On the Feigin-Tipunin algebra

Shoma Sugimoto

Research Institute for Mathematical Sciences, Kyoto University

September 22, 2021

★ 문 ► ★ 문 ►

Vertex operator algebra (VOA)

- ▶ VOA = ∞ -dim vector space + complicated multiplication
- ▶ For a module *M* over a VOA, we have the conformal grading

$$M = \bigoplus_{\Delta \in \mathbb{Q}} M_{\Delta}$$

s.t. $L_0|_{M_{\Delta}} = \Delta$, dim $M_{\Delta} < \infty$.

VOA was first introduced in the 1980s for the study of monster groups and the mathematical formulation of 2d CFTs, and have since been applied to a wide range of fields including integrable systems, knot and 3-manifold theory, and modular forms.

伺 ト イヨト イヨト

Semisimple VOAs

- Traditionally, VOAs have been studied mainly in the semi-simple case, i.e., when all modules are decomposed into direct sum of irreducible modules.
- In this case the characters of irreducible modules give traditional modular forms.
- Also, its module category is a semi-simple modular tensor category, which gives a 3d TQFT.
- The theory of semi-simple VOAs is highly completed, and has many examples.

(A) (E) (A) (E) (A)

Log VOAs

- On the other hand, the study of non-semi-simple vertex algebras has also become popular in recent years.
- A log VOA is a non-semi-simple VOA which satisfies a certain finiteness condition called C₂-cofinite.
- The most famous, and almost the only known, examples of a log VOA a is the Feigin-Tipunin algebra of type A₁.
- The Feigin-Tipunin algebra of type A₁ has been studied by many mathematicians and its basic properties and representation theory are almost known.
- Moreover, it has been found that its characters coincide with Ramanujan's false theta function and also with certain knot invariants (Gukov's half index).

・ 回 ト ・ ヨ ト ・ ヨ ト …

Problem

- 1. The study of log VOAs is not explored as semi-simple cases, and only a few examples of log VOAs are known.
- 2. The FT algebra of type ADE has a very complicated structure, so algebraic and direct computational approaches are not applicable, and for a long time there has been no results on it.

AIM

Develop theory on FT algebra of type ADE.

Overview

- 1. We prove the Feigin-Tipunin's conjecture on the geometric realization of the FT algebra of type ADE.
- 2. It enables us to use various geometric theorems.
- By using the geometric realization, we prove the basic properties of the FT algebra of type ADE.
- 4. After that, for some special cases, we prove the C_2 -cofiniteness of the FT algebra of type A_2 .

Notations

- \mathfrak{g} : fin-dim simple Lie algebra of type ADE,
- ► G : corresponding algebraic group,
- ▶ $p \in \mathbb{Z}_{\geq 2}$,
- ▶ V_L : lattice VOA associated with $L = \sqrt{p}P$ or $\sqrt{p}Q$ (where Q : root lattice, P : weight lattice),
- ► $V_{L+\lambda}$: irreducible V_L -module (where $\lambda \in \Lambda = \frac{1}{\sqrt{p}} P / \sqrt{p} Q$)
- $\lambda \in \Lambda$ is decomposed as

$$\lambda = -\sqrt{p}\hat{\lambda} + \bar{\lambda},$$

where

$$\hat{\lambda} : \text{minuscule weight} \in P_+, \\ \hat{\lambda} \in \frac{1}{\sqrt{p}} P / \sqrt{p} P.$$

回 と く ヨ と く ヨ と …

$W \curvearrowright \Lambda$ and $F_{i,\lambda}$

Let W be the Weyl group of $\mathfrak{g}.$ We have the action of W on Λ

$$\lambda \mapsto \sigma * \lambda = -\sqrt{p}\hat{\lambda} + \sigma(\bar{\lambda} + \frac{1}{\sqrt{p}}\rho) - \frac{1}{\sqrt{p}}\rho$$

for $\sigma \in W$, $\lambda \in \Lambda$. For $1 \leq i \leq \operatorname{rank} \mathfrak{g}$, we have the operator

$$F_{i,\lambda}: V_{L+\lambda} \to V_{L+\sigma_i * \lambda},$$

where $\sigma_i \in W$ is the simple reflection.

