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What are we going to see today?
Describe geometric properties of sheaves over Mg,n attached to V-modules
W1, . . . ,Wn for V a nice vertex operator algebra.
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What do I mean by nice vertex operator algebras?

V =
�

i≥0
Vi 1 ∈ V0 ω ∈ V2 Y : V → End(V)[[z±1]]

graded vacuum conformal A �→ �
n∈Z A(n)z−n−1

vector space vector vector state-field correspondence
• V0 = 1C
• dim(Vi) < ∞
• {ω(n), cVIdV} ∼= Vir
• V is C2 cofinite
• V is rational
• V is simple and V ∼= V�

Geometric properties of sheaves of coinvariants and conformal blocks Chiara Damiolini



What do I mean by V-modules?

W =
�

i≥0
Wi YW : V → End(W)[[z±1]]

graded A �→ �
n∈Z AW(n)z−n−1

vector space state-field correspondence
• W0 �= 0
• dim(Wi) < ∞
• {ωW(n), cVIdW} ∼= Vir
• AW(n)Wj ⊆ Wj+deg(A)−n−1
• W is simple, hence L0(w) = (deg(w) + aW)w
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Construction of V(C,P)(V;W)

Main idea: V(C,P)(V;W) is a quotient of W by a Lie algebra encoding the
geometric input.
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Construction of V(C,P)(V;W)

Main idea: V(C,P)(V;W) is a quotient of W by a Lie algebra encoding the
geometric input.

[A] Construct a Lie algebra LC\P(V) acting on W.
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Construction of V(C,P)(V;W)

Main idea: V(C,P)(V;W) is a quotient of W by a Lie algebra encoding the
geometric input.

[A] Construct a Lie algebra LC\P(V) acting on W.
[B] Define the space of coinvariants

V(C,P,tP)(V;W) :=
W

LC\P(V)(W)
.
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Construction of V(C,P)(V;W)

Main idea: V(C,P)(V;W) is a quotient of W by a Lie algebra encoding the
geometric input.

[A] Construct a Lie algebra LC\P(V) acting on W.
[B] Define the space of coinvariants

V(C,P,tP)(V;W) :=
W

LC\P(V)(W)
.

[C] Forget the coordinate tP and obtain V(C,P)(V;W).
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Some first properties [D - Gibney - Tarasca]
Under the assumptions that V is nice and W1, . . . ,Wn are simple:
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Some first properties [D - Gibney - Tarasca]
Under the assumptions that V is nice and W1, . . . ,Wn are simple:

• The spaces V(C,P•)(V;W1, . . . ,Wn) fit together to define the sheaf
Vg(V;W1, . . . ,Wn) over Mg,n, which is actually a vector bundle of finite rank.
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Some first properties [D - Gibney - Tarasca]
Under the assumptions that V is nice and W1, . . . ,Wn are simple:

• The spaces V(C,P•)(V;W1, . . . ,Wn) fit together to define the sheaf
Vg(V;W1, . . . ,Wn) over Mg,n, which is actually a vector bundle of finite rank.

• V(C,P•)(V;W1, . . . ,Wn) are finite dimensional.
• Factorization rules and the sewing theorem hold.
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Some first properties [D - Gibney - Tarasca]
Under the assumptions that V is nice and W1, . . . ,Wn are simple:

• The spaces V(C,P•)(V;W1, . . . ,Wn) fit together to define the sheaf
Vg(V;W1, . . . ,Wn) over Mg,n, which is actually a vector bundle of finite rank.

• V(C,P•)(V;W1, . . . ,Wn) are finite dimensional.
• Factorization rules and the sewing theorem hold.
• Vg(V;W1, . . . ,Wn) is equipped with a twisted D-module structure with
logarithmic singularities along the boundary.
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Some first properties [D - Gibney - Tarasca]
Under the assumptions that V is nice and W1, . . . ,Wn are simple:

• The spaces V(C,P•)(V;W1, . . . ,Wn) fit together to define the sheaf
Vg(V;W1, . . . ,Wn) over Mg,n, which is actually a vector bundle of finite rank.

• V(C,P•)(V;W1, . . . ,Wn) are finite dimensional.
• Factorization rules and the sewing theorem hold.
• Vg(V;W1, . . . ,Wn) is equipped with a twisted D-module structure with
logarithmic singularities along the boundary.

• The assignment (g,W1, . . . ,Wn) �→ Ch(Vg(V;W1, . . . ,Wn)) defines a
semisimple CohFT.
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Some first properties [D - Gibney - Tarasca]
Under the assumptions that V is nice and W1, . . . ,Wn are simple:

• The spaces V(C,P•)(V;W1, . . . ,Wn) fit together to define the sheaf
Vg(V;W1, . . . ,Wn) over Mg,n, which is actually a vector bundle of finite rank.

