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Introduction

We will discuss two-dimensional non-chiral conformal field theory, their

Formulation (arXiv:2007.07327)

Construction (arxiv:2104.10094)

Deformation (arXiv:2007.07327)

and applications.
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Introduction: Deformation in physics

A deformation provides new theories from a known theory.

Known theory
deform // new theory

Classical mechanics:

m d2x
dt2

= −kx // m d2x
dt2

= −kx + gx3

Quantum field theory:

1
2(∂µϕ∂

µϕ−m2ϕ2) // 1
2(∂µϕ∂

µϕ−m2ϕ2)− g
4!ϕ

4
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Deformation in 2d conformal field theory

The figure is the moduli space of
2d CFT with central charge (1, 1)
conjectured
by Dijkgraaf-Verlinde-Verlinde
and Ginsparg.

Each point on the line corresponds
to a CFT and a line corresponds
to a deformation of the CFT.
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VOA (chiral part of CFT) cannot deform

VOA V =
⊕
n∈Z

Vn, Y (−, z) : V → EndV [[z±]],

Y (a, z) =
∑
n∈Z

anz
−n−1.

In physics, the energy changes continuously with deformation.

energy spectrum = L(0)-eigenvalues

= spin ∈ Z −→ discrete.

Two point correlation function is of the form
C (z − w)n︸ ︷︷ ︸

holomorphic

with C ∈ C and n ∈ Z.

▶ Impossible to deform if we assume that the theory is holomorphic.
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Real analytic vertex operator

F =
⊕
h,h̄∈R

Fh,h̄, Y (−, z) : F → EndF [[zR, z̄R]],

Y (a, z) =
∑
h,h̄∈R

ah,h̄z
−h−1z̄−h̄−1.

We have to assume that the vertex operator is single-valued around
z = 0.

▶ zhz̄ h̄ = (zz̄)h̄zh−h̄

▶ (zz̄)h̄ = ||z ||h̄ = exp(h̄log(zz̄)) = is a single-valued real analytic
function on C \ {0}

The real analytic vertex operator Y (−, z) is single-valued around
z = 0 if

Y (a, z) =
∑

r∈R,n∈Z
ar−n,r ||z ||−r−1zn ∈ EndF [[z , z̄ , ||z ||R]]

.
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If we assume
1 Fh1,h̄1

(h, h̄)Fh2,h̄2
⊂ Fh1+h2−h−1,h̄1+h̄2−h̄−1

2 Fh,h̄ = 0 if h − h̄ /∈ Z,
then Y (a, z) ∈ EndF [[z , z̄ , ||z ||R]] is a consequence.

▶ c.f. Vn(k)Vm ⊂ Vn+m−k−1 for a VOA V .

energy = L(0) + L(0) = h + h̄ ∈ R
spin = L(0)− L(0) = h − h̄ ∈ Z,

spin is still discrete.

C (z − w)n ||z − w ||r︸ ︷︷ ︸
deformable

with n ∈ Z and r ∈ R.
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Locality

The vertex operator is assumed to be commutative,
(Locality) Y (a, x)Y (b, y) ∼a.c. Y (b, y)Y (a, x).

▶ This means if we evaluate by u ∈ F∨ =
⊕

h,h̄ F
∗
h,h̄

and v ∈ F , then

(Correlator) u(Y (a, x)Y (b, y)v) =a.c. u(Y (b, y)Y (a, x)v)

both sides converge in |x | > |y | and |y | > |x | respectively and have
analytic continuations to the same single-valued functions.

▶ Correlators are one of the most important physical quantity.

Goal

Our goal is to provide new mathematical examples of such algebras and
construct their deformation.
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Summary

We introduce the notion of a full vertex algebra, which is a generalization
of a Z-graded vertex algebra.

vertex algebra full vertex algebra

vector space V =
⊕

n∈Z Vn F =
⊕

h,h̄∈R Fh,h̄
vertex operator EndV [[z±]] EndF [[z , z̄ , |z |R]]
pole C((z)) C((z , z̄ , |z |R))
correlation function C[z±, (1− z)±] more complicated (explain later)

The notion of a full vertex algebra is a reformulation of a full field
algebra introduced by Huang and Kong.
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Vertex algebras from full vertex algebras

Let F be a full vertex algebra.

D, D̄ ∈ End F are defined by Y (a, z)1 = a+ Daz + D̄az̄ + . . .

Then Y (Da, z) = d
dzY (a, z) and Y (D̄a, z) = d

dz̄Y (a, z).

ker D̄ ⊂ F is a vertex algebra and F is a ker D̄-module.

