
Introduction to

CATEGORY THEORY

and

CATEGORICAL LOGIC

Thomas Streicher

SS 03 and WS 03/04

Contents

1 Categories 5

2 Functors and Natural Transformations 9

3 Subcategories, Full and Faithful Functors, Equivalences 14

4 Comma Categories and Slice Categories 16

5 Yoneda Lemma 17

6 Grothendieck universes : big vs. small 20

7 Limits and Colimits 22

8 Adjoint Functors 36

9 Adjoint Functor Theorems 46

10 Monads 52

11 Cartesian Closed Categories and λ–Calculus 63
11.1 Exponentials in Presheaf Categories 64
11.2 Categorical semantics of typed λ-calculus in ccc’s 68

12 Elementary Toposes 77

13 Logic of Toposes 86

14 Some Exercises in Presheaf Toposes 107

15 Sheaves 112

1

Introduction

The aim of this course is to give an introduction to the basic notions of
Category Theory and Categorical Logic.
The first part on Category Theory should be of interest to a general math-
ematical audience with interest in algebra, geometry and topology where at
least the language of category theory and some of its basic notions like lim-
its, colimits and adjoint functors are indispensible nowadays. However, for
following the lectures in a profitable way one should have already attended a
course in basic algebra or topology because algebraic structures like groups,
rings, modules etc. and topological spaces serve as the most important source
of examples illustrating the abstract notions introduced in the course of the
lectures.
The second part will be of interest to people who want to know about logic
and how it can be modelled in categories. In particular, we will present
cartesian closed categories where one can interpret typed λ-calculus, the
basis of modern functional programming languages, and (elementary) toposes
providing a most concise and simple notion of model for constructive higher
order logic. Guiding examples for both notions will be presented en detail.
Some knowledge about constructive logic would be helpful (as a motivating
background) but is not necessary for following the presentation itself.

We conclude this most concise introduction with a list of suggestions for
further reading.

References

[ARV] J. Adámek, J. Rosicky, E. Vitale Algebraic Theories. CUP (2011).

[Aw] S. Awodey Category Theory OUP (2006).

[BW1] M.Barr, Ch. Wells Toposes, Triples and Theories Springer (1985).

[BW2] M.Barr, Ch. Wells Category Theory for Computing Science Prentice
Hall (1990).

[Bor] F. Borceux Handbook of Categorical Algebra 3 vols., Cambridge
University Press (1994).

2

[FS] P.J. Freyd, A. Sčedrov Categories, Allegories North Holland (1990).

[Jac] B. Jacobs Categorical Logic and Type Theory North Holland (1999).

[Joh] P. T. Johnstone Sketches of an Elephant. A Topos Theory Com-
pendium. 2 vols. OUP (2002).

[JM] A. Joyal, I. Moerdijk Algebraic Set Theory CUP (1995).

[LaS] J. Lambek, P. J. Scott Introduction to Higher Order Categorical Logic
CUP (1986).

[LS] F.W. Lawvere, S. Schanuel Conceptual Mathematics CUP (1997).

[LR] F.W. Lawvere, R. Rosebrugh Sets for Mathematics. A first introduc-
tion to categories. CUP (2003).

[McL] C. McLarty Elementary Categories, Elementary Toposes OUP
(1995).

[ML] S. MacLane Categories for the Working Mathematician Spinger
(1971).

[MM] S. MacLane, I. Moerdijk Sheaves in Geometry and Logic. A First
Introduction to Topos Theory. Spinger (1992).

[PRZ] M. La Palme Reyes, G. Reyes, H. Zolfaghari Generic figures and their
glueings. A constructive approach to functor categories. Polimetrica
(2004).

[PT] P. Taylor Practical Foundations CUP (1999).

3

Part I CATEGORY THEORY

4

1 Categories

We first introduce our basic notion of structure, namely categories.

