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The Sphere Packing Problem

The sphere packing problem asks for the densest packing of balls
of equal radius r without overlap in Rn.

The density of a sphere packing is the ratio of the space Rn

covered by the balls. One may assume r = 1 by rescaling.
Let ∆n be the supremum of the density over all possible packings.

The asymptotic best known bounds are:

−n − 1 ≤ log2 ∆n ≤ −0.5990 n for n −→∞.

The lower bound is due to Minkowski (1905) and holds for all n
and provides lattice packings, but is not constructive. The upper
bound was given by Kabatiansky & Levenshtein (1979) and uses
linear programming methods.

A related problem is the kissing number problem, the packing
problem on the sphere. Solved in dimensions 1–4, 8 and 24.
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Low Dimensions

An easy method to construct dense packings are laminated lattices
which are obtained by stacking layers of lower dimensional laminated
lattices as dense as possible. One gets:

n 1 2 3 4 5 6 7 8 16 24

L Z A2 A3 D4 D5 D6 E7 E8 BW16 Λ24

They provide the densest lattice packings for at least five dimensions.

n = 1 Trivial. Unique.

n = 2 Easy. Unique.

n = 3 Extremely difficult, computational (Hales 1998 & 2014). Not
unique.
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Low Dimensions
An easy method to construct dense packings are laminated lattices
which are obtained by stacking layers of lower dimensional laminated
lattices as dense as possible. One gets:

n 1 2 3 4 5 6 7 8 16 24

L Z A2 A3 D4 D5 D6 E7 E8 BW16 Λ24

They provide the densest lattice packings for at least five dimensions.

n=8, 24 Cohn & Elkies (2001) showed that E8 (root lattice) and Λ24 (Leech
lattice) are the densest packings up to a factor (1 + ε), ε ∼ 10−8,
generalizing ideas from the solution of the kissing number problem
by Odlyzko & Sloane (1979) from Sn−1 to Rn.

In 2016, it was shown by Viazovska (n = 8) and Cohn et al.
(n = 24) that these two lattices are indeed the unique solution to
the sphere packing problem in those dimensions. Proof uses
modular forms for Γ(2) in an unexpected way to construct the
extremal functional (’magic function’).
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The Coding Theory Packing Problem

The binary coding problem asks for the densest packing of balls
of equal radius d/2 without overlap in Fn

2. Here, the canonical
vector space over the finite field F2 is equipped with the Hamming
metric, the number of different coordinates of two vectors.

The center of the balls form a so called a binary code C ⊂ Fn
2.

The code is called linear if C is a linear subspace.

The problem is not invariant under scaling of the balls and one
considers a function of two variables: Let A(n, d) be the maximal
size of any code C ⊂ Fn

2 with minimal distance d . One compares
the information rate

R =
log2 A(n, d)

n

with the relative distance d/n, in particular for the limit n −→∞.

Gerald Höhn Kansas State University The Conformal Packing Problem and Dual Packing Problem



Packing Problems
Bounds for the dual minimal weight

Proofs

Euclidean Space
Hamming Space
Conformal Space

Analogy: Codes, Lattices and Vertex Operator Algebras.

space (Fn
2,wt) (Rn, | . |) (V ∗Virc

, h)

group Sn O(n) Diff+(S1)

objects binary codes sphere packings ?

integral objects doubly-even codes C even lattices L VOAs V

center density 1/|C⊥/C | 1/|L∗/L| 1/dim(T (V ))

Rational vertex operator algebras V of central charge c are an analog
of doubly-even binary codes of length n and even lattices of rank n. They
are modules for the Virasoro algebra of central charge c which allows to
define the minimal weight µV . The center density is the defined via the
global dimension dim(T (V )) of the associated modular tensor category.

Thus we can formulate the conformal packing problem in analogy to

the packing problems for those codes and lattices.
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Center Density 1 – The self-dual case
A binary code C , lattice L or vertex operator algebra V is called
self-dual if it equals its dual, i.e. one has C = C⊥, L = L∗ or V = V ∗.
By using the associated weight enumerator of the binary code, the theta
series of the lattice, or character of the vertex operator algebra, one
shows for the minimal weight:

Theorem

8|n and µC ≤ 4
[

n
24

]
+ 4

8|n and µL ≤ 2
[

n
24

]
+ 2

8|c and µV ≤
[

n
24

]
+ 1 (H. 1995)

Extremal Codes, lattices, VOAs are those meeting these bounds.
Only known for a few small dimensions, in particular for n, c = 8:
H8, E8, VE8,1 and n, c = 24: G24, Λ24, V \.