Moreover, ker D̄ ⊗ kerD → F , a homomorphism, and F is a
ker D̄ ⊗ kerD-module.

decomposition of CFT

hol CFT⊗ anti-hol CFT ⊂ 2d CFT in physics,
⇔ full vertex algebra homomorphism t : ker D̄ ⊗ kerD → F .
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Reduction
A full vertex operator algebra F can be understood through the
representation theory of VOAs ker D̄ and kerD [Moore-Seiberg].
If ker D̄ and kerD are nice VOAs, then [Huang and Kong]

1 F is decomposed into the direct sum of irreducible
ker D̄ ⊗ kerD-modules

(Module) F =
⊕

i ,i ′∈Irr ker D̄⊗kerD

Mi ⊗Mi ′
nii′ .

2 the vertex operator Y (−, z) on F is also decomposed into the sum of
intertwining operators among irreducible modules

(intertwining operators) Y

(
k

ij

)
(−, z) : Mi → Hom(Mj ,Mk)[[z

R]].

Thus, if we understand Rep ker D̄ and Rep kerD well, then we can
construct a full VOA by combining (1) Mi and (2) Y

(k
ij

)
(−, z).
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Known results
Let V be a rational C2-cofinite VOA + some nice conditions.

Fuchs, Runkel and Schweigert show that there is a one-to-one
correspondence between the full vertex algebras V ⊗ V ⊂ F and
Frobenius algebra objects in RepV ⊗ RepV (FRS construction).

Huang and Lepowsky show that RepV inherits a braided tensor
category structure.

Let {Mλ}λ∈IrrV be the set of the isomorphic classes of the irreducible
V -modules. Huang and Kong show that

F =
⊕

λ∈IrrV
Mλ ⊗Mλ∗

inherits a full field algebra (full vertex algebra) structure as an
extension of V ⊗ V .

▶ The same (dual) modules are used for the holomorphic and
anti-holomorphic parts.

▶ called a (rational) diagonal model in physics.
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Motivation

Constructions of rational diagonal models are completely done by
Huang and Kong.

However, there are many non-diagonal (indicated by the FRS
construction) and irrational CFTs

In fact

A deformation of a rational CFT is almost always an non-diagonal and
irrational CFT.

−→ motivation for introducing the notion of a full vertex algebra.

Also, it seems to be important to construct algebras explicitly.
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Easiest non-trivial example: Ising model
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Virasoro vertex operator algebra

Let us consider the case of

ker D̄ = L(
1

2
, 0) and kerD = L(

1

2
, 0),

L(12 , 0) is the simple Virasoro VOAs of central charge 1
2 and L(12 , 0) is

the “anti-holomorphic” VOA.
▶ There are exactly three isomorphism classes of irreducible

representations of L( 12 , 0), L(
1
2 , 0), L(

1
2 ,

1
2 ), L(

1
2 ,

1
16 ).

▶ Set Is = {0, 1
2 ,

1
16}.

We will explain how to construct a full vertex algebra structure on

FIsing =
⊕
h∈Is

L(
1

2
, h)⊗ L(

1

2
, h).
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Normalized vertex operator

Let h0, h1, h2 ∈ Is = {0, 12 ,
1
16} and

I

(
h0

h1, h2

)
(−, z) : L(

1

2
, h1) → Hom(L(

1

2
, h2), L(

1

2
, h0))[z

R]

be the normalized intertwining operator such that

I

(
h0

h1, h2

)
( |h1⟩︸︷︷︸
lowest

, z) |h2⟩︸︷︷︸
lowest

=
1

2
|h0⟩︸︷︷︸
lowest

zh0−h1−h2 + higher terms . . . .

if {h0, h1, h2} is a permutation of {1
2 ,

1
16 ,

1
16}

and by

I

(
h0

h1, h2

)
(|h1⟩ , z) |h2⟩ = |h0⟩ zh0−h1−h2 + higher terms . . . .

otherwise.
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Conformal block

For h0, h1, h2, h3, h ∈ Is, set

Ch
h0,h1,h2,h3(z1, z2) = ⟨h0| I

(
h0
h1h

)
(|h1⟩ , z1)I

(
h

h2h3

)
(|h2⟩ , z2) |h3⟩ ,

which is called a Virasoro conformal block in physics.
▶ ⟨h0| ∈ L( 12 , h0)

∗ is the projection onto the lowest weight vector |h0⟩.
▶ Conformal block is a formal power series with variables z1 and z2.
▶ The conformal blocks are, in fact, absolutely convergent to

multi-valued holomorphic functions in |z1| > |z2|.
The Virosoro conformal block of central charge 1

2 was essentially
calculated by Belavin-Polyakov-Zamolodchikov.
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Table of conformal block

Table: Conformal blocks [Belavin-Polyakov-Zamolodchikov, M]

(h0, h1, h2, h3) h Ch
h0,h1,h2,h3

(z1, z2)

( 1
16 ,

1
16 ,

1
16 ,

1
16) 0 1

2{z1z2(z1 − z2)}−
1
8

(
(z

1
2
1 + z

1
2
2 )

1
2 + (z

1
2
1 − z

1
2
2 )

1
2

)
1
2

1
2{z1z2(z1 − z2)}−

1
8

(
(z

1
2
1 + z

1
2
2 )

1
2 − (z

1
2
1 − z

1
2
2 )