> < 물 > < 물 >

Definition

The (algebraic definition of) FT algebra W_L^{alg} is given by

$$W_L^{\text{alg}} = \bigcap_{i=1}^{\operatorname{rank}\mathfrak{g}} \ker F_{i,0}|_{V_L}.$$

We also have the $W_L^{\mathrm{alg}}\text{-}\mathrm{module}~W_{L+\lambda}^{\mathrm{alg}}$ defined by

$$W_{L+\lambda}^{\text{alg}} = \bigcap_{i=1}^{\operatorname{rank}\mathfrak{g}} \ker F_{i,\lambda}|_{V_{L+\lambda}}.$$

$$W_L^{\mathrm{alg}}$$
 is a sub VOA of V_L and $W_{L+\lambda}^{\mathrm{alg}}$ is a sub W_L^{alg} -module of $V_{L+\lambda}$.

白 と く ヨ と く ヨ と …

Geometric definition of FT algebra

Let ${\cal B}$ be the Borel subgroup of ${\cal G}.$ We have

 $B \curvearrowright V_{L+\lambda}$

and thus we have the homogeneous vector bundle $G\times_B V_{L+\lambda}$ over the flag variety G/B.

Definition

The (geometric definition of) FT algebra W_L is given by

$$W_L = H^0(G \times_B V_L).$$

We also have the W_L -module $W_{L+\lambda}$ defined by

$$W_{L+\lambda} = H^0(G \times_B V_{L+\lambda}).$$

同下 《三下 《三下

Theorem (Feigin-Tipunin, S) We have the VOA isomorphism

$$W_L \xrightarrow{\sim} W_L^{\text{alg}}, \ s \mapsto s(B)$$

More generally, we have the embedding

$$W_{L+\lambda} \hookrightarrow W_{L+\lambda}^{\text{alg}}, \ s \mapsto s(B),$$

where the \hookrightarrow above is $\xrightarrow{\sim}$ iff λ satisfies a certain easily checked condition.

In particular, if $(\sqrt{p}\bar{\lambda} + \rho, \theta) \leq p$, then $W_{L+\lambda} \simeq W_{L+\lambda}^{\text{alg}}$.

Proof

1. If $V \subseteq V_{L+\lambda}$ is a *G*-submodule of $V_{L+\lambda}$, then

 $V \simeq H^0(G \times_B V) \subseteq H^0(G \times_B V_{L+\lambda}) = W_{L+\lambda}.$

Thus $W_{L+\lambda}$ is the largest *G*-submodule of $V_{L+\lambda}$.

2. On the other hands, since

$$\ker F_{i,\lambda} \simeq H^0(P_i \times_B V_{L+\lambda}),$$

 $\ker F_{i,\lambda}$ is the largest P_i -submodule of $V_{L+\lambda}$.

3. Thus, we have

$$W_{L+\lambda} \subseteq W_{L+\lambda}^{\mathrm{alg}} = \bigcap_{i=1}^{\mathrm{rank}\,\mathfrak{g}} \ker F_{i,\lambda}|_{V_{L+\lambda}},$$

and $W^{\rm alg}_{L+\lambda}$ has the G-module structure iff λ satisfies a certain easily checked condition.

ヨト くほト くほと

$(\sqrt{p}\bar{\lambda}+\rho,\theta)\leq p$

From now on, let us assume that λ satisfies

$$(\sqrt{p}\bar{\lambda} + \rho, \theta) \le p,$$

where ρ is the Weyl vector and θ is the highest root. In particular, we assume that

$$p \ge h - 1.$$

Remark

The condition $(\sqrt{p}\overline{\lambda} + \rho, \theta) \leq p$ also appear in the modular representation theory of reduced enveloping algebras.

