Intersection Theory

3. Exercise sheet

Exercise 1:

Let A be a Noetherian local ring of dimension 1 and let $f \in A$ be an element which is not a zero divisor. Prove that for all finitely generated A-modules M, the complex

$$
M \xrightarrow{f_{.}} M
$$

has kernel and cokernel of finite length and the Euler characteristic of it, which is defined as

$$
\chi_{A}(f, M):=\operatorname{length}_{A}(\operatorname{ker} M \xrightarrow{f .} M)-\operatorname{length}_{A}(M / f M)
$$

is equal to

$$
\chi_{A}(f, M)=\sum_{\operatorname{ht}(\mathfrak{p})=0} \operatorname{length}_{A_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right) \cdot \chi_{A / \mathfrak{p}}(f, A / \mathfrak{p}) .
$$

Hint: Use the additivity of $\chi_{A}(f, M)$ on short exact sequences together with the theory of associated prime ideals of a Noetherian module to reduce to case $M=A / \mathfrak{p}$.

Exercise 2:

Let k be a field, and consider the following Cartesian square of algebraic schemes over k :

Assume that, $f: X \rightarrow Y$ is proper and $g: Y \rightarrow Y^{\prime}$ is flat equidimensional of dimension d. Following the outlined steps, prove that for all $\alpha \in Z_{*}(X)$,

$$
g^{*} f_{*} \alpha=f_{*}^{\prime} g^{\prime *} \alpha \in Z_{*+d}\left(Y^{\prime}\right)
$$

(i) Prove the statement for the case where X is a variety, f is a closed immersion and α is a prime cycle.
(ii) Using (i), reduce the statement to proving it for the case where X and Y are varieties.
(iii) Using (ii) and base changing to the generic point we may assume $Y=\operatorname{Spec} K$ for a field K. In this case, prove the statement for $\operatorname{dim}(X)-\operatorname{dim}(Y)>0$.
(iv) Prove the statement for the case $Y=\operatorname{Spec} K$ and $X=\operatorname{Spec} L$ for a finite field extension L / X and conclude.

