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Abstract

In [SR98] it has been shown that λ-calculus with control can be inter-
preted in any domain D which is isomorphic to the domain of functions
from Dω to the 2-element (Sierpiński) lattice Σ. By a theorem of A. Pitts

there exists a unique subset P of D such that f ∈ P iff f(~d) = ⊥ for all
~d ∈ Pω. The domain D gives rise to a realizability structure in the sense
of [Kri11] where the set of proof-like terms is given by P .

When working in Scott domains the ensuing realizability model co-
incides with the ground model Set but when taking D within coherence
spaces we obtain a classical realizability model of set theory different from
any forcing model. We will show that this model validates countable and
dependent choice since an appropriate form of bar recursion is available
in stable domains.

1 Introduction

In the first decade of this millenium J.-L. Krivine has developed his theory
of classical realizability, see e.g. [Kri09, Kri11], for higher order logic and set
theory. Whereas intuitionistic realizability is based on the notion of a partial
combinatory algebra (pca) classical realizability is based on a notion of realiz-
ability algebra as defined in [Kri11]. Both notions are incomparable since not
every pca can be extended to a realizability algebra and there are realizability
algebras which do not contain a pca as a substructure. Accordingly, not all clas-
sical realizability models appear as booleanizations of intuitionistic realizability
models as studied in [vO08].

In the current paper, however, we concentrate on a particular classical re-
alizability model which appears as a boolean subtopos of a relative realizability
topos (see [vO08]). The starting point for this model is the observation from
[SR98] that the recursive domain D ∼= ΣD

ω

gives rise to a model for λ-calculus
with control. (Here Σ = {⊥,>} is the 2-element Sierpiński lattice and Dω is
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the countable product of D.) Since D is a model of untyped λ-calculus it is in
particular a pca. By a theorem of A. Pitts [Pit96] there exists a unique subset P
of D such that t ∈ P iff t(~s) = ⊥ for all ~s ∈ Pω. Obviously, this subset P forms
a sub-pca of D thus giving rise to the relative realizability topos E = RT(D,P )
as described in [vO08]. Notice that >D ∈ D \ P and thus U = {>D} gives rise
to a nontrivial truth value in E different from both >E and ⊥E . This U (like
any subterminal object of E) induces a closure operator (aka Lawvere-Tierney
topology) jU (p) = (p → U) → U on E . As is well known the subtopos EU of
jU -sheaves of E is boolean.

We will show that EU is equivalent to the classical realizability topos K
induced by the realizability structure whose set Λ of terms is D, whose set of
stacks Π is Dω and whose set PL of proof-like terms is P . We will show that K is
equivalent to Set when D is the bifree solution of the domain equation D ∼= ΣD

ω

in Scott domains. However, when considering the solution of D ∼= ΣD
ω

in the
category Coh of coherence spaces and Scott continuous and stable maps then
the ensuing boolean topos K is not a Grothendieck topos and thus a fortiori
not a forcing model. We will show that K validates all true sentences of first
order arithmetic and the principles of countable and dependent choice.

2 Realizability structures induced by D ∼= ΣDω

Quite generally we might consider objects D ∼= ΣD
ω

in well pointed cartesian
closed categories C with countable products and an object Σ having precisely
two global elements (i.e. morphisms 1→ Σ) > and ⊥. The set of global elements
of D (which we also denote by D) can be endowed with the structure of a pca
as follows: for t, s ∈ D we define ts ∈ D as (ts)(~r) = t(s.~r). For the set Λ of
terms we take D and for the set Π of stacks we take Dω. The push operation
sends t ∈ Λ and ~s ∈ Π to t.~s, the stream with head t and tail ~s. For every
~s ∈ Π let k~s ∈ Λ be defined as k~s(t.~r) = t(~s). The control operator cc is given
by cc(t.~s) = t(k~s.~s). A natural choice for the pole ‚ is {〈t, ~s〉 | t(~s) = >}.

But on this level of generality we do not know how to choose a set PL of
“proof-like terms”. However, in case D is the bifree solution of D ∼= ΣD

ω

in
some category of domains like

1) cpo’s with bottom and Scott continuous functions

2) coherence spaces and stable (continuous) maps

3) observably sequential algorithms as in [CCF94]

by a theorem of A. Pitts (see [Pit96]) there exists a unique subset P of D such
that t ∈ P iff t(~s) = ⊥ for all ~s ∈ Pω. Such a P qualifies as a set PL of proof-
like terms since P is closed under application, contains all elements definable in
untyped λ-calculus and we also have cc ∈ P .

For later use we remark that the identity map on D is represented by i ∈ P
with i(t.~s) = t(~s).
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3 Some triposes induced by (D,P )

Since P is a subpca of the pca D we may consider the relative realizability topos
E = RT(D,P ) induced by the tripos P over Set where for a set I the fibre PI

is the preorder
(
P(D)I ,`I

)
with φ `I ψ iff ∃t ∈ P.∀i ∈ I.∀s ∈ φi. ts ∈ ψi and

for u : J → I reindexing along u is given by precomposition with u. For the set
ΣP of propositions of P we may take P(D) and for the truth predicate on ΣP

we may take idP(D).
Notice that ΣP contains an “intermediate” truth value U = {>D} which is

neither equivalent to ⊥ΣP = ∅ nor to >ΣP = D. Moreover, in RT(D,P ) the
proposition U = {>D} is equivalent to U ∨ ¬U (since ¬U = ∅) but not to D.
Thus U ∨¬U does not hold in RT(D,P ) for which reason the topos RT(D,P )
is not boolean. However, the truth value U gives rise to the (Lawvere-Tierney)
topology jU on ΣP = P(D) which is defined as jU (A) = (A → U) → U
for A ∈ P(D). We may form the full subtripos PU of P consisting of jU -
closed predicates, i.e. φ ∈ P(D)I with jU ◦ φ `I φ. Since jU = ¬U ◦ ¬U with
¬UA = A → U the fibres of PU are all boolean. We write EU = RT(D,P )U
for the ensuing boolean subtopos of E = RT(D,P ).

As described in the previous section P ⊆ D gives rise to a classical realiz-
ability structure with pole ‚ = {〈t, ~s〉 | t(~s) = >}. We write E‚ = RT(D,P )‚
or rather simply K for the ensuing classical realizability topos which is induced
by the full subtripos PK of P consisting of those predicates φ ∈ P(D)I which
factor through ΣK = {A ∈ P(D) | A‚‚ = A}. We show now that

Lemma 3.1 PK is equivalent to PU .

