Trialities of \mathcal{W} -algebras

Andrew Linshaw

University of Denver

Based on joint work with T. Creutzig

Let $\mathfrak g$ be a simple, finite-dimensional Lie (super)algebra.

 $\mathcal{W}^k(\mathfrak{g},f)$ the \mathcal{W} -algebra at level k associated to \mathfrak{g} and an ever nilpotent $f\in\mathfrak{g}$.

It has simple quotient $W_k(\mathfrak{g}, f)$.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g},f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g},f)$ with $k=\psi-h^{\vee}$.

If $f = f_{\mathsf{prin}}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f) = \mathcal{W}^{\psi}(\mathfrak{g})$.

Feigin-Frenkel duality: $\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi'}({}^{L}\mathfrak{g})$ where ${}^{L}\mathfrak{g}$ is the Langlands dual Lie algebra, and $r^{\vee}\psi\psi'=1$.

Let $\mathfrak g$ be a simple, finite-dimensional Lie (super)algebra.

 $\mathcal{W}^k(\mathfrak{g},f)$ the \mathcal{W} -algebra at level k associated to \mathfrak{g} and an even nilpotent $f\in\mathfrak{g}$.

It has simple quotient $W_k(\mathfrak{g}, f)$.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $W^{\psi}(\mathfrak{g},f)$ will always denote $W^{k}(\mathfrak{g},f)$ with $k=\psi-h^{\vee}$.

If $f=f_{\mathsf{prin}}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g},f)=\mathcal{W}^{\psi}(\mathfrak{g})$

Feigin-Frenkel duality: $\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi'}({}^{L}\mathfrak{g})$ where ${}^{L}\mathfrak{g}$ is the Langlands dual Lie algebra, and $r^{\vee}\psi\psi'=1$.

Let $\mathfrak g$ be a simple, finite-dimensional Lie (super)algebra.

 $\mathcal{W}^k(\mathfrak{g},f)$ the \mathcal{W} -algebra at level k associated to \mathfrak{g} and an even nilpotent $f\in\mathfrak{g}$.

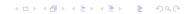
It has simple quotient $W_k(\mathfrak{g}, f)$.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g},f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g},f)$ with $k=\psi-h^{\vee}$.

If $f = f_{\mathsf{prin}}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f) = \mathcal{W}^{\psi}(\mathfrak{g})$.

Feigin-Frenkel duality: $\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi'}({}^{L}\mathfrak{g})$ where ${}^{L}\mathfrak{g}$ is the Langlands dual Lie algebra, and $r^{\vee}\psi\psi'=1$.



Let $\mathfrak g$ be a simple, finite-dimensional Lie (super)algebra.

 $\mathcal{W}^k(\mathfrak{g},f)$ the \mathcal{W} -algebra at level k associated to \mathfrak{g} and an even nilpotent $f\in\mathfrak{g}$.

It has simple quotient $W_k(\mathfrak{g}, f)$.

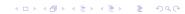
For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g},f)$ will always denote $\mathcal{W}^k(\mathfrak{g},f)$ with $k=\psi-h^{\vee}.$

If $f = f_{\mathsf{prin}}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f) = \mathcal{W}^{\psi}(\mathfrak{g})$.

Feigin-Frenkel duality: $\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi'}({}^{L}\mathfrak{g})$ where ${}^{L}\mathfrak{g}$ is the Langlands dual Lie algebra, and $r^{\vee}\psi\psi'=1$.

Here r^{\vee} is the lacing number of g.



Let $\mathfrak g$ be a simple, finite-dimensional Lie (super)algebra.

 $\mathcal{W}^k(\mathfrak{g},f)$ the \mathcal{W} -algebra at level k associated to \mathfrak{g} and an even nilpotent $f\in\mathfrak{g}$.

It has simple quotient $W_k(\mathfrak{g}, f)$.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g},f)$ will always denote $\mathcal{W}^k(\mathfrak{g},f)$ with $k=\psi-h^{\vee}$.

If $f=f_{\mathsf{prin}}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g},f)=\mathcal{W}^{\psi}(\mathfrak{g})$

Feigin-Frenkel duality: $\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi'}({}^{L}\mathfrak{g})$ where ${}^{L}\mathfrak{g}$ is the Langlands dual Lie algebra, and $r^{\vee}\psi\psi'=1$.

Let $\mathfrak g$ be a simple, finite-dimensional Lie (super)algebra.

 $\mathcal{W}^k(\mathfrak{g},f)$ the \mathcal{W} -algebra at level k associated to \mathfrak{g} and an even nilpotent $f\in\mathfrak{g}$.

It has simple quotient $W_k(\mathfrak{g}, f)$.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g},f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g},f)$ with $k=\psi-h^{\vee}$.

If $f=f_{\mathsf{prin}}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g},f)=\mathcal{W}^{\psi}(\mathfrak{g}).$

Feigin-Frenkel duality: $\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi'}({}^{L}\mathfrak{g})$ where ${}^{L}\mathfrak{g}$ is the Langlands dual Lie algebra, and $r^{\vee}\psi\psi'=1$.

Let $\mathfrak g$ be a simple, finite-dimensional Lie (super)algebra.

 $\mathcal{W}^k(\mathfrak{g},f)$ the \mathcal{W} -algebra at level k associated to \mathfrak{g} and an even nilpotent $f\in\mathfrak{g}$.

It has simple quotient $W_k(\mathfrak{g}, f)$.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g},f)$ will always denote $\mathcal{W}^k(\mathfrak{g},f)$ with $k=\psi-h^{\vee}$.

If $f=f_{\mathsf{prin}}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g},f)=\mathcal{W}^{\psi}(\mathfrak{g}).$

Feigin-Frenkel duality: $\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi'}({}^{L}\mathfrak{g})$ where ${}^{L}\mathfrak{g}$ is the Langlands dual Lie algebra, and $r^{\vee}\psi\psi'=1$.

Let $\mathcal V$ be a VOA and $\mathcal A \subseteq \mathcal V$ a subVOA

The **coset** C = Com(A, V) is the subVOA of V which commutes with A, that is, $C = \{v \in V | [a(z), v(w)] = 0, \forall a \in A\}.$

If \mathcal{V} , \mathcal{A} have Virasoro elements $L^{\mathcal{V}}$, $L^{\mathcal{A}}$, then \mathcal{C} has Virasoro element $L^{\mathcal{C}} = L^{\mathcal{V}} - L^{\mathcal{A}}$, and $\mathcal{A} \otimes \mathcal{C} \hookrightarrow \mathcal{V}$ is a conformal embedding.

Thm: (Arakawa, Creutzig, L., 2018) Let $\mathfrak g$ be simple and simply-laced. We have diagonal embedding

$$V^{\ell+1}(\mathfrak{g}) \hookrightarrow V^{\ell}(\mathfrak{g}) \otimes L_1(\mathfrak{g}), \qquad X^u \mapsto X^u \otimes 1 + 1 \otimes X^u, \qquad u \in \mathfrak{g}.$$

Set

$$\mathcal{C}^{\ell}(\mathfrak{g}) = \mathsf{Com}(V^{\ell+1}(\mathfrak{g}), V^{\ell}(\mathfrak{g}) \otimes L_1(\mathfrak{g})) = (V^{\ell}(\mathfrak{g}) \otimes L_1(\mathfrak{g}))^{\mathfrak{g}[t]}$$

We have an isomorphism of 1-parameter VOAs

$$\mathcal{C}^{\ell}(\mathfrak{g})\cong\mathcal{W}^{\psi}(\mathfrak{g}), \qquad \psi=rac{\ell+h^{ee}}{\ell+h^{ee}+h^{ee}+h^{ee}}.$$

Let \mathcal{V} be a VOA and $\mathcal{A} \subseteq \mathcal{V}$ a subVOA

The **coset** $\mathcal{C} = \mathsf{Com}(\mathcal{A}, \mathcal{V})$ is the subVOA of \mathcal{V} which commutes with \mathcal{A} , that is, $\mathcal{C} = \{v \in \mathcal{V} | [a(z), v(w)] = 0, \ \forall a \in \mathcal{A}\}.$

If \mathcal{V} , \mathcal{A} have Virasoro elements $L^{\mathcal{V}}$, $L^{\mathcal{A}}$, then \mathcal{C} has Virasoro element $L^{\mathcal{C}} = L^{\mathcal{V}} - L^{\mathcal{A}}$, and $\mathcal{A} \otimes \mathcal{C} \hookrightarrow \mathcal{V}$ is a conformal embedding.

Thm: (Arakawa, Creutzig, L., 2018) Let $\mathfrak g$ be simple and simply-laced. We have diagonal embedding

$$V^{\ell+1}(\mathfrak{g}) \hookrightarrow V^{\ell}(\mathfrak{g}) \otimes L_1(\mathfrak{g}), \qquad X^u \mapsto X^u \otimes 1 + 1 \otimes X^u, \qquad u \in \mathfrak{g}$$

Set

$$\mathcal{C}^{\ell}(\mathfrak{g}) = \mathsf{Com}(V^{\ell+1}(\mathfrak{g}), V^{\ell}(\mathfrak{g}) \otimes L_1(\mathfrak{g})) = (V^{\ell}(\mathfrak{g}) \otimes L_1(\mathfrak{g}))^{\mathfrak{g}[t]}.$$

We have an isomorphism of 1-parameter V

$$C^{\ell}(\mathfrak{g})\cong \mathcal{W}^{\psi}(\mathfrak{g}), \qquad \psi=rac{\ell+h^{\vee}}{\ell+h^{\vee}+1}.$$

Let V be a VOA and $A \subseteq V$ a subVOA

The **coset** C = Com(A, V) is the subVOA of V which commutes with A, that is, $C = \{v \in V | [a(z), v(w)] = 0, \forall a \in A\}$.

If \mathcal{V} , \mathcal{A} have Virasoro elements $L^{\mathcal{V}}$, $L^{\mathcal{A}}$, then \mathcal{C} has Virasoro element $L^{\mathcal{C}} = L^{\mathcal{V}} - L^{\mathcal{A}}$, and $\mathcal{A} \otimes \mathcal{C} \hookrightarrow \mathcal{V}$ is a conformal embedding.

Thm: (Arakawa, Creutzig, L., 2018) Let g be simple and simply-laced. We have diagonal embedding

$$V^{\ell+1}(\mathfrak{g}) \hookrightarrow V^{\ell}(\mathfrak{g}) \otimes L_1(\mathfrak{g}), \qquad X^u \mapsto X^u \otimes 1 + 1 \otimes X^u, \qquad u \in \mathfrak{g}$$

Set

$$\mathcal{C}^{\ell}(\mathfrak{g}) = \mathsf{Com}(V^{\ell+1}(\mathfrak{g}), V^{\ell}(\mathfrak{g}) \otimes L_1(\mathfrak{g})) = (V^{\ell}(\mathfrak{g}) \otimes L_1(\mathfrak{g}))^{\mathfrak{g}[t]}.$$

We have an isomorphism of 1-param

$$\mathcal{C}^{\ell}(\mathfrak{g})\cong\mathcal{W}^{\psi}(\mathfrak{g}), \qquad \psi=rac{\ell+h^{ee}}{\ell+h^{ee}$$

Let \mathcal{V} be a VOA and $\mathcal{A} \subseteq \mathcal{V}$ a subVOA

The **coset** C = Com(A, V) is the subVOA of V which commutes with A, that is, $C = \{v \in V | [a(z), v(w)] = 0, \forall a \in A\}$.

If \mathcal{V} , \mathcal{A} have Virasoro elements $L^{\mathcal{V}}$, $L^{\mathcal{A}}$, then \mathcal{C} has Virasoro element $L^{\mathcal{C}} = L^{\mathcal{V}} - L^{\mathcal{A}}$, and $\mathcal{A} \otimes \mathcal{C} \hookrightarrow \mathcal{V}$ is a conformal embedding.

Thm: (Arakawa, Creutzig, L., 2018) Let ${\mathfrak g}$ be simple and simply-laced. We have diagonal embedding

$$V^{\ell+1}(\mathfrak{g}) \hookrightarrow V^{\ell}(\mathfrak{g}) \otimes L_1(\mathfrak{g}), \qquad X^u \mapsto X^u \otimes 1 + 1 \otimes X^u, \qquad u \in \mathfrak{g}.$$

Set

$$\mathcal{C}^\ell(\mathfrak{g}) = \mathsf{Com}(V^{\ell+1}(\mathfrak{g}), V^\ell(\mathfrak{g}) \otimes L_1(\mathfrak{g})) = (V^\ell(\mathfrak{g}) \otimes L_1(\mathfrak{g}))^{\mathfrak{g}[t]}.$$

We have an isomorphism of 1-parameter VOAs

$$\mathcal{C}^\ell(\mathfrak{g})\cong \mathcal{W}^\psi(\mathfrak{g}), \qquad \psi=rac{\ell+h^ee}{\ell+h^ee}+rac{1}{\ell}.$$

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f,h,e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in \mathfrak{g} .

Then $W^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the **affine coset**, we mean $C^{\psi}(\mathfrak{g}, f) := \text{Com}(V^{\psi'}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)).$

Sometimes we also take invariants under some group of **outer** automorphisms.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong\mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong\mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a}\subseteq\mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in \mathfrak{g} .

Then $\mathcal{W}^{\psi}(\mathfrak{g},f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the **affine coset**, we mean $C^{\psi}(\mathfrak{g}, f) := \text{Com}(V^{\psi'}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f))$.

Sometimes we also take invariants under some group of **outer** automorphisms.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong\mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong\mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a}\subseteq\mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in \mathfrak{g} .

Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the **affine coset**, we mean $C^{\psi}(\mathfrak{g}, f) := \text{Com}(V^{\psi'}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)).$

Sometimes we also take invariants under some group of **outer** automorphisms.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong\mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong\mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a}\subseteq\mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in $\mathfrak{g}.$

Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the **affine coset**, we mean $\mathcal{C}^{\psi}(\mathfrak{g},f) := \mathsf{Com}(V^{\psi'}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g},f))$.

Sometimes we also take invariants under some group of **outer** automorphisms.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong\mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong\mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a}\subseteq\mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in $\mathfrak{g}.$

Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the **affine coset**, we mean $\mathcal{C}^{\psi}(\mathfrak{g},f):=\mathsf{Com}(V^{\psi'}(\mathfrak{a}),\mathcal{W}^{\psi}(\mathfrak{g},f)).$

Sometimes we also take invariants under some group of **outer** automorphisms.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong\mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong\mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a}\subseteq\mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in $\mathfrak{g}.$

Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the **affine coset**, we mean $\mathcal{C}^{\psi}(\mathfrak{g},f):=\mathsf{Com}(V^{\psi'}(\mathfrak{a}),\mathcal{W}^{\psi}(\mathfrak{g},f)).$

Sometimes we also take invariants under some group of **outer** automorphisms.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong\mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong\mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

Recall: For $n \ge 1$, write

$$\mathfrak{sl}_{n+m}=\mathfrak{sl}_n\oplus\mathfrak{gl}_m\oplus\left(\mathbb{C}^n\otimes(\mathbb{C}^m)^*\right)\ \oplus \bigg((\mathbb{C}^n)^*\otimes\mathbb{C}^m\bigg).$$

Let $f_{n,m} \in \mathfrak{sl}_{n+m}$ be the nilpotent which is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Then $f_{n,m}$ corresponds to the **hook-type partition** $n+1+\cdots+1$.