1
2

)
(12 ,

1
2 ,

1
2 ,

1
2) 0 {z1z2(z1 − z2)}−1(z21 − z1z2 + z22 )

(12 ,
1
2 ,

1
16 ,

1
16) 0 z

− 1
8

2 {z1(z1 − z2)}−
1
2 (z1 − z2

2 )

(12 ,
1
16 ,

1
2 ,

1
16)

1
16

1
2z

− 1
8

1 {z2(z1 − z2)}−
1
2 (z1 − 2z2)

( 1
16 ,

1
2 ,

1
2 ,

1
16)

1
16

1
2(z1z2)

− 1
2 (z1 − z2)

−1(z1 + z2)

(12 ,
1
16 ,

1
16 ,

1
2)

1
16

1
2{z1z2}

− 1
2 (z1 − z2)

− 1
8 (z1 + z2)

( 1
16 ,

1
2 ,

1
16 ,

1
2)

1
16

1
2z

−1
1 {z2(z1 − z2)}−

1
2 (z1 − 2z2)

( 1
16 ,

1
16 ,

1
2 ,

1
2) 0 z−1

2 {z1(z1 − z2)}−
1
2 (z1 − z2

2 )
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Symmetry of conformal block

Important remark

The conformal blocks are almost invariant under the exchange of h1 ↔ h2
and z1 ↔ z2.

For example,

C 0
1
2
, 1
2
, 1
16
, 1
16
(z1, z2) = z

− 1
8

2 {z1(z1 − z2)}−
1
2 (z1 −

z2
2
)

C 0
1
2
, 1
16
, 1
2
, 1
16
(z1, z2) = z

− 1
8

1 {z2(z1 − z2)}−
1
2 (
z1
2

− z2).

We also remark that the conformal blocks are multi-valued
holomorphic function on

Y2 = C2 \ {z1 = z2} ∪ {z1 = 0} ∪ {z2 = 0}︸ ︷︷ ︸
Branch point
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How to treat the symmetry of conformal blocks

The true conformal block is in fact four variables function,
Ch
h0,h1,h2,h3

(z0, z1, z2, z3) which is a multi-valued holomorphic function
on

X4(CP1) = {(z0, z1, z2, z3) ∈ (CP1)4 | zi ̸= zj}.

and convergent in |z0| > |z1| > |z2| > |z3|.
Ch
h0,h1,h2,h3

(z1, z2) is obtained by taking (z0, z3) 7→ (∞, 0).

Symmetry of conformal block

Let σ ∈ S4. If you choose a path γ : [0, 1] → X4(CP1) from
|z1| > |z2| > |z3| > |z4| to |zσ1| > |zσ2| > |zσ3| > |zσ4|. Then, there exists

Bh,h′

h0,h1,h2,h3
(γ) ∈ C such that

AγC
h
h0,h1,h2,h3(z0, z1, z2, z3)

=
∑
h′∈Is

Bh,h′

h0,h1,h2,h3
(γ)Ch′

hσ0,hσ1,hσ2,hσ3
(zσ0, zσ1, zσ2, zσ3)
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Connection matrix

Bh,h′

h0,h1,h2,h3
(γ) is called a connection matrix which depends only on the

homotopy class of γ.

All we need is Y (a1, z1)Y (a2, z2) ∼a.c. Y (a2, z2)Y (a1, z1). Thus, we
only consider Ch

h0,h1,h2,h3
(z1, z2) and let us choose the path

γ0 : [0, 1] → Y2 by

γ0(t) = (
z1 + z2

2
+ exp(πit)

z1 − z2
2

,
z1 + z2

2
− exp(πit)

z1 − z2
2

)

for fixed |z1| > |z2|.
We only consider the path γ0 and omit to write it,

Bh,h′

h0,h1,h2,h3
= Bh,h′

h0,h1,h2,h3
(γ0), called a Moore-Seiberg data.
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Example of connection matrix

Then, by using the table, we can calculate the connection matrix. For
example,

Aγ0C
0
1
16

, 1
16

, 1
16

, 1
16
(z1, z2)

= Aγ0{z1z2(z1 − z2)}−
1
8

(
(z

1
2
1 + z

1
2
2 )

1
2 + (z

1
2
1 − z

1
2
2 )

1
2

)
= exp(−1

8
πi)

1 + i

2
{z1z2(z1 − z2)}−

1
8

(
(z

1
2
1 + z

1
2
2 )

1
2 + (z

1
2
1 − z

1
2
2 )

1
2

)
+ exp(−1

8
πi)

1− i

2
{z1z2(z1 − z2)}−

1
8

(
(z

1
2
1 + z

1
2
2 )

1
2 − (z

1
2
1 − z

1
2
2 )

1
2

)
= exp(−1

8
πi)

1 + i

2
C 0

1
16

, 1
16

, 1
16

, 1
16
(z2, z1) + exp(−1

8
πi)

1 + i

2
C

1
2
1
16

, 1
16

, 1
16

, 1
16

(z2, z1)