Definition 1.1 A category C is given by the following data

• a class Ob(C) of objects of C

• a family Mor(C) associating with every pair A,B ∈ Ob(C) a class
Mor(C)(A,B) of morphisms from A to B

• for all A,B,C ∈ Ob(C) a mapping

◦A,B,C : Mor(C)(B,C)×Mor(C)(A,B)→ Mor(C)(A,C)

called composition

• for all A ∈ Ob(C) a distinguished morphism

idA ∈ Mor(C)(A,A)

called identity morphism for A

required to satisfy the following conditions

• for all A,B,C,D ∈ Ob(C) and f ∈ Mor(C)(A,B), g ∈ Mor(C)(B,C)
and h ∈ Mor(C)(C,D) it holds that

(Ass) h ◦ (g ◦ f) = (h ◦ g) ◦ f

standing as an abbreviation for the more explicit, but also more unread-
able equation ◦A,C,D(h, ◦A,B,C(g, f)) = ◦A,B,D(◦B,C,D(h, g), f)

• for all A,B,C ∈ Ob(C) and f ∈ Mor(C)(A,B) and g ∈ Mor(C)(C,A)
it holds that

(Id) f ◦ idA = f and idA ◦ g = g

standing as an abbreviation for the more explicit, but also more unread-
able equations ◦A,A,B(f, idA) = f and ◦C,A,A(idA, g) = g. ♦

5

Notice that the identity morphisms are uniquely determined by ◦ and the
requirement (Id). (Exercise!)

Some remarks on notation.
As already in Definition 1.1 we write simply g ◦f instead of the more explicit
◦A,B,C(g, f) whenever f ∈ Mor(C)(A,B) and g ∈ Mor(C)(B,C). Instead of
the somewhat clumsy Mor(C)(A,B) we often write simply C(A,B) and for
f ∈ Mor(C)(A,B) we simply write f : A → B when C is clear from the
context. Instead of idA we often write 1A or simply A. When the object A
is clear from the context we often write simply id or 1 instead of idA or 1A,
respectively.

Next we consider some

Examples of Categories

(1) The category whose objects are sets, whose morphisms from A to B
are the set-theoretic functions from A to B and where composition is
given by (g ◦ f)(x) = g(f(x)) is denoted as Set. Of course, in Set the
identity morphism idA sends every x ∈ A to itself. For obvious reasons
we call Set the category of sets (and functions).

(2) We write Set∗ for the category of sets with a distinguished element
(denoted by ∗) and functions preserving this distinguished point.

(3) We write Mon for the category of monoids and monoid homomor-
phisms. This makes sense as monoid homomorphisms are closed under
composition and identity maps preserve the monoid structure.

(4) We write Grp for the full subcategory1 of Mon whose objects are
groups.

(5) We write Ab for the full subcategory of Grp whose objects are the
abelian (i.e. commutative) groups.

(6) We write Rng for the category whose objects are rings and whose
morphisms are ring homomorphisms and CRng for the full subcategory
of Rng on commutative rings.

1B is a subcategory of A if Ob(B) ⊆ Ob(A), B(X,Y) ⊆ A(X,Y) for all X,Y ∈ Ob(B)
and composition and identities in B are inherited from A (by restriction). A subcategory
B of A is called full if B(X,Y) = A(X,Y) for all X,Y ∈ Ob(B).

6

(7) For a commutative ring R we write ModR for the category of R-
modules and their homomorphisms (if R is a field k then we write
Vectk instead of Modk). The category of R-algebras and their homo-
morphisms is denoted as AlgR.

(8) We write Sp for the category of topological spaces and continuous
maps.

(9) Identifying homotopy equivalent maps in Sp gives rise to the category
Sph.

2

(10) Every monoid M = (M, ·, 1) can be understood as a category with one
object (usually denoted as ∗). Categories with one object are precisely
the monoids.

(11) Every preorder P = (P,≤) (i.e. where ≤ is a reflexive and transitive
binary relation on P) can be considered as a category whose objects
are the elements of P and whose morphisms from x to y are given by
the set {∗ | x ≤ y}. Categories arising this way are those categories C
where C(X, Y) contains at most one element for all X, Y ∈ Ob(C) and
they are called posetal. ♦

When “inverting the direction of arrows” in a given category this gives rise
to the so-called “dual” or “opposite” category Cop which in general is quite
different from C.

