GEOMETRIC PROPERTIES OF SHEAVES OF COINVARIANTS AND CONFORMAL BLOCKS

CHIARA DAMIOLINI

ft with A. Gibney

UNIVERSITY OF PENNSYLVANIA

SEPTEMBER 23 2021

What are we going to see today?

Describe geometric properties of sheaves over $\overline{M}_{q,n}$ attached to V-modules W^1, \ldots, W^{η} for V a *nice* vertex operator algebra. curves of genus g with n- points based on prop. which hold for Wassociated with Ь affine lie Algebras ٩,١ \sim WЗ W

What do I mean by nice vertex operator algebras?

$$V = \bigoplus_{i \ge 0} V_i$$
 $\mathbf{1} \in V_0$ $\omega \in V_2$ $Y : V \to \operatorname{End}(V)[[z^{\pm 1}]]$ gradedvacuum conformal $A \mapsto \sum_{n \in \mathbb{Z}} A_{(n)} z^{-n-1}$ vector spacevectorvector

•
$$V_{o} = \mathbf{1}\mathbb{C}$$

$$dim(V_i) < \infty$$

$$\left\| \begin{array}{c} \bullet \\ \left\| \left\{ \omega_{(n)}, c_{V} \right\| d_{V} \right\} \\ \end{array} \right\| \leq \operatorname{Vir}$$

- $\Lambda''_{-} \bullet V$ is C_2 cofinite
 - V is rational

$$\overline{\underline{\Gamma}} \bullet V$$
 is simple and $\underbrace{V \cong V'}_{X \to X}$

Chiara Damiolini

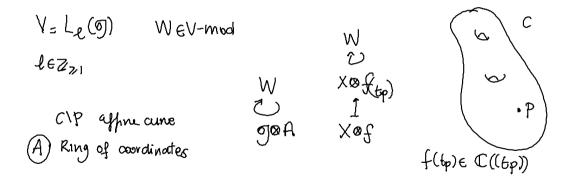
What do I mean by V-modules?

$$\begin{split} W &= \bigoplus_{i \ge 0} W_i & Y^W \colon V \to \operatorname{End}(W)[[z^{\pm 1}]] \\ \text{graded} & A \mapsto \sum_{n \in \mathbb{Z}} A^W_{(n)} z^{-n-1} \\ \text{vector space} & \text{state-field correspondence} \end{split}$$

- $W_o \neq o$
- dim $(W_i) < \infty$
- $\{\omega_{(n)}^{\mathsf{W}}, \mathsf{c}_{\mathsf{V}}\mathsf{Id}_{\mathsf{W}}\}\cong\mathsf{Vir}$
- $\mathbf{H} \bullet A^{W}_{(n)}W_{j} \subseteq W_{j+\deg(A)-n-1}$
 - W is simple, hence $L_{o}(w) = (\deg(w) + a_{W})w$

EØ

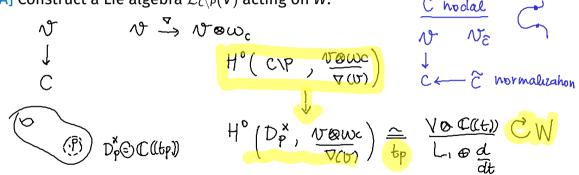
Construction of $\mathbb{V}_{(C,P)}(V; W)$, space of conv. = $\mathbb{V}_{(C,P)}(W)$ Main idea: $\mathbb{V}_{(C,P)}(V; W)$ is a quotient of W by a Lie algebra encoding the geometric input.



Construction of $\mathbb{V}_{(C,P)}(V; W)$

Main idea: $\mathbb{V}_{(C,P)}(V; W)$ is a quotient of W by a Lie algebra encoding the geometric input.

[A] Construct a Lie algebra $\mathcal{L}_{C\setminus P}(V)$ acting on W.



Construction of $\mathbb{V}_{(C,P)}(V; W)$

Main idea: $\mathbb{V}_{(C,P)}(V; W)$ is a quotient of W by a Lie algebra encoding the geometric input.