Define shifted level $\psi = k + n + m$, and define

$$\mathcal{W}^{\psi}(n,m) := \mathcal{W}^{\psi}(\mathfrak{sl}_{n+m}, f_{n+m}),$$

which has level $k = \psi - n - m$

Recall: For $n \ge 1$, write

$$\mathfrak{sl}_{n+m}=\mathfrak{sl}_n\oplus\mathfrak{gl}_m\oplus\left(\mathbb{C}^n\otimes(\mathbb{C}^m)^*\right)\ \oplus \bigg((\mathbb{C}^n)^*\otimes\mathbb{C}^m\bigg).$$

Let $f_{n,m} \in \mathfrak{sl}_{n+m}$ be the nilpotent which is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Then $f_{n,m}$ corresponds to the **hook-type partition** $n+1+\cdots+1$.

Define shifted level $\psi = k + n + m$, and define

$$\mathcal{W}^{\psi}(n,m) := \mathcal{W}^{\psi}(\mathfrak{sl}_{n+m}, f_{n+m}),$$

which has level $k = \psi - n - m$

Recall: For $n \ge 1$, write

$$\mathfrak{sl}_{n+m}=\mathfrak{sl}_n\oplus\mathfrak{gl}_m\oplus\left(\mathbb{C}^n\otimes(\mathbb{C}^m)^*\right)\ \oplus \left((\mathbb{C}^n)^*\otimes\mathbb{C}^m\right).$$

Let $f_{n,m} \in \mathfrak{sl}_{n+m}$ be the nilpotent which is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Then $f_{n,m}$ corresponds to the **hook-type partition** $n+1+\cdots+1$.

Define shifted level $\psi = k + n + m$, and define

$$\mathcal{W}^{\psi}(n,m) := \mathcal{W}^{\psi}(\mathfrak{sl}_{n+m}, f_{n+m}),$$

which has level $k = \psi - n - m$

Recall: For $n \ge 1$, write

$$\mathfrak{sl}_{n+m}=\mathfrak{sl}_n\oplus\mathfrak{gl}_m\oplus\left(\mathbb{C}^n\otimes(\mathbb{C}^m)^*\right)\ \oplus \bigg((\mathbb{C}^n)^*\otimes\mathbb{C}^m\bigg).$$

Let $f_{n,m} \in \mathfrak{sl}_{n+m}$ be the nilpotent which is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Then $f_{n,m}$ corresponds to the **hook-type partition** $n+1+\cdots+1$.

Define shifted level $\psi = k + n + m$, and define

$$\mathcal{W}^{\psi}(n,m) := \mathcal{W}^{\psi}(\mathfrak{sl}_{n+m}, f_{n+m}),$$

which has level $k = \psi - n - m$.

For $n \geq 1$, $\mathcal{W}^{\psi}(n,m)$ is a common generalization of the following well-known examples.

Principal: For
$$n \geq 2$$
, $W^{\psi}(n,0) = W^{\psi}(\mathfrak{sl}_n)$

Subregular: For
$$n \geq 2$$
, $\mathcal{W}^{\psi}(n,1) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n+1}, f_{\mathsf{subreg}})$

Trivial: For
$$m \geq 1$$
, $\mathcal{W}^{\psi}(1, m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m+1}, 0) = V^{\psi - m - 1}(\mathfrak{sl}_{m+1})$

Minimal: For
$$m \geq 1$$
, $\mathcal{W}^{\psi}(2, m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m+2}, f_{\min})$.

For $n \geq 1$, $\mathcal{W}^{\psi}(n,m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2$, $\mathcal{W}^{\psi}(n,0) = \mathcal{W}^{\psi}(\mathfrak{sl}_n)$

Subregular: For $n \geq 2$, $\mathcal{W}^{\psi}(n,1) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n+1}, f_{\mathsf{subreg}})$

Trivial: For $m \geq 1$, $\mathcal{W}^{\psi}(1, m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m+1}, 0) = V^{\psi - m - 1}(\mathfrak{sl}_{m+1})$

Minimal: For $m \geq 1$, $W^{\psi}(2, m) \cong W^{\psi}(\mathfrak{sl}_{m+2}, f_{\min})$.

For $n \geq 1$, $\mathcal{W}^{\psi}(n,m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2$, $\mathcal{W}^{\psi}(n,0) = \mathcal{W}^{\psi}(\mathfrak{sl}_n)$

Subregular: For $n \geq 2$, $\mathcal{W}^{\psi}(n,1) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n+1}, f_{\mathsf{subreg}})$

Trivial: For $m \geq 1$, $\mathcal{W}^{\psi}(1, m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m+1}, 0) = V^{\psi - m - 1}(\mathfrak{sl}_{m+1})$

Minimal: For $m \geq 1$, $W^{\psi}(2, m) \cong W^{\psi}(\mathfrak{sl}_{m+2}, f_{\min})$.

For $n \geq 1$, $\mathcal{W}^{\psi}(n,m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2$, $\mathcal{W}^{\psi}(n,0) = \mathcal{W}^{\psi}(\mathfrak{sl}_n)$

Subregular: For $n \geq 2$, $\mathcal{W}^{\psi}(n,1) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n+1}, f_{\mathsf{subreg}})$

Trivial: For $m\geq 1$, $\mathcal{W}^{\psi}(1,m)\cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m+1},0)=V^{\psi-m-1}(\mathfrak{sl}_{m+1})$

Minimal: For $m \geq 1$, $\mathcal{W}^{\psi}(2, m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m+2}, f_{\min})$.

For $n \geq 1$, $\mathcal{W}^{\psi}(n,m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2$, $\mathcal{W}^{\psi}(n,0) = \mathcal{W}^{\psi}(\mathfrak{sl}_n)$

Subregular: For $n \geq 2$, $\mathcal{W}^{\psi}(n,1) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n+1}, f_{\mathsf{subreg}})$

Trivial: For $m\geq 1$, $\mathcal{W}^{\psi}(1,m)\cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m+1},0)=V^{\psi-m-1}(\mathfrak{sl}_{m+1})$

Minimal: For $m \geq 1$, $\mathcal{W}^{\psi}(2, m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m+2}, f_{\min})$.

6. Features of $W^{\psi}(n, m)$

For $m \geq 2$, $\mathcal{W}^{\psi}(n, m)$ has affine subalgebra

$$V^{\psi-m-1}(\mathfrak{gl}_m)=\mathcal{H}\otimes V^{\psi-m-1}(\mathfrak{sl}_m).$$

Additional **even** generators are in weights 2, 3, ..., n together with 2m **even** fields in weight $\frac{n+1}{2}$ which transform under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the case $\mathcal{W}^{\psi}(0,m)$ separately as follows

1. For m > 2

$$\mathcal{W}^{\psi}(0,m) = V^{\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{S}(m),$$

where S(m) is the rank $m \beta \gamma$ -system

- 2. $\mathcal{W}^{\psi}(0,1) = \mathcal{S}(1)$
- 3. $\mathcal{W}^{\psi}(0,0) \cong \mathbb{C}$.

6. Features of $W^{\psi}(n, m)$

For $m \geq 2$, $\mathcal{W}^{\psi}(n, m)$ has affine subalgebra

$$V^{\psi-m-1}(\mathfrak{gl}_m)=\mathcal{H}\otimes V^{\psi-m-1}(\mathfrak{sl}_m).$$

Additional **even** generators are in weights $2, 3, \ldots, n$ together with 2m **even** fields in weight $\frac{n+1}{2}$ which transform under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the case $\mathcal{W}^{\psi}(0,m)$ separately as follows.

1. For $m \ge 2$

$$\mathcal{W}^{\psi}(0,m) = V^{\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{S}(m),$$

where S(m) is the rank $m \beta \gamma$ -system.

- 2. $\mathcal{W}^{\psi}(0,1) = \mathcal{S}(1)$
- 3. $\mathcal{W}^{\psi}(0,0) \cong \mathbb{C}$.

6. Features of $W^{\psi}(n, m)$

For $m \geq 2$, $\mathcal{W}^{\psi}(n, m)$ has affine subalgebra

$$V^{\psi-m-1}(\mathfrak{gl}_m)=\mathcal{H}\otimes V^{\psi-m-1}(\mathfrak{sl}_m).$$

Additional **even** generators are in weights $2, 3, \ldots, n$ together with 2m **even** fields in weight $\frac{n+1}{2}$ which transform under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

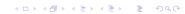
We define the case $\mathcal{W}^{\psi}(0,m)$ separately as follows.

1. For $m \geq 2$,

$$\mathcal{W}^{\psi}(0,m) = V^{\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{S}(m),$$

where S(m) is the rank $m \beta \gamma$ -system.

- 2. $W^{\psi}(0,1) = S(1)$.
- 3. $\mathcal{W}^{\psi}(0,0) \cong \mathbb{C}$.



7. Small hook-type \mathcal{W} -superalgebras of type A

For $n + m \ge 2$ and $n \ne m$, write

$$\mathfrak{sl}_{n|m}=\mathfrak{sl}_n\oplus\mathfrak{gl}_m\oplus\left(\mathbb{C}^n\otimes(\mathbb{C}^m)^*\right)\ \oplus\left((\mathbb{C}^n)^*\otimes\mathbb{C}^m\right).$$

Nilpotent $f_{n|m} \in \mathfrak{sl}_{n|m}$ is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Define shifted level $\psi = k + n - m$, and let

$$\mathcal{V}^{\psi}(\mathit{n},\mathit{m}) = \mathcal{W}^{\psi}(\mathfrak{sl}_{\mathit{n}|\mathit{m}},\mathit{f}_{\mathit{n}|\mathit{m}}),$$

which has level $k = \psi - n + m$.

Case $n=m\geq 2$ slightly different: $\mathcal{V}^{\psi}(n,n)=\mathcal{W}^{\psi}(\mathfrak{psl}_{n|n},f_{n|n})$

7. Small hook-type \mathcal{W} -superalgebras of type A

For $n + m \ge 2$ and $n \ne m$, write

$$\mathfrak{sl}_{n|m}=\mathfrak{sl}_n\oplus\mathfrak{gl}_m\oplus\left(\mathbb{C}^n\otimes(\mathbb{C}^m)^*\right)\ \oplus\left((\mathbb{C}^n)^*\otimes\mathbb{C}^m\right).$$

Nilpotent $f_{n|m} \in \mathfrak{sl}_{n|m}$ is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Define shifted level $\psi = k + n - m$, and let

$$\mathcal{V}^{\psi}(\mathit{n},\mathit{m}) = \mathcal{W}^{\psi}(\mathfrak{sl}_{\mathit{n}|\mathit{m}},\mathit{f}_{\mathit{n}|\mathit{m}}),$$

which has level $k = \psi - n + m$.

Case $n = m \ge 2$ slightly different: $\mathcal{V}^{\psi}(n, n) = \mathcal{W}^{\psi}(\mathfrak{psl}_{n|n}, f_{n|n})$.

7. Small hook-type \mathcal{W} -superalgebras of type A

For $n + m \ge 2$ and $n \ne m$, write

$$\mathfrak{sl}_{n|m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$$

Nilpotent $f_{n|m} \in \mathfrak{sl}_{n|m}$ is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Define shifted level $\psi = k + n - m$, and let

$$\mathcal{V}^{\psi}(n,m) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n|m}, f_{n|m}),$$

which has level $k = \psi - n + m$.

Case $n = m \ge 2$ slightly different: $\mathcal{V}^{\psi}(n, n) = \mathcal{W}^{\psi}(\mathfrak{psl}_{n|n}, f_{n|n})$

7. Small hook-type W-superalgebras of type A

For $n + m \ge 2$ and $n \ne m$, write

$$\mathfrak{sl}_{n|m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$$

Nilpotent $f_{n|m} \in \mathfrak{sl}_{n|m}$ is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Define shifted level $\psi = k + n - m$, and let

$$\mathcal{V}^{\psi}(n,m) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n|m}, f_{n|m}),$$

which has level $k = \psi - n + m$.

Case $n = m \ge 2$ slightly different: $\mathcal{V}^{\psi}(n, n) = \mathcal{W}^{\psi}(\mathfrak{psl}_{n|n}, f_{n|n})$.

8. Small hook-type W-superalgebras of type A

For $n \geq 1$, $\mathcal{V}^{\psi}(n,m)$ is a common generalization of the following well-known examples.

Principal: For $n \ge 2$, $\mathcal{V}^{\psi}(n,0) = \mathcal{W}^{\psi-n}(\mathfrak{sl}_n)$

Principal: For $n \geq 2$, $\mathcal{V}^{\psi}(n,1) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n|1})$.

Trivial: For $m \ge 1$,

$$\mathcal{V}^{\psi}(1,m)\cong\mathcal{W}^{\psi}(\mathfrak{sl}_{1|m},0)=V^{\psi+m-1}(\mathfrak{sl}_{m|1})=V^{-\psi-m+1}(\mathfrak{sl}_{1|m})$$

Minimal: For $m \ge 1$, $\mathcal{V}^{\psi}(2, m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m|2}, f_{\min})$.

8. Small hook-type W-superalgebras of type A

For $n \ge 1$, $\mathcal{V}^{\psi}(n,m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2$, $\mathcal{V}^{\psi}(n,0) = \mathcal{W}^{\psi-n}(\mathfrak{sl}_n)$

Principal: For $n \geq 2$, $\mathcal{V}^{\psi}(n,1) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n|1})$.

Trivial: For $m \ge 1$, $V^{\psi}(1,m) \cong W^{\psi}(\mathfrak{sl}_{1|m},0) = V^{\psi+m-1}(\mathfrak{sl}_{m|1}) = V^{-\psi-m+1}(\mathfrak{sl}_{1|m})$

Minimal: For $m \geq 1$, $V^{\psi}(2, m) \cong W^{\psi}(\mathfrak{sl}_{m|2}, f_{\min})$.

For $n \ge 1$, $\mathcal{V}^{\psi}(n,m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2$, $\mathcal{V}^{\psi}(n,0) = \mathcal{W}^{\psi-n}(\mathfrak{sl}_n)$

Principal: For $n \geq 2$, $V^{\psi}(n,1) = W^{\psi}(\mathfrak{sl}_{n|1})$.

Trivial: For $m \ge 1$, $V^{\psi}(1,m) \cong W^{\psi}(\mathfrak{sl}_{1|m},0) = V^{\psi+m-1}(\mathfrak{sl}_{m|1}) = V^{-\psi-m+1}(\mathfrak{sl}_{1|m})$

Minimal: For $m \geq 1$, $V^{\psi}(2, m) \cong W^{\psi}(\mathfrak{sl}_{m|2}, f_{\min})$.

For $n \ge 1$, $\mathcal{V}^{\psi}(n,m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2$, $\mathcal{V}^{\psi}(n,0) = \mathcal{W}^{\psi-n}(\mathfrak{sl}_n)$

Principal: For $n \geq 2$, $V^{\psi}(n,1) = W^{\psi}(\mathfrak{sl}_{n|1})$.

Trivial: For $m \ge 1$, $\mathcal{V}^{\psi}(1,m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{1|m},0) = V^{\psi+m-1}(\mathfrak{sl}_{m|1}) = V^{-\psi-m+1}(\mathfrak{sl}_{1|m})$

Minimal: For $m \geq 1$, $\mathcal{V}^{\psi}(2, m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m|2}, f_{\min})$.

For $n \geq 1$, $\mathcal{V}^{\psi}(n,m)$ is a common generalization of the following well-known examples.

Principal: For $n \geq 2$, $\mathcal{V}^{\psi}(n,0) = \mathcal{W}^{\psi-n}(\mathfrak{sl}_n)$

Principal: For $n \geq 2$, $V^{\psi}(n,1) = W^{\psi}(\mathfrak{sl}_{n|1})$.