Problem: No interesting more general VOA packing problem for which

VE8,1 and V \ is solution.
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3-dimensional Quantum Gravity and Black Holes

E. Witten (2007): Self-dual VOAs/CFTs describe 3-dimensional
black holes in 3-dimensional quantum gravity via AdS/CFT-
correspondence.
Extremal VOAs would correspond to pure quantum gravity.
Extremal character related to Bekenstein bound for
Bekenstein-Hawking black hole entropy.

No real reason to restrict to self-dual VOAs/CFTs.
Generalizations to abitrary CFTs considered: Hellerman (2009)
Friedan & Keller (2013), Mollier, Lin & Yin (2016), Hartman,
Mazac & Rastelli (2019): Better and better bounds for ’dimension
gap’ and other ’spectral invariants’ of CFTs using ’modular
bootstrap’ technique and semidefinite programming.
Although functionals are finally optimal, bounds are usually not
sharp.
Problem: Find sharp bounds for the Virasoro spectrum of CFTs.
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Our semidefinite programming bounds for min(µL, µ
∗
L)

For a lattice L ⊂ Rn let µL = minv∈L\{0} |v |2 and µ∗L = µL∗ .

Theorem

For the values of n listed below, the rows provide upper bounds for
min(µL, µ

∗
L) for any lattice L of rank n.

n 5 7 8 16 23 24 32 48

N = 12 1.591 1.866 2.00018 3.028 3.892 4.014 4.986 6.932

N = 24 1.591 1.866 2.0000005 3.026 3.881 4.00024 4.949 6.802

N = 36 1.591 1.866 2 + 5 · 10−9 3.026 3.880 4.000007 4.947 6.792

By using the method from the solution of the sphere packing
problem in dimension 8 and 24 by Viazovska and Rains et al. I can
show µ∗L ≤ 2 resp. µ∗L ≤ 4 in those dimensions.
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Theorem

Our bound for min(µL, µ
∗
L) is sharp for n = 8 and n = 24 where it

is reached by the root lattice E8 and the Leech lattice Λ24.

We restrict now to even lattices L. Then L ⊂ L∗ and so
µ∗L = min(µL, µ

∗
L). Asymptotically, our upper bound for µ∗L is

slightly better than n/8 + O(1). The general
Kabatiansky-Levenshtein bound gives n/9.795...+ O(1). Actually
one has:

Theorem (Böcherer-Nebe)

For some even lattices L ⊂ Rn one has µ∗L ≤ n/12 + O(1).

Likely, this result can be generalized to all even lattices.

Conversely, it is known that there exist even self-dual lattices L
which meet the Minkowski bound µ∗L ≥ n/17.079...+ O(1).
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A (unitary strongly-rational) vertex operator algebra V of central
charge c ∈ Q is a graded vector space V = ⊕∞n=0Vn, dimVn <∞
(together with additional algebraic structure) allowing to define the
character

χV = q−c/24
∞∑
n=0

dimVn qn.

The V -module V ∗ =
⊕

λ∈Irr(V ) Mλ is called the dual of V . Here, the

{Mλ}λ form a system of representatives of irreducible V -modules and
their characters {χMλ

}λ define a vector valued modular function for
SL(2,Z) on the upper half-plane if one sets q = e2πiτ .

Part of the algebraic structure is the Virasoso algebra

Virc = Lie(D̃iff
+

(S1)) which allows to decompose V into a direct sum of
Virc -modules: V =

⊕
h≤0 M(c , h).

The smallest occuring h > 0 is called the minimal weight µV of V .
One has

χc,h := χM(c,h) = q−c/24+h
∏∞

n=1(1− qn)−1 = q(−c+1)/24+h η(q)−1

for h > 0 and χM(c,0) = (1− q)χc,0.
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Our semidefinite programming bounds for µ∗V
For a VOA V of central charge c let µ∗V = minv∈P(V ∗)\{1}wt(v).

Theorem

For the values of c listed below, the rows provide upper bounds for
µ∗V for any VOA of central charge c .

c 8
7

4 8 16 23 1
2

24 32 48

N = 12 0.517 0.736 1.0022 1.521 2.005 2.037 2.555 3.603

N = 24 0.5165 0.7353 1.000089 1.5082 1.9743 2.0052 2.4978 3.4811

N = 36 0.51646 0.73523 1.000008 1.50712 1.97044 2.00107 2.48828 3.45357

By adapting the method from the solution of the sphere packing
problem in dimension 8 and 24 by Viazovska and Cohn et al. I can
show µ∗V ≤ 1 and µ∗V ≤ 2 for vertex operator algebras of central
charge 8 and 24, respectively.
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Theorem

Our bound for µ∗V is sharp for c = 8 and c = 24 where it is
reached by the affine Kac Moody VOA for E8 at level 1 and the
moonshine module V \.