[A] Construct a Lie algebra $\mathcal{L}_{C \setminus P}(V)$ acting on W. [B] Define the space of coinvariants

$$\mathbb{V}_{(\mathcal{C},\mathsf{P},\mathsf{t}_{\mathsf{P}})}(\mathsf{V};\mathsf{W}) := rac{\mathsf{W}}{\mathcal{L}_{\mathcal{C}\setminus\mathsf{P}}(\mathsf{V})(\mathsf{W})}.$$

Construction of $\mathbb{V}_{(C,P)}(V; W)$

Main idea: $\mathbb{V}_{(C,P)}(V; W)$ is a quotient of W by a Lie algebra encoding the geometric input.

[A] Construct a Lie algebra $\mathcal{L}_{C \setminus P}(V)$ acting on W. [B] Define the space of coinvariants

$$\mathbb{V}_{(C,P,t_P)}(V;W) := \frac{W}{\mathcal{L}_{C\setminus P}(V)(W)}.$$

[C] Forget the coordinate t_P and obtain $\mathbb{V}_{(C,P)}(V; W)$.

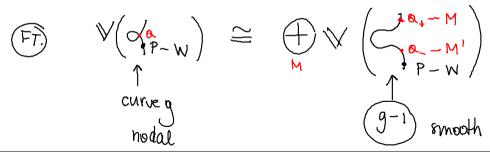
$$\begin{array}{c}
 \widehat{\mathcal{M}}_{g,1} & C_1 P, t_p \\
 \int t_0 P & t_0 P \\
 \overline{\mathcal{M}}_{g,1} & C_1 P
\end{array}$$

Under the assumptions that V is nice and W^1, \ldots, W^n are simple:

• The spaces $\mathbb{V}_{(C,P_{\bullet})}(V; W^{1}, \ldots, W^{n})$ fit together to define the sheaf $\mathbb{V}_{q}(V; W^{1}, \ldots, W^{n})$ over $\overline{M}_{a,n}$, which is actually a vector bundle of finite rank. V.b. over (Mg,n) does not need Ranonality not need VEV!

- The spaces $\mathbb{V}_{(C,P_{\bullet})}(V; W^1, \dots, W^n)$ fit together to define the sheaf $\mathbb{V}_g(V; W^1, \dots, W^n)$ over $\overline{M}_{g,n}$, which is actually a vector bundle of finite rank.
 - $\mathbb{V}_{(C,P_{\bullet})}(V; W^1, \dots, W^n)$ are finite dimensional.

- The spaces $\mathbb{V}_{(C,P_{\bullet})}(V; W^{1}, \ldots, W^{n})$ fit together to define the sheaf $\mathbb{V}_q(V; W^1, \ldots, W^n)$ over $\overline{M}_{q,n}$, which is actually a vector bundle of finite rank.
 - ♥_(C,P•)(V; W¹,..., Wⁿ) are finite dimensional.
 Factorization rules and the sewing theorem hold.



- The spaces $\mathbb{V}_{(C,P_{\bullet})}(V; W^1, \ldots, W^n)$ fit together to define the sheaf $\mathbb{V}_{g}(V; W^{1}, \ldots, W^{n})$ over $\overline{M}_{g,n}$, which is actually a vector bundle of finite rank.
- $\mathbb{V}_{(C,P_{\bullet})}(V; W^{1}, ..., W^{n})$ are finite dimensional. Factorization rules and the sewing theorem hold. $\mathbb{V}_{g}(V; W^{1}, ..., W^{n})$ is equipped with a twisted D-module structure with logarithmic singularities along the boundary. Proj. Conn.

$$1+3 \implies \mathbb{V}$$
 is v.b. on $M_{g,r}$
+2 extend to boundary

Under the assumptions that V is nice and W^1, \ldots, W^n are simple:

- The spaces $\mathbb{V}_{(C,P_{\bullet})}(V; W^{1}, \dots, W^{n})$ fit together to define the sheaf $\mathbb{V}_{g}(V; W^{1}, \dots, W^{n})$ over $\overline{M}_{g,n}$, which is actually a vector bundle of finite rank.
 - $\mathbb{V}_{(C,P_{\bullet})}(V; W^1, \dots, W^n)$ are finite dimensional.
 - Factorization rules and the sewing theorem hold.
 - $\mathbb{V}_g(V; W^1, \ldots, W^n)$ is equipped with a twisted D-module structure with logarithmic singularities along the boundary.
- The assignment (g, W¹,..., Wⁿ) → Ch(𝒱_g(V; W¹,..., Wⁿ)) defines a semisimple CohFT.
 Chetra chevrates