Proof: First recall that on P(D) implication is given by A → B = {t ∈ D |
∀s ∈ A. ts ∈ B} = {t ∈ D | ∀s ∈ A. λ~r.t(s.~r) ∈ B} from which it follows that
ΣK is an exponential ideal in P(D), i.e. A→ B is in ΣK whenever B is in ΣK.
Since U ∈ ΣK the map jU sends P(D) to ΣK. Thus, postcomposition with jU
gives rise to a tripos morphism from P to PK left adjoint to the inclusion of
tripos PK into the tripos P (as induced by ΣK ⊆ P(D)). Since A → jU (A)
is uniformly realized by η = λx.λp.px ∈ P and for A ∈ ΣK the implication
jU (A) → A is uniformly realized by cc ∈ P the adjunction above between P
and PU restricts to an equivalence between PU and PK.1 2

Thus K = RT(D,P )‚ and RT(D,P )U are equivalent boolean subtoposes of
the relative realizability topos E = RT(D,P ) which itself is not boolean. We
write i : K ↪→ E for the corresponding injective geometric morphism. Its inverse
image part i∗ : E → K (sheafification) is given by postcomposition with jU .
Its (right adjoint) direct image part i∗ : K → E is nontrivial. As described in
[vO08] it sends an object X in K to S(X), the object of singleton predicates on
X in K considered as an object of E .

For convenience we explicitate a bit the logical structure of the triposes
introduced above.

1Question We know that jU (A)→ A‚‚ is realized by cc uniformly in A ∈ P(D). But is
the reverse implication also realizable uniformly in A?
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For A,B ∈ P(D) implication in P is given by A → B = {t ∈ D | ∀s ∈
A. ts ∈ B}. Since the local operator jU commutes with this implication it also
works for PU . Looking a bit closer one sees that this holds also for PK since
if A and B are biorthogonally closed then A → B = {t ∈ D | ∀s ∈ A.∀~r ∈
B‚.t(s.~r) = >} = {s.~r | s ∈ A,~r ∈ B‚}‚ and thus is biorthogonally closed.

For a set I universal quantification ∀I along the terminal projection I → 1
is given by intersection, i.e. ∀I(φ) =

⋂
i∈I

φi. Since ∀I(φ→ U) =
( ⋃
i∈I

φi
)
→ U it

is immediate that ∀I restricts to PU . This applies also to PK since ∀I(φ) =⋂
i∈I

φi =
⋂
i∈I

φ‚‚
i =

( ⋃
i∈I

φ‚i
)‚

for which reason ∀I(φ) is biorthogonally closed.

Universal quantification along arbitrary maps u : J → I in Set is given by

∀u(φ)i = ∀J(λj∈J.leq(u(j), i)→ φj)

where leq stands for Leibniz equality.
Recall that Leibniz equality on set I is defined as

leqI(i, j) =
⋂
p∈ΣI

p(i)→ p(j)

where Σ refers to the Σ of the respective tripos. For the tripos P Leibniz
equality on a set I is given by leqI(i, j) = {i | i = j}. Obviously, the predicate
leqI is equivalent to the predicate eqI defined as eqI(i, j) = {d ∈ D | i = j}. This
observation is useful for obtaining a simple description of equality predicates for
the tripos PU since they are of the form jU ◦ eqI . Notice that jU (∅) = (∅ →
U)→ U = D → U = U = {>D} and jU (D) = (D → U)→ U = U → U = {d ∈
D | d>D = >D} = {d ∈ D | ∀~s ∈ Dω. d(>D.~s) = >} = {>D}∪↑0̄ where 0̄ is the
least element of D sending >D.⊥∞D to >. Thus, for PU equality on I is given
by eqI(i, j) = {>D} ∪ ↑{0̄ | i = j}. A different but equivalent implementation
of equality on I for PU is given by eqI(i, j) = {>D} ∪ {i | i = j} since there is
a least r ∈ P with r⊥D = ⊥D, r>D = >D and rd = i for d w 0̄.

Since PK is equivalent to its subtripos PU the above considerations apply
to PK as well.

4 Nothing new in case of Scott domains

In a talk in Chambery in June 2012 [Kri12] Krivine has shown that a classical
realizability model is a forcing model iff it validates the sentence2 ∀x2ג(x 6=
0, x 6= 1 → ⊥), i.e. iff there exists a proof-like term realizing |>,⊥ → ⊥| ∩
|⊥,> → ⊥|. He has shown that from such a realizer one can construct a proof-
like term Φ such that Φ ∈ |A| whenever |A| contains some proof-like term.

This applies in particular to the realizability structures as described in sec-
tion 2 where |>| = D and |⊥| = {>D}. Obviously, in this case t ∈ P realizes
|>,⊥ → ⊥| ∩ |⊥,> → ⊥| iff t>Ds = >D = ts>D for all s ∈ D. But since t ∈ P

2in our terminology this means that ∀x:2.(eq2(x, 0) ∨ eq2(x, 1)) holds in the tripos PK
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entails t⊥D⊥D 6= >D this would give rise to a morphism ∨ : Σ × Σ → Σ with
u∨v = ⊥ iff u = v = ⊥ which does not exists in stable domain theory. However,
in Scott domains such a morphism does exist (“parallel or”) and allows one to
construct an element of P realizing |>,⊥ → ⊥| ∩ |⊥,> → ⊥|. Moreover, in the
case of Scott domains the classical realizability model induced by D and P is
not only a forcing model but it is actually equivalent to the “ground model”
Set as we show next.

Since P is Scott closed and closed under binary suprema it contains a greatest
element Φ =

⊔
P . Obviously, we have Φ(~s) = ⊥ iff ~s ∈ Pω. Thus, a proposition

A holds in the ensuing realizability model (i.e. |A| ∩ P 6= ∅) iff Φ ∈ |A| (since
|A| = ||A||‚ is upward closed). Now for propositions A and B we have

Φ ∈ |A→ B| iff
∀t ∈ |A|∀~s ∈ ||B|| Φ(t.~s) = > iff
∀t ∈ |A|∀~s ∈ ||B|| t 6∈ P ∨ ~s 6∈ Pω iff
∀t ∈ |A|∀~s ∈ ||B|| t ∈ P ⇒ ~s 6∈ Pω iff
∀t ∈ |A|

(
t ∈ P ⇒ ∀~s ∈ ||B|| ~s 6∈ Pω

)
iff

∀t ∈ |A|
(
t ∈ P ⇒ Φ ∈ |B|

)
iff(

∃t ∈ P t ∈ |A|
)
⇒ Φ ∈ |B| iff

Φ ∈ |A| ⇒ Φ ∈ |B|

i.e. A → B holds iff from validity of A follows validity of B. Thus the ensuing
classical realizability model is a 2-valued forcing model, i.e. coincides with the
ground model Set.

The situation changes dramatically if one solves the domain equation for D
in a category not admitting ∨ : Σ× Σ → Σ as e.g. the category Coh of coher-
ence spaces and stable maps (see [GLT89]), the category OSA of observably
sequential algorithms (see [CCF94]) or a category of HON games and innocent
algorithms. Let us look more closely at the example of D = ΣD

ω

in Coh in
which ||⊥|| = Dω and ||>|| = ∅ and accordingly |⊥| = {>D} and |>| = D. Now
if f ∈ |>,⊥ → ⊥| ∩ |⊥,> → ⊥| then f>D⊥D = >D = f⊥D>D and thus, by
stability of f , also f⊥D⊥D = >D from which it follows that f 6∈ P . Thus the
ensuing classical realizability model cannot be a forcing model (sheaves over a
complete Boolean algebra) and, accordingly, is in particular different from the
ground model Set.