Definition 1.2 Let C be a category. Then its dual or opposite category
Cop is given by Ob(Cop) = Ob(C), Cop(A,B) = C(B,A) and ◦Cop

A,B,C(g, f) =
◦CC,B,A(f, g). ♦

Obviously, for every object A the morphism idA is the identity morphism for
A also in Cop.

Next we consider some properties of morphisms generalising the notions in-
jective, surjective and bijective known from Set to arbitrary categories.

2Continuous maps f0, f1 : X → Y are called homotopy equivalent (notation f0 ∼ f1)
iff there is a continuous map f : [0, 1] × X → Y with fi(x) = f(i, x) for all x ∈ X and
i ∈ {0, 1}. One easily checks that f0 ∼ f1 and g0 ∼ g1 implies g0 ◦ f0 ∼ g1 ◦ f1 (whenever
the composition is defined), i.e. composition respects homotopy equivalence. This explains
why identifying homotopy equivalent continuous maps gives rise to a category.

7

Definition 1.3 Let C be a category and f : A→ B be a morphism in C.
The morphism f is called a monomorphism or monic iff for all g, h : C → A
from f ◦ g = f ◦ h it follows that g = h.
The morphism f is called an epimorphism or epic iff for all g, h : B → C
from g ◦ f = h ◦ f it follows that g = h.
The morphism f is called an isomorphism iff there exists a morphism g :
B → A with g ◦ f = idA and f ◦ g = idB. Such a morphism g is unique
provided it exists in which case it is denoted as f−1. ♦

It is easy to show that an isomorphism is both monic and epic (Exercise!).
However, the converse is not true in general: consider for example the inclu-
sion Z ↪→ Q which is a morphism in Rng (and, of course, also CRng) which
is epic and monic, but obviously not an isomorphism.(Exercise!) Categories
where monic and epic implies isomorphism are called balanced.

Exercises

1. Show that in Set and Ab a morphism f : A → B is monic iff f is
one-to-one, is epic iff f is onto, is an isomorphism iff f is bijective.

2. Do the above equivalences hold also in Sp?

3. Find a category which is not posetal but where all morphisms are
monic.

8

2 Functors and Natural Transformations

This section is devoted to the concept of a functor, i.e. structure preserving
map between categories, inspired by and generalising both monoid homo-
morphism and monotonic maps.

Definition 2.1 Let A and B be categories. A (covariant) functor F from A
to B (notation F : A→ B) is given by a function

FOb : Ob(A)→ Ob(B)

(called “object part” of F) together with a family of functions

FMor =
(
FA,B : A(A,B)→ B(F (A), F (B))

)
A,B∈Ob(A)

(called “morphism part” of F) satisfying the following requirements

(1) FA,A(idA) = idFOb(A) for all A ∈ Ob(A)

(2) FA,C(g ◦ f) = FB,C(g) ◦ FA,B(f) for all f : A→ B and g : B → C.

A contravariant functor from A to B is a covariant functor from Aop to B. ♦

Most of the time we suppress the indices of F as they could be reconstructed
from the context without any pain. Under this convention for example con-
ditions (1) and (2) of Definition 2.1 are formulated as

F (idA) = idF (A) F (g ◦ f) = F (g) ◦ F (f)

which certainly is more readable.
Very often one needs functors with more than one argument. These are
subsumed by Definition 2.1 taking A as A1 × · · · × An, i.e. a (cartesian)
product of categories, whose straightforward definition we leave to the reader
as an exercise(!).
Actually, functors are ubiquitous in mathematics as can be seen from the
following

Examples of Functors

(1) Functors between categories with precisely one object correspond to
monoid homomorphisms.

9

(2) Functors between posetal categories correspond to monotone functions
between preorders.

(3) If C is a group or a monoid then functors from C to Vectk, the category
of vector spaces over field k, are called linear representations of C.