Thus, {Bh,h′
1
16
, 1
16
, 1
16
, 1
16

}h,h′=0, 1
2
= exp(−1

8πi)

(
1+i
2

1−i
2

1−i
2

1+i
2

)
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Explicit formula

Proposition 1.1 (M ’21)

For any ∗,

B∗,0,∗,∗ = B∗,∗,0,∗ = 1

B∗, 1
2
, 1
2
,∗ = −1

Ba, 1
2
, 1
16
,a′ = Ba, 1

16
, 1
2
,a′ =

{
i (a or a′ = 1

2)

−i otherwise,

B
(b,b′)

a, 1
16
, 1
16
,a′

= exp(−1

8
πi)×


1 (a, a′ ̸= 1

16 , a = a′)

i (a, a′ ̸= 1
16 , a ̸= a′)

1+i
2 (a = a′ = 1

16 , b = b′)
1−i
2 (a = a′ = 1

16 , b ̸= b′).
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Ising model I

Let us go back to FIsing =
⊕

h∈Is L(
1
2 , h)⊗ L(12 , h).

▶ Set

eh = |h⟩ ⊗ |h⟩ ∈ L(
1

2
, h)⊗ L(

1

2
, h)

I

(
h0
h1h2

)
(−, z) = I

(
h0
h1h2

)
(−, z)︸ ︷︷ ︸

holomorphic

⊗ I

(
h0
h1h2

)
(−, z̄)︸ ︷︷ ︸

anti−holomorphic

.

We want to determine, for example,

Y (e 1
16
, z)e 1

16
= C 1

2
· I
(

0
1
16

1
16

)
(e 1

16
, z)e 1

16
+ C 1

2
· I
( 1

2
1
16

1
16

)
(e 1

16
, z)e 1

16
,

where C0,C 1
2
∈ C are parameters which need to be determined.

Yuto Moriwaki (RIMS) Non-chiral conformal field theory 2021/09/23 24 / 54



Ising model II

Set
AIsing = Ce0 ⊕ Ce 1

2
⊕ Ce 1

16
,

the lowest weight space.

From the parameters, C0,C 1
2
∈ C etc, we can define a

“multiplication” · : AIsing × AIsing → AIsing. by
e 1

16
· e 1

16
= C0e0 + C 1

2
e 1

2
.

We can show that to satisfy “the locality axiom”

e0 :unit and e 1
2
· e 1

2
= e0

e 1
2
· e 1

16
= e 1

16
= e 1

16
· e 1

2

e 1
16
· e 1

16
= e0 + e 1

2

is the unique solution by using the connection matrices Bh,h′

h0h1h2h3
.
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Ising model III

The locality can be checked as for example

e∗1
16
Y (e 1

16
, z1)Y (e 1

16
, z2)e 1

16

= C 0
1
16

, 1
16

, 1
16

, 1
16
(z1, z2)C

0
1
16

, 1
16

, 1
16

, 1
16
(z1, z2) + C

1
2
1
16

, 1
16

, 1
16

, 1
16

(z1, z2)C
1
2
1
16

, 1
16

, 1
16

, 1
16

(z1, z2)

=a.c.
1

2
(z1z̄1z2z̄2(z1 − z2)(z̄1 − z̄2))

− 1
8

√√
z1z̄1 +

√
z2z̄2 +

√
(z1 − z2)(z̄1 − z̄2)

=
1

2
|z1z2(z1 − z2)|−

1
4

√
|z1|+ |z2|+ |z1 − z2|

= e∗1
16
Y (e 1

16
, z2)Y (e 1

16
, z1)e 1

16
.

To check the locality directly for all vectors is a cumbersome task and
we wanted to handle it in a systematic way, which leads us to the
notion of a framed algebra.
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Remark on locality

In the case of a vertex algebra V , for any a, b ∈ V , there exits a
positive integer N such that (z − w)N [Y (a, z),Y (b,w)] = 0.

Since

e∗1
16
Y (e 1

16
, z1)Y (e 1

16
, z2)e 1

16

=
1

2
|z1z2(z1 − z2)|−

1
4

√
|z1|+ |z2|+ |z1 − z2|,

there is no such N for a full vertex algebra in general.

The singularity of a full vertex algebra is more complicated ∼ zhz̄ h̄.
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Framed algebra
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Code conformal field theory
Let (l , r) ∈ Z≥0. Hereafter, we assume that

Definition 2.1

A full vertex operator algebra F satisfies{
L(12 , 0)

⊗l ⊂ ker D̄

L(12 , 0)
⊗r ⊂ kerD as VOAs.

Such a full vertex operator algebra is called an (l , r)-framed full vertex
operator algebra.

We call the corresponding conformal field theory an (l , r)-code
conformal field theory.