5 Bifree Solution of D = ΣDω

in Coh

Let V be the least set with V = Pfin(ω×V ). If α ∈ V and n ∈ ω we write αn for
the set {β ∈ V | 〈n, β〉 ∈ α}. By recursion on n ∈ ω we will define a sequence
of coherence spaces Dn =

(
|Dn|,¨n) with |Dn| ⊆ V such that

(1) |Dn| ⊆ |Dn+1|

(2) for α, β ∈ |Dn| we have α ¨n β iff α ¨n+1 β

(3) α ˚n β iff α ∪ β ∈ Dn

5



(4) α ¨n β iff α ∪ β ∈ Dn implies α = β.

For getting the construction of the Dn right it is usful to recall that coherence
spaces and linear continuous maps between them give rise3 to a model of linear
logic and that ΣD

ω

= !(Dω)(⊥ = (!(Dω))⊥. We put |D0| = ∅, i.e. D0 is the
terminal object in Coh. Notice that (3) and (4) vacuously hold for D0. For

the induction step we put Dn+1 = ΣD
ω
n =

(
!(Dω

n)
)⊥

as suggested by ΣD
ω

=
!(Dω)(⊥. Thus, the web |Dn+1| of Dn+1 consists of all α ∈ V such that for
all k ∈ ω it holds that αk ∈ Dn, i.e. β ¨n γ for all β, γ ∈ αk, since |Dn+1| is
the web of !(Dω

n) and for this coherence space we have α ¨ β iff α∪β ∈ |Dn+1|.
Thus, for defining its orthogonal Dn+1 we put α ¨n+1 β iff α ∪ β ∈ |Dn+1|
implies α = β. Conditions (3) and (4) hold for Dn+1 by construction since they
hold for Dn by induction hypothesis. We write D for the coherence space where
|D| =

⋃
n∈ω
|Dn| and ¨ is the union of the ¨n.

Actually, one can avoid any explicit reference to the levelsDn and inductively
define |D| as the least subset of V with α ∈ |D| whenever ∀n∈ω. αn ⊆ |D| ∧
∀β, γ ∈ αn. β ¨ γ where β ¨ γ stands for β ∪ γ ∈ |D| ⇒ β = γ. Notice that |D|
is closed under subsets and we have α ˚ β iff α ∪ β ∈ |D|.

Now we describe the realizability structure arising from D. The elements of
ΛD = D are those t ∈ P(|D|) such that ∀α, β ∈ t. α ¨ β, i.e. antichains in the
poset (|D|,⊆). The evaluation map D×Dω → Σ is defined as follows: for t ∈ D
and ~s ∈ Dω we have t(~s) = > (notation t ? ~s ∈‚) iff ∃α ∈ t.∀n ∈ ω. αn ⊆ sn.
With an ~s ∈ Dω one may associate the set I~s = {α ∈ |D| | {α}(~s) = >} = {α ∈
|D| | ∀n ∈ ω. αn ⊆ sn}. Sets of this form can be characterized as downward
closed ideals in |D|, i.e. subsets of D which are closed under subsets and finite
unions. Any such ideal I is equal to I~s for a unique ~s ∈ Dω which is given by
sn =

⋃
α∈I

αn. Writing ΠD for the set of downward closed ideals in (|D|,⊆) for

t ∈ ΛD and π ∈ ΠD we have t ? π ∈‚ iff t ∩ π 6= ∅.
For exhibiting in a concrete way the remaining operations of the realizability

structure induced by D = ΣD
ω

we have to introduce some notation. For a finite
a ∈ D and α ∈ |D| we write a.α for ({0} × a) ∪ {〈n + 1, β〉 | 〈n, β〉 ∈ α}. For
t ∈ ΛD and π ∈ ΠD let t.π = {a.α | a ⊆fin t, α ∈ π}. For t, s ∈ ΛD let ts = {α ∈
|D| | ∃a ⊆fin s. a.α ∈ t}. For f ∈ Coh(D,D) let fun(f) = {a.α | (a, α) ∈ tr(f)}
where tr(f) is the trace of f , i.e. the set of all pairs (a, α) s.t. a ∈ D is finite
and α ∈ f(a) and for all b ⊆ a from α ∈ f(b) it follows that a = b. Using fun
we define λx.t = fun(a 7→ t[a/x]). For π ∈ ΠD we put kπ = {α̂ | α ∈ π} where
α̂ = {〈0, α〉} for α ∈ |D|. We define cc =

{
{{α̂1, . . . , α̂k}.α}.(α∪α1∪ . . .∪αk) |

α∪α1∪ . . .∪αk ∈ |D|
}

.
Finally, we have to define which elements of ΛD we want to consider as

proof-like objects. By recursion on α ∈ |D| we define |α| ∈ {0, 1} as |α| = 1
iff ∃n ∈ ω.∃β ∈ αn. |β| = 0. Thus |α| = 1 iff α does not raise any error itself.
Accordingly, we define the subset P of proof-like objects of D as {a ∈ D | ∀α ∈
a. |α| = 1}.

3actually this model was the source of linear logic!
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5.1 Some useful retractions in P

Let hn be the sequence of subidentical retractions of D where h0 = λf :D.⊥D
and hn+1 = Σh

ω
n . Notice, that all hn are elements of P since idD is in P and

hn v idD. Obviously, we have idD =
⊔
n∈ω

hn but the images of the hn typically

contain elements which are not finite. Notice that the image of hn is Dn for all
n ∈ ω.

There is also a subidentical retraction rP ∈ P sending a ∈ D to rP (a) =
{α ∈ a | |α| = 1}. Obviously, the image of rP is precisely P and rP (a) is the
greatest element of P below a.

5.2 D is universal for countably based coherence spaces

To give an impression of the complexity of D we show that it contains every
countably based coherence space via a stably continuous embedding/projection
pair (see e.g. [AL91]). First recall that in Th. 2.4.2.9 of [AL91]) it has been shown
that every coherence space X with countable web can be embedded into !Tω via
a stably continuous embedding/projection pair (where T is the coherence space
whose web consists of two incoherent tokens thought of as boolean values). Thus,
the coherence space X⊥ can be embedded into (!Tω)⊥ = ΣTω

. Accordingly, all
coherence spaces with countable web can be embedded into ΣTω

. Since T can
be embedded into D the coherence space ΣTω

can be embedded into ΣD
ω

and
thus into D.

5.3 Antichains in Coherence Spaces

Let X be a coherence space. An antichain in X is a subset A of X such that
a, b ∈ A are equal whenever they are coherent (i.e. a ∪ b ∈ X). We may order
antichains in X “à la Smyth” as follows

A ≤S B iff ∀y ∈ B.∃x ∈ A. x v y

i.e. A ≤S B iff ↑A ⊇ ↑B. This suggest to consider antichains as upward closed
subsets C of X such that for the set min(C) of minimal elements of C it holds
that

(1) C ⊆ ↑min(C) and

(2) coherent elements of min(C) are equal.

