Intersection Theory

1. Exercise sheet

Exercise 1:

Let X be an algebraic scheme. Show the following basic properties of Chow groups:
(1) Let $X_{\text {red }}$ be the underlying reduced subscheme. Then, $\mathrm{CH}_{*}(X)=\mathrm{CH}_{*}\left(X_{\text {red }}\right)$.
(2) Let $X=\sqcup X_{i}$ be a finite disjoint union of open and closed subschemes. Then, $\mathrm{CH}_{*}(X)=$ $\oplus \mathrm{CH}_{*}\left(X_{i}\right)$.
(3) Let $X=X_{1} \cup X_{2}$ be a union of two closed subschemes. Then, there is an exact sequence $\mathrm{CH}_{*}\left(X_{1} \cap X_{2}\right) \rightarrow \mathrm{CH}_{*}\left(X_{1}\right) \oplus \mathrm{CH}_{*}\left(X_{2}\right) \rightarrow \mathrm{CH}_{*}(X) \rightarrow 0$.
(4) Let $Z \subset X$ be a closed subscheme with open complement U. Then, there is an exact sequence $\mathrm{CH}_{*}(Z) \rightarrow \mathrm{CH}_{*}(X) \rightarrow \mathrm{CH}_{*}(U) \rightarrow 0$.
Hint for (3) and (4): Snake lemma.

Exercise 2*:

Let $X=\operatorname{Spec} A$ be a normal, affine variety of dimension $d \geq 1$. Show that A is a unique factorization domain if and only if $\mathrm{CH}_{d-1}(X)=0$.
Hint: Use the following facts from commutative algebra: (1) A Noetherian normal domain is a unique factorization domain if and only if every prime ideal of height 1 is principal. (2) In a Noetherian normal domain A one has $A=\cap_{\mathrm{ht}(\mathfrak{p})=1} A_{\mathfrak{p}}$.

Exercise 3:

Let k be a field. Compute $\mathrm{CH}_{*}(X)$ in the following cases:
(1) $X=\mathbb{A}_{k}^{1}$
(2) $X=\mathbb{P}_{k}^{1}$

In addition, show the first map in the sequences in Exercise 1, (3) and (4) is not exact in general. Hint for (2): Let $f \in k(t)^{\times}$be an element in the function field of \mathbb{P}_{k}^{1}. Write $\operatorname{div}(f)=\sum_{i \in I} n_{i}\left[x_{i}\right] \in$ $Z_{0}\left(\mathbb{P}_{k}^{1}\right)$. Then, $\sum_{i \in I} n_{i}=0$.

Exercise 4:

Let k be a field. Let $\mathbb{A}_{k}^{1}=\operatorname{Spec}(k[t])$ be the affine line over k. Let $\mathbb{A}_{k}^{2}=\operatorname{Spec}(k[x, y])$ be the affine plane over k. Consider the following two cases:
(i) Let $X:=V\left(y^{2}-x^{3}\right) \subset \mathbb{A}_{k}^{2}$ be the cuspidal curve, and $f: \mathbb{A}_{k}^{1} \rightarrow X$ be the morphism induced from $x \mapsto t^{2}, y \mapsto t^{3}$ on rings.
(ii) Let $X:=V\left(y^{2}-x^{2}(x+1)\right) \subset \mathbb{A}_{k}^{2}$ be the nodal curve, and let $f: \mathbb{A}_{k}^{1} \rightarrow X$ be the morphism induced from $x \mapsto t^{2}-1, y \mapsto t\left(t^{2}-1\right)$ on rings.
Then X is an affine variety of dimension 1 . Work on the following statements:
(1) The $\operatorname{map} f$ is the normalization of X in its function field K. It restricts to an isomorphism $\mathbb{A}_{k}^{1} \backslash f^{-1}(P) \cong X \backslash\{P\}$ for $P:=(0,0) \in X(k)$. The local ring $\mathcal{O}_{X, P}$ is not normal.
(2) $\mathrm{Compute}^{\operatorname{ord}_{P}\left(\frac{y}{x}\right)}$ on X where $\frac{y}{x} \in K^{\times}$.
(3)* Can you compute $\mathrm{CH}_{0}(X)$?