Framed vertex operator algebra

The notion of (l , 0)-framed vertex operator algebra (= means not full) was
introduced by Dong-Griess-Höhn and has been studied by many
mathematicians. For example, the monster VOA is a (48, 0)-framed VOA.
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Generalization to the multi-index case

Recall that Is = {0, 12 ,
1
16}, the set of irreducible modules of L(12 , 0).

Set Isl ,r = Isl × Isr .

For λ = (h1, . . . , hl , h̄1, . . . , h̄r ) ∈ Isl ,r , set

Ll ,r (λ) =
l⊗

i=1

L(
1

2
, hi )⊗

r⊗
j=1

L(
1

2
, h̄j).

Then, (l , r)-framed full VOA F is decomposed into

F =
⊕

λ∈Isl,r
Ll ,r (λ)⊗ Sλ.

as a Ll ,r (0) = L(12 , 0)
⊗l ⊗ L(12 , 0)

⊗r -module, where Sλ is the lowest

weight space of weight λ ∈ Isl ,r .
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Framed algebra

Set SF =
⊕

λ∈Isl,r Sλ, the lowest weight space. Recall that in the case
of Ising model AIsing = Ce0 ⊕ Ce 1

2
⊕ Ce 1

16
inherits an algebra

structure. Similarly, we have:

Vertex operator to algebra

There exits a unique multiplication · : SF ⊗ SF → SF such that: For
u1 ⊗ a1 ∈ Ll ,r (λ

1)⊗ Sλ1 and u2 ⊗ a2 ∈ Ll ,r (λ
2)⊗ Sλ2 ,

Y (u1 ⊗ a1, z)u2 ⊗ a2 =
∑

λ∈Isl,r
Iλλ1,λ2(u1, z)u2︸ ︷︷ ︸

intertwining operator

⊗ (a1 ·λ a2)︸ ︷︷ ︸
algebra−part

∈
⊕

λ∈Isl,r
Ll ,r (λ)⊗ (SF )λ = F .

where a1 ·λ a2 is the projection of the product a1 · a2 onto λ component
S → Sλ.
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Notation

For λi = (hi1, . . . , h
i
l , h̄

i
1, . . . , h̄

i
r ) ∈ Isl ,r Set

Iλ
0

λ1,λ2(−, z) =
l⊗

i=1

I
h0i
h1i ,h

2
i
(−, z)⊗

r⊗
j=1

Ī
h0i
h1i ,h

2
i
(−, z̄).

Set |λ⟩ =
⊗l

i=1 |hi ⟩ ⊗
⊗r

j=1 |h̄j⟩ ∈ Ll ,r (λ), which is the lowest weight
vector.

Cλ
λ0,λ1,λ2,λ3(z1, z2) = ⟨λ0| I

(
λ0

λ1λ

)
(|λ1⟩ , z1)I

(
λ

λ2λ3

)
(|λ2⟩ , z2) |λ3⟩ ,

a multi-index conformal block.

Bλ,λ′

λ0,λ1,λ2,λ3 = Πl
i=1B

hi ,h
′
i

h0i ,h
1
i ,h

2
i ,h

3
i
Πr
j=1B

h̄j ,h̄
′
j

h̄0j ,h̄
1
j ,h̄

2
j ,h̄

3
j

∈ C,

which is a connection matrix for Cλ
λ0,λ1,λ2,λ3(z1, z2).
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Locality for framed algebra I

Fundamental question

Is it possible to rewrite “the locality”,

Y (a1, z1)Y (a2, z2) ∼a.c. Y (a2, z2)Y (a1, z1).

in terms of the finite-dimensional algebra SF .

The product · on SF should be “commutative”.
Let λi ∈ Isl ,r and ai ∈ Sλi , a∗0 ∈ S∗

λ0 .Then, by the definition of
induced vertex operator, we have:

⟨λ0| ⊗ a∗0,YS(|λ1⟩ ⊗ a1, z1)YS(|λ2⟩ ⊗ a2, z2) |λ3⟩ ⊗ a3⟩

=
∑

λ∈λ2⋆λ3

⟨λ0| , Iλ0

λ1λ(|λ
1⟩ , z1)Iλλ2λ3(|λ2⟩ , z2) |λ3⟩⟩⟨a∗0, a1 ·λ0 (a2 ·λ a3)⟩

=
∑

λ∈λ2⋆λ3

Cλ
λ0,λ1,λ2,λ3(z1, z2)︸ ︷︷ ︸
conformal block

⟨a∨0 , a1 ·λ0 (a2 ·λ a3)⟩︸ ︷︷ ︸
algebra-part

.
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Locality for framed algebra II

In order to check the locality, it suffices to compare

Aγ0YS(−, z1)YS(−, z2)

∼ Aγ0

∑
λ∈λ2⋆λ3

Cλ
λ0,λ1,λ2,λ3(z1, z2)⟨a∨0 , a1 ·λ0 (a2 ·λ a3)⟩.

and

YS(−, z2)YS(−, z1)

∼
∑

λ′∈λ1⋆λ3

Cλ
λ0,λ2,λ1,λ3(z2, z1)⟨a∨0 , a2 ·λ0 (a1 ·λ′ a3)⟩︸ ︷︷ ︸

1 and 2 are exchanged

By using the connection matrix,
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Locality for framed algebra III

The locality is “equivalent” to∑
λ′∈λ1⋆λ3

Cλ′

λ0,λ2,λ1,λ3(z2, z1)⟨a∨0 , a2 ·λ0 (a1 ·λ′ a3)⟩

=
∑

λ∈λ2⋆λ3

⟨a∨0 , a1 ·λ0 (a2 ·λ a3)⟩
∑
λ′

Bλ,λ′

λ0,λ1,λ2,λ3C
λ′

λ0,λ2,λ1,λ3(z2, z1).

