Martin Saal Dr.

Analysis

Aufgabenbereich

Analysis

Kontakt

work +49 6151 16-21481
fax +49 6151 16-21483

Work S2|15 421
Schlossgartenstraße 7
64289 Darmstadt

Aktuelle Veranstaltung: Assistenz Statistik stochastischer Prozesse

Sprechstunde im SoSe 2019: Dienstag 13:15 – 14:15
Vergangene Lehreranstaltungen
Partial differential equations
  • nonlinear equations
  • primitive equations with partial/no viscosity
  • thermoelasticity
  • nonlinear stochastic equations, regularity structures
  • D. Luo, M. Saal „Regularization by noise for the point vortex model of mSQG equations“,
    Preprint, arXiv 1906.10191 (2019).
  • A. Hussein, M. Saal, M. Wrona „Primitive Equations with Horizontal Viscosity: The Initial Value and the Time-Periodic Problem for Physical Boundary Conditions“,
    Preprint, arXiv 1902.03186 (2019).
  • F. Flandoli, M.Saal „mSQG equations in distributional spaces and point vortex approximation“,
    Preprint, arXiv 1812.05361 (2018).
    To appear in: J. Evol. Equ., DOI 10.1007/s00028-019-00506-8.
  • M. Saal, „Primitive equations with half horizontal viscosity“,
    Preprint, arXiv 1807.05045 (2018).
  • A. Hussein, M. Saal, O. Sawada, „Primitive Equations with Linearly Growing Initial Data“,
    Preprint arXiv 1710.10064 (2017).
    To appear in: Ann. Sc. Norm. Super. Pisa Cl. Sci., DOI 10.2422/2036-2145.201701_012
  • M. S. Alves, M. Saal and O. V. Villagran, „Exponential stability of a thermoviscoelastic mixture with second sound“,
    J. Thermal Stresses 39 (2016), no. 11, 1321-1340
  • M. Saal, „Global existence and blow-ups for certain ordinary integro-differential equations“,
    J. Integral Equations Appl. 27 (2015), no. 4, 573-602
  • M. Saal, „Well-posedness and asymptotic of some nonlinear integro-differential equations“,
    J. Integral Equations Appl. 25 (2013), no. 1, 103-141

Dissertation