Geometric properties of sheaves of coinvariants and conformal blocks

- The spaces $\mathbb{V}_{(C,P_{\bullet})}(V; W^{1}, \dots, W^{n})$ fit together to define the sheaf $\mathbb{V}_{g}(V; W^{1}, \dots, W^{n})$ over $\overline{M}_{g,n}$, which is actually a vector bundle of finite rank.
 - $\mathbb{V}_{(C,P_{\bullet})}(V; W^1, \dots, W^n)$ are finite dimensional.
 - Factorization rules and the sewing theorem hold.
 - $\mathbb{V}_g(V; W^1, \ldots, W^n)$ is equipped with a twisted D-module structure with logarithmic singularities along the boundary.
- The assignment $(g, W^1, \ldots, W^n) \mapsto Ch(\mathbb{V}_g(V; W^1, \ldots, W^n))$ defines a semisimple CohFT.

A vector bundle \mathbb{V} on a variety *M* is globally generated if there exists a vector space *P* and a surjective map

$$\underline{\mathsf{P}\otimes\mathcal{O}_{\mathsf{M}}} \longrightarrow \mathbb{V}$$

TRIVIAL BUNDLE

A vector bundle \mathbb{V} on a variety M is globally generated if there exists a vector space P and a surjective map

$$\mathsf{P}\otimes\mathcal{O}_{\mathsf{M}}$$
 \longrightarrow \mathbb{V}

Theorem [Fakhruddin] The sheaves of coinvariants $\mathbb{V}_{o}(L_{\ell}(\mathfrak{g}); W^{1}, \ldots, W^{n})$ are a quotient of $(W^{1}_{o} \otimes \cdots \otimes W^{n}_{o}) \otimes \mathcal{O}_{\overline{M}_{o,n}}$, hence they are globally generated. \mathbb{I} -repr.

A vector bundle \mathbb{V} on a variety M is globally generated if there exists a vector space P and a surjective map

$$\mathsf{P}\otimes\mathcal{O}_{\mathsf{M}} \longrightarrow \mathbb{V}$$

Theorem [Fakhruddin] The sheaves of coinvariants $\mathbb{V}_{o}(L_{\ell}(\mathfrak{g}); W^{1}, \ldots, W^{n})$ are a quotient of $(W_{o}^{1} \otimes \cdots \otimes W_{o}^{n}) \otimes \mathcal{O}_{\overline{M}_{o,n}}$, hence they are globally generated.

Theorem [D - Gibney] The sheaves of coinvariants $\mathbb{V}_{0}(V; W^{1}, \ldots, W^{n})$ are a quotient of $(W_{0}^{1} \otimes \cdots \otimes W_{0}^{n}) \otimes \mathcal{O}_{\overline{M}_{0,n}}$, hence they are globally generated **if** V **is** strongly generated in degree 1. \mathfrak{b}_{0} hot nucl values $V \cong V^{1}$

 $V = L(\frac{1}{2}, O)$ so that $\text{Rep}(V) = \{L(\frac{1}{2}, O), L(\frac{1}{2}, \frac{1}{2}), L(\frac{1}{2}, \frac{1}{16})\} = \{V, W(\frac{1}{2}), W(\frac{1}{16})\}.$

 $V = L(\frac{1}{2}, 0) \text{ so that } \operatorname{Rep}(V) = \{L(\frac{1}{2}, 0), L(\frac{1}{2}, \frac{1}{2}), L(\frac{1}{2}, \frac{1}{16})\} = \{V, W(\frac{1}{2}), W(\frac{1}{16})\}.$ Over $\overline{M}_{0,4}$ there are only three sheaves with degree different from zero: $V = V \quad G = gen. \implies dg \quad V > 0$