(By using some argument), we can consider that the conformal blocks
{Cλ′

λ0,λ2,λ1,λ3(z2, z1)}λ′∈Isl,r are linearly independent.

Hence, the locality is equivalent to

⟨a∨0 , a2 ·λ0 (a1 ·λ′ a3)⟩ =
∑

λ∈λ2⋆λ3

Bλ,λ′

λ0,λ1,λ2,λ3⟨a∨0 , a1 ·λ0 (a2 ·λ a3)⟩
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Definition of framed algebra

A framed algebra is a finite-dimensional Isl ,r -graded vector space
S =

⊕
λ∈Isl,r Sλ equipped with a product · : S × S → S such that:

FA1) For λ = (h1, . . . , hl , h̄1, . . . , h̄r ) ∈ Isl ,r , Sλ = 0 unless
h1 + · · ·+ hl − h̄1 − · · · − h̄r ∈ Z (Spin must be an integer).

FA2) S0 = C1 and 1 · v = v · 1 = v for any v ∈ SF .

FA3) For any λ1, λ2 and a1 ∈ Sλ1 , a2 ∈ Sλ2 , a1 · a2 ∈
⊕

λ∈λ1⋆λ2 Sλ.

FA4) For any λi ∈ Isl ,r and ai ∈ Sλi , a∨0 ∈ S∗
λ0 ,

⟨a∨0 , a2 ·λ0 (a1 ·λ′ a3)⟩ =
∑

λ∈λ2⋆λ3

Bλ,λ′

λ0,λ1,λ2,λ3⟨a∨0 , a1 ·λ0 (a2 ·λ a3)⟩

New non-associative non-commutative algebra.
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Equivalence between categories

Main Theorem 1 (M’ 21)

{
(F ,Y (−, z)) 7→ (SF , ·)
(S , ·) 7→ (FS ,YS(−, z))

give an equivalence between the category of (l , r)-framed full VOA and
(l , r)-framed algebra.

Hence, the construction of framed full VOAs is reduced to that of framed
algebras.
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Construction of framed algebras
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Connection matrices I

To consider the condition (FA4)

⟨a∨0 , a2 ·λ0 (a1 ·λ′ a3)⟩ =
∑

λ∈λ2⋆λ3

Bλ,λ′

λ0,λ1,λ2,λ3⟨a∨0 , a1 ·λ0 (a2 ·λ a3)⟩,

we need to understand the connection matrices Bλ,λ′

λ0,λ1,λ2,λ3 .

For this purpose, we embed Is = {0, 12 ,
1
16} into Z2 × Z2 by

0 ↔ (0, 0),
1

2
↔ (0, 1),

1

16
↔ (1, 0).

Then, Isl ,r = Isl × Isr is embedded into Zl+r
2 × Zl+r

2 .

Remark for (d , c) ∈ Zl+r
2 × Zl+r

2 , d represents the 1
16 -part, and c

represents the 1
2 -part.
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Connection matrix II

Define length functions | · |l , | · |r : Zl+r
2 → Z≥0 by |c |l =

∑l
i=1 ci and

|c|r =
∑r

j=1 c̄j for c = (c1, . . . , cl , c̄1, . . . , c̄r ) ∈ Zl+r
2 . Define

| · | : Zl+r
2 → Z by |c | = |c |l − |c|r .

Theorem 3.1 (M ’21)

B
(d2+d3,c),(d1+d3,c ′)
(d0,c0),(d1,c1),(d2,c2),(d3,c3)

= (−1)|c
1c2|(−1)|d

1c2(c0+c3)|+|d2c1(c0+c3)|i−|d1c2|−|d2c1|+|d1d2(c0+c3)|

exp(
−πi

8
|d1d2|)(1 + i

2
)|d

1d2d3|l (
1− i

2
)|d

1d2d3|r (−i)|d
1d2d3(c+c ′)|.

|c | = |c|l − |c |r appears from the complex conjugate in

Bλ,λ′

λ0,λ1,λ2,λ3 = Πl
i=1 B

hi ,h
′
i

h0i ,h
1
i ,h

2
i ,h

3
i︸ ︷︷ ︸

left

Πr
j=1 B

h̄j ,h̄
′
j

h̄0j ,h̄
1
j ,h̄

2
j ,h̄

3
j︸ ︷︷ ︸

right

.
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Structure code
Let S =

⊕
(d ,c)∈Isl,r Sd ,c be an (l , r)-framed algebra.