Duality theorem

Theorem (S) For any $n \in \mathbb{Z}$, we have

$$H^n(G \times_B V_{L+\lambda}) \simeq H^{-n}(G \times_B V_{L-w_0(\lambda)})^*$$

as W_L - and G-modules, where w_0 is the longest element of W and $H^{-n}(G \times_B V_{L-w_0(\lambda)})^*$ means the restricted dual of $H^{-n}(G \times_B V_{L-w_0(\lambda)})$ as W_L -module, i.e.,

$$H^{-n}(G \times_B V_{L-w_0(\lambda)})^* = \bigoplus_{\Delta \in \mathbb{Q}} H^{-n}(G \times_B (V_{L-w_0(\lambda)})_{\Delta})^*.$$

御 と く ヨ と く ヨ と …

Proof

1. By the Serre duality, we have

 $H^{n}(G \times_{B} V_{L+\lambda}) \simeq H^{\dim G/B - n}((G \times_{B} V_{L+\lambda})^{*} \otimes \mathcal{O}(-2\rho))^{*},$

where $\mathcal{O}(-2\rho)$ is the line bundle over G/B.

2. On the other hands, by $(\sqrt{p}\bar{\lambda}+\rho,\theta)\leq p$, we obtain

$$H^{-n}(G \times_B V_{L-w_0(\lambda)}) \simeq H^{\dim G/B-n}((G \times_B V_{L+\lambda})^* \otimes \mathcal{O}(-2\rho))^*.$$

in the same way as the proof of Borel-Weil-Bott's theorem. 3. By combining these two dualities, we obtain the assertion.

・ 回 ト ・ ヨ ト ・ ヨ ト

Duality for n > 0 (1)

Theorem (Feigin-Tipunin, S)

1. We have the cohomology vanishing

$$H^{n>0}(G \times_B V_{L+\lambda}) = 0.$$

2. We heve the character formula

$$\operatorname{ch} W_{L+\lambda} = \sum_{\alpha \in P_+ \cap \frac{1}{\sqrt{p}}L} \dim \mathcal{R}_{\alpha+\hat{\lambda}} \operatorname{ch} T^p_{\sqrt{p}\bar{\lambda},\alpha+\hat{\lambda}},$$

by the Atiyah-Bott's fixed point theorem, where

*R*_{α+λ} : irreducible G-module with h.w α + λ̂.
 T^p_{√pλ,α+λ} : Arakawa-Frenkel module over the principal affine W-algebra W^{p-h}(𝔅) of level p − h.

向下 イヨト イヨト

Duality for n = 0 (1)

Theorem (S) We have the W_L - and G-module isomorphism

 $W_{L+\lambda} \simeq W^*_{L-w_0(\lambda)}.$

In particular, W_L is simple and self-dual.

Since $W_{L+\lambda}$ has the *G*-action, we can decompose $W_{L+\lambda}$ as $G \times W_L^G$ -module (where W_L^G is the *G*-orbifold of W_L). By the character formula of W_L , we have

 $W_L^G \simeq \mathcal{W}^{p-h}(\mathfrak{g}).$

Thus, we can decompose $W_{L+\lambda}$ as $G imes \mathcal{W}^{p-h}(\mathfrak{g})$ -module.

向下 イヨト イヨト

Duality for n = 0 (2)

Theorem (S)

We have the $G imes \mathcal{W}^{p-h}(\mathfrak{g})$ -module isomorphism

$$W_{L+\lambda} \simeq \bigoplus_{\alpha \in P_{+} \cap \frac{1}{\sqrt{p}}L} \mathcal{R}_{\alpha+\hat{\lambda}} \otimes T^{p}_{\sqrt{p}\bar{\lambda},\alpha+\hat{\lambda}}$$

Moreover, we have

$$\mathcal{W}^{p-h}(\mathfrak{g}) \simeq \mathcal{W}_{p-h}(\mathfrak{g}),$$

and $T^p_{\sqrt{p}\bar{\lambda},\alpha+\hat{\lambda}}$ is the irreducible $\mathcal{W}_{p-h}(\mathfrak{g})$ -module.

Remark

We can study the representation theory of non-generic W-algebras by using that of FT algebras!