Trivial: For $m \ge 1$, $\mathcal{V}^{\psi}(1,m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{1|m},0) = V^{\psi+m-1}(\mathfrak{sl}_{m|1}) = V^{-\psi-m+1}(\mathfrak{sl}_{1|m})$

Minimal: For $m \geq 1$, $\mathcal{V}^{\psi}(2, m) \cong \mathcal{W}^{\psi}(\mathfrak{sl}_{m|2}, f_{\min})$.

For $m \geq 2$, $\mathcal{V}^{\psi}(n, m)$ has affine subalgebra

$$V^{-\psi-m+1}(\mathfrak{gl}_m), \qquad m \neq n,$$

 $V^{-\psi-n+1}(\mathfrak{sl}_n), \qquad m = n.$

Additional **even** generators in weights 2, 3, ..., n, together with 2m **odd** fields in weight $\frac{n+1}{2}$ transforming under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the cases $\mathcal{V}^{\psi}(0,m)$ and $\mathcal{V}^{\psi}(1,1)$ separately as follows.

1. For $m \geq 2$,

$$\mathcal{V}^{\psi}(0,m) = V^{-\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{E}(m),$$

where $\mathcal{E}(m)$ is the rank m bc-system

- 2. $\mathcal{V}^{\psi}(1,1)=\mathcal{A}(1)$, rank one symplectic fermion algebra.
- 3. $\mathcal{V}^{\psi}(0,1) = \mathcal{E}(1)$.
- 4. $\mathcal{V}^{\psi}(0,0) \cong \mathcal{V}^{\psi}(1,0) \cong \mathbb{C}$



For $m \geq 2$, $\mathcal{V}^{\psi}(n, m)$ has affine subalgebra

$$V^{-\psi-m+1}(\mathfrak{gl}_m), \qquad m \neq n,$$
 $V^{-\psi-n+1}(\mathfrak{sl}_n), \qquad m = n.$

Additional **even** generators in weights 2, 3, ..., n, together with 2m **odd** fields in weight $\frac{n+1}{2}$ transforming under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the cases $\mathcal{V}^{\psi}(0,m)$ and $\mathcal{V}^{\psi}(1,1)$ separately as follows.

1. For $m \geq 2$,

$$\mathcal{V}^{\psi}(0,m) = V^{-\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{E}(m),$$

where $\mathcal{E}(m)$ is the rank m bc-system.

- 2. $\mathcal{V}^{\psi}(1,1) = \mathcal{A}(1)$, rank one symplectic fermion algebra.
- 3. $V^{\psi}(0,1) = \mathcal{E}(1)$
- 4. $\mathcal{V}^{\psi}(0,0) \cong \mathcal{V}^{\psi}(1,0) \cong \mathbb{C}$



For $m \geq 2$, $\mathcal{V}^{\psi}(n, m)$ has affine subalgebra

$$V^{-\psi-m+1}(\mathfrak{gl}_m), \qquad m \neq n,$$
 $V^{-\psi-n+1}(\mathfrak{sl}_n), \qquad m = n.$

Additional **even** generators in weights 2, 3, ..., n, together with 2m **odd** fields in weight $\frac{n+1}{2}$ transforming under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the cases $\mathcal{V}^{\psi}(0,m)$ and $\mathcal{V}^{\psi}(1,1)$ separately as follows.

1. For $m \geq 2$,

$$\mathcal{V}^{\psi}(0,m) = V^{-\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{E}(m),$$

where $\mathcal{E}(m)$ is the rank m bc-system.

- 2. $\mathcal{V}^{\psi}(1,1)=\mathcal{A}(1)$, rank one symplectic fermion algebra.
- 3. $\mathcal{V}^{\psi}(0,1) = \mathcal{E}(1)$.
- 4. $\mathcal{V}^{\psi}(0,0) \cong \mathcal{V}^{\psi}(1,0) \cong \mathbb{C}$.

10. Trialities in type A

Consider the affine cosets

$$\mathcal{C}^{\psi}(n,m) = \text{Com}(V^{\psi-m-1}(\mathfrak{gl}_m), \mathcal{W}^{\psi}(n,m)),$$

$$\mathcal{D}^{\psi}(n,m) = \text{Com}(V^{-\psi-m+1}(\mathfrak{gl}_m), \mathcal{V}^{\psi}(n,m)), \qquad n \neq m,$$

$$\mathcal{D}^{\psi}(n,n) = \mathsf{Com}(V^{-\psi-n+1}(\mathfrak{sl}_n), \mathcal{V}^{\psi}(n,n))^{U(1)}.$$

Thm: (Creutzig-L., 2020) Let $n \ge m$ be non-negative integers We have isomorphisms of 1-parameter VOAs

$$\mathcal{D}^{\psi}(n,m)\cong\mathcal{C}^{\psi^{-1}}(n-m,m)\cong\mathcal{D}^{\psi'}(m,n)$$

where ψ' is defined by $\frac{1}{\psi} + \frac{1}{\psi'} = 1$

This was originally conjectured in physics by Gaiptta and Rapcak 2000

10. Trialities in type A

Consider the affine cosets

$$\mathcal{C}^{\psi}(n,m) = \mathsf{Com}(V^{\psi-m-1}(\mathfrak{gl}_m), \mathcal{W}^{\psi}(n,m)),$$

$$\mathcal{D}^{\psi}(n,m) = \mathsf{Com}(V^{-\psi-m+1}(\mathfrak{gl}_m), \mathcal{V}^{\psi}(n,m)), \qquad n \neq m,$$

$$\mathcal{D}^{\psi}(n,n) = \mathsf{Com}(V^{-\psi-n+1}(\mathfrak{sl}_n), \mathcal{V}^{\psi}(n,n))^{U(1)}.$$

Thm: (Creutzig-L., 2020) Let $n \ge m$ be non-negative integers. We have isomorphisms of 1-parameter VOAs

$$\mathcal{D}^{\psi}(\mathsf{n},\mathsf{m})\cong\mathcal{C}^{\psi^{-1}}(\mathsf{n}-\mathsf{m},\mathsf{m})\cong\mathcal{D}^{\psi'}(\mathsf{m},\mathsf{n}),$$

where ψ' is defined by $\frac{1}{\imath b} + \frac{1}{\imath b'} = 1.$

This was originally conjectured in physics by Gaipttp and Rapcak - 200

10. Trialities in type A

Consider the affine cosets

$$\mathcal{C}^{\psi}(n,m) = \mathsf{Com}(V^{\psi-m-1}(\mathfrak{gl}_m), \mathcal{W}^{\psi}(n,m)),$$

$$\mathcal{D}^{\psi}(n,m) = \mathsf{Com}(V^{-\psi-m+1}(\mathfrak{gl}_m), \mathcal{V}^{\psi}(n,m)), \qquad n \neq m,$$

$$\mathcal{D}^{\psi}(n,n) = \mathsf{Com}(V^{-\psi-n+1}(\mathfrak{sl}_n), \mathcal{V}^{\psi}(n,n))^{U(1)}.$$

Thm: (Creutzig-L., 2020) Let $n \ge m$ be non-negative integers. We have isomorphisms of 1-parameter VOAs

$$\mathcal{D}^{\psi}(n,m) \cong \mathcal{C}^{\psi^{-1}}(n-m,m) \cong \mathcal{D}^{\psi'}(m,n),$$

where ψ' is defined by $\frac{1}{\imath b} + \frac{1}{\imath b'} = 1$.

This was originally conjectured in physics by Gaiotto and Rapcak.

 $\mathcal{D}^{\psi}(n,0) \cong \mathcal{C}^{\psi^{-1}}(n,0)$ recovers **Feigin-Frenkel duality** in type A.

Isomorphisms $\mathcal{D}^{\psi}(n,m)\cong \mathcal{C}^{\psi^{-1}}(n-m,m)$ are of **Feigin-Frenkel type**.

$$\mathcal{D}^{\psi}(\mathit{n},0)\cong\mathcal{D}^{\psi'}(0,\mathit{n})$$
 recovers the coset realization of $\mathcal{W}^{\psi}(\mathfrak{sl}_\mathit{n}).$

Isomorphisms $\mathcal{D}^{\psi}(n,m)\cong\mathcal{D}^{\psi'}(m,n)$ are of coset realization type.

One more example:

$$\mathcal{D}^{\psi}(n,1) \cong \mathcal{C}^{\psi^{-1}}(n-1,1) \cong \mathcal{D}^{\psi'}(1,n)$$

recovers a duality conjectured by Feigin and Semikhatov and proved in a different way by Creutzig, Genra, and Nakatsuka.

 $\mathcal{D}^{\psi}(n,0) \cong \mathcal{C}^{\psi^{-1}}(n,0)$ recovers **Feigin-Frenkel duality** in type A.

Isomorphisms $\mathcal{D}^{\psi}(n,m)\cong \mathcal{C}^{\psi^{-1}}(n-m,m)$ are of **Feigin-Frenkel** type.

$$\mathcal{D}^{\psi}(\mathit{n},0)\cong\mathcal{D}^{\psi'}(0,\mathit{n})$$
 recovers the coset realization of $\mathcal{W}^{\psi}(\mathfrak{sl}_\mathit{n}).$

Isomorphisms $\mathcal{D}^{\psi}(n,m)\cong\mathcal{D}^{\psi'}(m,n)$ are of coset realization type.

One more example:

$$\mathcal{D}^{\psi}(n,1) \cong \mathcal{C}^{\psi^{-1}}(n-1,1) \cong \mathcal{D}^{\psi'}(1,n)$$

recovers a duality conjectured by Feigin and Semikhatov and proved in a different way by Creutzig, Genra, and Nakatsuka

 $\mathcal{D}^{\psi}(n,0) \cong \mathcal{C}^{\psi^{-1}}(n,0)$ recovers **Feigin-Frenkel duality** in type A.

Isomorphisms $\mathcal{D}^{\psi}(n,m)\cong \mathcal{C}^{\psi^{-1}}(n-m,m)$ are of **Feigin-Frenkel** type.

 $\mathcal{D}^{\psi}(\textit{n},0)\cong\mathcal{D}^{\psi'}(0,\textit{n})$ recovers the coset realization of $\mathcal{W}^{\psi}(\mathfrak{sl}_\textit{n})$.

Isomorphisms $\mathcal{D}^{\psi}(n,m)\cong\mathcal{D}^{\psi'}(m,n)$ are of **coset realization type**.

One more example:

$$\mathcal{D}^{\psi}(n,1) \cong \mathcal{C}^{\psi^{-1}}(n-1,1) \cong \mathcal{D}^{\psi'}(1,n),$$

recovers a duality conjectured by Feigin and Semikhatov and proved in a different way by Creutzig, Genra, and Nakatsuka

 $\mathcal{D}^{\psi}(n,0) \cong \mathcal{C}^{\psi^{-1}}(n,0)$ recovers **Feigin-Frenkel duality** in type A.

Isomorphisms $\mathcal{D}^{\psi}(n,m)\cong \mathcal{C}^{\psi^{-1}}(n-m,m)$ are of **Feigin-Frenkel** type.

 $\mathcal{D}^{\psi}(\textit{n},0)\cong\mathcal{D}^{\psi'}(0,\textit{n})$ recovers the coset realization of $\mathcal{W}^{\psi}(\mathfrak{sl}_\textit{n})$.

Isomorphisms $\mathcal{D}^{\psi}(n,m)\cong\mathcal{D}^{\psi'}(m,n)$ are of **coset realization type**.

One more example:

$$\mathcal{D}^{\psi}(n,1) \cong \mathcal{C}^{\psi^{-1}}(n-1,1) \cong \mathcal{D}^{\psi'}(1,n)$$

recovers a duality conjectured by Feigin and Semikhatov and proved in a different way by Creutzig, Genra, and Nakatsuka

 $\mathcal{D}^{\psi}(n,0) \cong \mathcal{C}^{\psi^{-1}}(n,0)$ recovers **Feigin-Frenkel duality** in type *A*.

Isomorphisms $\mathcal{D}^{\psi}(n,m)\cong \mathcal{C}^{\psi^{-1}}(n-m,m)$ are of **Feigin-Frenkel** type.

 $\mathcal{D}^{\psi}(\textit{n},0)\cong\mathcal{D}^{\psi'}(0,\textit{n})$ recovers the coset realization of $\mathcal{W}^{\psi}(\mathfrak{sl}_\textit{n})$.

Isomorphisms $\mathcal{D}^{\psi}(n,m)\cong\mathcal{D}^{\psi'}(m,n)$ are of **coset realization type**.

One more example:

$$\mathcal{D}^{\psi}(\mathit{n},1)\cong\mathcal{C}^{\psi^{-1}}(\mathit{n}-1,1)\cong\mathcal{D}^{\psi'}(1,\mathit{n}),$$

recovers a duality conjectured by Feigin and Semikhatov and proved in a different way by Creutzig, Genra, and Nakatsuka.

Step 1: In the $\psi \to \infty$ limit, both $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ become GL_m -orbifolds of certain **free field algebras**.

Using classical invariant theory, it is shown that

- 1. $\mathcal{C}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(m+n+1)-1)$,
- 2. $\mathcal{D}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞} -algebra $\mathcal{W}(c,\lambda)$ serves is a classifying object for VOAs of type $\mathcal{W}(2,3,\ldots,N)$ for some N.

 $\mathcal{W}(c,\lambda)$ is freely generated of type $\mathcal{W}(2,3,\ldots)$, and is defined over the polynomial ring $\mathbb{C}[c,\lambda]$.

Step 1: In the $\psi \to \infty$ limit, both $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ become GL_m -orbifolds of certain **free field algebras**.

Using classical invariant theory, it is shown that

- 1. $\mathcal{C}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(m+n+1)-1),$
- 2. $\mathcal{D}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞} -algebra $\mathcal{W}(c,\lambda)$ serves is a classifying object for VOAs of type $\mathcal{W}(2,3,\ldots,N)$ for some N.

 $\mathcal{W}(c,\lambda)$ is freely generated of type $\mathcal{W}(2,3,\ldots)$, and is defined over the polynomial ring $\mathbb{C}[c,\lambda]$.

Step 1: In the $\psi \to \infty$ limit, both $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ become GL_m -orbifolds of certain **free field algebras**.

Using classical invariant theory, it is shown that

- 1. $\mathcal{C}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(m+n+1)-1),$
- 2. $\mathcal{D}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞} -algebra $\mathcal{W}(c,\lambda)$ serves is a classifying object for VOAs of type $\mathcal{W}(2,3,\ldots,N)$ for some N.

 $\mathcal{W}(c,\lambda)$ is freely generated of type $\mathcal{W}(2,3,\ldots)$, and is defined over the polynomial ring $\mathbb{C}[c,\lambda]$.

Step 1: In the $\psi \to \infty$ limit, both $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ become GL_m -orbifolds of certain **free field algebras**.

Using classical invariant theory, it is shown that

- 1. $\mathcal{C}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(m+n+1)-1),$
- 2. $\mathcal{D}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞} -algebra $\mathcal{W}(c,\lambda)$ serves is a classifying object for VOAs of type $\mathcal{W}(2,3,\ldots,N)$ for some N.

 $\mathcal{W}(c,\lambda)$ is freely generated of type $\mathcal{W}(2,3,\ldots)$, and is defined over the polynomial ring $\mathbb{C}[c,\lambda]$.

Step 1: In the $\psi \to \infty$ limit, both $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ become GL_m -orbifolds of certain **free field algebras**.

Using classical invariant theory, it is shown that

- 1. $\mathcal{C}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(m+n+1)-1)$,
- 2. $\mathcal{D}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞} -algebra $\mathcal{W}(c,\lambda)$ serves is a classifying object for VOAs of type $\mathcal{W}(2,3,\ldots,N)$ for some N.