Asymptotically, our upper bound for µ∗V is slightly better than
c/16 + O(1).

In analogy to codes and lattices, I believe:

Conjecture

For VOAs one has an upper bound µ∗V ≤ c/24 + O(1).

Conversely, not much is known. To consider general rational VOAs
instead of self-dual one alone seems not to help.
I don’t know how to construct a (rational) VOA with µV > 12.
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Proposition

Let V be a VOA of central charge c > 1 and let

FV =
1

2

(τ
i

)1/4
η(τ) (χV + χV |S)

= c0

(τ
i

)1/4
(1− q) q(1−c)/24 +

∑
h>0

ch

(τ
i

)1/4
q(1−c)/24+h

where η(τ) = q−1/24
∏∞

n=1(1− qn) is the Dedekind eta-function.
Then one has FV = FV |S and FV has the given expansion with
non-negative coefficients ch and c0 > 0. If V has minimum dual
conformal weight µ∗V then ch = 0 for all h in the interval (0, µ∗V ).

This follows from the decomposition of V and its modules into
Virasoro modules, the modular invariance of η, Zhu’s theorem
about χV |S , and positivity of the quantum dimensions of T (V ).
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For real t, FV (t) = FV (it) is real analytic with FV

(
1
t

)
= FV (t).

The functional D defined by

D[FV ] =
N∑

m=0

a2m+1 (t ∂t)
2m+1(FV )

∣∣∣
t=1

therefore annihilates FV .
For the terms in the expansion of FV with h > 0 one has

(t ∂t)
m
(
t1/4e2π(−(1−c)/24−h)t

) ∣∣∣
t=1

= pm(h) e2π(−(1−c)/24−h)

with a real polynomial pm of degree m and so

D
[
t1/4e2π(−(1−c)/24−h)t

]
= p(h) e2π((c−1)/24−h)

where p =
∑N

m=0 a2m+1 p2m+1 is a polynomial of degree 2N + 1.

Similarly, for the first term one gets a sum r =
∑N

m=0 a2m+1 r2m+1

where the real numbers r2m+1 depending only on the charge c .
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For real numbers a2m+1, m = 0, . . ., N, such that r > 0 and
p(h) ≥ 0 for h ≥ ∆ one has

0 = D[FV ] = c0 r +
∑
h>0

ch p(h) e2π(−(1−c)/24−h).

Since c0 r is positive and ch p(h) e2π(−(1−c)/24−h) is non-negative
for h ≥ ∆, at least one of the ch for 0 < h < ∆ has to be nonzero.
Thus we have found an upper estimate µ∗V < ∆ which must hold
for all vertex operator algebras V .

This polynomial optimization problem can be rewritten as a
semidefinite programming problem for which powerful numerical
solvers exist. I used the solver SDPB for higher dimensional
conformal field theory since it allows directly to use the polynomial
formulation of the problem as input.
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The ratio

λ =
℘(ω1+ω2

2 )− ℘(ω2
2 )

℘(ω1
2 )− ℘(ω2

2 )

induces an SL(2,F2) ∼= S3 equivariant

biholomorphic map

H/Γ(2) −→ Ĉ \ {0, 1, ∞}.
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Let c = 8 or c = 24. With explicitly given rational functions Qc(z)
and Rc(z), we define the functional

Cc [ϕ] =

∫ 1

1/2
ϕ(z)Qc(z) dz +

1

2

∫ 1
2

+i∞

1
2

ϕ(z)Rc(z) dz

for ϕ ∈ O(U), U ⊂ Ĉ \ {0, 1, ∞} provided the integrals exists.

Theorem

The integral

fc(h) = Dc

[
χc,h(λ−1(z))

∣∣(id− S)
]

exists for all non-negative real numbers h. It defines a real valued

function fc(h) which is non-negative for h ≥ c

16
+

1

2
and vanishes

for h = 0 and h ≥ c

16
+

1

2
+ n, n = 0, 1, 2, . . ..
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Proof: A contour deformation argument shows that

Dc

[
χc,h(λ−1(z))

∣∣(id− S)
]

= 2 sin2(h π)

∫ 1

0
χc,h(λ−1(z))Qc(z) dz

provided h >
c

16
+

1

2
.

Applying Dc to the S-invariant function FV (λ−1(z)) gives as in
the numerical case:

Theorem

One has the upper bounds µ∗V ≤ 1 and µ∗V ≤ 2 for VOAs of central
charge 8 and 24, respectively. If the bound is reached, then the
VOA is self-dual and χV = j1/3 and χV = j − 744, respectively.
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Details: arXiv:1909.05745

Thank you!
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