1 Uncountability of \mathbb{R} fails in $\operatorname{Sh}(\mathbb{R})$

as shown by Rosolini and Spitters. Of course, like in a any topos there cannot exist a surjection from \mathbb{N} to $\mathcal{P}(\mathbb{N})$ but what fails is the statement

$$
\forall x \in \mathbb{R}^{\mathbb{N}} . \exists y \in \mathbb{R} . \forall n \in \mathbb{N} . \exists m \in \mathbb{N} .\left|x_{n}-y\right| \geq \frac{1}{m}
$$

for Dedekind reals \mathbb{R}.
Now if this would hold in $\operatorname{Sh}(\mathbb{R})$ by Kripke-Joyal for every open U and $x \in$ $\mathbb{R}^{\mathbb{N}}(U)$, i.e. any continuous function $x: U \times \mathbb{N} \rightarrow \mathbb{R}$, there exists a cover $\left(V_{i}\right)_{i \in I}$ of U and continuous $y_{i}: V_{i} \rightarrow \mathbb{R}$ such that $V_{i} \Vdash \forall n \in \mathbb{N} . \exists m \in \mathbb{N} .\left|x_{n}-y_{i}\right| \geq \frac{1}{m}$. But then for every $n \in \mathbb{N}$ there exists a cover $\left(W_{i, j}\right)_{j \in J_{i}}$ of V_{i} and $m_{i, n, j} \in \mathbb{N} \backslash\{0\}$ such that

$$
\left|x_{n}-y_{i}\right| \geq \frac{1}{m_{i, n, j}}
$$

on $V_{i, j}$.
But for $U=\mathbb{R}$ and x a sequence of functions containing all $f_{q}(x)=q+x$ and $g_{q}(x)=q-x$ for $q \in \mathbb{Q}$ this is impossible for the following reason. For all nonempty open $V \subseteq \mathbb{R}$ and continuous maps $y: V \rightarrow \mathbb{R}$ there is an x_{n} such that x_{n} and y intersect, i.e. have the same value for some argument in V.

The latter claim can be seen as follows. Suppose $f_{q}(t) \neq y(t)$ and $g_{q}(t) \neq y(t)$ for all $t \in V$ and $q \in \mathbb{Q}$, i.e. for all $t \in V$ neither $y(t)-t$ nor $y(t)+t$ are elements of \mathbb{Q}. Since by the intermediate value theorem every non-constant continuous map from V to \mathbb{R} attains a rational value there exist $a, b \in \mathbb{R}$ with $y(t)-t=a$ and $y(t)+t=b$ for all $t \in V$. But then $2 t=b-a$ for all $t \in V$ which is impossible since V being open and nonempty contains infinitely many elements.