 $\mathcal{W}(c,\lambda)$ is freely generated of type $\mathcal{W}(2,3,\ldots)$, and is defined over the polynomial ring $\mathbb{C}[c,\lambda]$.

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $I \cdot W(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$W^{I}(c,\lambda) = W(c,\lambda)/(I \cdot W(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal I.

But for certain discrete families of ideals I, $W^{I}(c,\lambda)$ is not simple

Let $W_I(c,\lambda)$ be simple graded quotient of $W^I(c,\lambda)$.

In fact, **all** simple, one-parameter VOAs of type $\mathcal{W}(2,3,\ldots,N)$ satisfying mild hypotheses, are of this form.

Variety $V(I)\subseteq\mathbb{C}^2$ is called the **truncation cytye**, \mathbb{R}

Let $I \subseteq \mathbb{C}[c,\lambda]$ be a prime ideal.

Let $I \cdot W(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$W^{I}(c,\lambda) = W(c,\lambda)/(I \cdot W(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal I.

But for certain discrete families of ideals I, $W^{I}(c, \lambda)$ is not simple.

Let $W_I(c,\lambda)$ be simple graded quotient of $W^I(c,\lambda)$.

In fact, **all** simple, one-parameter VOAs of type $\mathcal{W}(2,3,\ldots,N)$ satisfying mild hypotheses, are of this form.

Variety $V(I)\subseteq\mathbb{C}^2$ is called the **truncation cytye**, \mathbb{R}

Let $I \subseteq \mathbb{C}[c,\lambda]$ be a prime ideal.

Let $I \cdot W(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}^{I}(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal I.

But for certain discrete families of ideals I, $W^{I}(c, \lambda)$ is not simple.

Let $W_I(c,\lambda)$ be simple graded quotient of $W^I(c,\lambda)$.

In fact, **all** simple, one-parameter VOAs of type W(2,3,...,N) satisfying mild hypotheses, are of this form.

Variety $V(I)\subseteq\mathbb{C}^2$ is called the **truncation cygve**, or the second of the second o

Let $I \subseteq \mathbb{C}[c,\lambda]$ be a prime ideal.

Let $I \cdot W(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}^{I}(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal I.

But for certain discrete families of ideals I, $W^{I}(c, \lambda)$ is not simple.

Let $W_I(c,\lambda)$ be simple graded quotient of $W^I(c,\lambda)$.

In fact, **all** simple, one-parameter VOAs of type $\mathcal{W}(2,3,\ldots,N)$ satisfying mild hypotheses, are of this form.

Variety $V(I)\subseteq\mathbb{C}^2$ is called the **truncation cyrve**, \bullet , \bullet , \bullet \bullet \bullet \bullet \bullet

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $I \cdot W(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}^{I}(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal I.

But for certain discrete families of ideals I, $\mathcal{W}^{I}(c,\lambda)$ is not simple.

Let $W_I(c,\lambda)$ be simple graded quotient of $W^I(c,\lambda)$.

In fact, **all** simple, one-parameter VOAs of type $\mathcal{W}(2,3,\ldots,N)$ satisfying mild hypotheses, are of this form.

Variety $V(I)\subseteq\mathbb{C}^2$ is called the **truncation cyrve**, \bullet

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $I \cdot W(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}^I(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal I.

But for certain discrete families of ideals I, $\mathcal{W}^{I}(c,\lambda)$ is not simple.

Let $W_I(c,\lambda)$ be simple graded quotient of $W^I(c,\lambda)$.

In fact, **all** simple, one-parameter VOAs of type $\mathcal{W}(2,3,\ldots,N)$ satisfying mild hypotheses, are of this form.

Variety $V(I)\subseteq\mathbb{C}^2$ is called the **truncation cyrve**, \bullet

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

Let $I \cdot \mathcal{W}(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}^I(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal I.

But for certain discrete families of ideals I, $\mathcal{W}^{I}(c,\lambda)$ is not simple.

Let $W_I(c,\lambda)$ be simple graded quotient of $W^I(c,\lambda)$.

In fact, **all** simple, one-parameter VOAs of type $\mathcal{W}(2,3,\ldots,N)$ satisfying mild hypotheses, are of this form.

Variety $V(I)\subseteq\mathbb{C}^2$ is called the **truncation cyrve**, \bullet

13. One-parameter quotients of $W(c, \lambda)$

Let $I \subseteq \mathbb{C}[c,\lambda]$ be a prime ideal.

Let $I \cdot W(c, \lambda)$ be the VOA ideal generated by I.

The quotient

$$\mathcal{W}^{I}(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal I.

But for certain discrete families of ideals I, $W^{I}(c, \lambda)$ is not simple.

Let $W_I(c,\lambda)$ be simple graded quotient of $W^I(c,\lambda)$.

In fact, **all** simple, one-parameter VOAs of type $\mathcal{W}(2,3,\ldots,N)$ satisfying mild hypotheses, are of this form.

Variety $V(I)\subseteq\mathbb{C}^2$ is called the **truncation curve**.

Then $C^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some I.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.

$$\mathcal{W}^{\psi}(n,m)$$
 is an extension $V^{\psi-m+1}(\mathfrak{gl}_m)\otimes \mathcal{W}_l(c,\lambda)$ for some .

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines I.

In fact, much more is true: the full OPE algebra of $\mathcal{W}^{\psi}(n,m)$ is uniquely determined from this data.

Then $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ are of the form $W_I(c, \lambda)$ for some I.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $D^{\psi}(n, m)$.

$$\mathcal{W}^{\psi}(\mathit{n},\mathit{m})$$
 is an extension $V^{\psi-\mathit{m}+1}(\mathfrak{gl}_\mathit{m})\otimes\mathcal{W}_\mathit{l}(\mathit{c},\lambda)$ for some l

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines 1.

In fact, much more is true: the full OPE algebra of $W^{\psi}(n, m)$ is uniquely determined from this data.

Then $C^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some I.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $D^{\psi}(n, m)$.

$$\mathcal{W}^{\psi}(\mathit{n},\mathit{m})$$
 is an extension $V^{\psi-\mathit{m}+1}(\mathfrak{gl}_{\mathit{m}})\otimes\mathcal{W}_{\mathit{I}}(\mathit{c},\lambda)$ for some I

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines 1.

In fact, much more is true: the full OPE algebra of $W^{\psi}(n, m)$ is uniquely determined from this data.

Then $C^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some I.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $D^{\psi}(n, m)$.

$$\mathcal{W}^{\psi}(\mathit{n},\mathit{m})$$
 is an extension $V^{\psi-m+1}(\mathfrak{gl}_{\mathit{m}})\otimes\mathcal{W}_{\mathit{I}}(\mathit{c},\lambda)$ for some I

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines 1.

In fact, much more is true: the full OPE algebra of $\mathcal{W}^{\psi}(n,m)$ is uniquely determined from this data.

Then $C^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some I.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $D^{\psi}(n, m)$.

$$\mathcal{W}^{\psi}(\mathit{n},\mathit{m})$$
 is an extension $V^{\psi-m+1}(\mathfrak{gl}_{\mathit{m}})\otimes\mathcal{W}_{\mathit{I}}(\mathit{c},\lambda)$ for some I

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines I.

In fact, much more is true: the full OPE algebra of $\mathcal{W}^{\psi}(n,m)$ is uniquely determined from this data.

Then $C^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $W_I(c,\lambda)$ for some I.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $D^{\psi}(n, m)$.

 $\mathcal{W}^{\psi}(\mathit{n},\mathit{m})$ is an extension $V^{\psi-m+1}(\mathfrak{gl}_{\mathit{m}})\otimes\mathcal{W}_{\mathit{I}}(\mathit{c},\lambda)$ for some I

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines I.

In fact, much more is true: the full OPE algebra of $\mathcal{W}^{\psi}(n,m)$ is uniquely determined from this data.

Then $C^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $W_I(c,\lambda)$ for some I.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $D^{\psi}(n, m)$.

$$\mathcal{W}^{\psi}(\mathit{n},\mathit{m})$$
 is an extension $V^{\psi-m+1}(\mathfrak{gl}_{\mathit{m}})\otimes\mathcal{W}_{\mathit{I}}(\mathit{c},\lambda)$ for some I

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines I.

In fact, much more is true: the full OPE algebra of $\mathcal{W}^{\psi}(n,m)$ is uniquely determined from this data.

15. Some applications

Let $I_{n,m}$ be ideal corresponding to $C^{\psi}(n,m)$

Nontrivial isomorphisms $C_{\psi}(n,m) \cong C_{\psi'}(n',m')$ correspond to intersection points in $V(I_{n,m}) \cap V(I'_{n',m'})$.

All intersections between the curves $V(I_{n,m})$ are rational points.

For example, we can classify isomorphisms $C_{\psi}(n,m) \cong \mathcal{W}_{\phi}(\mathfrak{sl}_r) = C_{\phi}(r,0)$.

Thm: For all $n \geq 2$, if r+1 and r+n are coprime, $\mathcal{W}_{\psi}(n-1,1) = \mathcal{W}_{\psi}(\mathfrak{sl}_n,f_{\mathsf{subreg}})$ is a simple current extension of $V_L \otimes \mathcal{W}_{\phi}(\mathfrak{sl}_r)$, where

$$\psi = \frac{n+r}{n-1}, \qquad \phi = \frac{r+1}{r+n}, \qquad L = \sqrt{nr} \ \mathbb{Z}$$

Conjectured by Blumenhagen, Eholzer, Honecker, Hornfeck, Hubel (1994).

15. Some applications

Let $I_{n,m}$ be ideal corresponding to $C^{\psi}(n,m)$

Nontrivial isomorphisms $C_{\psi}(n,m) \cong C_{\psi'}(n',m')$ correspond to intersection points in $V(I_{n,m}) \cap V(I'_{n',m'})$.

All intersections between the curves $V(I_{n,m})$ are rational points.

For example, we can classify isomorphisms $C_{\psi}(n,m)\cong \mathcal{W}_{\phi}(\mathfrak{sl}_r)=\mathcal{C}_{\phi}(r,0).$

Thm: For all $n \geq 2$, if r+1 and r+n are coprime, $\mathcal{W}_{\psi}(n-1,1) = \mathcal{W}_{\psi}(\mathfrak{sl}_n,f_{\mathsf{subreg}})$ is a simple current extension of $V_L \otimes \mathcal{W}_{\phi}(\mathfrak{sl}_r)$, where

$$\psi = \frac{n+r}{n-1}, \qquad \phi = \frac{r+1}{r+n}, \qquad L = \sqrt{nr} \ \mathbb{Z}.$$

Conjectured by Blumenhagen, Eholzer, Honecker, Hornfeck, Hubel (1994).

Let $I_{n,m}$ be ideal corresponding to $C^{\psi}(n,m)$

Nontrivial isomorphisms $C_{\psi}(n,m) \cong C_{\psi'}(n',m')$ correspond to intersection points in $V(I_{n,m}) \cap V(I'_{n',m'})$.

All intersections between the curves $V(I_{n,m})$ are rational points.

For example, we can classify isomorphisms $\mathcal{C}_{\psi}(n,m)\cong\mathcal{W}_{\phi}(\mathfrak{sl}_r)=\mathcal{C}_{\phi}(r,0).$

Thm: For all $n \geq 2$, if r+1 and r+n are coprime, $\mathcal{W}_{\psi}(n-1,1) = \mathcal{W}_{\psi}(\mathfrak{sl}_n,f_{\mathsf{subreg}})$ is a simple current extension of $V_L \otimes \mathcal{W}_{\phi}(\mathfrak{sl}_r)$, where

$$\psi = \frac{n+r}{n-1}, \qquad \phi = \frac{r+1}{r+n}, \qquad L = \sqrt{nr} \ \mathbb{Z}$$

Conjectured by Blumenhagen, Eholzer, Honecker, Hornfeck, Hubel (1994).

Let $I_{n,m}$ be ideal corresponding to $C^{\psi}(n,m)$

Nontrivial isomorphisms $C_{\psi}(n,m) \cong C_{\psi'}(n',m')$ correspond to intersection points in $V(I_{n,m}) \cap V(I'_{n',m'})$.

All intersections between the curves $V(I_{n,m})$ are rational points.

For example, we can classify isomorphisms $\mathcal{C}_{\psi}(n,m)\cong\mathcal{W}_{\phi}(\mathfrak{sl}_r)=\mathcal{C}_{\phi}(r,0).$

Thm: For all $n \geq 2$, if r+1 and r+n are coprime, $\mathcal{W}_{\psi}(n-1,1) = \mathcal{W}_{\psi}(\mathfrak{sl}_n,f_{\mathsf{subreg}})$ is a simple current extension of $V_L \otimes \mathcal{W}_{\phi}(\mathfrak{sl}_r)$, where

$$\psi = \frac{n+r}{n-1}, \qquad \phi = \frac{r+1}{r+n}, \qquad L = \sqrt{nr} \ \mathbb{Z}.$$

Conjectured by Blumenhagen, Eholzer, Honecker, Hornfeck, Hubel (1994).

Let $I_{n,m}$ be ideal corresponding to $C^{\psi}(n,m)$

Nontrivial isomorphisms $C_{\psi}(n,m) \cong C_{\psi'}(n',m')$ correspond to intersection points in $V(I_{n,m}) \cap V(I'_{n',m'})$.

All intersections between the curves $V(I_{n,m})$ are rational points.

For example, we can classify isomorphisms $\mathcal{C}_{\psi}(n,m)\cong\mathcal{W}_{\phi}(\mathfrak{sl}_r)=\mathcal{C}_{\phi}(r,0).$

Thm: For all $n \geq 2$, if r+1 and r+n are coprime, $\mathcal{W}_{\psi}(n-1,1) = \mathcal{W}_{\psi}(\mathfrak{sl}_n,f_{\mathsf{subreg}})$ is a simple current extension of $V_L \otimes \mathcal{W}_{\phi}(\mathfrak{sl}_r)$, where

$$\psi = \frac{n+r}{n-1}, \qquad \phi = \frac{r+1}{r+n}, \qquad L = \sqrt{nr} \ \mathbb{Z}.$$

Conjectured by Blumenhagen, Eholzer, Honecker, Hornfeck, Hubel (1994).

Consider the rank n^2 $\beta \gamma$ -system, $S(n^2)$, with generators β^{ij}, γ^{ij} satisfying $\beta^{ij}(z)\gamma^{kl}(w) \sim \delta_{i,k}\delta_{j,l}(z-w)^{-1}$.

It has two commuting actions of $V^{-n}(\mathfrak{sl}_n)$ corresponding to left and right actions of \mathfrak{sl}_n on $n \times n$ matrices.

Fact: $Com(V^{-n}(\mathfrak{sl}_n) \otimes V^{-n}(\mathfrak{sl}_n), \mathcal{S}(n^2)) = \mathcal{S}(n^2)^{\mathfrak{sl}_n[t] \oplus \mathfrak{sl}_n[t]}$ is strongly generated by a Heisenberg field J, central fields $\omega_2, \ldots, \omega_{n-1}$ of weight $2, 3, \ldots, n-1$, and fields of weight $\frac{n}{2}$

$$D^{+} = \begin{vmatrix} \beta^{11} & \cdots & \beta^{1n} \\ \vdots & & \vdots \\ \beta^{n1} & \cdots & \beta^{nn} \end{vmatrix}, \qquad D^{-} = \begin{vmatrix} \gamma^{11} & \cdots & \gamma^{1n} \\ \vdots & & \vdots \\ \gamma^{n1} & \cdots & \gamma^{nn} \end{vmatrix},$$

Thm: (L-Song, 2021) For all $n \geq 2$, $S(n^2)^{\mathfrak{sl}_n[t] \oplus \mathfrak{sl}_n[t]}$ is isomorphic to the critical level \mathcal{W} -algebra $\mathcal{W}^0(\mathfrak{sl}_n, f_{\text{subreg}})$.