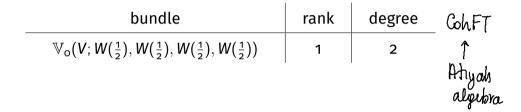
 $V = L(\frac{1}{2}, 0)$ so that $\text{Rep}(V) = \{L(\frac{1}{2}, 0), L(\frac{1}{2}, \frac{1}{2}), L(\frac{1}{2}, \frac{1}{16})\} = \{V, W(\frac{1}{2}), W(\frac{1}{16})\}.$

Over $\overline{M}_{0,4}$ there are only three sheaves with degree different from zero:

bundle	rank	degree
--------	------	--------

 $V = L(\frac{1}{2}, 0)$ so that $\text{Rep}(V) = \{L(\frac{1}{2}, 0), L(\frac{1}{2}, \frac{1}{2}), L(\frac{1}{2}, \frac{1}{16})\} = \{V, W(\frac{1}{2}), W(\frac{1}{16})\}.$

Over $\overline{M}_{0,4}$ there are only three sheaves with degree different from zero:



 $V = L(\frac{1}{2}, 0) \text{ so that } \operatorname{Rep}(V) = \{L(\frac{1}{2}, 0), L(\frac{1}{2}, \frac{1}{2}), L(\frac{1}{2}, \frac{1}{16})\} = \{V, W(\frac{1}{2}), W(\frac{1}{16})\}.$

Over $\overline{M}_{0,4}$ there are only three sheaves with degree different from zero:

bundle	rank	degree
$\mathbb{V}_{O}(V; W(\frac{1}{2}), W(\frac{1}{2}), W(\frac{1}{2}), W(\frac{1}{2}))$	1	2
$\mathbb{V}_{O}(V; W(\frac{1}{2}), W(\frac{1}{2}), W(\frac{1}{16}), W(\frac{1}{16}))$	1	1

-

 $V = L(\frac{1}{2}, 0)$ so that $\operatorname{Rep}(V) = \{L(\frac{1}{2}, 0), L(\frac{1}{2}, \frac{1}{2}), L(\frac{1}{2}, \frac{1}{16})\} = \{V, W(\frac{1}{2}), W(\frac{1}{16})\}.$ Over $\overline{M}_{0,4}$ there are only three sheaves with degree different from zero:

bundle	rank	degree
$\mathbb{V}_{0}(V; W(\frac{1}{2}), W(\frac{1}{2}), W(\frac{1}{2}), W(\frac{1}{2}))$	1	2
$\mathbb{V}_{O}(V; W(\frac{1}{2}), W(\frac{1}{2}), W(\frac{1}{16}), W(\frac{1}{16}))$	1	1
$\longrightarrow \mathbb{V}_{o}(V; W(\frac{1}{16}), W(\frac{1}{16}), W(\frac{1}{16}), W(\frac{1}{16}))$	2	-1 <
Sheaf of commin cannot be gigen!		

 $V = V_L$ with $L = \mathbb{Z}\epsilon$ lattice with $(\epsilon, \epsilon) = 2 \cdot 4$, so that $\operatorname{Rep}(V_L) \cong \mathbb{Z}/8\mathbb{Z} = \{W_i\}_{i=0}^7$.

 $V = V_L$ with $L = \mathbb{Z}\epsilon$ lattice with $(\epsilon, \epsilon) = 2 \cdot 4$, so that $\operatorname{Rep}(V_L) \cong \mathbb{Z}/8\mathbb{Z} = \{W_i\}_{i=0}^7$.

The line bundle $\mathbb{V}_{o}(V; W_{2}, W_{2}, W_{2}, W_{2})$ is not globally generated on $\overline{M}_{o,4}$.

 $V = V_L$ with $L = \mathbb{Z}\epsilon$ lattice with $(\epsilon, \epsilon) = 2 \cdot 4$, so that $\operatorname{Rep}(V_L) \cong \mathbb{Z}/8\mathbb{Z} = \{W_i\}_{i=0}^7$.

