Intersection Theory

4. Exercise sheet

Exercise 1:

The exterior product of cycles, for algebraic schemes X, Y over a field k, is the bilinear map

$$Z_*(X) \times Z_*(Y) \to Z_*(X \times Y)$$
$$(\alpha, \beta) \mapsto \alpha \boxtimes \beta$$

defined on prime cycles $[V] \in Z_r(X)$ and $[W] \in Z_s(Y)$ as

$$V] \boxtimes [W] = [V \times W] \in Z_{r+s}(X \times Y).$$

In this exercise, we will work through various properties of the exterior product. Prove the following:

1. Compatibility with rational equivalence:

If
$$\alpha \sim 0$$
 or $\beta \sim 0$, then $\alpha \boxtimes \beta \sim 0$.

2. Compatibility with proper pushforward:

For $f: X \to X', g: Y \to Y'$ proper, the product $f \times g: X \times Y \to X' \times Y'$ is also proper and one has

$$(f \times g)_*(\alpha \boxtimes \beta) = f_* \alpha \boxtimes g_* \beta$$

for all $\alpha \in Z_*(X), \beta \in Z_*(Y)$.

3. Compatibility with flat pullback:

For $f: X \to X'$ and $g: Y \to Y'$ flat equidimensional maps of relative dimension r and s respectively, the product $f \times g: X \times Y \to X' \times Y'$ is flat equidimensional of relative dimension r + s and one has

$$(f \times g)^* (\alpha \boxtimes \beta) = f^* \alpha \boxtimes g^* \beta$$

for all $\alpha \in Z_*(X'), \beta \in Z_*(Y')$.

Exercise 2:

Let k be a field and X, Y algebraic schemes over k. Suppose X admits a cellular decomposition, i.e, there is filtration of X composed of closed subschemes

$$\emptyset = X_{-1} \subseteq X_0 \subseteq \dots \subseteq X_{n-1} \subseteq X_n = X,$$

such that $X_i \setminus X_{i-1}$ is isomorphic to a disjoint union of affine spaces of dimension i. Prove that the exterior product of cycles gives rise to a surjective map

$$\operatorname{CH}_*(X) \otimes_{\mathbb{Z}} \operatorname{CH}_*(Y) \to \operatorname{CH}_*(X \times Y).$$

Hint: Use that $CH(\mathbb{A}^n_X) \cong CH(X)$.

Exercise 3*:

The map

$$\operatorname{CH}_*(X) \otimes_{\mathbb{Z}} \operatorname{CH}_*(Y) \to \operatorname{CH}_*(X \times Y)$$

from Exercise 2 is known to also be injective, thus an isomorphism, in many examples. Can you work out examples where it fails to be a surjection?