Intersection Theory

6. Exercise sheet

Exercise 1:

Let k be a field and D_1, D_2 two effective Cartier divisors on $X = \mathbb{P}^2_k$. Denote by

$$\sigma: \tilde{X} \to X$$

the blow-up in the ideal sheaf defined by $D_{12} = D_1 \cap D_2$. Recall the following statement proved in the lecture:

- (a) The subscheme $E = \sigma^{-1}(D_1 \cap D_2)$ is an effective Cartier divisor on \tilde{X} .
- (b) There are disjoint effective Cartier divisors C_1 and C_2 on \tilde{X} such that for i = 1, 2,

$$\sigma^* D_i = E + C_i.$$

Consider the following three situations:

- (1) One has $D_1 \subset D_2$ as subschemes.
- (2) Let L_i for i = 1, 2, 3 be lines in generic position with respect to each other and $D_i = L_i + L_3$ for i = 1, 2.
- (3) With notation as in (2), $D_1 = 2L_3 + L_1$ and $D_2 = L_2 + L_3$.

In each case, identify C_1, C_2 and verify (b) through explicit calculation.

Exercise 2:

If X/k is a smooth projective surface, then all Weil divisors are Cartier divisors. Thus we may define the intersection pairing

$$Z_1(X) \times Z_1(X) \to \operatorname{CH}_0(X) \stackrel{\operatorname{deg}}{\to} \mathbb{Z}$$
$$(D_1, D_2) \mapsto (D_1 \cdot D_2) = \operatorname{deg}(D_1 \cdot [D_2])$$

Using the results proven in the last lecture:

- (a) Check that this is well defined and commutative.
- (b) Compare this with the known intersection pairing (from the introductory lecture).
- (c) If $X = \mathbb{P}_k^2$ prove that it descends to CH₁. Moreover prove using (b) that it recovers Bezout's theorem.