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1 History

Citing [1]:

In mathematics, Lie algebra cohomology is a cohomology theory
for Lie algebras. It was first introduced in 1929 by Élie Cartan to
study the topology of Lie groups and homogeneous spaces by relating
cohomological methods of Georges de Rham to properties of the Lie
algebra. It was later extended by Claude Chevalley and Samuel
Eilenberg (1948) to coefficients in an arbitrary Lie module.

2 Objects in Lie theory

We begin and define Lie algebras, Lie groups and enveloping algebras. Their
relation is given by: Lie algebras appear as . . .

• tangent spaces at 1 of Lie groups and

• by “unenveloping” associative algebras.

We then continue to define representations (ie. modules) of such objects.

2.1 Lie algebras

A Lie algebra over a field k1 is a vector space g with a binary operation [·, ·] :
g × g → g (called the Lie bracket) satisfying bilinearity, alternativity and the
Jacobi identity.

One should think of a Lie algebra as a (non-unitary) ring with [·, ·] being
multiplication, although it need not be associative (or commutative). For ex-
ample one defines a derivation on g as a linear map δ : g→ g satisfying Leibniz
law :

δ[x, y] = [δx, y] + [x, δy]. (1)

1The definition for Lie algebra makes sense for any ring k. However, we will mainly
discuss the case k ∈ {R,C}, namely when g is the Lie algebra for a Lie group G (real) or its
complexification gC.
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Also the notions of homomorphism, subalgebra, ideal, direct sum and quotient
algebra extend to Lie algebras. For example a linear map f : g → g′ between
underlying vector spaces of g and g′ is a homomorphism of Lie algebras if it is
compatible with multiplication: f [x, y] = [fx, fy].

If i is an ideal of g and g → g/i splits (ie. has a section), then g = g/i n i
is called a semidirect product. Levi’s theorem says that every finite dimensional
Lie algebra is a semidirect product (by its radical and the complementary (Levi)
subalgebra).

The dimension of g is the cardinality of a minimal generating set of g2.

2.2 Lie groups

By a (real) Lie group G we mean a group object in the category of finite dimen-
sional real smooth manifolds3.

2.3 Enveloping algebras

Let A be an associative algebra with multiplication ·. The underyling vector
space of A can be equipped with a Lie bracket [x, y] = x · y − y · x4 resulting in
a Lie algebra Lie(A). The algebra A is called an enveloping algebra of Lie(A).
This construction is functorial and turns Lie into a (right adjoint) functor

Lie : {k-associative algebras}� {k-Lie algebras} : U. (2)

The left adjoint U assigns to g its universal enveloping algebra U(g). U(g) can
be constructed as the quotient T (g)/I of

• T (g) = k ⊕ g⊕ g⊗2 ⊕ g⊗3 ⊕ . . . (the tensor algebra of g) by

• I the two-sided ideal in T (g) generated by elements of the form x ⊗ y −
y ⊗ x− [x, y] ∈ g⊕ g⊗2.

In particular, if g is abelian, then U(g) = Sym(g) is the symmetric algebra of
the vector space underlying g.

Example 2.1. Let M be a vector space. Then End(M) is an associative algebra
and we denote gl(M) := Lie(End(M)). Also, if k = R, then gl(M) = T1GL(M).

Theorem 2.2. (The PBW5-theorem) The natural map g → LieU(g) is injec-
tive.

2As usual the subalgebra h ⊂ g generated by a set S ⊂ g is the smallest subalgebra
containing S.

3Multiplication and inversion being smooth is equivalent to (x, y) 7→ x−1y being smooth.
4The Jacobi identity follows from associativity of ·.
5Named after Henri Poincaré, Garret Birkhoff and Ernst Witt.
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3 Representations

Always g denotes a Lie algebra over a field (or ring) k. If we speak about G, it
is assumed to be a real Lie group with Lie algebra g and in particular k = R
and g possibly complexified. By f we mean a Lie subalgebra of g. By K we
mean a subgroup of G, mostly assumed compact and maximal. We do simplify
notation and always write π for the representation, whether from g or G or . . .