Under this view antichains may be considered as disjoint unions of cones, i.e.
sets of the form ↑x for some x ∈ X. We write A (X) for the set of antichains
considered as upward closed subsets of X satisfying conditions (1) and (2) and
consider it partially ordered by reverse subset inclusion. One can show that

Theorem 5.1 A (X) is a complete lattice when ordered by ⊇.
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Proof: Let (Ci)i∈I be a family of antichains in X. We show that its intersection
D :=

⋂
i∈I

Ci is again an antichain from which it is immediate that D is the

supremum of the Ci w.r.t ⊇.
Obviously, the set D is upwards closed. For x ∈ D and i ∈ I let xi be

the unique element of min(Ci) with xi v x. Since (xi)i∈I is bounded by x its
supremum m(x) exists. It is easy to see that x w m(x) ∈ min(D). Thus D
validates condition (1). For showing condition (2) suppose x, y ∈ min(D) have
an upper bound. Then for all i ∈ I we have xi ¨ yi and thus xi = yi from
which it follows that m(x) = m(y) and thus x = y as desired. 2

An important class of antichains in X are those of the form p−1(>) for some
p ∈ ΣX . Via trace they correspond to those U ∈ A (X) for which all elements of
min(U) are compact elements of X. We write A0(X) for this class of antichains
in X. For every C ⊆ X we may consider the antichain

C =
⋂
{U ∈ A0(X) | U ⊇ C}

which, obviously, contains C as a subset. It is easy to see that C 7→ C is a
closure operator on P(X) since C is the intersection of all stably open subsets
of X which contain C as a subset.4

For X = Dω and C ⊆ X we have C‚ = {t ∈ ΣX | C ⊆ t−1(>)} and thus
C = C‚‚. Notice that the minimal elements of C‚ w.r.t. the stable order are
those t ∈ D = ΣD

ω

for which every element of tr(t) is below some element of C.
For t ∈ C‚ the unique minimal element m(t) in C‚ below t is characterized as
follows: e ∈ tr(m(t)) iff e ∈ tr(t) and e v x for some x ∈ C.

Since the infimum operation u : Σ×Σ→ Σ is stably continuous for t1, t2 ∈ D
we have t1u t2 ∈ D. Obviously, we have (t1u t2)−1(>) = t−1

1 (>)∩ t−1
2 (>). Thus

C‚ is not only an antichain in D but it is also closed under u and contains
λx:X.> as an element. It is an interesting but difficult problem to characterize
those antichains A in D which are of the form C‚ for some C ⊆ X. Well,
it are those A ⊆ D for which A = A‚‚. But is there a more elementary
combinatorial characterization of biorthogonally closed subsets of D? Such a
characterization might be helpful for answering the question whether for any
biorthogonally closed subset A of D either A or its negation ¬UA is inhabited
by an element of P , i.e. whether K is 2-valued.

6 Exploring the structure of E and K
We have seen that K is equivalent to Set when constructed from the bifree
solution of D = ΣD

ω

in Scott domains. But something new arises when we start
from the solution of this domain equation in Coh. We start now exploring this

4If X is a Scott domain then intersections of open subsets of X are just upward closed
subsets of X. Alas, such an easy characterizations is not available for intersections of stably
open subsets of a coherence space X.
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new territory. Some attention will also be payed to the inituitionistic variant E
in which computation is much easier than in its full subcategory K of jU -sheaves.

For every n ∈ N let n̄ be the unique element of D with n̄(~s) = > iff sn = >D.
A “hardwired” version of this is n̄ = {νn} with νn = {〈n, ∅〉} ∈ |D|. From this
it is obvious that the n̄ are atoms of D and pairwise incoherent, i.e. νn ˇ νm iff
n 6= m. Obviously, we have n̄ ∈ P since |νn| = 1.

In E = RT(D,P ) a natural numbers object is given by the assembly NE
with underlying set N and ||n||NE = {n̄}. Similarly, the object 2E in E is given
by the assembly with underlying set 2 = {0, 1} and ||k||2E = {k̄}. The object
∆E(2) of E is given by the assembly with underlying set 2 and ||k||∆E(2) = D.

The corresponding objects NK, 2K and ∆K(2) in K are obtained from NE ,
2E and ∆E(2) in E by sheafification (denoted as i∗), i.e. by postcomposing the
respective equality predicates with jU . But since jU is a bit complex we are
looking for somewhat simpler isomorphic copies of these objects in K.

Since jU (∅) = {>D} and jU (D) = {>D} ∪ ↑{0̄} for every set I the object
∆K(I) of K has underlying set I and equality predicate [[i ∼∆K(I) j]] = {>D} ∪
↑{0̄ | i = j}.

Next we determine i∗NE , the natural numbers object of K obtained by sheafi-
fying the natural numbers object NE of E . The underlying set of i∗NE is N and
its equality predicate is given by [[n ∼i∗NE m]] = jU

(
[[n ∼NE m]]

)
. The following

lemma exhibits an object NK which in K is isomorphic to i∗NE but simpler to
describe and simpler to manipulate.

Lemma 6.1 Let NK be the object of K with underlying set N and equality pred-
icate [[n ∼NK m]] = {>D} ∪ ↑{n̄ | n = m}. In K the object NK is isomorphic to
i∗NE and thus a natural numbers object in K

Proof: For showing the desired isomorphism it suffices to exhibit elements of
P realizing the logical equivalence of [[n ∼NK m]] and jU

(
[[n ∼NE m]]

)
uniformly

in n and m.
First notice that [[n ∼NK n]] = {>D} ∪ ↑n̄ = {~s ∈ Dω | sn = >D}‚ ∈ ΣK.

Next we determine jU ({n̄}) = ({n̄} → U) → U for n ∈ N. Observe that
{n̄} → U = {d ∈ D | dn̄ = >D} = {d ∈ D | ∀~s ∈ Dω. d(n̄.~s) = >}. Thus, we
have jU ({n̄}) = {d ∈ D | ∀d′ ∈ D. d′n̄ = >D ⇒ dd′ = >D}.

First we show that cc ∈ P realizes the implication jU
(
[[n ∼NE m]]

)
→

[[n ∼NK m]] uniformly in n and m. If n 6= m then [[n ∼NK m]] = {>D} =
jU (∅) = jU

(
[[n ∼NE m]]

)
and the claim follows since cc>D = >D. Thus it suffice

to show that cc realizes jU
(
[[n ∼NE n]]

)
→ [[n ∼NK n]] for all n. For this purpose

suppose t ∈ jU ({n̄}) and ~s ∈ Dω with sn = >D. Then k(~s) ∈ {n̄} → U since for
~r ∈ Dω we have k(~s)(n̄.~r) = n̄(~s) = >. Thus, we have cc(t.~s) = t(k(~s).~s) = >
as desired since t ∈ jU ({n̄}) and k(~s) ∈ {n̄} → U .