The line bundle $\mathbb{V}_{o}(V; \underline{W}_{2}, W_{2}, W_{2}, W_{2})$ is not globally generated on $\overline{M}_{o,4}$.

$$c_{1}(\mathbb{V}_{0}(2,2,2,2)) = \left(\frac{4}{16}\psi_{1} + \frac{4}{16}\psi_{2} + \frac{4}{16}\psi_{3} + \frac{4}{16}\psi_{4}\right) - \left(\frac{16}{16}\delta_{[2,2][2,2]} + \frac{16}{16}\delta_{[2,2][2,2]} + \frac{16}{16}\delta_{[2,2][2,2]}\right).$$

 $2 \cdot \underline{k}$ $V = V_L$ with $L = \mathbb{Z}\epsilon$ lattice with $(\epsilon, \epsilon) = 2 \cdot 4$, so that $\operatorname{Rep}(V_L) \cong \mathbb{Z}/8\mathbb{Z} = \{W_i\}_{i=0}^7$. The line bundle $\mathbb{V}_0(V; W_2, W_2, W_2, W_2)$ is not globally generated on $\overline{M}_{0,4}$.

$$c_{1}(\mathbb{V}_{0}(2,2,2,2)) = \left(\frac{4}{16}\psi_{1} + \frac{4}{16}\psi_{2} + \frac{4}{16}\psi_{3} + \frac{4}{16}\psi_{4}\right) - \left(\frac{16}{16}\delta_{[2,2][2,2]} + \frac{16}{16}\delta_{[2,2][2,2]} + \frac{16}{16}\delta_{[2,2][2,2]} + \frac{16}{16}\delta_{[2,2][2,2]}\right).$$

$$boundary,$$

$$deg(\mathbb{V}_{0}(2,2,2,2,2)) = \left(\frac{4}{16} + \frac{4}{16} + \frac{4}{16} + \frac{4}{16}\right) - \left(\frac{16}{16} + \frac{16}{16} + \frac{16}{16}\right) = 1 - 3 = -2.$$

$$-k$$

Chiara Damiolini

Geometric properties of sheaves of coinvariants and conformal blocks

Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants $\mathbb{V}_0(V; W^1, \ldots, W^n)$ are a quotient of $(W_0^1 \otimes \cdots \otimes W_0^n) \otimes \mathcal{O}_{\overline{M}_0 n}$, hence they are globally generated.

Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants $\mathbb{V}_{0}(V; W^{1}, \ldots, W^{n})$ are a quotient of $(W_{0}^{1} \otimes \cdots \otimes W_{0}^{n}) \otimes \mathcal{O}_{\overline{M}_{0,n}}$, hence they are globally generated.

1. The map
$$(W_0^1 \otimes \cdots \otimes W_0^n) \otimes \mathcal{O}_{\overline{M}_{g,n}} \to \mathbb{V}_g(V; W^1, \dots, W^n)$$
 is always defined.
 $TRIVIAL$ over $\overline{M}_{g,n}$
with coordinates $W_0^1 \otimes \cdots \otimes W_0^h$
 $\int W_0^1 \otimes \cdots \otimes W_0^h$
 $\int W_0^1 \otimes \cdots \otimes W_0^h$
 $\int W_0^1 \otimes \cdots \otimes W_0^h$

Chiara Damiolini

Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants $\mathbb{V}_{0}(V; W^{1}, \ldots, W^{n})$ are a quotient of $(W_{0}^{1} \otimes \cdots \otimes W_{0}^{n}) \otimes \mathcal{O}_{\overline{M}_{0,n}}$, hence they are globally generated.

- 1. The map $(W_0^1 \otimes \cdots \otimes W_0^n) \otimes \mathcal{O}_{\overline{M}_{q,n}} \to \mathbb{V}_g(V; W^1, \dots, W^n)$ is always defined.
- 2. Enough to show that

$$W^1_{o} \otimes \cdots \otimes W^n_{o} \hookrightarrow W^1 \otimes \cdots \otimes W^n \twoheadrightarrow \mathbb{V}_{(C,P_{\bullet},t_{\bullet})}(V;W^1,\ldots,W^n)$$

is surjective for every curve C of genus o.

Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants $\mathbb{V}_{0}(V; W^{1}, \ldots, W^{n})$ are a quotient of $(W_{0}^{1} \otimes \cdots \otimes W_{0}^{n}) \otimes \mathcal{O}_{\overline{M}_{0,n}}$, hence they are globally generated.

