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What are we going to see today?

Describe[geometric prop of sheaves over Mgm attached to V-modules
W', ..., W7 for V a nice vertex operator algebra.

Arrves of genvs 3

' Wed ow prop. fuch hold
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What do | mean by nice vertex operator algebras?

V=@V 1¢V, wev, Y: V — End(V)[[z2"]]
i>0 N
graded vacuum conformal A= g Amz "
vector space  vector vector state-field correspondence
L d Vo — 1C
< b dim(V,~) < 00
;c'//‘ {wm), cvldy} = Vir Gy cumbmichage & &),

T * Vis G, cofinite
[ Vis rational

. Ve o ~
[* Vissimpleand V=V
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What do | mean by V-modules?

w=pw YW: vV — End(W)[[z+]
i>0 N
graded — A YAz
vector space state-field correspondence
* Wo #0
o dim(W;) < o0

b {W(Wn Cvldw} =~ Vir
Ke AW W - W+deg(A)—n—1
. W is simple, hence Lo(w) = (deg(w) + aw)w

Toong dim € @
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. ) Sface o4 cowv.  _
Construction ofw : W/@M)CW)

Main idea: V(¢ p)(V; W) is a quotient of W by a Lie algebra encoding the
geometric input.

VoL@ Wev-med . c

Lez,, O
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Construction of V¢ p)(V; W)

Main idea: V(¢ p)(V; W) is a quotient of W by a Lie algebra encoding the
geometric input.

[A] Construct a Lie algebra Lcp(V) acting on W. C wodal
nJ L ew, Ay Ne
! H*( cw )""@wfl) I
C v () C+— C wormalizahoy
}
\4
© 0 ~ Yoty C,
- H (DS U@uoa) = Z == W
% D?:@(:(({?f)) ( F) \/4ve) 'ISF L—\ & %{;
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Construction of V¢ p)(V; W)

Main idea: V(¢ p)(V; W) is a quotient of W by a Lie algebra encoding the
geometric input.

[A] Construct a Lie algebra Lc\p(V) acting on W.
[B] Define the space of coinvariants

w

VerolViW) = & vy
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Construction of V¢ p)(V; W)

Main idea: V(¢ p)(V; W) is a quotient of W by a Lie algebra encoding the

geometric input.

[A] Construct a Lie algebra Lc\p(V) acting on W.
[B] Define the space of coinvariants

w
V(Qp,tp)(v; W) =

[C] Forget the coordinate tp and obtain V¢ p)(V; W).

Ty ol 's paper

 Lep(V)(W)'

FAN
W,/ CF.bp
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Some first properties [D - Gibney - Tarasca]

Under the assumptions that V is nice and W", ... W" are simple:
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Some first properties [D - Gibney - Tarasca]

Under the assumptions that V is nice and W", ... W" are simple:
* The spaces V(cp,)(V; W', ..., W") fit together to define the sheaf
Vg(V; W', ..., W") over My ,, which is actually a vector bundle of finite rank.

T only ov
Srvetl

[ V. over IS
does ol Ingad] Uﬂnm&)@l

Wb need 2yl
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Some first properties [D - Gibney - Tarasca]

Under the assumptions that V is nice and W", ... W" are simple:

* The spaces V(cp,)(V; W', ..., W") fit together to define the sheaf
Vg(V; W', ..., W") over My, which is actually a vector bundle of finite rank.

* Vicp)(ViW', ..., W") are finite dimensional. Vyﬁ@

se

\\/5 (V\}o) Cbl'w?.ye[,\,{j 5]/Ula£
)
T
V, (W) dual coharent s C
g Cio)) . OV\}OY\M!L Blocks
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Some first properties [D - Gibney - Tarasca]

Under the assumptions that V is nice and W", ... W" are simple:

* The spaces V(cp,)(V; W', ..., W") fit together to define the sheaf
Vg(V; W', ..., W") over My, which is actually a vector bundle of finite rank.

* Vicpy(V;W',...,W") are finite dimensional. — <O<i

* Factorization rules and the sewing theorem hold. <D

® V(O(%ﬁw) = DV @

P— W

CMV\K&
h@dovl @ Fynookh
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Some first properties [D - Gibney - Tarasca]

Under the assumptions that V is nice and W", ... W" are simple:
* The spaces V(cp,)(V; W', ..., W") fit together to define the sheaf
Vg(V; W', ..., W") over My ,, which is actually a vector bundle of finite rank.

Ve Viepy(ViW, ..., W") are finite dimensional.

2 | * Factorization rules and the sewing theorem hold.