Set CS = {α ∈ Zl+r
2 | S0,α ̸= 0}

DS = {d ∈ Zl+r
2 | Sd ,c ̸= 0 for some c ∈ Zl+r

2 }.

Proposition 3.2

Assume that the framed algebra S is simple. Then, the following
conditions hold:

1 CS and DS are subgroups of Zl+r
2 .

2 |α| ∈ 2Z for any α ∈ CS (CS is an even code).

3 |d | ∈ 8Z for any d ∈ DS .

4 DS ⊂ C⊥
S , where C⊥

S = {α ∈ Zl+r
2 | |αCS | ⊂ 2Z} (called the dual

code).

The codes CS ,DS were introduced by Dong-Griess-Höhn in the case
of framed “VOA” and called structure codes.
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Construction result

Hereafter, we assume that l = r .

Let G ⊂ Zr
2 be a subgroup such that 1r+r = (1, . . . , 1) ∈ G .

Set DG = {(g , g) ∈ Zr+r
2 | g ∈ G} and CG = D⊥

G ⊂ Zr+r
2 , the dual

code.

Main Theorem 2

Then, we explicitly construct a simple (r , r)-framed algebra SG whose
structure code is (DG ,CG ).

SG gives a frobenius algebra object in RepLl ,r (0) (FRS construction).

This result is inspired by Lam-Yamauchi’s work for the construction of
holomorphic framed VOAs.

Corollary 3.3

FG = FSG is a simple full VOA of central charge ( r2 ,
r
2).
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Dimension formula

Set PG (t) =
∑

g∈G t |g | =
∑r

k=0#G [k]tk .

Proposition 3.4

dimSG = 22r−dimGPG (
1
2).

If r = 1 and G = ⟨1⟩, then PG (t) = 1 + t and
dim SG = 22−1(1 + 1

2) = 3, the Ising model.

Now, we will classify low rank codes G .

If G = G1 ⊥ G2 as codes, then SG ∼= SG1 ⊗ SG2 and hence
FSG

∼= FSG1 ⊗ FSG2 .

It suffices to consider indecomposable code.
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Table of codes and CFT

Table: all indecomposable code CFTs of rank r ≤ 6

r code G current dimSG name

1 ⟨1⟩ 0 3 Ising

2 ⟨11⟩ SO(2) 10 R =
√
2

3 ⟨111⟩ SO(3) 36 SO(3)2
4 ⟨1111⟩ SO(4) 136 SO(4)1

⟨1111⟩⊥ 0 82 new

5 ⟨11111⟩ SO(5) 528 SO(5)1
⟨11000, 00111, 01100⟩ U(1) 276 new

6 ⟨11111⟩ SO(6) 2080 SO(6)1
⟨110000, 001111, 101000⟩ SO(3) 1000 new
⟨110000, 001111, 101100⟩ U(1)2 936 new

⟨110000, 001100, 000011, 101010⟩ 0 756 new
⟨111111⟩⊥ 0 730 new
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Correlators

Since we know the basis and product of SG explicitly, we have:

Proposition 3.5

Let α0, α1, α2, α3 ∈ C left
G . Then,

⟨Y (eα0 · t1r+r , z0)Y (eα1 · t1r+r , z1)Y (eα2 · t1r+r , z2)Y (eα3 · t1r+r , z3)1⟩

=δα0+α1+α2+α3,02
−r (−1)|α

1α3|(1, eα0 · eα1 · eα2 · eα3)Π0≤i<j≤3 ((zi − zj)(z̄i − z̄j))
− r

8

×F (z0, z1, z2, z3)
r−|α0α1+α0α2+α0α3+α1α2+α1α3+α2α3|l

G01,23(z0, z1, z2, z3)
|α0α1+α2α3|lG02,13(z0, z1, z2, z3)

|α0α2+α1α3|lG03,12(z0, z1, z2, z3)
|α0α3+α1α2|l

where Gij,kl(z1, z2, z3, z4) are defined by

G01,23(z0, z1, z2, z3) =
(
−|(z0 − z1)(z2 − z3)|

1
2 + |(z0 − z2)(z1 − z3)|

1
2 + |(z0 − z3)(z1 − z2)|

1
2

) 1
2
,

G02,13(z0, z1, z2, z3) =
(
|(z0 − z1)(z2 − z3)|

1
2 − |(z0 − z2)(z1 − z3)|

1
2 + |(z0 − z3)(z1 − z2)|

1
2

) 1
2
,

G03,12(z0, z1, z2, z3) =
(
|(z0 − z1)(z2 − z3)|

1
2 + |(z0 − z2)(z1 − z3)|

1
2 − |(z0 − z3)(z1 − z2)|

1
2

) 1
2
.
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Modular invariance

A (q, q̄)-character of a full vertex operator algebra F =
⊕

h,h̄∈R Fh,h̄
is defined by

ChqF =
∑
h,h̄∈R

dimFh,h̄q
h− c

24 qh̄−
c̄
24 .