- 1. The map $(W_0^1 \otimes \cdots \otimes W_0^n) \otimes \mathcal{O}_{\overline{M}_{q,n}} \to \mathbb{V}_g(V; W^1, \dots, W^n)$ is always defined.
- 2. Enough to show that

$$W_{o}^{1} \otimes \cdots \otimes W_{o}^{n} \hookrightarrow W^{1} \otimes \cdots \otimes W^{n} \to \mathbb{V}_{(C, P_{\bullet}, t_{\bullet})}(V; W^{1}, \dots, W^{n})$$

is surjective for every curve C of genus o.

3. We are left to show that: Induction on degree

$$w' \circ - - \circ w'' = [\leq d - 1] + L_{CVP}(V) \cdot W' \circ - \circ w''$$

Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants $\mathbb{V}_{o}(V; W^{1}, \ldots, W^{n})$ are a quotient of $(W_{o}^{1} \otimes \cdots \otimes W_{o}^{n}) \otimes \mathcal{O}_{\overline{M}_{o}, n}$, hence they are globally generated.

Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants $\mathbb{V}_{0}(V; W^{1}, \ldots, W^{n})$ are a quotient of $(W_{0}^{1} \otimes \cdots \otimes W_{0}^{n}) \otimes \mathcal{O}_{\overline{M}_{0,n}}$, hence they are globally generated.

A. strongly generated in degree 1: we can assume that $w = w^1 \otimes \cdots \otimes w^n$ has one component

$$w^i = A_{(-j)}u^i$$
 $u^i \in W^1_{\deg(w^i)-j}$ $A \in V_1$ and $j \ge 1$

Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants $\mathbb{V}_{o}(V; W^{1}, \dots, W^{n})$ are a quotient of $(W_{o}^{1} \otimes \dots \otimes W_{o}^{n}) \otimes \mathcal{O}_{\overline{M}_{o}}$, hence they are globally generated.

A. strongly generated in degree 1: we can assume that $w = w^1 \otimes \cdots \otimes w^n$ has one component

$$w^i = A_{(-j)} v^i$$
 $u^i \in W^1_{\deg(w^i)-j}$ $A \in V_1$ and $j \ge 1$

- **B. g=o:** we can construct an element $\sigma \in \mathcal{L}_{C \setminus P_{\bullet}}(V)$ such that
 - $\sigma_{P_i} = A_{(-j)} + \text{ lower degree terms}$ $\deg(\sigma_{P_b}) \leq \deg(A) 1 = 0 \text{ for } i \neq k.$

Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants $\mathbb{V}_{0}(V; W^{1}, \dots, W^{n})$ are a quotient of $(W_{0}^{1} \otimes \dots \otimes W_{0}^{n}) \otimes \mathcal{O}_{\overline{M}_{0,n}}$, hence they are globally generated.

A. strongly generated in degree 1: we can assume that $w = w^1 \otimes \cdots \otimes w^n$ has one component

$$w^i = \mathsf{A}_{(-j)} u^i$$
 $u^i \in W^1_{\deg(w^i)-j}$ $\mathsf{A} \in V_1$ and $j \ge 1$

B. g=o: we can construct an element $\sigma \in \mathcal{L}_{C \setminus P_{\bullet}}(V)$ such that

• $\sigma_{P_i} = A_{(-j)} + \text{ lower degree terms}$

•
$$\deg(\sigma_{\mathcal{P}_k}) \leq \deg(\mathsf{A}) - \mathsf{1} = \mathsf{o} ext{ for } i
eq k.$$

Conclusion

$$\deg \left(w - \sigma(w^1 \otimes \cdots \otimes u^i \otimes \cdots w^n) \right) \leq \deg(w) - 1$$

$$\uparrow_{w^i}$$

Concluding comments

Can we identify exactly when coinvariants are globally generated and when they are not?

Concluding comments

Can we identify exactly when coinvariants are globally generated and when they are not?

Can we find a modular interpretation of conformal blocks?

Concluding comments

Can we identify exactly when coinvariants are globally generated and when they are not?

Can we find a modular interpretation of conformal blocks?

Thank you!