3o Vo(V; W', ... ,W") is equipped with a twisted D-module structure with
logarithmic singularities along the boundary.  Pan|_ conn,

143 = VW oisvib. on Mg,

+2 dend to bmv\dav\é,
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Some first properties [D - Gibney - Tarasca]

Under the assumptions that V is nice and W", ... W" are simple:
* The spaces V(cp,)(V; W', ..., W") fit together to define the sheaf
Vg(V; W', ..., W") over My ,, which is actually a vector bundle of finite rank.

* Vicp)(V; W', ..., W") are finite dimensional.

e Factorization rules and the sewing theorem hold.

* Vg(V;W,...,W") is equipped with a twisted D-module structure with
logarithmic singularities along the boundary.

e The assignment (g, W', ..., W") — Ch(Vg(V;W",...,W")) defines a
/Y

semisimple CohFT.
dfwm Chargclen
= &ph-qy@ oompute o Cv « Oy YW
Chern Classes of W kamg « Wo ( Whw2w3)
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Some first properties [D - Gibney - Tarasca]

Under the assumptions that V is nice and W", ... W" are simple:

* The spaces V(cp,)(V; W', ..., W") fit together to define the sheaf
Vg(V; W', ..., W") over My, which is actually a vector bundle of finite rank.

* Vicp)(ViW', ..., W") are finite dimensional.
e Factorization rules and the sewing theorem hold.
* Vg(V;W,...,W") is equipped with a twisted D-module structure with
logarithmic singularities along the boundary.
e The assignment (g, W",...,W") — Ch(Vg(V;W",...,W")) defines a
semisimple CohFT.

* Moduar nt. \\/(L&{OJD_‘_ Bume
. Jlbbmﬁ,gyM ey Ma,p,
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Global generation
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Global generation

A vector bundle V on a variety M is globally generated if there exists a vector
space P and a surjective map

\%

P® Oun
.

Teiviar BUADLE

> Costch waps %f/\om M )PN N s dwe P
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Global generation

A vector bundle V on a variety M is globally generated if there exists a vector
space P and a surjective map

P& Opy A\

Theorem [Fakhruddin] The sheaves of coinvariants Vo(L,(g); W',...,W") are a
quotient of (W) ® --- ® Wg) ® Oy , hence they are globally generated.
| ’

?j_ repy.
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Global generation

A vector bundle V on a variety M is globally generated if there exists a vector
space P and a surjective map

P& Opy A\

Theorem [Fakhruddin] The sheaves of coinvariants Vo(L,(g); W',...,W") are a
quotient of (Wg ® - - - ® Wg) ® O, , hence they are globally generated.

Theorem [D - Gibney] The sheaves of coinvariants Vo (V; W',... ,W") are a
quotient of (Wy ® - - - ® Wg) ® O, , hence they are globally generated if V is

strongly generated in degree 1. Do hot nud  rahonaddy vV
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First example

V= L(3,0) so that Rep(V) = {L(3,0),L(3,3): L3, 36)} = {V. W(3), W(55)}-
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First example
V= L(3,0) so that Rep(V) = {L(3,0),L(3,3), L(3, 3¢)} = {V, W(3), W(5¢)}-

Over M, , there are only three sheaves with degree different from zero:

i Ve o dyV g0
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First example

V = L(3,0) so that Rep(V) = {L(3,0),L(3,3), L(3, 55)} = {V. W(3), W(5)}-
Over M, , there are only three sheaves with degree different from zero:

bundle ‘ rank ‘ degree
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First example

V = L(3,0) so that Rep(V) = {L(3,0),L(3,3), L(3, 55)} = {V. W(3), W(5)}-
Over M, , there are only three sheaves with degree different from zero:

bundle ‘ rank ‘ degree CohFT
VoW WO WOWE) | 1 | 2 i

gt
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First example

V = L(3,0) so that Rep(V) = {L(3,0),L(3,3), L(3, 55)} = {V. W(3), W(5)}-
Over M, , there are only three sheaves with degree different from zero:

bundle ‘ rank ‘ degree
Vo(ViW(3), W(3), W(3), W(3)) 1 2
Vo(ViW(3), W(3), W(5), W(5)) 1 1
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First example

V = L(3,0) so that Rep(V) = {L(3,0),L(3,3), L(3, 55)} = {V. W(3), W(5)}-
Over M, , there are only three sheaves with degree different from zero:

bundle rank degree
Vo(ViW(3), W(3), W(3), W(3)) 1 2
Vo(V;W(3), W(3), W(s), W(5)) 1 1
2 Vo(ViW(5), W(5), W(5), W(5)) 2 1 &—
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Second example

V =V with L = Ze lattice with (e,€) = 2 - 4, so that Rep(V,) = Z/8Z = {W;}/_,.

Geometric properties of sheaves of coinvariants and conformal blocks Chiara Damiolini



Second example
V =V, with L = Ze lattice with (¢,¢) = 2 - 4, so that Rep(V,) = Z/8Z = {W;}]_..