• V(C,P•)(V;W1, . . . ,Wn) are finite dimensional.
• Factorization rules and the sewing theorem hold.
• Vg(V;W1, . . . ,Wn) is equipped with a twisted D-module structure with
logarithmic singularities along the boundary.

• The assignment (g,W1, . . . ,Wn) �→ Ch(Vg(V;W1, . . . ,Wn)) defines a
semisimple CohFT.
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Global generation
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Global generation
A vector bundle V on a variety M is globally generated if there exists a vector
space P and a surjective map

P⊗OM �� �� V
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Global generation
A vector bundle V on a variety M is globally generated if there exists a vector
space P and a surjective map

P⊗OM �� �� V

Theorem [Fakhruddin] The sheaves of coinvariants V0(L�(g);W1, . . . ,Wn) are a
quotient of (W1

0 ⊗ · · ·⊗Wn
0)⊗OM0,n , hence they are globally generated.
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Global generation
A vector bundle V on a variety M is globally generated if there exists a vector
space P and a surjective map

P⊗OM �� �� V

Theorem [Fakhruddin] The sheaves of coinvariants V0(L�(g);W1, . . . ,Wn) are a
quotient of (W1

0 ⊗ · · ·⊗Wn
0)⊗OM0,n , hence they are globally generated.

Theorem [D - Gibney] The sheaves of coinvariants V0(V;W1, . . . ,Wn) are a
quotient of (W1

0 ⊗ · · ·⊗Wn
0)⊗OM0,n , hence they are globally generated if V is

strongly generated in degree 1.
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First example
V = L( 12 ,0) so that Rep(V) = {L( 12 ,0), L( 12 , 12), L( 12 , 1

16)} = {V,W( 12),W( 116)}.
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First example
V = L( 12 ,0) so that Rep(V) = {L( 12 ,0), L( 12 , 12), L( 12 , 1

16)} = {V,W( 12),W( 116)}.
Over M0,4 there are only three sheaves with degree di�erent from zero:
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First example
V = L( 12 ,0) so that Rep(V) = {L( 12 ,0), L( 12 , 12), L( 12 , 1

16)} = {V,W( 12),W( 116)}.
Over M0,4 there are only three sheaves with degree di�erent from zero:

bundle rank degree

V0(V;W( 12),W( 12),W( 12),W( 12)) 1 2
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First example
V = L( 12 ,0) so that Rep(V) = {L( 12 ,0), L( 12 , 12), L( 12 , 1

16)} = {V,W( 12),W( 116)}.
Over M0,4 there are only three sheaves with degree di�erent from zero:

bundle rank degree

V0(V;W( 12),W( 12),W( 12),W( 12)) 1 2

V0(V;W( 12),W( 12),W( 116),W( 116)) 1 1
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First example
V = L( 12 ,0) so that Rep(V) = {L( 12 ,0), L( 12 , 12), L( 12 , 1

16)} = {V,W( 12),W( 116)}.
Over M0,4 there are only three sheaves with degree di�erent from zero:

bundle rank degree

V0(V;W( 12),W( 12),W( 12),W( 12)) 1 2

V0(V;W( 12),W( 12),W( 116),W( 116)) 1 1

V0(V;W( 116),W( 116),W( 116),W( 116)) 2 −1
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Second example
V = VL with L = Z� lattice with (�, �) = 2 · 4, so that Rep(VL) ∼= Z/8Z = {Wi}7i=0.
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Second example
V = VL with L = Z� lattice with (�, �) = 2 · 4, so that Rep(VL) ∼= Z/8Z = {Wi}7i=0.

The line bundle V0(V;W2,W2,W2,W2) is not globally generated on M0,4.
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Second example
V = VL with L = Z� lattice with (�, �) = 2 · 4, so that Rep(VL) ∼= Z/8Z = {Wi}7i=0.

The line bundle V0(V;W2,W2,W2,W2) is not globally generated on M0,4.

c1(V0(2, 2, 2, 2)) =
� 4
16ψ1 +

4
16ψ2 +

4
16ψ3 +

4
16ψ4

�
−
Å16
16δ[2,2][2,2] +

16
16δ[2,2][2,2] +

16
16δ[2,2][2,2]

ã
.
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Second example
V = VL with L = Z� lattice with (�, �) = 2 · 4, so that Rep(VL) ∼= Z/8Z = {Wi}7i=0.