Conjectured by L, Creutzig and Gao (2011), proven for $p \leq 4$, $p \leq 4$

Consider the rank n^2 $\beta \gamma$ -system, $S(n^2)$, with generators β^{ij} , γ^{ij} satisfying $\beta^{ij}(z)\gamma^{kl}(w) \sim \delta_{i,k}\delta_{j,l}(z-w)^{-1}$.

It has two commuting actions of $V^{-n}(\mathfrak{sl}_n)$ corresponding to left and right actions of \mathfrak{sl}_n on $n \times n$ matrices.

Fact: $Com(V^{-n}(\mathfrak{sl}_n) \otimes V^{-n}(\mathfrak{sl}_n), \mathcal{S}(n^2)) = \mathcal{S}(n^2)^{\mathfrak{sl}_n[t] \oplus \mathfrak{sl}_n[t]}$ is strongly generated by a Heisenberg field J, central fields $\omega_2, \ldots, \omega_{n-1}$ of weight $2, 3, \ldots, n-1$, and fields of weight $\frac{n}{2}$

$$D^{+} = \begin{vmatrix} \beta^{11} & \cdots & \beta^{1n} \\ \vdots & & \vdots \\ \beta^{n1} & \cdots & \beta^{nn} \end{vmatrix}, \qquad D^{-} = \begin{vmatrix} \gamma^{11} & \cdots & \gamma^{1n} \\ \vdots & & \vdots \\ \gamma^{n1} & \cdots & \gamma^{nn} \end{vmatrix},$$

Thm: (L-Song, 2021) For all $n \geq 2$, $S(n^2)^{\mathfrak{sl}_n[t] \oplus \mathfrak{sl}_n[t]}$ is isomorphic to the critical level \mathcal{W} -algebra $\mathcal{W}^0(\mathfrak{sl}_n, f_{\text{subreg}})$.

Conjectured by L, Creutzig and Gao (2011), proven for $\underline{q} \leq 4$.

Consider the rank n^2 $\beta \gamma$ -system, $S(n^2)$, with generators β^{ij} , γ^{ij} satisfying $\beta^{ij}(z)\gamma^{kl}(w) \sim \delta_{i,k}\delta_{j,l}(z-w)^{-1}$.

It has two commuting actions of $V^{-n}(\mathfrak{sl}_n)$ corresponding to left and right actions of \mathfrak{sl}_n on $n \times n$ matrices.

Fact: $\operatorname{Com}(V^{-n}(\mathfrak{sl}_n) \otimes V^{-n}(\mathfrak{sl}_n), \mathcal{S}(n^2)) = \mathcal{S}(n^2)^{\mathfrak{sl}_n[t] \oplus \mathfrak{sl}_n[t]}$ is strongly generated by a Heisenberg field J, central fields $\omega_2, \ldots, \omega_{n-1}$ of weight $2, 3, \ldots, n-1$, and fields of weight $\frac{n}{2}$

$$D^{+} = \begin{vmatrix} \beta^{11} & \cdots & \beta^{1n} \\ \vdots & & \vdots \\ \beta^{n1} & \cdots & \beta^{nn} \end{vmatrix}, \qquad D^{-} = \begin{vmatrix} \gamma^{11} & \cdots & \gamma^{1n} \\ \vdots & & \vdots \\ \gamma^{n1} & \cdots & \gamma^{nn} \end{vmatrix},$$

Thm: (L-Song, 2021) For all $n \geq 2$, $S(n^2)^{\mathfrak{sl}_n[t] \oplus \mathfrak{sl}_n[t]}$ is isomorphic to the critical level \mathcal{W} -algebra $\mathcal{W}^0(\mathfrak{sl}_n, f_{\text{subreg}})$.

Conjectured by L, Creutzig and Gao (2011), proyen for $\underline{n} \leq 4$.

Consider the rank n^2 $\beta \gamma$ -system, $S(n^2)$, with generators β^{ij} , γ^{ij} satisfying $\beta^{ij}(z)\gamma^{kl}(w) \sim \delta_{i,k}\delta_{j,l}(z-w)^{-1}$.

It has two commuting actions of $V^{-n}(\mathfrak{sl}_n)$ corresponding to left and right actions of \mathfrak{sl}_n on $n \times n$ matrices.

Fact: $\operatorname{Com}(V^{-n}(\mathfrak{sl}_n) \otimes V^{-n}(\mathfrak{sl}_n), \mathcal{S}(n^2)) = \mathcal{S}(n^2)^{\mathfrak{sl}_n[t] \oplus \mathfrak{sl}_n[t]}$ is strongly generated by a Heisenberg field J, central fields $\omega_2, \ldots, \omega_{n-1}$ of weight $2, 3, \ldots, n-1$, and fields of weight $\frac{n}{2}$

$$D^{+} = \begin{vmatrix} \beta^{11} & \cdots & \beta^{1n} \\ \vdots & & \vdots \\ \beta^{n1} & \cdots & \beta^{nn} \end{vmatrix}, \qquad D^{-} = \begin{vmatrix} \gamma^{11} & \cdots & \gamma^{1n} \\ \vdots & & \vdots \\ \gamma^{n1} & \cdots & \gamma^{nn} \end{vmatrix},$$

Thm: (L-Song, 2021) For all $n \geq 2$, $S(n^2)^{\mathfrak{sl}_n[t] \oplus \mathfrak{sl}_n[t]}$ is isomorphic to the critical level \mathcal{W} -algebra $\mathcal{W}^0(\mathfrak{sl}_n, f_{\text{subreg}})$.

Conjectured by L, Creutzig and Gao (2011), proyen for $\underline{q} \leq 4$.

Consider the rank n^2 $\beta \gamma$ -system, $S(n^2)$, with generators β^{ij} , γ^{ij} satisfying $\beta^{ij}(z)\gamma^{kl}(w) \sim \delta_{i,k}\delta_{i,l}(z-w)^{-1}$.

It has two commuting actions of $V^{-n}(\mathfrak{sl}_n)$ corresponding to left and right actions of \mathfrak{sl}_n on $n \times n$ matrices.

Fact: Com $(V^{-n}(\mathfrak{sl}_n) \otimes V^{-n}(\mathfrak{sl}_n), \mathcal{S}(n^2)) = \mathcal{S}(n^2)^{\mathfrak{sl}_n[t] \oplus \mathfrak{sl}_n[t]}$ is strongly generated by a Heisenberg field J, central fields $\omega_2, \ldots, \omega_{n-1}$ of weight $2, 3, \ldots, n-1$, and fields of weight $\frac{n}{2}$

$$D^{+} = \begin{vmatrix} \beta^{11} & \cdots & \beta^{1n} \\ \vdots & & \vdots \\ \beta^{n1} & \cdots & \beta^{nn} \end{vmatrix}, \qquad D^{-} = \begin{vmatrix} \gamma^{11} & \cdots & \gamma^{1n} \\ \vdots & & \vdots \\ \gamma^{n1} & \cdots & \gamma^{nn} \end{vmatrix},$$

Thm: (L-Song, 2021) For all $n \ge 2$, $S(n^2)^{\mathfrak{sl}_n[t] \oplus \mathfrak{sl}_n[t]}$ is isomorphic to the critical level W-algebra $W^0(\mathfrak{sl}_n, f_{\mathsf{subreg}})$.

Conjectured by L, Creutzig and Gao (2011), proven for $n \leq 4$.

We define 8 families of W-(super)algebras in a unified framework.

Let \mathfrak{g} be a simple Lie (super)algebra, which will always be either \mathfrak{so}_{2n+1} , \mathfrak{sp}_{2n} , \mathfrak{so}_{2n} , or $\mathfrak{osp}_{n|2r}$.

We have a decomposition $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b} \oplus \rho_{\mathfrak{a}} \otimes \rho_{\mathfrak{b}}$.

Here \mathfrak{a} and \mathfrak{b} are Lie sub(super)algebras of \mathfrak{g} , where

- 1. $\mathfrak{b} = \mathfrak{so}_{2m+1}$ or \mathfrak{sp}_{2m} ,
- 2. $\mathfrak{a} = \mathfrak{so}_{2n+1}$, \mathfrak{sp}_{2n} , \mathfrak{so}_{2n} , or $\mathfrak{osp}_{1|2n}$.

 $\rho_{\mathfrak{a}}$, $\rho_{\mathfrak{b}}$ transform as the standard representations of \mathfrak{a} , \mathfrak{b} respectively.

 ρ_{a} and ρ_{b} can be either even or odd

We define 8 families of W-(super)algebras in a unified framework.

Let \mathfrak{g} be a simple Lie (super)algebra, which will always be either \mathfrak{so}_{2n+1} , \mathfrak{sp}_{2n} , \mathfrak{so}_{2n} , or $\mathfrak{osp}_{n|2r}$.

We have a decomposition $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b} \oplus \rho_{\mathfrak{a}} \otimes \rho_{\mathfrak{b}}$.

Here α and b are Lie sub(super)algebras of g, where

- 1. $\mathfrak{b} = \mathfrak{so}_{2m+1}$ or \mathfrak{sp}_{2m} ,
- 2. $\mathfrak{a} = \mathfrak{so}_{2n+1}$, \mathfrak{sp}_{2n} , \mathfrak{so}_{2n} , or $\mathfrak{osp}_{1|2n}$.

 $\rho_{\mathfrak{a}}$, $\rho_{\mathfrak{b}}$ transform as the standard representations of \mathfrak{a} , \mathfrak{b} respectively.

 ρ_a and ρ_b can be either even or odd.

We define 8 families of W-(super)algebras in a unified framework.

Let \mathfrak{g} be a simple Lie (super)algebra, which will always be either \mathfrak{so}_{2n+1} , \mathfrak{sp}_{2n} , \mathfrak{so}_{2n} , or $\mathfrak{osp}_{n|2r}$.

We have a decomposition $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b} \oplus \rho_{\mathfrak{a}} \otimes \rho_{\mathfrak{b}}$.

Here \mathfrak{a} and \mathfrak{b} are Lie sub(super)algebras of \mathfrak{g} , where

- 1. $\mathfrak{b} = \mathfrak{so}_{2m+1}$ or \mathfrak{sp}_{2m}
- 2. $\mathfrak{a} = \mathfrak{so}_{2n+1}$, \mathfrak{sp}_{2n} , \mathfrak{so}_{2n} , or $\mathfrak{osp}_{1|2n}$.

 $\rho_{\mathfrak{a}}$, $\rho_{\mathfrak{b}}$ transform as the standard representations of \mathfrak{a} , \mathfrak{b} , respectively.

 $\rho_{\rm d}$ and $\rho_{\rm h}$ can be either even or odd.

We define 8 families of W-(super)algebras in a unified framework.

Let \mathfrak{g} be a simple Lie (super)algebra, which will always be either \mathfrak{so}_{2n+1} , \mathfrak{sp}_{2n} , \mathfrak{so}_{2n} , or $\mathfrak{osp}_{n|2r}$.

We have a decomposition $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b} \oplus \rho_{\mathfrak{a}} \otimes \rho_{\mathfrak{b}}$.

Here \mathfrak{a} and \mathfrak{b} are Lie sub(super)algebras of \mathfrak{g} , where

- 1. $\mathfrak{b} = \mathfrak{so}_{2m+1}$ or \mathfrak{sp}_{2m} ,
- 2. $\mathfrak{a} = \mathfrak{so}_{2n+1}$, \mathfrak{sp}_{2n} , \mathfrak{so}_{2n} , or $\mathfrak{osp}_{1|2n}$.

 $\rho_{\mathfrak{a}}$, $\rho_{\mathfrak{b}}$ transform as the standard representations of \mathfrak{a} , \mathfrak{b} , respectively.

 $\rho_{\rm d}$ and $\rho_{\rm h}$ can be either even or odd.

We define 8 families of W-(super)algebras in a unified framework.

Let \mathfrak{g} be a simple Lie (super)algebra, which will always be either \mathfrak{so}_{2n+1} , \mathfrak{sp}_{2n} , \mathfrak{so}_{2n} , or $\mathfrak{osp}_{n|2r}$.

We have a decomposition $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b} \oplus \rho_{\mathfrak{a}} \otimes \rho_{\mathfrak{b}}$.

Here \mathfrak{a} and \mathfrak{b} are Lie sub(super)algebras of \mathfrak{g} , where

- 1. $\mathfrak{b} = \mathfrak{so}_{2m+1}$ or \mathfrak{sp}_{2m} ,
- 2. $\mathfrak{a} = \mathfrak{so}_{2n+1}$, \mathfrak{sp}_{2n} , \mathfrak{so}_{2n} , or $\mathfrak{osp}_{1|2n}$.

 $\rho_{\mathfrak{a}}$, $\rho_{\mathfrak{b}}$ transform as the standard representations of \mathfrak{a} , \mathfrak{b} , respectively.

 $\rho_{\rm d}$ and $\rho_{\rm h}$ can be either even or odd.

We define 8 families of W-(super)algebras in a unified framework.

Let \mathfrak{g} be a simple Lie (super)algebra, which will always be either \mathfrak{so}_{2n+1} , \mathfrak{sp}_{2n} , \mathfrak{so}_{2n} , or $\mathfrak{osp}_{n|2r}$.

We have a decomposition $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b} \oplus \rho_{\mathfrak{a}} \otimes \rho_{\mathfrak{b}}$.

Here \mathfrak{a} and \mathfrak{b} are Lie sub(super)algebras of \mathfrak{g} , where

- 1. $\mathfrak{b} = \mathfrak{so}_{2m+1}$ or \mathfrak{sp}_{2m} ,
- 2. $\mathfrak{a} = \mathfrak{so}_{2n+1}$, \mathfrak{sp}_{2n} , \mathfrak{so}_{2n} , or $\mathfrak{osp}_{1|2n}$.

 $\rho_{\mathfrak{a}}$, $\rho_{\mathfrak{b}}$ transform as the standard representations of \mathfrak{a} , \mathfrak{b} , respectively.

 $\rho_{\mathfrak{a}}$ and $\rho_{\mathfrak{b}}$ can be either even or odd.

Let $f_{\mathfrak{b}} \in \mathfrak{g}$ be the nilpotent element which is **principal** in \mathfrak{b} and **trivial** in \mathfrak{a} .

Recall: $W^{\psi}(\mathfrak{g}, f_{\mathfrak{h}})$ has level $\psi - h^{\vee}$.

Let $d_a = \dim \rho_a$ and $d_b = \dim \rho_b$.

- 1. Case 1: $b = \mathfrak{so}_{2m+1}$, so $d_6 = 2m + 1$.
- 2. Case 2: $\mathfrak{b} = \mathfrak{sp}_{2m}$, so $d_{\mathfrak{b}} = 2m$.

In both cases, $W^{\psi}(\mathfrak{q}, f_{\mathfrak{h}})$ is of type

$$\mathcal{W}\left(1^{\dim \mathfrak{a}}, 2, 4, \ldots, 2m, \left(\frac{d_{\mathfrak{b}}+1}{2}\right)^{d_{\mathfrak{a}}}\right).$$

Affine subalgebra is $V^{\psi'}(\mathfrak{a})$ for some level ψ'

Let $f_{\mathfrak{b}} \in \mathfrak{g}$ be the nilpotent element which is **principal** in \mathfrak{b} and **trivial** in \mathfrak{a} .