If M is an k-vector space we can associate to it a Lie algebra gl(M) (over k),
an associative algebra End(M) (over k) and if k ∈ {R,C} a Lie group GL(M).
Then basically, “morphisms” to gl(M) (resp. End(M), resp. GL(M)) represent
representations on M .

3.1 g-modules

A g-module is a pair (M,π) where M is an k-vector space and π : g → gl(M)
in the category of Lie algebras over k.

3.2 Ug-modules

A Ug-module is an k-vector space equipped with an action π : Ug → End(M)
in the category of associative algebras.

One has a one-to-one correspondence between g-modules and Ug-modules:
use gl(M) = Lie(End(M)) and (U,Lie) is an adjoint pair to get

Hom(g, gl(M)) = Hom(U(g),End(M)). (3)

Remark 3.1. Given any associative algebra A, an A-module M is a morphism
π : A → End(M) in the category of k-associative algebras. Applying Lie then
makes M a Lie(A)-module:

Lie(A)→ gl(M) (4)

3.3 Topological G-modules

A topological G-module or simply G-module is a C−vector space M (locally
convex Hausdorff) equipped with a continuous action π : G → Aut(M). Let
CG be the category of topological G-modules and equivariant continuous linear
maps.

3.4 Smooth G-modules

Let M be a topological G-module. A vector v ∈ M is smooth if it is fixed by
an open subgroup of G. The set of smooth vectors in M defines a G-submodule
M∞ ⊂M . A smooth G-module is a topological G-module M satisfying

1. M∞ = M ,

2. v 7→ (g 7→ gv) : M → C∞(G,M) is a homeomorphism onto its image.
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The full subcategory of smooth G-modules (in CG) is denoted C∞G .
The assignment M 7→M∞ is functorial and gives CG → C∞G .
If M is smooth we can differentiate and obtain (dπ)1 : g → gl(M). This

makes M a g-module. Conversely, if G is simply connected, then there is an
inverse functor associating to a g-module M a smooth G-module. Thus, there
is a one-to-one correspondence between smooth G-modules and g-modules.

3.5 Adjoint representations

As an example we discuss the adjoint representation. Every Lie algebra g is a
module over itself via the adjoint representation ad, which is simply g acting on
g by left-multiplication:

ad : g→ gl(g) (5)

x 7→ [x, ·]. (6)

Indeed this is a Lie algebra homomorphism (note that the Lie bracket for gl(g)
is given by the commutator [x, y] = xy − yx):

[adx, ady] = adxady − adyadx (7)

= [x, [y, ·]]− [y, [x, ·]] (8)

= −[[y, ·], x]− [[·, x], y] (9)

= [[x, y], ·] (10)

= ad[x,y] (11)

If k ∈ {R,C} and G a Lie group with Lie algebra g = Lie(G), then this g-
module structure on g lifts6 to a G-module structure. This G-module is also
called the adjoint representation, denoted by Ad : G → GL(g) and defined by
Ad(x) = (dcx)1, where cx : y 7→ xyx−1 is conjugation by x on G.

3.6 (g, K)-modules

Let M be a G-module. Then M∞ also has induced the structure of a g-module
and in the case of simply connected G one can reconstruct the G-action on M∞

from its induced g-action. We want to simplify the situation by restricting M
to an even smaller subspace, but also remembering the action of a subgroup
K < G. We say v ∈ M is K-finite if it is contained in a finite dimensional
K-submodule. The space of K-finite vectors is denoted V(K). For K = G
and V(K) = M , we call M locally finite. We are mostly interested in compact
subgroups K. Then V(K) is a semi-simple K-module. Moreover, if K is maximal
compact, then V0 := M∞ ∩ V(K)

7 also comes with an g-action and both actions
(the one of K and the one of g) are compatible: for k ∈ K, X ∈ g and v ∈ V0
we have

k(Xv) = (kXk−1)kv = Ad(k)(X)kv. (12)

6By this we mean g = T1(G) and ad = (dAd)1.
7If M is smooth this extra step of filtering the smooth vectors is unnecessary.
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This module V0 is an example of what is called a (g,K)-module: A (g,K)-module
is a real or complex vector space M that is both: a g-module and a locally finite
and semi-simple K-module, satisfying the compatibility conditions:

1. kXv = (kXk−1)kv = Ad(k)(X)kv for all k ∈ K, X ∈ Ug and v ∈M ,

2. if U ⊂ M is a finite dimensional K-submodule, then the representation
π of K on U is differentiable and its differential (dπ)1 coincides with the
action π of g restricted to f = T1K:

(dπ)1 = π|f. (13)

The category of (g,K)-modules and (g,K)-morphisms is denoted Cg,K .

