_{F_v}(s)$: complete Dedekind zeta of F.
- (V, \langle , \rangle) : a quadratic space such that dim V = 2n + 1 $(n \ge 2)$, $V = \mathbb{H}^{n-1} \oplus L$ (orthogonal sum) with \mathbb{H} : hyperbolic plane

and

dim L = 3, $L \supset (E, N_{E/F})$ as quadratic spaces.

- $\mathcal{G}_n := F$ -isomorphism classes of SO(V) for such V.
- We identify SO (V) with its F-isomorphism class in \mathcal{G}_n .
- We specify $\mathbb{G} = \mathbb{G}_n = \mathrm{SO}(\mathbb{V}_n) \in \mathcal{G}_n$ to denote the *split* one.

Bessel subgroup

For $G = SO(V) \in \mathcal{G}_n$, we have $SO(E) \subset G$. But SO(E) is "too small."

Definition (Bessel subgroup)

Taking a certain unipotent subgroup S, a Bessel subgroup R_E is defined by

$$R_E := T_E \ltimes S$$
 with $T_E := SO(E)$,

which is contained in a maximal parabolic subgroup of G whose Levi component is $GL(n-1) \times SO(L)$.

For a non-trivial character $\psi : \mathbb{A}/F \to \mathbb{C}^{\times}$, we have a character on $S(\mathbb{A})$ also denoted by ψ , by abuse of notation, which is stable under the conjugate action of $T_E(\mathbb{A})$.

Masaaki Furusawa (OCU)

On Böcherer's conjecture

Bessel period & Special Bessel period

Definition (Bessel period)

Let χ be a character of $T_E(\mathbb{A})/T_E(F)$. Note: $T_E \simeq E^{\times}/F^{\times}$. Then for an automorphic form ϕ on SO (V, \mathbb{A}), $B_{E,\chi,\psi}(\phi)$, a Bessel period of type (E, χ, ψ) is defined by

$$\mathsf{B}_{\mathsf{E},\chi,\psi}\left(\phi\right) := \int_{\mathcal{T}_{\mathsf{E}}(\mathsf{F}) \setminus \mathcal{T}_{\mathsf{E}}(\mathbb{A})} \int_{\mathcal{S}(\mathsf{F}) \setminus \mathcal{S}(\mathbb{A})} \phi\left(\mathsf{ts}\right) \chi^{-1}\left(\mathsf{t}\right) \, \psi^{-1}\left(\mathsf{s}\right) \, \mathsf{dt} \, \mathsf{ds}.$$

Definition (Special Bessel period)

When χ is trivial, the Bessel period of type $(E, 1, \psi)$ is called the special Bessel period of type E and denoted by $B_E(\phi)$, i.e.

$$B_{E}(\phi) := \int_{T_{E}(F) \setminus T_{E}(\mathbb{A})} \int_{S(F) \setminus S(\mathbb{A})} \phi(ts) \psi^{-1}(s) dt ds.$$

Gross-Prasad conjecture for special Bessel periods

Theorem (F & Morimoto, Math. Ann., 2017)

 π = ⊗_ν π_ν: an irreducible cuspidal automorphic representation of G(A) for G ∈ G_n. Let V_π be its space of automorphic forms.

• Assume that a local component π_w at some finite place w is generic.

Suppose that
$$B_E
ot\equiv 0$$
 on V_{π} .
Then

$$L(1/2,\pi) L(1/2,\pi \times \chi_E) \neq 0.$$

Moreover:

 ∃ π°: globally generic irreducible cuspidal automorphic representation of G (A) which is nearly equivalent to π, i.e. π_v° ≃ π_v for almost all v.

Dihua Jiang & Lei Zhang: recently proved a more general theorem assuming the extension of Arthur's result to the non quasi-split case.

Theorem above follows from the following theorem.

Theorem (F & Morimoto, Math. Ann., 2017)

• π : an irreducible cuspidal automorphic representation of $G(\mathbb{A})$ with $G \in \mathcal{G}_n$. Suppose that $B_E \neq 0$ on V_{π} .

Suppose moreover that:

• $\sigma := \Theta_n(\pi, \psi)$: theta lift of π from G to $\operatorname{Sp}_n(\mathbb{A})$ with respect to ψ ,

• $\Pi := \Theta_{\mathbb{V}_n}(\sigma, \psi^{-\lambda})$: theta lift of σ to $\mathbb{G}_n(\mathbb{A})$ with respect to $\psi^{-\lambda}$ are both non-zero and cuspidal. Note $E = F(\sqrt{-\lambda})$ and $\psi^a(x) = \psi(ax)$. Then we have:

$$L(1/2,\pi) L(1/2,\pi \times \chi_E) \neq 0$$

and $\exists \pi^{\circ}$: globally generic irreducible cuspidal automorphic representation of $\mathbb{G}_n(\mathbb{A})$ nearly equivalent to π .