(4) The powerset function A 7→ P(A) is the object part of two different
functors from Set to Set, a covariant one and a contravariant one: let
f : A→ B be a morphism in Set then the covariant power set functor
sends X ∈ P(A) to f [X] = {f(x) | x ∈ X} and the contravariant
power set functor sends Y ∈ P(B) to f−1[Y] = {x ∈ A | f(x) ∈ Y }.

(5) For every category C we may consider its “hom-functor” HomC : Cop×
C→ Set whose object part is given by

HomC(A,B) = C(A,B)

and whose morphism part is given by

HomC(f, g) : HomC(A,B)→ HomC(A′, B′) : h 7→ g ◦ h ◦ f

for f : A′ → A and g : B → B′. Notice that the hom-functor is
contravariant in its first argument and covariant in its second argument.
Fixing the first or second argument of HomC gives rise to the functors

Y∗C(A) = HomC(A,−) : C→ Set

and
YC(B) = HomC(−, B) : Cop → Set

where Y refers to the mathematician Nobuo YONEDA who first
considered these functors.

(6) Let F : Set→Mon be the functor sending set A to A∗, the free monoid
over A and f : A→ B to the monoid homomorphism F (f)(a1 . . . an) =
f(a1) . . . f(an). There is also a functor U : Mon→ Set in the reverse
direction “forgetting” the monoid structure. Such “forgetful” functors
U can be defined not only for Mon but for arbitrary categories of
(algebraic) structures. The associated “left adjoint” functor F doesn’t
always exist. What “adjoint” really means will be clarified later and
turns out as a central notion of category theory.

10

Notice that in the above definition of the hom-functor HomC we have cheated
a bit in assuming that HomC(A,B) = C(A,B) actually is a set for all objects
A and B in C. However, this assumption is valid for most categories one
meets in practice and they are called locally small. A category C is called
small if not only all C(A,B) are sets but also Ob(C) itself is a set. Typically,
categories of structures like Mon, Grp, Sp and also Set are locally small,
but not small.

Next we will show how to organise the collection of functors from A to B
into a category itself by defining an appropriate notion of morphism between
functors which is called natural transformation.

Definition 2.2 Let A and B be categories and F and G be functors from A
to B. A natural transformation from F to G is a family of morphisms

τ = (F (A)→ G(A))A∈Ob(A)

such that

F (A)
τA- G(A)

F (A′)

F (f)
?

τA′
- G(A′)

G(f)
?

commutes for all f : A→ A′ in A. We write τ : F→̇G or τ : F ⇒ G if τ is
a natural transformation from F to G.
For natural transformations σ : F→̇G and τ : G→̇H their (vertical) compo-
sition τ ◦ σ is defined pointwise as

(τ ◦ σ)A = τA ◦ σA

for A ∈ Ob(A). The identity natural transformation idF : F→̇F on F is
given by (idF)A = idF (A). ♦

Obviously, functors from A to B with natural transformations as morphisms
organize into a category denoted by BA or Func(A,B).

Actually, natural transformations are ubiquitous in mathematics as can be
seen from the following

11

Examples of Natural Transformations

(1) Let P : Set → Set be the covariant powerset functor on Set. Then
a natural transformation Id→̇P is given by σA : A → P(A) : a 7→
{a} and a natural transformation from P2 = P ◦ P to P is given by⋃
A : P2(A) → P(A) : X 7→

⋃
X where, as usual,

⋃
X is defined as

{x ∈ A | ∃X ∈ X . x ∈ X}.

(2) Let I be a set. Define F : Set → Set as F (X) = XI×I and
F (f)(g, i) = 〈f◦g, i〉. Then a natural transformation ε : F →̇ Id is
given by εA : AI×I → A : 〈g, i〉 7→ g(i).