Remark 3.2. One can think of V0 equipped with the actions of K and g as
an infinitesimal approximation to the G-module M . Indeed one defines smooth
G-modules M , M ′ to be infinitesimally equivalent if their associated (g,K)-
modules are isomorphic.

4 Cohomology

The following motivation is from [1]:

If G is a compact simply connected Lie group, then it is deter-
mined by its Lie algebra, so it should be possible to calculate its
cohomology from the Lie algebra. This can be done as follows. Its
cohomology is the de Rham cohomology of the complex of differ-
ential forms on G. Using an averaging process, this complex can
be replaced by the complex of left-invariant differential forms. The
left-invariant forms, meanwhile, are determined by their values at
the identity, so that the space of left-invariant differential forms can
be identified with the exterior algebra of the Lie algebra, with a
suitable differential.

The construction of this differential on an exterior algebra makes
sense for any Lie algebra, so is used to define Lie algebra cohomology
for all Lie algebras. More generally one uses a similar construction
to define Lie algebra cohomology with coefficients in a module.

It should be noted that if G is a simply connected noncompact
Lie group, the Lie algebra cohomology of the associated Lie alge-
bra g does not necessarily reproduce the de Rham cohomology of
G. The reason for this is that the passage from the complex of all
differential forms to the complex of left-invariant differential forms
uses an averaging process that only makes sense for compact groups.

4.1 (Co)homology of Lie algebras

Let g be a Lie algebra over a field k and M be a left g-module. As the usual
story goes we try to derive the following functors:
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• the invariant submodule functor M 7→Mg = {m ∈M | ∀X ∈ g : Xm =
0},

• The coinvariant quotient module functor M 7→Mg = M/gM .

We then define homology and cohomology groups of g with coefficients in M by

Hn(g,M) = Ln(·g)(M) (14)

Hn(g,M) = Rn(·g)(M). (15)

By definition:

H0(g,M) = Mg (16)

H0(g,M) = Mg. (17)

Actually one has to make sure that there are enough injectives and enough
projectives for those definitions to work. The case with projectives is clear:
take free resolutions.

Recall that Ug is the quotient of Tg by the ideal generated by elements
of the form i([x, y]) − i(x)i(y) + i(y)i(x) with i : g → Tg. The k-algebra
homomorphism ε : Ug → k sending i(g) to zero is called augmentation and its
kernel J augmentation ideal

0→ J→ Ug→ k → 0. (18)

Proposition 4.1. Let k be equipped with the trivial g-module structure. We
can compute Lie algebra cohomology as Ug-cohomology:

Hn(g,M) = TorUg
n (k,M) (19)

Hn(g,M) = ExtnUg(k,M). (20)

Proof. Derived functors are isomorphic if their underlying functors are:

Mg = M/gM = M/JM = Ug/J⊗Ug M = k ⊗Ug M (21)

Mg = Homg(k,M) = HomUg(k,M). (22)

Proposition 4.2. Let M,N be left g-modules. Then Homk(M,N) can be made
a g-module via Xf(m) = Xf(m) − f(Xm) for X ∈ g, m ∈ M . With this one
has:

ExtnUg(M,N) = Hn(g,Homk(M,N)). (23)

Proof. This follows from Homg(M,N) = Homk(M,N)g and the fact that for a
field k, there are no nontrivial extensions of k-modules.
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4.2 Homology of Lie algebras in degree one

To understand the homology in low degrees we look at the long exact sequence
for

0→ J→ Ug→ k → 0 (24)

and TorUg
n (·,M) (M a g-module):