Remark

This line of thought concerning special Bessel periods goes back to Waldspurger (n = 1) and Piatetski-Shapiro & Soudry (n = 2).

As a corollary, we have shown that:

Theorem (F-Morimoto, Math. Ann., 2017)

For a Hecke eigenform $\Phi \in S_k^2$, we have

$$B(\Phi; E) \neq 0 \quad \iff \quad L(1/2, \pi(\Phi)) L(1/2, \pi(\Phi) \times \chi_E) \neq 0.$$

Actually the equivalence is proved for full modular vector valued Siegel cusp forms.

Set Up

- π : an irreducible tempered cuspidal automorphic representation of $G(\mathbb{A})$ with $G \in \mathcal{G}_n$.
- All global measures are Tamagawa measures.
- $\langle \phi_1, \phi_2 \rangle := \int_{G(F) \setminus G(\mathbb{A})} \phi_1(g) \ \overline{\phi_2(g)} \ dg$, Petersson product on V_{π} .
- $\bullet~\langle~,~\rangle_{v} \colon$ G_v-invariant Hermitian inner product on $V_{\pi_{v}}$ such that

$$\langle \phi_1, \phi_2 \rangle = \prod_{\mathbf{v}} \langle \phi_{1,\mathbf{v}}, \phi_{2,\mathbf{v}} \rangle_{\mathbf{v}} \text{ for } \phi_i = \otimes_{\mathbf{v}} \phi_{i,\mathbf{v}} \in V_{\pi}.$$

Set Up (continued)

- dg_v : measure on G_v such that $Vol(K_v, dg_v) = 1$ for almost all v.
- dt_v : similarly taken measure on $T_{E,v} := \mathrm{SO}(E)_v$.
- Haar measure constants: $dg = C_G \cdot \prod_{v} dg_{v}$, $dt = C_E \cdot \prod_{v} dt_{v}$.
- Local integral α_ν (φ_ν, φ'_ν):

$$\alpha_{\mathsf{v}}\left(\phi_{\mathsf{v}},\phi_{\mathsf{v}}'\right) := \int_{\mathcal{T}_{E,\mathsf{v}}} \int_{\mathcal{S}_{\mathsf{v}}}^{\mathrm{st}} \left\langle \pi_{\mathsf{v}}\left(s_{\mathsf{v}}t_{\mathsf{v}}\right)\phi_{\mathsf{v}},\phi_{\mathsf{v}}'\right\rangle_{\mathsf{v}} \psi_{\mathsf{v}}^{-1}\left(s\right) \, dt_{\mathsf{v}} \, ds_{\mathsf{v}}.$$

Here $\int_{S_v}^{S_v}$ denotes the stable integration on S_v defined by Liu.

• Liu showed that when v is "good," we have

$$\alpha_{\nu}\left(\phi_{\nu},\phi_{\nu}'\right) = \frac{L\left(\frac{1}{2},\pi_{\nu}\right)L\left(\frac{1}{2},\pi_{\nu}\times\chi_{E,\nu}\right)\prod_{j=1}^{n}\zeta_{F_{\nu}}\left(2j\right)}{L\left(1,\pi_{\nu},\mathrm{Ad}\right)L\left(1,\chi_{E,\nu}\right)}$$

Theorem (F & Morimoto, J. Eur. Math. Soc. (JEMS), to appear)

- F: totally real number field.
- π = ⊗_ν π_ν: irreducible cuspidal tempered automorphic representation of G (A) for G ∈ G_n.
- At any archimedean place v, π_v is a discrete series representation.

Suppose that $B_E \not\equiv 0$ on V_{π} . Then:

- For any v, $\exists \phi'_v \in V_{\pi_v}$: $K_{G,v}$ -finite vector such that $\alpha_v (\phi'_v, \phi'_v) \neq 0$.
- For any non-zero $\phi \in V_{\pi}$ of the form $\phi = \otimes_{v} \phi_{v}$, we have

$$\frac{|B_{E}(\phi)|^{2}}{\langle \phi, \phi \rangle} = 2^{-\ell} C_{E}$$
$$\times \frac{L\left(\frac{1}{2}, \pi\right) L\left(\frac{1}{2}, \pi \times \chi_{E}\right) \prod_{j=1}^{n} \xi_{F}(2j)}{L(1, \pi, \operatorname{Ad}) L(1, \chi_{E})} \cdot \prod_{\nu} \frac{\alpha_{\nu}^{\natural}(\phi_{\nu}, \phi_{\nu})}{\langle \phi_{\nu}, \phi_{\nu} \rangle}.$$

(Recall that all L-functions are complete L-functions.)