(3) Let GLn(R) be the group of invertible n×n-matrices with entries in R
where R is a field or a commutative ring. For a ring homomorphism h :
R→ R′ let GLn(h) : GLn(R)→ GLn(R′) be the group homomorphism
sending A = (aij) to GLn(h)(A) = (h(aij)). Let Inv be the functor
from CRng to Grp sending a commutative ring to the abelian group
of its units. Then a natural transformation det : GLn→̇Inv is given by
sending each matrix to its determinant as indicated in the diagram

GLn(R)
detR- Inv(R) ⊂ - R

GLn(R′)

GLn(h)

?

detR′
- Inv(R′)

Inv(h)

?
⊂ - R′

h

?

(4) Let R1 and R2 be functors from a group G to Vectk, i.e. representations
of G. Then a natural transformation from R1 to R2 is simply a linear
map h : R1(∗)→ R2(∗) such that

R1(∗)
h
- R2(∗)

R1(∗)

R1(f)
? h

- R2(∗)

R2(f)
?

for all f ∈ G. In representation theory such an h is commonly called
an equivariant map from R1 to R2.

12

If σ : F→̇F ′ : A → B and τ : G→̇G′ : B → C then their horizontal
composition τ ∗ σ : GF→̇G′F ′ is defined as

(τ ∗ σ)A = G′σA ◦ τFA = τF ′A ◦GσA

where the second equality follows from τ : G→̇G′. We leave it as an exer-
cise(!) to show that

(τ2 ◦ τ1) ∗ (σ2 ◦ σ1) = (τ2 ∗ σ2) ◦ (τ1 ∗ σ1)

for σ1 : F→̇F ′ and σ2 : F ′→̇F ′′ in Func(A,B) and τ1 : G→̇G′ and τ2 :
G′→̇G′′ in Func(B,C). Moreover, one easily sees that idG ∗ idF = idGF . Thus,
horizontal composition gives rise to a functor ∗ : Func(B,C)× Func(A,B)→
Func(A,C) for all categories A,B,C. A category whose hom-sets themselves
carry the structure of a category such that composition is functorial are called
2-categories. The category Cat of categories and functors is a 2-category
where Cat(A,B) is the functor category Func(A,B) and the morphism parts
of the composition functors are given by horizontal composition ∗ which is
functorial as we have seen above.
One readily checks that a natural transformation τ : F→̇G is an isomorphism
iff all its components are isomorphisms (exercise!). We say that functors F
and G from A to B are isomorphic iff there is an isomorphism from F to G
in Cat(A,B) = Func(A,B).

13

3 Subcategories, Full and Faithful Functors,

Equivalences

Though already shortly mentioned in section 1 we now “officially” give the
definition of the notion of subcategory.

Definition 3.1 Let C be a category. A subcategory C′ of C is given by

Ob(C′) ⊆ Ob(C) and

C′(A,B) ⊆ C(A,B) for all A,B ∈ Ob(C′)

such that

i) idA ∈ C′(A,A) for all A ∈ Ob(C′)

ii) whenever f : A→ B and g : B → C are morphisms in C′ then g ◦ f is
a morphism in C′

i.e. identities and composition are inherited from C.
A subcategory C′ of C is called full iff C′(A,B) = C(A,B) for all A,B ∈
Ob(C′) and it is called replete iff, moreover, for every isomorphism f : A→
B in C the object B is in C′ whenever A is in C′. ♦

For every subcategory C′ of C there is an obvious inclusion functor

I : C′ → C

with I(A) = A and I(f) = f for all objects A and morphisms f in C′.

Definition 3.2 Let F : A→ B be a functor. The functor F is called faithful
iff for all f, g : A → B in A from F (f) = F (g) it follows that f = g, i.e.
iff all morphism parts of F are one-to-one. The functor F is called full iff
for all A,B ∈ Ob(A) and g : F (A) → F (B) there is an f : A → B with
g = F (f), i.e. all morphism parts of F are onto. ♦

Obviously, a functor is full and faithful iff all its morphism parts are bijec-
tions.

Lemma 3.1 If a functor F : A → B is full and faithful then F reflects
isomorphisms, i.e. f is an isomorphism whenever F (f) is an isomorphism.
However, in general faithful functors need not reflect isomorphisms.