· · · → TorUg
1 (J,M)→ TorUg

1 (Ug,M)→ TorUg
1 (k,M) (25)

→ J⊗Ug M → Ug⊗Ug M → k ⊗Ug M → 0. (26)

Since Ug is free as Ug-module one has TorUg
n (Ug,M) = 0 for n ≥ 1. Hence, for

n ≥ 2

Hn(g,M) = TorUg
n (k,M) = TorUg

n−1(J,M) (27)

and

0→ H1(g,M)→ J⊗Ug M →M →Mg → 0. (28)

Finally, tensoring 24 with J⊗Ug and using that i : g → Ug maps [g, g] to J2,
inducing gab = g/[g, g] = J/J2 yields

J⊗Ug k = gab. (29)

Theorem 4.3. If M is a trivial g-module, then H1(g,M) = gab ⊗kM .

Proof. This follows from 28 and Mg = M :

H1(g,M) = J⊗Ug M = (J⊗Ug k)⊗kM = J/J2 ⊗kM = gab ⊗kM. (30)

4.3 Cohomology of Lie algebras in degree one

Theorem 4.4. The first cohomology of a g-module M is the quotient of deriva-
tions Der(g,M) modulo inner derivation Derin(g,M):

H1(g,M) = Der(g,M)/Derin(g,M). (31)

A proof is easy after we introduce the Chevalley-Eilenberg complex, later.
Recall, that a derivation D is a k-linear map D : g → M , satisfying the

Leibniz law (where g is considered a g-module via its adjoint representation:
“x · y = [x, y]”): D([x, y]) = xDy − yDx. Der(g,M) is the k-submodule of
Homk(g,M) of derivations. The subspace Derin(g,M) of inner derivations is
defined as the image of

M → Der(g,M) (32)

m 7→ Dm : X 7→ Xm. (33)
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4.4 The Chevalley-Eilenberg complex

In this subsection we want to construct a complex C∗(g) satisfying:

Theorem 4.5. The Chevalley-Eilenberg complex C∗(g) = Ug⊗k ∧pg is a pro-
jective resolution of the g-module k. In particular, if M is a g-module we can
compute its (co)homology via:

Hn(g,M) = Hn(M ⊗Ug C∗(g)), (34)

Hn(g,M) = Hn(Homg(C∗(g),M)). (35)

Proof. Construction: First note that every Cn(g) is actually a free Ug-module.
We define the differentials as follows: For low degrees we use

C1(g) = Ug⊗k g
d→ C0(g) = Ug⊗k k = Ug

ε→ k → 0 (36)

with d(u⊗X) = uX and ε being augmentation. Note that im(d) = J, hence so
far the sequence is exact. For higher degrees n ≥ 2 we define

d : Cn(g)→ Cn−1(g) (37)

u⊗X1 ∧ · · · ∧Xn 7→ θ1 + θ2, (38)

where

θ1 =

n∑
i=1

(−1)i+1uXi ⊗X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn (39)

θ2 =
∑
i<j

(−1)i+ju⊗ [Xi, Xj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn. (40)

For example, if n = 2, then d(u⊗X ∧Y ) = uX ⊗Y −uY ⊗X −u⊗ [X,Y ].

Corollary 4.6. If g is n-dimensional over k, then (co)homology in degree > n
must vanish.

Proof. Then, ∧ng = 0.

Remark 4.7. We have

M ⊗Ug C∗(g) = M ⊗Ug Ug⊗k ∧∗g = M ⊗k ∧∗g (41)

Homg(C∗(g),M) = Homg(Ug⊗k ∧∗g,M) = Homk(∧∗g,M) (42)

and in the latter an n-cochain is simply an alternating k-multilinear function
f(X1, . . . , Xn) on gn with values in M . Its coboundary is

df(X1, . . . , Xn+1) =
∑

(−1)iXif(X1, . . . , X̂i, . . . , Xn+1) (43)

+
∑

(−1)i+jf([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xn+1).

(44)
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Example 4.8. Check that

Z1(g,M) = Der(g,M) (45)

B1(g,M) = Derin(g,M) (46)

and hence H1(g,M) = Der(g,M)/Derin(g,M) as claimed.

