## Intersection Theory

## 7. Exercise sheet

## Exercise 1:

Let $X$ be an algebraic scheme and $L$ a line bundle on $X$. Denote by $\nu$ the projection from $L-\{0\}$, the complement of zero section, to $X$. Prove the following: For all $k \geq 0$, the sequence

$$
\mathrm{CH}_{k+1} X \xrightarrow{c_{1}(L) \cap-} \mathrm{CH}_{k} X \xrightarrow{\nu^{*}} \mathrm{CH}_{k+1}(L-\{0\}) \rightarrow 0
$$

is exact.

## Exercise 2:

Let $i: X \rightarrow \mathbb{P}^{m}$ a closed embedding of codimension $d$. Furthermore, assume that $X$ is smooth and that it is an intersection of divisors $D_{1}, \cdots, D_{d}$. Derive an explicit formula for the first Chern class of the tangent bundle of $X, c_{1}\left(T_{X}\right)$, in terms of the first Chern class of the canonical bundle and the degrees of the divisors $D_{i}$.

Hint: Use the exact sequence

$$
0 \rightarrow T_{X} \rightarrow T_{\mathbb{P}^{m}} \rightarrow N_{X / \mathbb{P}^{m}} \rightarrow 0
$$

where $N_{X / \mathbb{P}^{m}}$ denotes the normal bundle.