Proposition 3.6

ChqFG is a real analytic function on upper half plane H with
q = exp(2πiτ) and it is modular invariant.
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Sketch of construction I

1 Let C[ĈG ] be the twisted group algebra defined by a two-cocycle
ϵ(−,−) on CG . Then, C[ĈG ] is a framed algebra with structure code
(0,CG ) (No d-part).

2 For d ∈ DG , define C[ĈG ]-module AG (d) by
AG (d) = C[ĈG ]⊗C[∆d ] Ctd , where Ctd is a trivial C[∆d ]-module.

3 Set SG =
⊕

d∈DG
SG (d).

4 For d1, d2 ∈ DG , define a map
md1,d2 : C[ĈG ]× C[ĈG ] → AG (d

1 + d2) by

md1,d2(eα1 , eα2) = (−1)|d
1d⊥

2α1α2|+|d1d2α2|+ 1
2
|d1α2|eα1 ·δd1d2 ·eα2 ·td1+d2

Yuto Moriwaki (RIMS) Non-chiral conformal field theory 2021/09/23 47 / 54



Sketch of proof II

Then, md1,d2 : C[ĈG ]× C[ĈG ] → AG (d
1 + d2) factors through

AG (d
1)× AG (d

2) → AG (d
1 + d2).

Combining md1,d2 , we can define · : SG × SG → SG .

It suffices to verify (FA4), which can be done by using the explicit

formula for the connection matrix Bλ,λ′

λ0,λ1,λ2,λ3 .

The algebra structure is explicitly!

td1 · td2 =
∑

γ∈∆d1d2

eγ · td1+d2 .
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Deformation of code CFT
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Deformation of code conformal field theory

Deformations of a full vertex algebra are introduced in our previous
paper [M ’20].

Set G⊥[2] = {g ∈ G⊥ | |g | = 2}.

Main Theorem 3

Assume that there exists mutually orthogonal vectors α1, . . . , αN ∈ G⊥[2].
Then, FG admits a deformation parametrized by O(N,N)/O(N)×O(N).
Furthermore, for σ ∈ O(N,N) and s0, s1, s2, s3 ∈ {±}N , the deformed
four point function satisfies

⟨Yσ(h(s
0) · t1r+r , z0)Yσ(h(s

1) · t1r+r , z1)Y (h(s1) · t1r+r , z2)Yσ(h(s
3) · t1r+r , z3)1⟩

= 2−r+3Nδp0+p1+p2+p3,0F (z0, z1, z2, z3)
r−2N

Π0≤i<j≤3 ((zi − zj)(z̄i − z̄j))
1
4 (pσ

−1(s i ,s i ),pσ−1(s j ,s j ))
l
+ 1

4
N− r

8 .

The deformed correlator depends analytically on σ ∈ O(N,N).
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Examples of deformations

For G = ⟨11⟩, G⊥ = ⟨11⟩. Thus, FG admits a current-current
deformation parametrized by R = O(1, 1)/O(1)× O(1).

While for G = ⟨10, 01⟩, G⊥ = 0. Thus, FG does not admit a
current-current deformation.

The number N is equal to the dimension of the Cartan subalgebra of
the Lie algebra (FG )1,0.
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Many CFTs admit current-current deformations

Table: all indecomposable code CFTs of rank r ≤ 6

r code G current dimSG name

1 ⟨1⟩ 0 3 Ising

2 ⟨11⟩ SO(2) 10 R =
√
2

3 ⟨111⟩ SO(3) 36 SO(3)2
4 ⟨1111⟩ SO(4) 136 SO(4)1

⟨1111⟩⊥ 0 82 G even
4

5 ⟨11111⟩ SO(5) 528 SO(5)1
⟨11000, 00111, 01100⟩ U(1) 276 G 2;1,1

5

6 ⟨11111⟩ SO(6) 2080 SO(6)1
⟨110000, 001111, 101000⟩ SO(3) 1000 G 2;1,1

6

⟨110000, 001111, 101100⟩ U(1)2 936 G 2;1,2
6

⟨110000, 001100, 000011, 101010⟩ 0 756 (E 4;2
6 )⊥

⟨111111⟩⊥ 0 730 G even
6
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Code CFTs are ubiquitous

Code CFT + deformation = large part of the moduli space.
▶ Except for (c , c̄) = (1, 1), CFT moduli space is not known well.

If c̄ = 0, then a CFT of central charge (c , c̄) consists only of
holomorphic fields, thus a vertex operator algebra (not full).

▶ A VOA does not admit any deformation. Thus, the moduli space is
discrete.

The following table is the classification of chiral CFTs.
central charge number of CFTs chiral code CFTs

(8,0) 1 1
(16,0) 2 2
(24,0) 71? 56 [Lam-Shimakura]
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Thank you very much
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