The line bundle Vo (V; W,, W,, W,, W,) is not globally generated on M.
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Second example
V =V, with L = Ze lattice with (¢,¢) = 2 - 4, so that Rep(V,) = Z/8Z = {W;}!__
The line bundle Vo (V; W,, W,, W,, W,) is not globally generated on Mo,
Wy
A

4 4 4
@t gt gl T g ) @6[22][ 21+ 5[2 uzz]+ 5[221[2 1>-

C1(VO(27 27 27 2))
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Second example
2.k

V =V, with L = Ze lattice with (¢, ¢) = 2 - 4, so that Rep(V,)

= 7/87 = {W;}_,

The line bundle Vo (V; W,, W,, W,, W,) is not globally generated on M.

C1(VO(27 27 27 2))

16 16
deg(Vo(2.2,2,2)) = (A + 2 &y By (10,19,

6 16 16 ' 16

4 4 4 4
(%dﬁ + %1/)2 + %7/13 + %7/&) ( 5[2 2][2,2] JF 5[2 2][2,2] + 5[2 2][2, 2])
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Comments on the proof — Take 1

Theorem [D - Gibney] If Vis strongly generated in degree 1, then the sheaves of coinvariants
Vo(V; WT,...,W") are a quotient of (W} ® --- ® WG) ® Og_ , hence they are globally generated.
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Comments on the proof — Take 1

Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants
Vo(V;W',...,W") are a quotient of (W} @ --- ® WZ) ® Og_ , hence they are globally generated.

1. Themap (W @ --- @ W) ® O — Vg(ViW',... W) is always defined.
(. J

TRIVIAL gver IULQM

! ]
With Covrdungd-e s Woo... ®W.0

3
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Comments on the proof — Take 1

Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants
Vo(V;W',...,W") are a quotient of (W} @ --- ® WZ) ® Og_ , hence they are globally generated.

1. The map (W @ - - @ Wg) ® O - — Vg(ViW',..., W") is always defined.
2. Enough to show that

Wo@ - @Wg = W'®---@W"—=Vcp, 1) (V;W',...,W")

is surjective for every curve C of genus o.
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Comments on the proof — Take 1

Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants
Vo(V;W',...,W") are a quotient of (W} @ --- ® WZ) ® Og_ , hence they are globally generated.

1. The map (W @ - - @ Wg) ® O - — Vg(ViW',..., W") is always defined.
2. Enough to show that
Wo@---@Wg = W'®---@W"— Vicp, 1.)(V;W',...,W")

R
is surjective for every curve C of genus o.

Lol
3. We are left to show that:  Mdluclpgy, oy dﬁ‘\‘“’

We--—.ewh _ 4d-) + \8(‘,\? (V) * Wl@"\?wn

—
o
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Comments on the proof — Take 2

Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants
Vo(V; WT,...,W") are a quotient of (Wg ® - -- ® WG) ® Og_ , hence they are globally generated.
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Comments on the proof — Take 2

Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants
Vo(V; WT,...,W") are a quotient of (Wg ® - -- ® WG) ® Og_ , hence they are globally generated.

A. strongly generated in degree 1: we can assume thatw = w' ® - - - ® w" has one component

u' uew

degwy—j AEVh andj >1
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Comments on the proof — Take 2

Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants
Vo(V; WT,...,W") are a quotient of (Wg ® - -- ® WG) ® Og_ , hence they are globally generated.

A. strongly generated in degree 1: we can assume thatw = w' ® - - - ® w" has one component

w! :i u'e Wigwij A€Viandj>1
B. g=0: we can construct an elemen{ o € Lc\p, (V) puch that

® op =Aj + lower degree terms
® deg(op,) < deg(A) —1=o0fori #R.
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Comments on the proof — Take 2

Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants
Vo(V; W', ...,W") are a quotientof (W) @ --- @ W) ® Op, ,» hence they are globally generated.

A. strongly generated in degree 1: we can assume thatw = w' ® - - - ® w" has one component

u' u e w

degwy—j AEVH andj >1

A
B. g=0: we can construct an element o € L¢\p, (V) such that

* op, =A(_j+ lower degree terms /
® deg(op,) < deg(A) —1=o0fori #R. \ Q&
Conclusion

D

deg(wa(W1®~~~®ui®~-~wn)> < deg(w) —1

T

st
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Concluding comments

Can we identify exactly when coinvariants are globally generated and when
they are not?
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Concluding comments

Can we identify exactly when coinvariants are globally generated and when
they are not?

Can we find a modular intekpretation of conformal blocks?
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Concluding comments

Can we identify exactly when coinvariants are globally generated and when
they are not?

Can we find a modular interpretation of conformal blocks?

Thank you!
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