There is an e ∈ P with e>D = >D and en̄d = dn̄ for all n ∈ N and
d ∈ D. Obviously, such an e realizes {>D} → jU (∅). Moreover, for n ∈ N
we have en̄ ∈ jU ({n̄}) since if dn̄ = >D then also en̄d = dn̄ = >D. Thus,
since jU ({n̄}) is upward closed for every d w n̄ we have en̄ v ed ∈ jU ({n̄}).
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Thus e realizes {>D} ∪ ↑n̄ → jU ({n̄}). Thus, we have shown that e realizes
[[n ∼NK m]]→ jU

(
[[n ∼NE m]]

)
uniformly in n and m. 2

Similarly, one shows that in K the object i∗2E is isomorphic to the object 2K
with underlying set 2 = {0, 1} and equality predicate [[i ∼2K j]] = {>D} ∪ ↑{i |
i = j}. Since K is a boolean topos the truth value object ΩK is known to be
isomorphic to 2K. We do not know whether the object 2K has precisely two
global elements, i.e. whether the topos K is 2-valued.5

Since K is a subtopos of E arising from the Lawvere-Tierney topology jU on
E there is an induced injective geometric morphism i : K ↪→ E whose inverse
image part i∗ : E → K we have already described. It is fairly simple since it
is given by postcomposition with jU . However, its right adjoint i∗, the direct
image part of i, though full and faithful is not simply inclusion in the naive
sense. As described e.g. in [vO08] it sends an object X of K to the object i∗X
of E which is the object S(X) of ‘singleton predicates’ on X in K considered as
an object of E . The underlying set of S(X) is the set of all functions from |X|
to ΣK where |X| is the underlying set of X. The existence predicate ES(X) on

Σ
|X|
K is given by

ES(X)(A) = [[PredX(A) ∧ ∃x:|X|.∀y:|X|.A(y)↔ x ∼X y]]

where

PredX(A) = [[∀x:|X|.A(x)→ x ∼X x ∧ (∀y:|X|.x ∼X y → A(y))]]

and the equality predicate for S(X) is given by

[[A ∼S(X) B]] = [[ES(X)(A) ∧ ∀x:|X|.A(x)↔ B(x)]]

which finishes the description of S(X). For the morphism part of S suppose
F : |X|×|Y | → ΣK represents a morphism fromX to Y . Then the corresponding
morphisms from S(X) to S(Y ) is given by the ΣK-valued predicate S(F ) :

Σ
|X|
K × Σ

|Y |
K → ΣK defined as

S(F )(A,B) = [[ES(X)(A) ∧ ES(Y )(B) ∧ ∀x:|X|, y:|Y |.F (x, y)↔ (A(x) ∧B(y))]]

for A ∈ Σ
|X|
K and B ∈ Σ

|Y |
K . Thus, though the inclusion of K into E via i∗

preserves exponentials due to the complicated nature of i∗ there is not much
gain when computing the exponentials in the relative realizability topos E .

Generally, since classical realizability toposes are boolean Ω is isomorphic
to 2. Thus, since 2 is a subobject of N the exponential NN contains 2N ∼=
P(N) as a subobject which explains why in general NN is so complicated in
classical realizability toposes. Maybe this is the reason why Krivine in his
papers considers classical realizability models for classical second order logic or
the classical set theory ZF which are both based on sets and not on functions. In

5But it can be shown that for countable A ⊆ D either A‚‚ or its negation are true in K.
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both settings functions appear only as a derived concept, namely as functional
relations, i.e. particular sets.6

So far we do not know yet whether K is actually different from a forcing
model. But it will follow from the results of the following subsection where we
show that

K is not even a Grothendieck topos

Since there is no parallel-or in the realizability structure induced by P ⊆ D
it follows from Krivine’s observation in [Kri12] that the object ∆K(2) is not
isomorphic to 2K. For this reason the tripos PK does not arise from a complete
boolean algebra. But from this it does not follow yet that K is not equivalent to
a forcing model, i.e. a localic boolean topos, since non-equivalent triposes might
induce the same topos. But we will show now that K is not even a Grothendieck
topos and thus a fortiori not a forcing model.

For this purpose we will proceed in two steps. First in Lemma 6.2 we will
show that every Grothendieck subtopos of K is equivalent to Set and then in
the subsequent Lemma 6.3 we will show that K is not equivalent to Set. It is
then an immediate consequence of these two lemmas that

Theorem 6.1
K is not a Grothendieck topos and thus, in particular, not a forcing model.

The following considerations are necessary as preparation for the proofs of
Lemma 6.2 and 6.3.

There is a geometric inclusion ΠE a ∆E : Set ↪→ E where ΠE is given by
E(U,−). The right adjoint ∆E sends set I to the object ∆E(I) = (I, eqI) (see
section 3) and u : J → I in Set to the morphism ∆E(u) : ∆E(J) → ∆E(I)
represented by the P-predicate eqI(u(j), i) on J × I. Notice that ∆E factors
through Asm(P,D), the category of assemblies in RT(D,P ), since ∆E(I) is
isomorphic to the assembly with underlying set I and ||i|| = D for all i ∈ I.
The restriction of the left adjoint ΠE to Asm(P,D) sends an assembly to its
underlying set and a morphism to its underlying set-theoretic function. Notice
that ΠE a ∆E : Set ↪→ E is the least non-trivial subtopos of E induced by the
double negation topology on E .

We write D̄ for the object of Asm(P,D) with underlying set D and ||t||D̄ =
{t} for t ∈ D. Obviously, the counit ηD̄ : D̄ → ∆EΠED̄ is monic. If j : F ↪→ E
is a nontrivial subtopos of E then the counit D̄ → j∗j

∗D̄ of j∗ a j∗ at D̄ factors
along ηD via a subobject j∗j

∗D̄� ∆EΠED̄ whose characteristic predicate χD
is given by χD(t) = jF ({t}) for t ∈ D where jF is the closure operator on E
inducing the subtopos F of E . Thus j∗j

∗D̄ is (isomorphic to) the assembly with
underlying set D and ||t||j∗j∗D̄ = jF ({t}).

Now adapting an argument from [Joh13] we show that

6Of course, in case of second order logic he has to permit function constants on the under-
lying (countable) set of objects (usually identified with the set natural numbers).
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Lemma 6.2
Every nontrivial Grothendieck subtopos F of E is equivalent to Set.

Proof: Suppose F is a nontrivial Grothendieck subtopos of E . We write j :
F ↪→ E for the corresponding inclusion. Since F is a Grothendieck topos it has
arbitrary copowers. We write ∆F (I) for the I-fold copower of 1F , i.e.

∐
I 1F .

Notice that C = ∆F (D) and j∗j
∗D̄ are both assemblies. Since Asm(P,D) is

an exponential ideal in RT(D,P ) the exponential (j∗j
∗D̄)C is an assembly, too,

and, moreover, (isomorphic to) the D-fold product of j∗j
∗D̄. The underlying

set of (j∗j
∗D̄)C may be identified with the set of all functions from D to D

since ΠE((j∗j
∗D̄)C) ∼= E(U, j∗j

∗D̄)C) ∼= E(C, (j∗j
∗D̄)U ) ∼= E(U, j∗j

∗D̄)D ∼=
Set(D,D).

Let jF be the closure operator on E giving rise to the subtopos F of E .
The subobject j∗j

∗D̄� ∆EΠED̄ is classified by the predicate χD(t) = jF ({t}).
Obviously, the Grothendieck topos F is equivalent to Set iff χD is constantly
true, i.e. there is a t ∈ P with t ∈

⋂
t∈D

jF ({t}).