Recall: $W^{\psi}(\mathfrak{g}, f_{\mathfrak{b}})$ has level $\psi - h^{\vee}$.

Let $d_0 = \dim \rho_0$ and $d_0 = \dim \rho_0$.

- 1. Case 1: $b = \mathfrak{so}_{2m+1}$, so $d_b = 2m + 1$.
- 2. Case 2: $\mathfrak{b} = \mathfrak{sp}_{2m}$, so $d_{\mathfrak{h}} = 2m$.

In both cases, $W^{\psi}(\mathfrak{q}, f_{\mathfrak{h}})$ is of type

$$\mathcal{W}\left(1^{\dim \mathfrak{a}}, 2, 4, \ldots, 2m, \left(\frac{d_{\mathfrak{b}}+1}{2}\right)^{d_{\mathfrak{a}}}\right).$$

Affine subalgebra is $V^{\psi'}(\mathfrak{a})$ for some level ψ'

Let $f_{\mathfrak{b}} \in \mathfrak{g}$ be the nilpotent element which is **principal** in \mathfrak{b} and **trivial** in \mathfrak{a} .

Recall: $W^{\psi}(\mathfrak{g}, f_{\mathfrak{b}})$ has level $\psi - h^{\vee}$.

Let $d_{\mathfrak{g}} = \dim \, \rho_{\mathfrak{g}}$ and $d_{\mathfrak{h}} = \dim \, \rho_{\mathfrak{h}}$.

- 1. Case 1: $\mathfrak{b} = \mathfrak{so}_{2m+1}$, so $d_{\mathfrak{b}} = 2m + 1$.
- 2. Case 2: $\mathfrak{b} = \mathfrak{sp}_{2m}$, so $d_{\mathfrak{b}} = 2m$.

In both cases, $\mathcal{W}^{\psi}(\mathfrak{g},f_{\mathfrak{b}})$ is of type

$$\mathcal{W}\left(1^{\dim \, \mathfrak{a}}, 2, 4, \ldots, 2m, \left(\frac{d_{\mathfrak{b}}+1}{2}\right)^{d_{\mathfrak{a}}}\right)$$

Affine subalgebra is $V^{\psi'}(\mathfrak{a})$ for some level ψ' .

Let $f_{\mathfrak{b}} \in \mathfrak{g}$ be the nilpotent element which is **principal** in \mathfrak{b} and **trivial** in \mathfrak{a} .

Recall: $\mathcal{W}^{\psi}(\mathfrak{g}, f_{\mathfrak{b}})$ has level $\psi - h^{\vee}$.

Let $d_{\mathfrak{a}} = \dim \, \rho_{\mathfrak{a}}$ and $d_{\mathfrak{b}} = \dim \, \rho_{\mathfrak{b}}$.

- 1. Case 1: $\mathfrak{b} = \mathfrak{so}_{2m+1}$, so $d_{\mathfrak{b}} = 2m + 1$.
- 2. Case 2: $\mathfrak{b} = \mathfrak{sp}_{2m}$, so $d_{\mathfrak{b}} = 2m$.

In both cases, $\mathcal{W}^{\psi}(\mathfrak{g},f_{\mathfrak{b}})$ is of type

$$\mathcal{W}\bigg(1^{\text{dim }\mathfrak{a}},2,4,\ldots,2m,\bigg(\frac{d_{\mathfrak{b}}+1}{2}\bigg)^{d_{\mathfrak{a}}}\bigg).$$

Affine subalgebra is $V^{\psi'}(\mathfrak{a})$ for some level ψ' .

Let $f_{\mathfrak{b}} \in \mathfrak{g}$ be the nilpotent element which is **principal** in \mathfrak{b} and **trivial** in \mathfrak{a} .

Recall: $\mathcal{W}^{\psi}(\mathfrak{g}, f_{\mathfrak{b}})$ has level $\psi - h^{\vee}$.

Let $d_{\mathfrak{a}} = \dim \, \rho_{\mathfrak{a}}$ and $d_{\mathfrak{b}} = \dim \, \rho_{\mathfrak{b}}$.

- 1. Case 1: $\mathfrak{b} = \mathfrak{so}_{2m+1}$, so $d_{\mathfrak{b}} = 2m + 1$.
- 2. Case 2: $\mathfrak{b} = \mathfrak{sp}_{2m}$, so $d_{\mathfrak{b}} = 2m$.

In both cases, $\mathcal{W}^{\psi}(\mathfrak{g},f_{\mathfrak{b}})$ is of type

$$\mathcal{W}\bigg(1^{\text{dim }\mathfrak{a}},2,4,\ldots,2m,\bigg(\frac{d_{\mathfrak{b}}+1}{2}\bigg)^{d_{\mathfrak{a}}}\bigg).$$

Affine subalgebra is $V^{\psi'}(\mathfrak{a})$ for some level ψ' .

Let $f_{\mathfrak{b}} \in \mathfrak{g}$ be the nilpotent element which is **principal** in \mathfrak{b} and **trivial** in \mathfrak{a} .

Recall: $\mathcal{W}^{\psi}(\mathfrak{g}, f_{\mathfrak{b}})$ has level $\psi - h^{\vee}$.

Let $d_{\mathfrak{a}} = \dim \, \rho_{\mathfrak{a}}$ and $d_{\mathfrak{b}} = \dim \, \rho_{\mathfrak{b}}$.

- 1. Case 1: $\mathfrak{b} = \mathfrak{so}_{2m+1}$, so $d_{\mathfrak{b}} = 2m + 1$.
- 2. Case 2: $\mathfrak{b} = \mathfrak{sp}_{2m}$, so $d_{\mathfrak{b}} = 2m$.

In both cases, $\mathcal{W}^{\psi}(\mathfrak{g},f_{\mathfrak{b}})$ is of type

$$\mathcal{W}\bigg(1^{\text{dim }\mathfrak{a}},2,4,\ldots,2m,\bigg(\frac{d_{\mathfrak{b}}+1}{2}\bigg)^{d_{\mathfrak{a}}}\bigg).$$

Affine subalgebra is $V^{\psi'}(\mathfrak{a})$ for some level ψ' .

For $n, m \ge 0$ we have the following cases where $\mathfrak{b} = \mathfrak{so}_{2m+1}$.

- 1. Case 1B: $\mathfrak{g} = \mathfrak{so}_{2n+2m+2}$, $\mathfrak{a} = \mathfrak{so}_{2n+1}$.
- 2. Case 1C: $\mathfrak{g} = \mathfrak{osp}_{2m+1|2n}$, $\mathfrak{a} = \mathfrak{sp}_{2n}$.
- 3. Case 1D: $\mathfrak{g} = \mathfrak{so}_{2n+2m+1}$, $\mathfrak{a} = \mathfrak{so}_{2n}$.
- 4. Case 10: $\mathfrak{g} = \mathfrak{osp}_{2m+2|2n}$, $\mathfrak{a} = \mathfrak{osp}_{1|2n}$.

We write
$$W_{1X}^{\psi}(n,m) := W^{\psi}(\mathfrak{g}, f_{\mathfrak{so}_{2m+1}})$$
, for $X = B, C, D, O$.

Note: For m = 0, the nilpotent $f_{b} \in \mathfrak{g}$ is trivial, so we have

- 1. $W_{1B}^{\psi}(n,0) = V^{\psi-2n}(\mathfrak{so}_{2n+2}),$
- 2. $W_{1C}^{\psi}(n,0) = V^{\psi+2n+1}(\mathfrak{osp}_{1|2n}),$
- 3. $W_{1D}^{\psi}(n,0) = V^{\psi-2n+1}(\mathfrak{so}_{2n+1})$
- 4. $W_{1O}^{\psi}(n,0) = V^{\psi+2n}(\mathfrak{osp}_{2|2n}).$

For $n, m \ge 0$ we have the following cases where $\mathfrak{b} = \mathfrak{so}_{2m+1}$.

- 1. Case 1B: $\mathfrak{g} = \mathfrak{so}_{2n+2m+2}$, $\mathfrak{a} = \mathfrak{so}_{2n+1}$.
- 2. Case 1C: $\mathfrak{g} = \mathfrak{osp}_{2m+1|2n}$, $\mathfrak{a} = \mathfrak{sp}_{2n}$.
- 3. Case 1D: $\mathfrak{g} = \mathfrak{so}_{2n+2m+1}$, $\mathfrak{a} = \mathfrak{so}_{2n}$.
- 4. Case 10: $\mathfrak{g} = \mathfrak{osp}_{2m+2|2n}$, $\mathfrak{a} = \mathfrak{osp}_{1|2n}$.

We write
$$\mathcal{W}_{1X}^{\psi}(n,m):=\mathcal{W}^{\psi}(\mathfrak{g},f_{\mathfrak{so}_{2m+1}})$$
, for $X=B,C,D,O$.

Note: For m = 0, the nilpotent $f_{b} \in \mathfrak{g}$ is trivial, so we have

- 1. $W_{1B}^{\psi}(n,0) = V^{\psi-2n}(\mathfrak{so}_{2n+2}),$
- 2. $W_{1C}^{\psi}(n,0) = V^{\psi+2n+1}(\mathfrak{osp}_{1|2n}),$
- 3. $W_{1D}^{\psi}(n,0) = V^{\psi-2n+1}(\mathfrak{so}_{2n+1})$
- 4. $W_{1O}^{\psi}(n,0) = V^{\psi+2n}(\mathfrak{osp}_{2|2n}).$

For $n, m \ge 0$ we have the following cases where $\mathfrak{b} = \mathfrak{so}_{2m+1}$.

- 1. Case 1B: $\mathfrak{g} = \mathfrak{so}_{2n+2m+2}$, $\mathfrak{a} = \mathfrak{so}_{2n+1}$.
- 2. Case 1C: $\mathfrak{g} = \mathfrak{osp}_{2m+1|2n}$, $\mathfrak{a} = \mathfrak{sp}_{2n}$.
- 3. Case 1D: $\mathfrak{g} = \mathfrak{so}_{2n+2m+1}$, $\mathfrak{a} = \mathfrak{so}_{2n}$.
- 4. Case 10: $\mathfrak{g} = \mathfrak{osp}_{2m+2|2n}$, $\mathfrak{a} = \mathfrak{osp}_{1|2n}$.

We write $\mathcal{W}_{1X}^{\psi}(n,m):=\mathcal{W}^{\psi}(\mathfrak{g},f_{\mathfrak{so}_{2m+1}})$, for X=B,C,D,O.

Note: For m = 0, the nilpotent $f_{b} \in \mathfrak{g}$ is trivial, so we have

- 1. $W_{1B}^{\psi}(n,0) = V^{\psi-2n}(\mathfrak{so}_{2n+2}),$
- 2. $W_{1C}^{\psi}(n,0) = V^{\psi+2n+1}(\mathfrak{osp}_{1|2n}),$
- 3. $W_{1D}^{\psi}(n,0) = V^{\psi-2n+1}(\mathfrak{so}_{2n+1}),$
- 4. $W_{1O}^{\psi}(n,0) = V^{\psi+2n}(\mathfrak{osp}_{2|2n}).$

For $n \geq 0$ and $m \geq 1$ we have the following cases where $\mathfrak{b} = \mathfrak{sp}_{2m}$.

- 1. Case 2B: $\mathfrak{g} = \mathfrak{osp}_{2n+1|2m}$, $\mathfrak{a} = \mathfrak{so}_{2n+1}$.
- 2. Case 2C: $\mathfrak{g} = \mathfrak{sp}_{2n+2m}$, $\mathfrak{a} = \mathfrak{sp}_{2n}$.
- 3. Case 2D: $\mathfrak{g} = \mathfrak{osp}_{2n|2m}$, $\mathfrak{a} = \mathfrak{so}_{2n}$.
- 4. Case 20: $\mathfrak{g}=\mathfrak{osp}_{1|2n+2m}, \quad \mathfrak{a}=\mathfrak{osp}_{1|2n}.$

We write
$$\mathcal{W}^{\psi}_{2X}(n,m) := \mathcal{W}^{\psi}(\mathfrak{g},f_{\mathfrak{sp}_{2m}})$$
, for $X=B,C,D,O$.

For m=0, we define $\mathcal{W}_{2X}^{\psi}(n,0)$ in a different way so that our results hold uniformly for all $n,m\geq 0$.

Ex: Let $\mathcal{F}(m)$ and $\mathcal{S}(m)$ denote the rank m free fermion algebra and $\beta\gamma$ -system, respectively. Define

$$\mathcal{W}_{2B}^{\psi}(n,0) = \begin{cases} V^{-2\psi-2n+1}(\mathfrak{so}_{2n+1}) \otimes \mathcal{F}(2n+1) & n \geq 1, \\ \mathcal{F}(1) & n = 0. \end{cases}$$

For $n \geq 0$ and $m \geq 1$ we have the following cases where $\mathfrak{b} = \mathfrak{sp}_{2m}$.

- 1. Case 2B: $\mathfrak{g} = \mathfrak{osp}_{2n+1|2m}$, $\mathfrak{a} = \mathfrak{so}_{2n+1}$.
- 2. Case 2C: $\mathfrak{g} = \mathfrak{sp}_{2n+2m}$, $\mathfrak{a} = \mathfrak{sp}_{2n}$.
- 3. Case 2D: $\mathfrak{g} = \mathfrak{osp}_{2n|2m}$, $\mathfrak{a} = \mathfrak{so}_{2n}$.
- 4. Case 20: $\mathfrak{g}=\mathfrak{osp}_{1|2n+2m}, \quad \mathfrak{a}=\mathfrak{osp}_{1|2n}.$

We write
$$\mathcal{W}_{2X}^{\psi}(n,m):=\mathcal{W}^{\psi}(\mathfrak{g},f_{\mathfrak{sp}_{2m}})$$
, for $X=B,C,D,O$.

For m=0, we define $\mathcal{W}_{2X}^{\psi}(n,0)$ in a different way so that our results hold uniformly for all $n,m\geq 0$.

Ex: Let $\mathcal{F}(m)$ and $\mathcal{S}(m)$ denote the rank m free fermion algebra and $\beta\gamma$ -system, respectively. Define

$$\mathcal{W}_{2B}^{\psi}(n,0) = \begin{cases} V^{-2\psi-2n+1}(\mathfrak{so}_{2n+1}) \otimes \mathcal{F}(2n+1) & n \geq 1, \\ \mathcal{F}(1) & n = 0. \end{cases}$$

For $n \geq 0$ and $m \geq 1$ we have the following cases where $\mathfrak{b} = \mathfrak{sp}_{2m}$.

- 1. Case 2B: $\mathfrak{g} = \mathfrak{osp}_{2n+1|2m}$, $\mathfrak{a} = \mathfrak{so}_{2n+1}$.
- 2. Case 2C: $\mathfrak{g} = \mathfrak{sp}_{2n+2m}$, $\mathfrak{a} = \mathfrak{sp}_{2n}$.
- 3. Case 2D: $\mathfrak{g} = \mathfrak{osp}_{2n|2m}$, $\mathfrak{a} = \mathfrak{so}_{2n}$.
- 4. Case 20: $\mathfrak{g}=\mathfrak{osp}_{1|2n+2m}, \quad \mathfrak{a}=\mathfrak{osp}_{1|2n}.$

We write
$$\mathcal{W}^{\psi}_{2X}(n,m) := \mathcal{W}^{\psi}(\mathfrak{g},f_{\mathfrak{sp}_{2m}})$$
, for $X = B,C,D,O$.