4.5 Cohomology of Lie algebras in degrees two and three

Theorem 4.9. Let M be a g-module. Then H2(g,M) is in bijection with the set
Ext(g,M) of equivalence classes of extensions of g by M8. Similar, H3(g,M)
is in bijection with 2-extensions, ie. four term short exact sequences of Lie
algebras

0→M → h→ f→ g→ 0. (47)

Proof. I think this is a standard argument from homological algebra. The key-
word is: Yoneda extension.

5 Relative cohomology

5.1 Cohomology of (g, f)-modules

As a motivation for relative cohomology there is a result of E. Cartan, stating
that for G compact connected, one has

H∗(g, f;M) = H∗(G/K,M), (48)

where the left side denotes relative cohomology of g modulo f, where f = Lie(K).
As usual it would be nice to have two characterizations: one abstract as a

cohomology of a derived functor, the other concrete in terms of cohomology of
a complex. Indeed, in terms of (Ug, U f)-algebras one has

ExtqUg,Uf(k,M) = Hq(g, f;M) (49)

and for the “cochain complex version” we define a subcomplex of the Chevalley-
Eilenberg complex by

Cq(g, f;M) = Homf(∧q(g/f),M) (50)

with the f-action on ∧q(g/f) being induced from its adjoint action on f. In
other words, it is the subspace of Homk(∧q(g/f),M) of elements f satisfying
(for X ∈ f, Xi ∈ g/f, i = 1, . . . , q):∑

i

f(X1, . . . , [X,Xi], . . . , Xq) = Xf(X1, . . . , Xq). (51)

The cohomology groups H∗(g, f;M) of C∗(g, f;M) are called relative cohomology
groups of g mod f with coefficients in M .

8Actually, Ext(g,M) also admits an addition given by the Baer sum and the bijection
stated then becomes an isomorphism.
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5.2 Cohomology of (g, K)-modules

Another relative cohomology considers the case with (g,K)-modules M . For
this let K be a maximal compact subgroup of the real Lie group G9 and let
k = R.

We only give a cochain computing cohomology: Let

Cq(g,K;M) = HomK(∧q(g/f),M), (52)

where this time K acts on g/f via the adjoint representation. Note the relation
to (g, f)-module cohomology (K0 is the identity component of K)

Cq(g,K;M) ⊂ Cq(g,K0;M) = Cq(g, f;M). (53)

Also K/K0 naturally acts on Cq(g, f;M) and we have

Cq(g,K;M) = Cq(g, f;M)K/K
0

. (54)

C∗(g,K;M) is a subcomplex of C∗(g, f;M) and it follows from 54 that:

Hq(g,K;M) = Hq(g, f;M)K/K
0

(55)

6 Application: Weyl’s theorem

Goal of this section is

Theorem 6.1 (Weyl’s theorem). Let g be a semisimple Lie algebra over a field
k of characteristic 0. Then every finite dimensional g-module is semisimple, ie.
a direct sum of simple g-modules.

Proof. Sketch!:
Step 1: first proof a vanishing theorem: If M is simple and 6= k, then for

all i

Hi(g,M) = Hi(g,M) = 0. (56)

The proof for this uses Schur’s lemma and the so called Casimir operator.
Step 2: Assume the opposite, ie. that M is not semisimple, ie. a direct sum

of simple modules. Then, since M is finite dimensional, there is a submodule M1

minimal with the property “not being semisimple”. Clearly, M1 is not simple,
so it contains a proper submodule M0. By minimality, M0 and M2 = M1/M0

are semisimple, while M1 is not. This means, that

0→M0 →M1 →M2 → 0 (57)

is not split and hence induces a nontrivial element in

Ext1Ug(M2,M0) = H1(g,Homk(M2,M0)). (58)

9G is assumed to have a finite component group.
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Step 3: We are left with showing that such an element does not exist. This
follows from Whitehead’s first lemma10: let g, k be as in our setting and M be
a finite dimensional g-module. Then

H1(g,M) = 0. (59)

Use Homk(M2,M0) for M to reach the contradiction.
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