For sake of contradiction suppose this were not the case. Then by axiom
of choice on the meta-level there exists a (typically non-continuous) function
g : D → D with t 6∈ jF ({g(t)}). For t ∈ D let st ∈ P be some realizer for the
projection πt : (j∗j

∗D̄)C → j∗j
∗D̄ : h 7→ h(t). Let f : D → D : t 7→ g(stt) for

which it obviously holds that stt 6∈ jU ({f(t)}) for t ∈ D. Since ΠE((j∗j
∗D̄)C) ∼=

Set(D,D) there is a t ∈ D realizing f as an object of (j∗j
∗D̄)C . But then

stt ∈ jU ({f(t)}) which is impossible. 2

Now for showing Theorem 6.1 it remains to prove that

Lemma 6.3
The topos K is not equivalent to Set.

Proof: For sake of contradiction suppose that K is equivalent to Set. Then
i∗i
∗D̄ � ∆EΠED̄ is an isomorphism. But then the predicate χD on ∆EΠED̄

is constantly true, i.e. there is an s ∈ P with s ∈ jU ({t}) for all t ∈ D. But
this is impossible since already jU ({>D}) = (U → U) → U does not contain
an element of P (since such an element t would map i ∈ (U → U) ∩ P to an
element ti ∈ U ∩ P = ∅). 2

7 K is a model of full first order arithmetic

Since K hosts a natural numbers object NK it is most natural to ask how much
of first order arithmetic holds in K. First notice that all functions on N do
exist as morphisms in K. An arbitrary set-theoretic function f : N → N is
represented as the morphism fK : NK → NK as given by the PK-predicate
[[f(n) ∼NK m]] on N×N because there exists tf ∈ P with tf n̄ = f(n) for all n ∈
N. Equality of natural numbers will be interpreted as [[· ∼NK ·]]. Propositional
logical connectives will be interpreted as usual (see [Kri09]) but notice that
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|A→B| = {t ∈ D | ∀s ∈ |A|. ts ∈ |B|}.7 Universal quantification over NK is
interpreted as

|∀x.A(x)| =
⋂
n∈N

[[n ∼NK n]]→ |A(n)|

which is coincidence with [Kri09] since the equivalence of [[n ∼NK n]] and⋂
X∈ΣN

K

X(0)→ ∀x(X(x)→ X(x+1))→ X(n)

can be realized by an element of P . As usual existential quantification over NK
is interpreted as its second order encoding, i.e.

|∃x.A(x)| =
⋂

X∈ΣK

(⋂
n∈N

(
[[n ∼NK n]]→ |A(n)| → X

))
→ X

from which it follows that λf.fn̄t ∈ |∃x.A(x)| whenever t ∈ |A(n)|. Now we are
ready to prove that

Theorem 7.1 K validates all true sentences of first order arithmetic.

Proof: Since K is boolean and classically every first order sentence is provably
equivalent to a sentence in prenex form, i.e. a prefix of quantifiers followed by an
equation between arithmetic terms, it suffices to show that all true arithmetic
formulas in prenex form do hold in K. We proceed by structural induction on
the structure of arithmetical sentences in prenex form.

If e1 = e2 is a true arithmetical equation where both sides have value n ∈ N
then e1 = e2 is realized by n̄ ∈ P .

Suppose ∀x.A(x) is a true arithmetical sentence in prenex form. Then for
all n ∈ N the sentence A(n) is true and in prenex form. Thus, by induction
hypothesis for every n ∈ N there is a pn ∈ P realizing A(n). Then there exists a
t ∈ P with t>D = >D and tn̄ = pn for all n ∈ N. Obviously t realizes ∀x.A(x).

Suppose ∃x.A(x) is a true arithmetical sentence in prenex form. Then for
some n ∈ N the sentence A(n) is true and in prenex form. By induction hy-
pothesis there is a p ∈ P realizing A(n) from which it follows that λf.fn̄p ∈ P
realizes ∃x.A(x). 2

Thus, w.r.t. first order arithmetic sentences one cannot distinguish K from
Set. But already at second order things get much more delicate since one does
not even know whether every morphism NK → NK in K is induced by a map
N→ N in Set, i.e. whether for any functional relation F from NK to NK there
exists function f : N→ N such that ∀x, y:NK.F (x, y)↔ f(x) ∼nK y holds in K.
One easily sees that f is uniquely determined by F but the question rather is
whether for all F such an f exists.

Actually, there is an even simpler question of this kind for which we do not
know the answer so far, namely whether in K the natural numbers object NK

7As in [Kri09] we write |A| for the interpretation of formula A.
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has only “standard” global elements. More explictly, this means whether for
any morphism a : 1K → NK in K there is an n ∈ N such that a ∼NK n holds
in K. The answer is definitely negative for boolean valued models Sh(B) when
B is a complete boolean algebra with more than 2 elements. Since if u ∈ B is
different from 0B and 1B then so is ¬u and one may cook up a “mixed” natural
number a which is 0 on u and 1 on ¬u. We could come up with a similar
“nonstandard” global element of NK if ΩK = 2K were not 2-valued, i.e. if their
existed an u : 1→ 2K for which K validates neither u ∼2K 0 nor u ∼2K 1 though
it certainly validates the disjunction u ∼2K 0 ∨ u ∼2K 1.

8 The object ∆K(2) is infinite

In [Kri12] J.-L. Krivine has shown that ∆K(2) does not contain any atoms (w.r.t.
the order ∆K(≤2)), i.e.

∀x:∆K(2)
(
x 6= 0→ ∃y:∆K(2)xy 6= 0 ∧ xy 6= x

)
which by classical logic is equivalent to

∀x:∆K(2)
(
∀y:∆K(2)(xy 6= 0→ xy 6= x→ ⊥)→ x 6= 0→ ⊥

)
For sake of completeness we recall Krivine’s argument for which purpose we

have to introduce a bit of machinery. For I ⊆fin N let Ī ∈ D with Ī(~s) = > iff
si = >D for all i ∈ I. Notice that ∅̄ = >D and {n} = n̄. Obviously, we have

(1) >D v u iff u ∈ |>,⊥ → ⊥| ∩ |⊥,> → >|

(2) u  ⊥,⊥ → ⊥ iff u ∈ ↑{I | ∅ 6= I ⊆ {0, 1}}.

Let t ∈ D with t>D = >D and tI = 0̄ for nonempty subsets I of {0, 1}. Then t
realizes both

|>,⊥ → ⊥| ∩ |⊥,> → >|,> → ⊥ and (⊥,⊥ → ⊥),⊥ → ⊥

and thus t realizes ∀x:∆K(2)
(
∀y:∆K(2)(xy 6= 0→ xy 6= x→ ⊥)→ x 6= 0→ ⊥

)
as can be seen by case analysis on x ∈ {0, 1}.

Thus, in K it holds that ∆K(2) is infinite. But it is not clear a priori whether
∆K(2) is also Dedekind infinite, i.e. whether the assertion

∃f :∆K(2)NK(∀n,m:NK.f(n) ∼2K f(m)→ n ∼NK m)

holds in K.8 Actually, for quite some time we hoped that in K the object
∆K(2) would not be Dedekind infinite since this would have had the consequence

8See e.g. [Je73] for the construction of a model of ZF in which there exists a Dedekind finite
set which is not finite. This cannot be achieved by forcing since forcing models all validate
AC. One has to consider an appropriate group G of automorphism on an appropriate complete
boolean algebra B and take the G-invariant part of the B-valued model.
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that K does not validate countable choice.9 The reason for this hope was that
presumably there does not exist a monomorphism NK� ∆K(2) in K.