For m=0, we define $\mathcal{W}^{\psi}_{2X}(n,0)$ in a different way so that our results hold uniformly for all $n,m\geq 0$.

Ex: Let $\mathcal{F}(m)$ and $\mathcal{S}(m)$ denote the rank m free fermion algebra and $\beta\gamma$ -system, respectively. Define

$$\mathcal{W}_{2B}^{\psi}(n,0) = \begin{cases} V^{-2\psi-2n+1}(\mathfrak{so}_{2n+1}) \otimes \mathcal{F}(2n+1) & n \geq 1, \\ \mathcal{F}(1) & n = 0. \end{cases}$$

For $n \geq 0$ and $m \geq 1$ we have the following cases where $\mathfrak{b} = \mathfrak{sp}_{2m}$.

- 1. Case 2B: $\mathfrak{g} = \mathfrak{osp}_{2n+1|2m}$, $\mathfrak{a} = \mathfrak{so}_{2n+1}$.
- 2. Case 2C: $\mathfrak{g} = \mathfrak{sp}_{2n+2m}$, $\mathfrak{a} = \mathfrak{sp}_{2n}$.
- 3. Case 2D: $\mathfrak{g} = \mathfrak{osp}_{2n|2m}$, $\mathfrak{a} = \mathfrak{so}_{2n}$.
- 4. Case 20: $\mathfrak{g} = \mathfrak{osp}_{1|2n+2m}$, $\mathfrak{a} = \mathfrak{osp}_{1|2n}$.

We write
$$\mathcal{W}_{2X}^{\psi}(n,m):=\mathcal{W}^{\psi}(\mathfrak{g},f_{\mathfrak{sp}_{2m}})$$
, for $X=B,C,D,O$.

For m=0, we define $\mathcal{W}^{\psi}_{2X}(n,0)$ in a different way so that our results hold uniformly for all $n,m\geq 0$.

Ex: Let $\mathcal{F}(m)$ and $\mathcal{S}(m)$ denote the rank m free fermion algebra and $\beta\gamma$ -system, respectively. Define

$$\mathcal{W}^{\psi}_{2B}(n,0) = \left\{ egin{array}{ll} V^{-2\psi-2n+1}(\mathfrak{so}_{2n+1}) \otimes \mathcal{F}(2n+1) & n \geq 1, \ \mathcal{F}(1) & n = 0. \end{array}
ight.$$

21. The affine cosets $C_{iX}^{\psi}(n,m)$

Consider following affine cosets.

1.
$$\mathcal{C}^{\psi}_{1B}(n,m) := \mathsf{Com}(V^{\psi-2n}(\mathfrak{so}_{2n+1}), \mathcal{W}^{\psi}_{1B}(n,m))^{\mathbb{Z}/2\mathbb{Z}},$$

2.
$$C_{1C}^{\psi}(n,m) := \text{Com}(V^{-\psi/2-n-1/2}(\mathfrak{sp}_{2n}), \mathcal{W}_{1C}^{\psi}(n,m)),$$

3.
$$\mathcal{C}_{1D}^{\psi}(n,m) := \mathsf{Com}(V^{\psi-2n+1}(\mathfrak{so}_{2n}), \mathcal{W}_{1D}^{\psi}(n,m))^{\mathbb{Z}/2\mathbb{Z}},$$

4.
$$\mathcal{C}_{1O}^{\psi}(n,m) := \mathsf{Com}(V^{-\psi/2-n}(\mathfrak{osp}_{1|2n}), \mathcal{W}_{1O}^{\psi}(n,m))^{\mathbb{Z}/2\mathbb{Z}}$$
,

5.
$$\mathcal{C}^{\psi}_{2B}(n,m) := \mathsf{Com}(V^{-2\psi-2n+2}(\mathfrak{so}_{2n+1}), \mathcal{W}^{\psi}_{2B}(n,m))^{\mathbb{Z}/2\mathbb{Z}},$$

6.
$$C_{2C}^{\psi}(n,m) := \text{Com}(V^{\psi-n-3/2}(\mathfrak{sp}_{2n}), \mathcal{W}_{2C}^{\psi}(n,m)),$$

7.
$$\mathcal{C}^{\psi}_{2D}(n,m) := \mathsf{Com}(V^{-2\psi-2n+3}(\mathfrak{so}_{2n}), \mathcal{W}^{\psi}_{2D}(n,m))^{\mathbb{Z}/2\mathbb{Z}}$$
,

8.
$$\mathcal{C}^{\psi}_{2O}(n,m) := \mathsf{Com}(V^{\psi-n-1}(\mathfrak{osp}_{1|2n}), \mathcal{W}^{\psi}_{2O}(n,m))^{\mathbb{Z}/2\mathbb{Z}}.$$

22. Trialities of orthosymplectic types

Thm: (Creutzig-L, 2021) For all integers $m \ge n \ge 0$, we have the following isomorphisms of one-parameter vertex algebras.

$$C_{2B}^{\psi}(n,m) \cong C_{2O}^{\psi'}(n,m-n) \cong C_{2B}^{\psi''}(m,n), \quad \psi' = \frac{1}{4\psi}, \quad \frac{1}{\psi} + \frac{1}{\psi''} = 2,$$

$$C_{1C}^{\psi}(n,m) \cong C_{2C}^{\psi'}(n,m-n) \cong C_{1C}^{\psi''}(m,n), \quad \psi' = \frac{1}{2\psi}, \quad \frac{1}{\psi} + \frac{1}{\psi''} = 1,$$

$$C_{2D}^{\psi}(n,m) \cong C_{1D}^{\psi'}(n,m-n) \cong C_{1O}^{\psi''}(m,n-1), \quad \psi' = \frac{1}{2\psi}, \quad \frac{1}{2\psi} + \frac{1}{\psi''} = 1$$

$$C_{1D}^{\psi}(n,m) \cong C_{1B}^{\psi'}(n,m-n) \cong C_{2D}^{\psi''}(m+1,n), \quad \psi' = \frac{1}{\psi}, \quad \frac{1}{\psi} + \frac{1}{2\psi''} = 1.$$

22. Trialities of orthosymplectic types

Thm: (Creutzig-L, 2021) For all integers $m \ge n \ge 0$, we have the following isomorphisms of one-parameter vertex algebras.

$$C_{2B}^{\psi}(n,m)\cong C_{2O}^{\psi'}(n,m-n)\cong C_{2B}^{\psi''}(m,n), \quad \psi'=rac{1}{4\psi}, \quad rac{1}{\psi}+rac{1}{\psi''}=2,$$

$$C_{1C}^{\psi}(n,m) \cong C_{2C}^{\psi'}(n,m-n) \cong C_{1C}^{\psi''}(m,n), \quad \psi' = \frac{1}{2\psi}, \quad \frac{1}{\psi} + \frac{1}{\psi''} = 1,$$

$$\mathcal{C}^{\psi}_{2D}(\textit{n},\textit{m})\cong \mathcal{C}^{\psi'}_{1D}(\textit{n},\textit{m}-\textit{n})\cong \mathcal{C}^{\psi''}_{1O}(\textit{m},\textit{n}-1), \quad \psi'=rac{1}{2\psi}, \quad rac{1}{2\psi}+rac{1}{\psi''}=1,$$

$$\mathcal{C}_{1O}^{\psi}(n,m)\cong \mathcal{C}_{1B}^{\psi'}(n,m-n)\cong \mathcal{C}_{2D}^{\psi''}(m+1,n), \quad \psi'=rac{1}{\psi}, \quad rac{1}{\psi}+rac{1}{2\psi''}=1.$$

The isomorphism

$$\mathcal{C}_{1C}^{\psi}(0,m)\cong\mathcal{C}_{2C}^{\psi'}(0,m), \qquad \psi'=\frac{1}{2\psi},$$

is just Feigin-Frenkel duality in types B and C, since

$$\mathcal{C}_{1C}^{\psi}(0,m) = \mathcal{W}^{\psi}(\mathfrak{so}_{2m+1}), \qquad \mathcal{C}_{2C}^{\psi'}(0,m) \cong \mathcal{W}^{\psi'}(\mathfrak{sp}_{2m}).$$

The isomorphism

$$\mathcal{C}^{\psi}_{2D}(0,m)\cong\mathcal{C}^{\psi'}_{1D}(0,m), \qquad \psi'=rac{1}{2\psi},$$

is again Feigin-Frenkel duality in types B and C, since

$$\mathcal{C}_{2D}^{\psi}(0,m) = \mathcal{W}^{\psi}(\mathfrak{sp}_{2m}), \quad \mathcal{C}_{1D}^{\psi'}(0,m) = \mathcal{W}^{\psi'}(\mathfrak{so}_{2m+1}).$$

The isomorphism

$$\mathcal{C}_{1C}^{\psi}(0,m)\cong\mathcal{C}_{2C}^{\psi'}(0,m), \qquad \psi'=\frac{1}{2\psi},$$

is just Feigin-Frenkel duality in types B and C, since

$$\mathcal{C}_{1C}^{\psi}(0,m) = \mathcal{W}^{\psi}(\mathfrak{so}_{2m+1}), \qquad \mathcal{C}_{2C}^{\psi'}(0,m) \cong \mathcal{W}^{\psi'}(\mathfrak{sp}_{2m}).$$

The isomorphism

$$\mathcal{C}_{2D}^{\psi}(0,m)\cong\mathcal{C}_{1D}^{\psi'}(0,m),\qquad \psi'=rac{1}{2\psi},$$

is again Feigin-Frenkel duality in types B and C, since

$$\mathcal{C}_{2D}^{\psi}(0,m)=\mathcal{W}^{\psi}(\mathfrak{sp}_{2m}),\quad \mathcal{C}_{1D}^{\psi'}(0,m)=\mathcal{W}^{\psi'}(\mathfrak{so}_{2m+1}).$$

The isomorphism

$$\mathcal{C}_{1O}^{\psi}(0,m)\cong\mathcal{C}_{1B}^{\psi'}(0,m), \qquad \psi'=\frac{1}{\psi},$$

is just the \mathbb{Z}_2 -invariant part of **Feigin-Frenkel duality** in type D, since

$$\mathcal{C}_{1\textit{O}}^{\psi}(\textbf{0},\textit{m}) = \mathcal{W}^{\psi}(\mathfrak{so}_{2\textit{m}+2})^{\mathbb{Z}_2}, \quad \mathcal{C}_{1\textit{B}}^{\psi'}(\textbf{0},\textit{m}) = \mathcal{W}^{\psi'}(\mathfrak{so}_{2\textit{m}+2})^{\mathbb{Z}_2}.$$

The isomorphism

$$\mathcal{C}_{2B}^{\psi}(0,m)\cong\mathcal{C}_{2O}^{\psi'}(0,m), \qquad \psi'=rac{1}{4\psi}$$

is the \mathbb{Z}_2 -invariant part of **Feigin-Frenkel duality** for $\mathcal{W}^{\psi}(\mathfrak{osp}_{1|2m})$, since

$$\mathcal{C}^{\psi}_{2B}(0,m) = \mathcal{W}^{\psi}(\mathfrak{osp}_{1|2m})^{\mathbb{Z}_2}, \quad \mathcal{C}^{\psi'}_{2O}(0,m) = \mathcal{W}^{\psi'}(\mathfrak{osp}_{1|2m})^{\mathbb{Z}_2}.$$

Both can be extended to the full dualities.

The isomorphism

$$\mathcal{C}_{1O}^{\psi}(0,m)\cong\mathcal{C}_{1B}^{\psi'}(0,m), \qquad \psi'=\frac{1}{\psi},$$

is just the \mathbb{Z}_2 -invariant part of **Feigin-Frenkel duality** in type D, since

$$\mathcal{C}_{1O}^{\psi}(0,m)=\mathcal{W}^{\psi}(\mathfrak{so}_{2m+2})^{\mathbb{Z}_2},\quad \mathcal{C}_{1B}^{\psi'}(0,m)=\mathcal{W}^{\psi'}(\mathfrak{so}_{2m+2})^{\mathbb{Z}_2}.$$

The isomorphism

$$\mathcal{C}_{2B}^{\psi}(0,m)\cong\mathcal{C}_{2O}^{\psi'}(0,m),\qquad \psi'=rac{1}{4\psi}$$

is the \mathbb{Z}_2 -invariant part of **Feigin-Frenkel duality** for $\mathcal{W}^{\psi}(\mathfrak{osp}_{1|2m})$, since

$$\mathcal{C}^{\psi}_{2B}(0,m)=\mathcal{W}^{\psi}(\mathfrak{osp}_{1|2m})^{\mathbb{Z}_2},\quad \mathcal{C}^{\psi'}_{2O}(0,m)=\mathcal{W}^{\psi'}(\mathfrak{osp}_{1|2m})^{\mathbb{Z}_2}.$$

Both can be extended to the full dualities.

The isomorphism

$$C_{2D}^{\psi}(1,m) \cong C_{1D}^{\psi'}(1,m-1), \qquad \psi' = \frac{1}{2\psi},$$

recovers the \mathbb{Z}_2 -invariant part of the Feigin-Frenkel type duality

$$\mathsf{Com}(\mathcal{H}, \mathcal{W}^{\psi'}(\mathfrak{so}_{2m+1}, \mathit{f}_{\mathsf{subreg}})) \cong \mathsf{Com}(\mathcal{H}, \mathcal{W}^{\psi}(\mathfrak{osp}_{2|2m})),$$

of Creutzig, Genra, and Nakatsuka, since

$$\mathcal{C}^{\psi}_{2D}(1,m) = \mathsf{Com}(\mathcal{H},\mathcal{W}^{\psi}(\mathfrak{osp}_{2|2m}))^{\mathbb{Z}_2},$$

and

$$\mathcal{C}_{1D}^{\psi'}(1,m-1) = \mathsf{Com}(\mathcal{H},\mathcal{W}^{\psi'}(\mathfrak{so}_{2m+1},\mathit{f}_{\mathsf{subreg}}))^{\mathbb{Z}_2}.$$

This can be extended to the full duality.

The isomorphism

$$C_{2D}^{\psi}(1,m) \cong C_{1D}^{\psi'}(1,m-1), \qquad \psi' = \frac{1}{2\psi},$$

recovers the \mathbb{Z}_2 -invariant part of the **Feigin-Frenkel type duality**

$$\mathsf{Com}(\mathcal{H},\mathcal{W}^{\psi'}(\mathfrak{so}_{2m+1},\mathit{f}_{\mathsf{subreg}})) \cong \mathsf{Com}(\mathcal{H},\mathcal{W}^{\psi}(\mathfrak{osp}_{2|2m})),$$

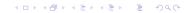
of Creutzig, Genra, and Nakatsuka, since

$$\mathcal{C}^{\psi}_{2D}(1,m) = \mathsf{Com}(\mathcal{H},\mathcal{W}^{\psi}(\mathfrak{osp}_{2|2m}))^{\mathbb{Z}_2},$$

and

$$\mathcal{C}_{1D}^{\psi'}(1, \mathit{m}-1) = \mathsf{Com}(\mathcal{H}, \mathcal{W}^{\psi'}(\mathfrak{so}_{2\mathit{m}+1}, \mathit{f}_{\mathsf{subreg}}))^{\mathbb{Z}_2}.$$

This can be extended to the full duality.