Proof

 Since W_L is simple, by the quantum Galois theory by [Dong-Li-Mason, McRae], we obtain the assertion for λ
 ⁻ = 0.
 Since T^p_{0,α+λ} is irreducible, we have

$$\operatorname{ch} T^p_{0, \alpha + \hat{\lambda}}$$
 given in [Arakawa-Frenkel]

= another character formula of the corresponding irreducible $W_{p-h}(g)$ -module given in [Arakawa].

- 3. By $(\sqrt{p}\overline{\lambda} + \rho, \theta) \leq p$, this equation leads a certain relation which independent of the choice of λ .
- 4. Applying this relation generalize the simplicity of $T^p_{0,\alpha+\hat{\lambda}}$ to that of $T^p_{\sqrt{p}\bar{\lambda},\alpha+\hat{\lambda}}$.

イロン スピン スピン スピン 一日

Duality for n = 0 (3)

By combining the simplicity of $T^p_{\sqrt{p}\bar{\lambda},\alpha+\hat{\lambda}}$ and $W_{L+\lambda}\simeq W^*_{L-w_0(\lambda)}$, we obtain the following.

Theorem (S)

 $W_{L+\lambda}$ is the irreducible W_L -module.

Remark

In the case of $\mathfrak{g} = \mathfrak{sl}_3$ and p = 2, before my work, the simplicity of W_L is proved in [Adamovic-Milas-Wang].

回 と く ヨ と く ヨ と …

Conclusion

- 1. FT algebra is traditionally defined by the sub VOA $W_L^{\text{alg}} = \bigcap_{i=1}^{\operatorname{rank} \mathfrak{g}} \ker F_{i,0}|_{V_L}$ of V_L .
- 2. Feigin-Tipunin conjectured W_L^{alg} has the geometric realization $W_L = H^0(G \times_B V_L)$, and proved in my first paper.
- 3. It enables us to use various strong geometric theorems, as Serre duality and Atiyah-Bott's theorem.
- 4. By using these theorems, when $(\sqrt{p}\overline{\lambda} + \rho, \theta) \leq p$, we proved the simplicity, character formula, and $G \times \mathcal{W}_{p-h}(\mathfrak{g})$ -module structure of $W_{L+\lambda}$.
- 5. Also, as its corollary, we obtain the simplicity of non-generic Arakawa-Frenkel module $T^p_{\sqrt{p}\bar{\lambda},\alpha+\hat{\lambda}}$. Moreover, $\operatorname{ch} W_{L+\lambda}$ is the higher rank version of the false theta function/Gukov's half index.

・ロト ・回ト ・ヨト ・ヨト

C_2 -cofiniteness of W_L (1)

We want to show that W_L is C_2 -cofinite, i.e.,

 $\dim R_{W_L} := \dim W_L/C_2(W_L) < \infty$

Namely, we have to show that

- 1. R_{W_L} is finitely generated, and
- 2. All element in R_{W_L} is nilpotent.

The first problem is (probably) proved for $p \ge h - 1$. (We use the simplicity of W_L and $T^p_{0,\alpha}$) For the second problem, denote by

$$\pi \colon W_L \twoheadrightarrow R_{W_L}$$

the projection from W_L to R_{W_L} .

イロト イポト イヨト イヨト

C_2 -cofiniteness of W_L (2)

For the second problem, let us recall the decomposition

$$W_L \simeq \mathcal{W}_{p-h}(\mathfrak{g}) \oplus (\bigoplus_{lpha
eq 0} \mathcal{R}_lpha \otimes T^p_{0, lpha})$$

- 1. It is easy to show that $\pi(\bigoplus_{\alpha \neq 0}) \subseteq R_{W_L}$ is nilpotent.
- 2. On the other hands, the principal affine W-algebra $W_{p-h}(\mathfrak{g})$ itself is NOT C_2 -cofinite, because

$$\mathcal{W}_{p-h}(\mathfrak{g}) \simeq \mathcal{W}^{p-h}(\mathfrak{g}).$$

3. Thus, to show that W_L is C_2 -cofinite, we have to find enough additional relations from $\pi(\bigoplus_{\alpha \neq 0})$ to $\pi(\mathcal{W}_{p-h}(\mathfrak{g}))$.