However, we will show that K does indeed validate countable and even de-
pendent choice. From this it follows that K validates the assertion that there
exists an injective function from NK to ∆K(2) though presumably this existen-
tial statement is not witnessed by a global element of ∆K(2)NK , i.e. a proper
monomorphism NK� ∆K(2) in K.

9 K validates countable and dependent choice

Though Krivine’s classical realizability gives rise to models of the classical set
theory ZF (as described in [Kri01]) it generally does not validate the full axiom
of choice. Moreover, it is not known whether all classical realizability models for
ZF validate the principles of dependent or at least countable choice. Though,
unfortunately, so far we do not know any counterexample J.-L. Krivine strongly
suspects that the answer to this question will be negative. In his opinion for
realizing countable and dependent choice one has to extend his λ-calculus with
control with new language constructs as described in [Kri03] where he adds a
variant of LISP and Scheme’s quote construct and shows how this may be used
for realizing the above mentioned choice principles. But this method works
only if the set Λ of “terms” is countable which is, obviously, not the case for the
realizability structure arising from D = ΣD

ω

in Coh since D has the size of the
continuum.

However, as known from work of C. Spector dating back to the early 60s one
may use bar recursion for realizing classical choice principles. This approach has
been applied fruitfully in “traditional” proof theory as described and discussed
in U. Kohlenbach’s monograph [Koh08]. However, Spector’s original work and
most of [Koh08] are based on Gödel’s Dialectica interpretation and not on re-
alizability. Thus, for our purposes the approach of U. Berger and P. Oliva in
[BO05] (also discussed in [Koh08]) is a better starting point since it is based on
modified realizability which can be adapted more easily to the case of classical
realizability.10

In [BO05] it is shown that when starting from a model M of higher type
arithmetic validating an appropriate form of bar recursion certain negative
translations (where ⊥ is replaced by arbitrary Σ0

1-formulas) of classical choice
principles admit a modified realizability interpretation by objects of M. For
this purpose in [BO05] they consider a ‘modified bar recursor’ whose analogue
in our setting we will introduce next after some preliminary remarks.

First of all for a coherence space X we have to consider X∗ =
∐
n∈N

Xn, the

set of lists of elements of X, which per se is not a coherence space since it lacks

9As remarked in [Je73] for any infinite set using countable choice one can prove quite
straightforwardly the existence of an injective function from N into this set.

10This does not mean that methods based on Gödel’s Dialectica interpretation are not
more appropriate for the purposes of extracting programs and bounds from (classical) proofs
as emphasized in [Koh08].
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a least element. However, we say that a map f from X∗ to a coherence space Y
is stable iff for all n ∈ N the restriction of f to Xn is stable. Moreover, if Y is
a coherence space then X∗→Y ∼=

∏
n∈ωX

n→Y is a coherence space since the
Xn→Y are coherence spaces. Alternatively, we may work in the slightly larger
category ωdIc of coherently complete countably based dI-domains (see [AC98])
and stable continuous functions between them. We will have to consider stable
functionals in the finite type hierarchy in Coh generated from Σ and D by →,
(−)ω and (−1)∗ → (−2). For every such type X we have to specify its subset
PLX of proof-like elements. Of course, for D we put PLD = P and for Σ we
put PLΣ = {⊥}. If X and Y are such types we put PLX→Y = {f : X → Y |
∀x ∈ PLX .f(x) ∈ PLY }, PLXω = PLωX and PLX∗ = PL∗X , i.e. we extend PL à la
logical relations.

Definition 9.1 Given Y : Dω → Σ and G : ((D → Σ) → Σ)ω in Coh let
BR(Y,G) be the least stable function Ψ : D∗ → Σ in Coh satisfying

Ψ(s) = Y (s ∗ λn.G|s|(λx.Ψ(s ∗ x)))

for all s ∈ D∗.

Obviously, the ensuing map BR : (Dω → Σ)→ ((D → Σ)→ Σ)ω → Σ is stable
and proof-like.

Notice that all the types built from D and Σ by →, (−)ω and (−1)∗ → (−2)
appear as retracts of D via proof-like maps. They form a typed pca realizability
over which gives rise to a category equivalent to RT(D,P ) as described on a
more general level in [LS02]. This allows us to assume that realizers of particular
propositions have particular types which often allows us to reason in a more
intuitive way.

We often will have to refer to ΩK considered as an object of E . This object
has underlying set {A ∈ P(D) | A‚‚ = A} for which equality is given by logical
equivalence11. Moreover, for objects X in K the exponential PK(X) = ΩXK is
the same when taken in E and K, respectively. Moreover, for X in E the map
ΩηXK : Ωi∗i

∗X
K → ΩXK (where ηX : X → i∗i

∗X is the unit of i∗ a i∗ at X) is an
isomorphism in E . Accordingly, we will often write PK(X) for ΩXK in E .

9.1 Countable Choice holds in K
Spector already observed that the negative translation of countable choice can
be proved in any intuitionistic theory validating countable choice and the princi-
ple of Double Negation Shift (DNS) for formulas in the negative fragment. Like
all relative realizability toposes E = RT(D,P ) validates countable and depen-
dent choice. Thus, due to Spector’s observation it suffices to show that E also
validates an appropriate form of DNS.

11which is the same in E and K for propositions of this particular form
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Lemma 9.1 The topos E validates the principle

(DNS) ∀B:PK(N).∀n.∼∼B(n)→ ∼∼∀n.B(n)

where ∼A stands for A→ U .

Proof: Suppose B ∈ P(D)ω with B(n)‚‚ = B(n) for all n, G of type ((D →
Σ) → Σ)ω realize ∀n.∼∼B(n) and Y of type Dω → Σ realize ∼∀n.B(n). Let
Ψ = BR(Y,G). Using a variant of bar induction as described in [BO05] we will
show now that Ψ(〈〉) = > and thus realizes U .

We write S(x, n) for x ∈ B(n) and P (s) for Ψ(s) = >. We employ the
abbreviations s ∈ S ≡ ∀k < |s| sk ∈ B(k) and α ∈ S ≡ ∀k αk ∈ B(k). By bar
induction relativized to S (see [BO05] for details) for showing P (〈〉) it suffices
to show that

(1) ∀α ∈ S∃n P (ᾱ(n))

(2) ∀s ∈ S
(
∀x(S(x, |s|)→ P (s ∗ x))

)
→ P (s).

ad (1) : Suppose α ∈ S, i.e. α(n) ∈ B(n) for all n. Then by assumption on Y we
have Y (α) = >. Since Y is continuous there exists an n with Y (α) = Y (ᾱ(n)∗β)
for all β. Thus, we have Ψ(ᾱ(n)) = >, i.e. P (ᾱ(n)) as desired.
ad (2) : Suppose s ∈ S with ∀x(S(x, |s|) → P (s∗x)), i.e. ∀x(x ∈ B(|s|) →
Ψ(s∗x) = >). Thus λx.Ψ(s ∗ x) realizes ∼B(|s|). Accordingly, by assumption
on G it follows that G|s|(λx.ψ(s ∗ x)) realizes U and thus also B(n) (since
U ⊆ B(n)). Thus s ∗ λn.G|s|(λx.ψ(s ∗ x)) realizes ∀n.B(n) and, accordingly, by
assumption on Y it follows that Ψ(s) = Y (s ∗ λn.G|s|(λx.ψ(s ∗ x))) realizes U ,
i.e. P (s) as desired.