14

Proof: Simple exercise(!) left to the reader. �

Notice that, in particular, for subcategories C′ of C the inclusion functor
I : C′ → C need not reflect isomorphisms though it always is faithful.3

Definition 3.3 A functor F : A→ B is called an equivalence (of categories)
iff F is full and faithful and for every B ∈ Ob(B) there is an A ∈ A with
B ∼= F (A). We write A ' B iff there is an equivalence between A and B. ♦

Notice that being an equivalence is much weaker than being an isomorphism
of categories. Nevertheless equivalence is the better notion because for cate-
gories isomorphism is the right notion of equality for objects.
We leave it as an exercise(!) to show that (using the Axiom of Choice) for
every equivalence F : A → B there is a functor G : B → A such that
GF ∼= IdA and FG ∼= IdB, i.e. F has a “quasi-inverse” G.

3For this reason P. Freyd in his book Categories, Allegories [FS] required faithful func-
tors also to reflect isomorphisms! Accordingly, he required for subcategories C′ ⊆ C also
that f−1 is in C′ whenever f is in C′.

15

4 Comma Categories and Slice Categories

At first look the notions introduced in this section may appear as somewhat
artificial. However, as we shall see later they turn out as most important for
categorical logic.

Definition 4.1 Let F : A → C and G : B → C be functors. The comma
category F↓G is defined as follows. The objects of F↓G are triples (A, f,B)
where A ∈ Ob(A), B ∈ Ob(B) and f ∈ C(F (A), G(B)). A morphism from
(A, f,B) to (A′, f ′, B′) in F↓G is a pair (g : A→A′, h : B→B′) such that

F (A)
F (g)
- F (A′)

G(B)

f
?

G(h)
- G(B′)

f ′
?

commutes. Composition of morphisms in F↓G is componentwise, i.e. (g′, h′)◦
(g, h) = (g′ ◦ g, h′ ◦ h) and id(A,f,B) = (idA, idB). ♦

Special cases of particular interest arise if A or B coincide with 1, the trivial
category with one object and one morphism, or if F orG are identity functors.
If G = IdC we write F↓C for F↓IdC, if F = IdC we write C↓G for IdC↓G and if
F = IdC = G then we write C↓C for IdC↓IdC. If B = 1 and G(∗) = X we write
F↓X for F↓G and if A = 1 and F (∗) = Y we write Y ↓G for F↓G. If F = IdC
and G : 1 → C : ∗ 7→ X we write C/X for F↓G and if F : 1 → C : ∗ 7→ Y
and G = IdC we write Y/C for F↓G. The comma category C/X is commonly
called slice (category of C) over X.
We leave it as an exercise4 to show that for all sets I we have Set/I ' SetI

where SetI is the I-fold product of Set.
Notice that for categories C different from Set it always makes
sense to consider for I ∈ Ob(C) the slice category C/I whereas CI is
meaningless because I is not a set in this case.

4The idea is to send A ∈ SetI to the map
∐

i∈I Ai −→ I : (i, a) 7→ i where as usual∐
i∈I Ai = {(i, a) | i∈I, a∈Ai}.

16

5 Yoneda Lemma

The Yoneda lemma says that for every locally small category C there is a
full and faithful functor YC : C → SetC

op

, the so-called Yoneda functor,
which allows one to consider C (up to equivalence) as a full subcategory of

Ĉ = SetC
op

, the category of (set-valued) presheaves over C. As we shall see

later this result is very important because categories of the form Ĉ = SetC
op

are very “set-like” in the sense that they can be considered as categories of
“generalised sets” and, therefore, used as models for (constructive) logic and
mathematics!

Definition 5.1 (Yoneda embedding)
Let C be a locally small category. For I ∈ Ob(C) the functor YC(I) : Cop →
Set is defined as C(−, I), i.e. sends J ∈ Ob(C) to the set C(J, I) and sends
g : K → J to the function C(g, I) : C(J, I) → C(K, I) : h 7→ h ◦ g. For
f : I → J let YC(f) be the natural transformation from YC(I) to YC(J)
whose component at K ∈ Ob(C) is given by YC(f)K : C(K, I) → C(K, J) :
h 7→ f ◦ h. These data give rise to a functor YC : C → SetC

op

called the
Yoneda embedding for C. ♦

For Definition 5.1 to make sense one has to verify (1) that YC(f) is actually
a natural transformation, i.e. that

C(K, I)
YC(f)K- C(K, J)

C(K ′, I)

C(g, I)
?