However, direct calculation of the additional relations is almost impossible.

回 と く ヨ と く ヨ と …

Theorem (S)

The additional relations from $\pi(\bigoplus_{\alpha \neq 0})$ to $\pi(\mathcal{W}_{p-h}(\mathfrak{g}))$ are determined by a certain "algorithm" much easier than direct calculation.

From now on, let us consider the case where $\mathfrak{g} = \mathfrak{sl}_3$. Denote by $\{L, W\}$ the generator of $\mathcal{W}^{p-h}(\mathfrak{sl}_3)$.

Example

When p=2, by the algorithm, we have

$$\pi((-\frac{1}{72}(L_{-2})^4 + \frac{7}{16}L_{-2}(W_{-3})^2)|0\rangle) \text{ and }$$

$$\pi((-\frac{7}{12}(L_{-2})^3W_{-3} + \frac{21}{32}(W_{-3})^3)|0\rangle)$$

are nilpotent. By the Hilbert's Nullstellensatz, W_L is C_2 -cofinite.

C_2 -cofiniteness of W_L (3)

Example

When p = 3, by the algorithm, we have

$$\pi((-\frac{1}{35}(L_{-2})^7 + \frac{99}{32}(L_{-2})^4(W_{-3})^2 - \frac{81}{2}L_{-2}(W_{-3})^4)|0\rangle) \text{ and } \pi((-\frac{687}{640}(L_{-2})^6W_{-3} + \frac{621}{16}(L_{-2})^3(W_{-3})^3 - \frac{243}{4}(W_{-3})^5)|0\rangle)$$

are nilpotent. By the Hilbert's Nullstellensatz, W_L is C_2 -cofinite. Theorem (S) When $\mathfrak{g} = \mathfrak{sl}_3$ and p = 2, 3, W_L is C_2 -cofinite.

▲ 国 ▶ | ▲ 国 ▶ | |

Future works (1)

- 1. When $W_{L+\lambda}$ is irreducible as W_L -module?
 - When $W_{L+\lambda} \simeq W_{L+\lambda}^{\text{alg}}$?
 - For any $\lambda \in \Lambda$?
- 2. What is the multiplicities?
 - $\blacktriangleright [W_{L+\lambda}^{\text{alg}} \colon W_{L+\sigma*\lambda}] =? [V_{L+\lambda} \colon W_{L+\sigma*\lambda}] =?$
 - These multiplicities are given by a special value of some "good polynomial"?
- 3. log Kazhdan-Lusztig conjecture (when $\mathfrak{g} = \mathfrak{sl}_2$, proved in [Gannon-Negron])

$$W_L - \operatorname{mod} \simeq \operatorname{``}\mathfrak{u}_q(\mathfrak{g}) - \operatorname{mod} \operatorname{''},$$

where " $\mathfrak{u}_q(\mathfrak{g}) - \mathrm{mod}$ " is a certain modification of the module category of the small quantum group at root of unity.

4. Relation between W_L and modular representation theory.

・ロ・ ・ 回 ・ ・ ヨ・ ・ ヨ・

Future works (2)

- general (non-principal) W-algebra version of the FT algebra. (In the case of affine VOA, studied by Adamovic et.al.)
- 2. Relationship between W_L -modules and knot theory/number theory (Gukov et.al).
 - $\sum a_{\lambda} \operatorname{ch} W_{L+\lambda} =$ "half index" of some Seifert 3-manifold?
 - Study the relation among

 $\textbf{3-manifold} \leftrightarrow \textbf{``spoiled''} \ \textbf{modular} \ \textbf{form}$

 \leftrightarrow VOA far from semisimple.

・ロ・ ・ 回 ・ ・ ヨ ・ ・ ヨ ・ ・

In particular,

- For log VOAs, what kinds of 3-manifolds/"spoiled" modular forms corresponds?
- For hyperbolic 3-manifolds, what kinds of VOAs/"spoiled" modular forms corresponds?

Thank you!

Shoma Sugimoto On the Feigin-Tipunin algebra

ヘロン 人間 とくほどう ほう

æ