The isomorphism

$$C_{1O}^{\psi}(0, n-1) \cong C_{2D}^{\psi''}(n, 0), \qquad \frac{1}{\psi} + \frac{1}{2\psi''} = 1,$$

recovers the \mathbb{Z}_2 -invariant part of the **coset realization** of principal \mathcal{W} -algebras of type D, since

$$\begin{split} \mathcal{C}_{2D}^{\psi''}(n,0) &\cong \mathsf{Com}(V^{-2\psi''-2n+3}(\mathfrak{so}_{2n}), V^{-2\psi''-2n+2}(\mathfrak{so}_{2n}) \otimes \mathcal{F}(2n))^{\mathbb{Z}_2} \\ &\cong \mathsf{Com}(V^{-2\psi''-2n+3}(\mathfrak{so}_{2n}), V^{-2\psi''-2n+2}(\mathfrak{so}_{2n}) \otimes L_1(\mathfrak{so}_{2n}))^{\mathbb{Z}_2}, \end{split}$$

and

$$C_{10}^{\psi}(0, n-1) \cong \mathcal{W}^{\psi}(\mathfrak{so}_{2n})^{\mathbb{Z}_2}.$$

The isomorphism

$$C_{1C}^{\psi}(n,0) \cong C_{1C}^{\psi''}(0,n), \qquad \frac{1}{\psi} + \frac{1}{\psi''} = 1$$

yields a **coset realization** of type B and C principal \mathcal{W} -algebras.

We have

$$egin{aligned} \mathcal{C}_{1C}^{\psi}(n,0) &= \mathsf{Com}(V^{-\psi/2-n-1/2}(\mathfrak{sp}_{2n}),V^{\psi+2n+1}(\mathfrak{osp}_{1|2n})), \ \mathcal{C}_{1C}^{\psi''}(0,n) &= \mathcal{W}^{\psi''}(\mathfrak{so}_{2n+1}), \end{aligned}$$

Note: We are using the convention that the form on $\mathfrak{osp}_{1|2n}$ is normalized so that

$$V^{-k/2}(\mathfrak{sp}_{2n}) \hookrightarrow V^k(\mathfrak{osp}_{1|2n})$$

The isomorphism

$$C_{1C}^{\psi}(n,0) \cong C_{1C}^{\psi''}(0,n), \qquad \frac{1}{\psi} + \frac{1}{\psi''} = 1$$

yields a **coset realization** of type B and C principal \mathcal{W} -algebras.

We have

$$C_{1C}^{\psi}(n,0) = \text{Com}(V^{-\psi/2-n-1/2}(\mathfrak{sp}_{2n}), V^{\psi+2n+1}(\mathfrak{osp}_{1|2n})),$$

$$C_{1C}^{\psi''}(0,n) = W^{\psi''}(\mathfrak{so}_{2n+1}),$$

Note: We are using the convention that the form on $\mathfrak{osp}_{1|2n}$ is normalized so that

$$V^{-k/2}(\mathfrak{sp}_{2n}) \hookrightarrow V^k(\mathfrak{osp}_{1|2n})$$

The isomorphism

$$C_{1C}^{\psi}(n,0) \cong C_{1C}^{\psi''}(0,n), \qquad \frac{1}{\psi} + \frac{1}{\psi''} = 1$$

yields a **coset realization** of type B and C principal \mathcal{W} -algebras.

We have

$$C_{1C}^{\psi}(n,0) = \text{Com}(V^{-\psi/2-n-1/2}(\mathfrak{sp}_{2n}), V^{\psi+2n+1}(\mathfrak{osp}_{1|2n})),$$

$$C_{1C}^{\psi''}(0,n) = \mathcal{W}^{\psi''}(\mathfrak{so}_{2n+1}),$$

Note: We are using the convention that the form on $\mathfrak{osp}_{1|2n}$ is normalized so that

$$V^{-k/2}(\mathfrak{sp}_{2n}) \hookrightarrow V^k(\mathfrak{osp}_{1|2n}).$$

Suppose we instead use the normalization such that

$$V^k(\mathfrak{sp}_{2n}) \hookrightarrow V^k(\mathfrak{osp}_{1|2n}).$$

We then have

$$C_{1C}^{\psi}(n,0) = \text{Com}(V^k(\mathfrak{sp}_{2n}), V^k(\mathfrak{osp}_{1|2n})), \qquad k = -\frac{1}{2}(\psi + 2n + 1).$$

This yields the following result.

Thm: For all $n \ge 1$, we have the following isomorphism of one-parameter vertex algebras

$$\mathsf{Com}(V^k(\mathfrak{sp}_{2n}),V^k(\mathfrak{osp}_{1|2n}))\cong \mathcal{W}^\phi(\mathfrak{so}_{2n+1}), \qquad \phi=\frac{2k+2n+1}{2k+2n+2}.$$

This was also proven in a different way by Creutzig and Genra,

Suppose we instead use the normalization such that

$$V^k(\mathfrak{sp}_{2n}) \hookrightarrow V^k(\mathfrak{osp}_{1|2n}).$$

We then have

$$C_{1C}^{\psi}(n,0) = \text{Com}(V^k(\mathfrak{sp}_{2n}), V^k(\mathfrak{osp}_{1|2n})), \qquad k = -\frac{1}{2}(\psi + 2n + 1).$$

This yields the following result.

Thm: For all $n \ge 1$, we have the following isomorphism of one-parameter vertex algebras

$$\mathsf{Com}(V^k(\mathfrak{sp}_{2n}),V^k(\mathfrak{osp}_{1|2n}))\cong \mathcal{W}^\phi(\mathfrak{so}_{2n+1}), \qquad \phi=rac{2k+2n+1}{2k+2n+2}.$$

This was also proven in a different way by Creutzig and Genra, and Specific and Spe

Suppose we instead use the normalization such that

$$V^k(\mathfrak{sp}_{2n}) \hookrightarrow V^k(\mathfrak{osp}_{1|2n}).$$

We then have

$$C_{1C}^{\psi}(n,0) = \operatorname{Com}(V^{k}(\mathfrak{sp}_{2n}), V^{k}(\mathfrak{osp}_{1|2n})), \qquad k = -\frac{1}{2}(\psi + 2n + 1).$$

This yields the following result.

Thm: For all $n \ge 1$, we have the following isomorphism of one-parameter vertex algebras

$$\mathsf{Com}(V^k(\mathfrak{sp}_{2n}),V^k(\mathfrak{osp}_{1|2n}))\cong \mathcal{W}^\phi(\mathfrak{so}_{2n+1}), \qquad \phi=rac{2k+2n+1}{2k+2n+2}.$$

This was also proven in a different way by Creutzig and Genra.

The isomorphism

$$C_{2B}^{\psi}(n,0) \cong C_{2B}^{\psi''}(0,n), \qquad \frac{1}{\psi} + \frac{1}{\psi''} = 2,$$

yields a **coset realization** of \mathbb{Z}_2 -orbifolds of principal \mathcal{W} -algebras of $\mathfrak{osp}_{1|2n}$.

We have

$$\mathcal{C}^{\psi}_{2B}(n,0)\cong$$
 $\mathsf{Com}(V^{-2\psi-2n+2}(\mathfrak{so}_{2n+1}),V^{-2\psi-2n+1}(\mathfrak{so}_{2n+1})\otimes \mathcal{F}(2n+1))^{\mathbb{Z}_2}$

and

$$\mathcal{C}^{\psi''}_{2B}(0,n)\cong \mathcal{W}^{\psi''}(\mathfrak{osp}_{1|2n})^{\mathbb{Z}_2}.$$

This can be extended to a coset realization of $\mathcal{W}^{\psi''}(\mathfrak{osp}_{1|2n})$.

Proven in a different way by Creutzig and Genta, ABALER & SAC

The isomorphism

$$C_{2B}^{\psi}(n,0) \cong C_{2B}^{\psi''}(0,n), \qquad \frac{1}{\psi} + \frac{1}{\psi''} = 2,$$

yields a **coset realization** of \mathbb{Z}_2 -orbifolds of principal \mathcal{W} -algebras of $\mathfrak{osp}_{1|2n}$.

We have

$$\mathcal{C}^{\psi}_{2B}(n,0)\cong \ \mathsf{Com}(V^{-2\psi-2n+2}(\mathfrak{so}_{2n+1}),V^{-2\psi-2n+1}(\mathfrak{so}_{2n+1})\otimes \mathcal{F}(2n+1))^{\mathbb{Z}_2},$$

and

$$\mathcal{C}_{2B}^{\psi''}(0,n)\cong\mathcal{W}^{\psi''}(\mathfrak{osp}_{1|2n})^{\mathbb{Z}_2}.$$

This can be extended to a coset realization of $\mathcal{W}^{\psi''}(\mathfrak{osp}_{1|2n})$.

Proven in a different way by Creutzig and Genra, To the service of the service of

The isomorphism

$$\mathcal{C}^{\psi}_{2B}(\textit{n},0) \cong \mathcal{C}^{\psi''}_{2B}(0,\textit{n}), \qquad \quad \frac{1}{\psi} + \frac{1}{\psi''} = 2,$$

yields a **coset realization** of \mathbb{Z}_2 -orbifolds of principal \mathcal{W} -algebras of $\mathfrak{osp}_{1|2n}$.

We have

$$C_{2B}^{\psi}(n,0) \cong$$

$$\mathsf{Com}(V^{-2\psi-2n+2}(\mathfrak{so}_{2n+1}),V^{-2\psi-2n+1}(\mathfrak{so}_{2n+1})\otimes \mathcal{F}(2n+1))^{\mathbb{Z}_2},$$

and

$$\mathcal{C}_{2B}^{\psi''}(0,n)\cong\mathcal{W}^{\psi''}(\mathfrak{osp}_{1|2n})^{\mathbb{Z}_2}.$$

This can be extended to a coset realization of $\mathcal{W}^{\psi''}(\mathfrak{osp}_{1|2n})$.

The isomorphism

$$\mathcal{C}^{\psi}_{2B}(\textit{n},0) \cong \mathcal{C}^{\psi''}_{2B}(0,\textit{n}), \qquad \quad \frac{1}{\psi} + \frac{1}{\psi''} = 2,$$

yields a **coset realization** of \mathbb{Z}_2 -orbifolds of principal \mathcal{W} -algebras of $\mathfrak{osp}_{1|2n}$.

We have

$$\mathcal{C}^{\psi}_{2B}(n,0)\cong \ \mathsf{Com}(V^{-2\psi-2n+2}(\mathfrak{so}_{2n+1}),V^{-2\psi-2n+1}(\mathfrak{so}_{2n+1})\otimes \mathcal{F}(2n+1))^{\mathbb{Z}_2},$$

and

$$\mathcal{C}_{2B}^{\psi''}(0,n)\cong\mathcal{W}^{\psi''}(\mathfrak{osp}_{1|2n})^{\mathbb{Z}_2}.$$

This can be extended to a coset realization of $\mathcal{W}^{\psi''}(\mathfrak{osp}_{1|2n})$.

Proven in a different way by Creutzig and Genta,

Thm (Kac-Wakimoto, 1990) If k is admissible for $\widehat{\mathfrak{so}}_{2n+1}$, we have an embedding

$$L_{k+1}(\mathfrak{so}_{2n+1}) \hookrightarrow L_k(\mathfrak{so}_{2n+1}) \otimes L_1(\mathfrak{so}_{2n_1}).$$

Then simple quotient

$$\mathcal{C}_{\psi,2B}(n,0)\cong \mathsf{Com}(L_{k+1}(\mathfrak{so}_{2n+1}),L_k(\mathfrak{so}_{2n+1})\otimes L_1(\mathfrak{so}_{2n+1})).$$

Recall: For \mathfrak{g} simply laced, $Com(L_{k+1}(\mathfrak{g}), L_k(\mathfrak{g}) \otimes L_1(\mathfrak{g}))$ is lisse and rational.

We conjecture that this holds for $g = \mathfrak{so}_{2n+1}$ as well

Thm (Kac-Wakimoto, 1990) If k is admissible for $\widehat{\mathfrak{so}}_{2n+1}$, we have an embedding

$$L_{k+1}(\mathfrak{so}_{2n+1}) \hookrightarrow L_k(\mathfrak{so}_{2n+1}) \otimes L_1(\mathfrak{so}_{2n_1}).$$

Then simple quotient

$$\mathcal{C}_{\psi,2B}(n,0) \cong \mathsf{Com}(\mathcal{L}_{k+1}(\mathfrak{so}_{2n+1}),\mathcal{L}_{k}(\mathfrak{so}_{2n+1}) \otimes \mathcal{L}_{1}(\mathfrak{so}_{2n+1})).$$

Recall: For g simply laced, $Com(L_{k+1}(\mathfrak{g}), L_k(\mathfrak{g}) \otimes L_1(\mathfrak{g}))$ is lisse and rational.

We conjecture that this holds for $\mathfrak{g} = \mathfrak{so}_{2n+1}$ as well

Thm (Kac-Wakimoto, 1990) If k is admissible for $\widehat{\mathfrak{so}}_{2n+1}$, we have an embedding

$$L_{k+1}(\mathfrak{so}_{2n+1}) \hookrightarrow L_k(\mathfrak{so}_{2n+1}) \otimes L_1(\mathfrak{so}_{2n_1}).$$

Then simple quotient

$$\mathcal{C}_{\psi,2B}(n,0) \cong \mathsf{Com}(\mathcal{L}_{k+1}(\mathfrak{so}_{2n+1}),\mathcal{L}_{k}(\mathfrak{so}_{2n+1}) \otimes \mathcal{L}_{1}(\mathfrak{so}_{2n+1})).$$

Recall: For \mathfrak{g} simply laced, $Com(L_{k+1}(\mathfrak{g}), L_k(\mathfrak{g}) \otimes L_1(\mathfrak{g}))$ is lisse and rational.

We conjecture that this holds for $\mathfrak{g} = \mathfrak{so}_{2n+1}$ as well

Thm (Kac-Wakimoto, 1990) If k is admissible for $\widehat{\mathfrak{so}}_{2n+1}$, we have an embedding

$$L_{k+1}(\mathfrak{so}_{2n+1}) \hookrightarrow L_k(\mathfrak{so}_{2n+1}) \otimes L_1(\mathfrak{so}_{2n_1}).$$

Then simple quotient

$$\mathcal{C}_{\psi,2B}(n,0) \cong \mathsf{Com}(\mathcal{L}_{k+1}(\mathfrak{so}_{2n+1}),\mathcal{L}_{k}(\mathfrak{so}_{2n+1}) \otimes \mathcal{L}_{1}(\mathfrak{so}_{2n+1})).$$

Recall: For \mathfrak{g} simply laced, $Com(L_{k+1}(\mathfrak{g}), L_k(\mathfrak{g}) \otimes L_1(\mathfrak{g}))$ is lisse and rational.

We conjecture that this holds for $\mathfrak{g} = \mathfrak{so}_{2n+1}$ as well.

Thm (Kac-Wakimoto, 1990) If k is admissible for $\widehat{\mathfrak{so}}_{2n+1}$, we have an embedding

$$L_{k+1}(\mathfrak{so}_{2n+1}) \hookrightarrow L_k(\mathfrak{so}_{2n+1}) \otimes L_1(\mathfrak{so}_{2n_1}).$$

Then simple quotient

$$\mathcal{C}_{\psi,2B}(n,0) \cong \mathsf{Com}(\mathcal{L}_{k+1}(\mathfrak{so}_{2n+1}),\mathcal{L}_{k}(\mathfrak{so}_{2n+1}) \otimes \mathcal{L}_{1}(\mathfrak{so}_{2n+1})).$$

Recall: For \mathfrak{g} simply laced, $Com(L_{k+1}(\mathfrak{g}), L_k(\mathfrak{g}) \otimes L_1(\mathfrak{g}))$ is lisse and rational.

We conjecture that this holds for $\mathfrak{g} = \mathfrak{so}_{2n+1}$ as well.