The line bundle V0(V;W2,W2,W2,W2) is not globally generated on M0,4.

c1(V0(2, 2, 2, 2)) =
� 4
16ψ1 +

4
16ψ2 +

4
16ψ3 +

4
16ψ4

�
−
Å16
16δ[2,2][2,2] +

16
16δ[2,2][2,2] +

16
16δ[2,2][2,2]

ã
.

deg(V0(2, 2, 2, 2)) =
� 4
16 +

4
16 +

4
16 +

4
16

�
−
Å16
16 +

16
16 +

16
16

ã
= 1− 3 = −2.

Geometric properties of sheaves of coinvariants and conformal blocks Chiara Damiolini



Comments on the proof — Take 1
Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants
V0(V;W1, . . . ,Wn) are a quotient of (W1

0 ⊗ · · ·⊗Wn
0)⊗OM0,n

, hence they are globally generated.
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Comments on the proof — Take 1
Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants
V0(V;W1, . . . ,Wn) are a quotient of (W1

0 ⊗ · · ·⊗Wn
0)⊗OM0,n

, hence they are globally generated.

1. The map (W1
0 ⊗ · · ·⊗Wn

0)⊗OMg,n
→ Vg(V;W1, . . . ,Wn) is always defined.
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Comments on the proof — Take 1
Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants
V0(V;W1, . . . ,Wn) are a quotient of (W1

0 ⊗ · · ·⊗Wn
0)⊗OM0,n

, hence they are globally generated.

1. The map (W1
0 ⊗ · · ·⊗Wn

0)⊗OMg,n
→ Vg(V;W1, . . . ,Wn) is always defined.

2. Enough to show that

W1
0 ⊗ · · ·⊗Wn

0 �→ W1 ⊗ · · ·⊗Wn → V(C,P•,t•)(V;W1, . . . ,Wn)

is surjective for every curve C of genus 0.
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Comments on the proof — Take 1
Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants
V0(V;W1, . . . ,Wn) are a quotient of (W1

0 ⊗ · · ·⊗Wn
0)⊗OM0,n

, hence they are globally generated.

1. The map (W1
0 ⊗ · · ·⊗Wn

0)⊗OMg,n
→ Vg(V;W1, . . . ,Wn) is always defined.

2. Enough to show that

W1
0 ⊗ · · ·⊗Wn

0 �→ W1 ⊗ · · ·⊗Wn → V(C,P•,t•)(V;W1, . . . ,Wn)

is surjective for every curve C of genus 0.
3. We are left to show that:
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Comments on the proof — Take 2
Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants
V0(V;W1, . . . ,Wn) are a quotient of (W1

0 ⊗ · · ·⊗Wn
0)⊗OM0,n

, hence they are globally generated.
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Comments on the proof — Take 2
Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants
V0(V;W1, . . . ,Wn) are a quotient of (W1

0 ⊗ · · ·⊗Wn
0)⊗OM0,n

, hence they are globally generated.
A. strongly generated in degree 1: we can assume that w = w1⊗ · · ·⊗wn has one component

wi = A(−j)ui ui ∈ W1
deg(wi)−j A ∈ V1 and j ≥ 1
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Comments on the proof — Take 2
Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants
V0(V;W1, . . . ,Wn) are a quotient of (W1

0 ⊗ · · ·⊗Wn
0)⊗OM0,n

, hence they are globally generated.
A. strongly generated in degree 1: we can assume that w = w1⊗ · · ·⊗wn has one component

wi = A(−j)ui ui ∈ W1
deg(wi)−j A ∈ V1 and j ≥ 1

B. g=0: we can construct an element σ ∈ LC\P•(V) such that
• σPi = A(−j) + lower degree terms
• deg(σPk) ≤ deg(A)− 1= 0 for i �= k.
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Comments on the proof — Take 2
Theorem [D - Gibney] If V is strongly generated in degree 1, then the sheaves of coinvariants
V0(V;W1, . . . ,Wn) are a quotient of (W1

0 ⊗ · · ·⊗Wn
0)⊗OM0,n

, hence they are globally generated.
A. strongly generated in degree 1: we can assume that w = w1⊗ · · ·⊗wn has one component

wi = A(−j)ui ui ∈ W1
deg(wi)−j A ∈ V1 and j ≥ 1

B. g=0: we can construct an element σ ∈ LC\P•(V) such that
• σPi = A(−j) + lower degree terms
• deg(σPk) ≤ deg(A)− 1= 0 for i �= k.

Conclusion
deg
Ä
w − σ(w1 ⊗ · · ·⊗ ui ⊗ · · ·wn)

ä
≤ deg(w)− 1
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Concluding comments
Can we identify exactly when coinvariants are globally generated and when
they are not?
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Concluding comments
Can we identify exactly when coinvariants are globally generated and when
they are not?

Can we find a modular interpretation of conformal blocks?
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Concluding comments
Can we identify exactly when coinvariants are globally generated and when
they are not?

Can we find a modular interpretation of conformal blocks?

Thank you!
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