(Theorem continued) Here

$$\alpha_{\mathbf{v}}^{\natural}\left(\phi_{\mathbf{v}},\phi_{\mathbf{v}}\right) := \frac{L\left(1,\pi_{\mathbf{v}},\operatorname{Ad}\right)L\left(1,\chi_{E,\mathbf{v}}\right)}{L\left(1/2,\pi_{\mathbf{v}}\right)L\left(1/2,\pi_{\mathbf{v}}\times\chi_{E,\mathbf{v}}\right)\prod_{j=1}^{n}\zeta_{F_{\mathbf{v}}}\left(2j\right)} \cdot \alpha_{\mathbf{v}}\left(\phi_{\mathbf{v}},\phi_{\mathbf{v}}\right)$$

and hence $\frac{\alpha_v^{\mu}(\phi_v,\phi_v)}{\langle \phi_v,\phi_v \rangle_v} = 1$ for almost all v.

• π has a weak lift Π to $\operatorname{GL}_{2n}(\mathbb{A})$, i.e. $\Pi = \bigotimes_{v} \Pi_{v}$ is an irreducible automorphic representation of $\operatorname{GL}_{2n}(\mathbb{A})$ such that Π_{v} is a local Langlands lift of π_{v} at all archimedean and almost all non-archimedean v. Then Π is of the form $\Pi = \bigoplus_{i=1}^{\ell} \pi_{i}$ (isobaric sum) such that

π_i: irreducible cuspidal automorphic representation of GL_{2n_i} (A) such that L (s, π_i, ∧²) has a pole at s = 1, ∑_{i=1}^k n_i = n, π_i ≄ π_j (i ≠ j). (Indeed the existence of such Π readily follows from the previous theorem.)

When n = 2, Theorem above has been proved by Liu for endoscopic Yoshida lifts and by Corbett for non-endoscopic Yoshida lifts.

Masaaki Furusawa (OCU)

On Böcherer's conjecture

Skeleton of the proof of Theorem

First:

We define the generic character ψ_{λ} for $\operatorname{Sp}_{n}(\mathbb{A})$ by

$$\psi_{\lambda}\left[\begin{pmatrix}u\\&t_{u-1}\end{pmatrix}\begin{pmatrix}1_{n}&S\\&1_{n}\end{pmatrix}\right]:=\psi\left(u_{1,2}+\cdots+u_{n-1,n}+\frac{\lambda}{2}s_{n,n}\right).$$

Then:

Definition (ψ_{λ} **-Whittaker period)**

For an automorphic form $\tilde{\phi}$ on $\widetilde{\mathrm{Sp}}_n(\mathbb{A})$,

$$W\left(\tilde{\phi},\psi_{\lambda}\right) := \int_{U_{n}(F)\setminus U_{n}(\mathbb{A})} \int_{V_{n}(F)\setminus V_{n}(\mathbb{A})} \psi_{\lambda} \left[\begin{pmatrix} u & & \\ & tu^{-1} \end{pmatrix} \begin{pmatrix} 1_{n} & S \\ & 1_{n} \end{pmatrix} \right] \\ \times \phi \left[\begin{pmatrix} u & & \\ & tu^{-1} \end{pmatrix} \begin{pmatrix} 1_{n} & S \\ & 1_{n} \end{pmatrix} \right] du \, dS.$$

In the following, A = B implies that A = B up to multiplication by a product of finitely many local factors.

Global pull-back formula of Bessel periods by F (Crelle, 1995):

$$W(ilde{\phi};\psi_{\lambda}) \stackrel{=}{_{\mathsf{a.a.}}} C_{\mathsf{G}}C_{\mathsf{E}}^{-1} \cdot B_{\mathsf{E}}(\phi) \quad ext{where } ilde{\phi} \coloneqq heta_{\psi}^{\varphi}(\phi).$$

Explicit formula for metaplectic Whittaker periods by Lapid-Mao:

$$\frac{|W(\tilde{\phi};\psi_{\lambda})|^{2}}{<\tilde{\phi},\tilde{\phi}>} \stackrel{=}{=} 2^{-\ell} \cdot \frac{L(1/2,\pi\times\chi_{E})\prod_{j=1}^{n}\xi_{F}(2j)}{L(1,\pi,\mathrm{Ad})}$$

Precise Rallis inner product formula by Gan-Takeda:

$$\frac{<\tilde{\phi},\tilde{\phi}>}{<\phi,\phi>} \underset{\mathsf{a.a.}}{=} C_{\mathcal{G}} \cdot \frac{L(1/2,\pi)}{\prod_{j=1}^{n}\xi_{\mathcal{F}}(2j)}.$$

 \implies We are reduced to proving a *pull-back formula for the local metaplectic Whittaker pairing*.

Masaaki Furusawa (OCU)

On Böcherer's conjecture

(F-Morimoto, in preparation)

- Generalization to B (Φ; E, χ) where χ is not necessarily trivial of the explicit L-value formula conjectured by Dickson, Pitale, Saha & Schmidt.
- **2** Generalization of the L-value formula to the vector valued case.
- Generalization of the L-value formula to the weight two case.