Thus, since λG.λY.BR(Y,G)(〈〉) is proof-like it realizes the proposition

∀B:PK(N).∀n.∼∼B(n)→ ∼∼∀n.B(n)

which, therefore, holds in E as claimed. 2

Notice that the form of bar induction used in the proof of Th. 9.1 is valid
only because Dω consists of all sequences in D and not just the computable
ones.

Now we are ready to show that countable choice holds in K.

Theorem 9.1 For every object X in K the proposition

∀R:P(N×X).∀n:N.∃x:X.R(n, x)→ ∃f :XN .∀n:N.R(n, f(n))

hold in K.

Proof: Since K is equivalent to the subtopos EU of E consisting of sheaves for
jU = ∼ ◦ ∼ the problem reduces to showing that

∀R:PK(N×X).∀n:N.∼∼∃x:X.R(n, x)→ ∼∼∃f :XN .∀n:N.R(n, f(n))
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holds in E . By Lemma 9.1 the implication

∀n:N.∼∼∃x:X.R(n, x)→ ∼∼∀n:N.∃x:X.R(n, x)

holds in E and thus it suffices to show that

∀R:PK(N×X).∼∼∀n:N.∃x:X.R(n, x)→ ∼∼∃f :XN .∀n:N.R(n, f(n))

holds in E . This, however, holds since E validates countable choice and ∼∼
commutes with implication. 2

Thus, we have shown that K validates countable choice since XN is isomor-
phic to XNK in E .

Notice that for classical realizability models arising from countable term
models one cannot apply the method we have used here because bar induction
does not seem to be applicable since not every external sequence of terms can
be represented by a term. Thus, for countable term models Krivine in [Kri03]
introduced a quote-like construct for the purpose of realizing countable choice.
Apparently, these two different methods are applicable under mutually exclusive
circumstances. Whether countable choice holds in all realizability models is
unknown up to now but one strongly suspects that the answer is negative!

9.2 Dependent Choice in K
A topos with natural numbers object N validates the principle DC of Dependent
Choice iff

∀R:P(N×X×X).∀n:N.∀x:X.∃y:X.R(n, x, y)→
∀a:X.∃f :XN . f(0) = a ∧ ∀n:N.R(n, f(n), f(n+1))

holds for every object X of the topos. It is well know that E and actually every
relative realizability topos validates DC. Unfortunately, the validity of Double
Negation Shift in E is not sufficient for reducing validity of DC in K to its validity
in E . For this reason in Theorem 4 of [BO05] it is shown how to use modified
bar recursion for realizing appropriate negative translations of DC. With some
effort their proof can be adapted to K. We leave the tedious details to the
inclined reader. Notice, however, that Theorem 9.1 suffices already for showing
that the infinite object ∆K(2) is also Dedekind infinite, i.e. that K validates the
proposition ∃f :∆K(2)N (∀n,m:N.f(n) ∼2K f(m). However, this valid existential
statement need not be witnessed by a global element of ∆K(2)N .

10 Is K 2-valued?

A proposition A ∈ ΩK is valid in K iff A ∩ P 6= ∅. The topos K is 2-valued iff
for every A ∈ ΩK either A or ¬A has nonempty intersection with P .

Notice that for t ∈ D we have t ∈ P iff tr(t) ∩ Pω = ∅. Thus, if A holds in
K then A‚ ∩ Pω = ∅. If the reverse implication held as well then K would be
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2-valued which can be seen as follows. Suppose A does not hold in K. Then,
due to our assumption, there exists ~s ∈ A‚ ∩Pω and thus λt.~s ∈ Dω. t(~s) is an
element of P ∩ ¬A.

But if A is the biorthogonal closure of a countable subset of D we actually
can reverse the implication.

Lemma 10.1 If A = {tn | n ∈ ω}‚‚ with A‚ ∩ Pω = ∅ then A ∩ P 6= ∅.

Proof: W.l.o.g.12 we assume that t−1
n+1(>) ⊆ t−1

n (>) for all n ∈ ω. We consider
the countably branching tree T =

⋃
n∈ω
{n}×tr(tn) where the ancestor of 〈n+1, ~s〉

is the unique element 〈n,~r〉 with ~r v ~s. Observe that for every ~s ∈ A‚ and n ∈ ω
there is a unique ~s(n) ∈ tr(tn) with ~s(n) v ~s. Thus, the minimal elements of A‚
are precisely the suprema of the infinite paths in T , i.e. for every ~s ∈ min(A‚)
we have ~s =

⊔
n∈ω

~s(n). Thus, due to our assumption A‚ ∩ Pω = ∅ every infinite

path through T eventually leads out of Pω. Let t be the element of D whose
trace consists of those finite elements ~s of Dω with ~s(n) 6∈ Pω but ~s(k) ∈ Pω for
all k < n. Obviously, we have t ∈ P and min(A‚) ⊆ t−1(>). Thus t ∈ A ∩ P
as desired. 2

In order to generalize this lemma to arbitrary propositions in K one could
try to work with a well ordering of a biorthogonally closed subset A of D but
then beyond stage ω the labels of the tree T are not finite anymore.

Another line of attack would be as follows. Suppose A = A‚‚ such that
tr(t) ∩ Pω 6= ∅ for all t ∈ A. Notice that the (upward closures) of the sets
tr(t) ∩ Pω with t ∈ A form a filter w.r.t. the Smyth ordering. But, alas, we do
not know how to prove that the intersection of the elements of this filter has to
be non-empty.

On the other hand we do not know any particular biorthogonally closed
subset of D which does not already arise as the biorthogonal of a countable
subset. In particular, we may replace any proposition A with the biorthogonal
closure of the intersection of A with the computable elements of A. Maybe this
does not make any difference for propositions A arising from the interpretation
of a closed formula in the language of set theory.

11 Summary

We have shown that a new boolean non-Grothendieck topos K arises from a
canonical model of λ-calculus with control in the category Coh of coherence
spaces and stable functions. We have shown that K validates all true sentences
of first order arithmetic and also countable (and dependent) choice.

We have also observed that the model constructions collapses to the ground
model Set when starting form the canonical model of λ-calulus with control in
Scott domains where as usual the culprit is parallel-or.

12This can be achieved easily since u : Σ× Σ→ Σ is stable.
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There are still quite a few open questions about the topos K arising from the
stable model of λ-calulus with control. One would like to see a conrete example
of a set-theoretic statement holding in Set but not in K. We suspect that AC,
the full axiom of choice, is such an example but have not been able yet to verify
this. Moreover, one would like to know whether every closed formula in the
language of set theory is decided by K.
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