YC(f)K′
- C(K ′, J)

C(g, J)
?

commutes for all g : K ′ → K, and (2) that YC is actually functorial, i.e.
satisfies YC(idI) = idYC(I) and YC(g ◦ f) = YC(g) ◦ YC(f). We leave the
straighforward verifications of (1) and (2) to the inclined reader as a simple
exercise(!).

Lemma 5.1 (Yoneda Lemma)
Let C be a locally small category and A : Cop → Set. Then for all I ∈ Ob(C)

(1) natural transformations σ, τ : YC(I)→ A are equal iff σI(idI) = τI(idI)
and

17

(2) for every a ∈ A(I) there exists a unique natural transformation τ (a) :

YC(I)→ A with τ
(a)
I (idI) = a.

Accordingly, we have a natural isomorphism

ι : Ĉ(YC(−), A)
∼=−→ A

given by ιI : Ĉ(YC(I), A)→ A(I) : τ 7→ τI(idI) for I ∈ C.

Proof: First notice that for a natural transformation τ : YC(I)→ A it holds
that

(†) τJ(f) = A(f)(τI(idI)) for all f : J → I

because by naturality of τ the diagram

C(I, I)
τI- A(I)

C(J, I)

YC(I)(f)
?

τJ
- A(J)

A(f)
?

commutes and, therefore,

τJ(f) = τJ(YC(I)(f)(idI)) =
= (τJ ◦ YC(I)(f))(idI) = (A(f) ◦ τI)(idI) =
= A(f)(τI(idI))

as desired.
Now for showing claim (1) assume that τI(idI) = σI(idI). Thus, due to (†)
we have τJ(f) = A(f)(τI(idI)) = A(f)(σI(idI)) = σJ(f) for all f : J → I in
C, i.e. τ = σ as desired.
For claim (2) suppose a ∈ A(I). The desired τ (a) : YC(I) → A is given

by τ
(a)
J (f) = A(f)(a) for f : J → I in C. Obviously, we have τ

(a)
I (idI) =

A(idI)(a) = a. That τ (a) is indeed a natural transformation we leave as an
exercise(!) to the reader.
It is now obvious that ιI(τ) = a iff τ = τ (a) from which it follows that ιI is a
bijection for all I ∈ C. For naturality of ι suppose f : J → I in C. We have
to show that

Ĉ(YC(I), A)
ιI- A(I)

Ĉ(YC(J), A)

Ĉ(YC(f), A)
?

ιJ- A(J)

A(f)
?

18

commutes. Suppose τ : YC(I)→ A then we have

(A(f) ◦ ιI)(τ) = A(f)(ιI(τ)) = A(f)(τI(idI)) = (A(f) ◦ τI)(idI) =
= (τJ ◦ YC(I)(f))(idI) = τJ(f) = τJ(YC(f)J(idJ)) =
= (τ ◦ YC(f))J(idJ) = ιJ(τ ◦ YC(f)) =

= ιJ(Ĉ(YC(f), A)(τ)) =

= (ιJ ◦ Ĉ(YC(f), A))(τ)

as desired. �

As the Yoneda Lemma 5.1 allows us to identify in a canonical way Ĉ(YC(I), A)

with A(I) for all presheaves A ∈ Ĉ = SetC
op

we often write simply a :
YC(I)→ A for the natural transformation τ (a) as constructed in the proof of
the Yoneda lemma.

Corollary 5.1 For every locally small category C the Yoneda functor YC :
C→ Ĉ is full and faithful.

Proof: We have to show that for all I, J ∈ Ob(C) and τ : YC(I) → YC(J)
there exists a unique morphism f : I → J in C with τ = YC(f). Notice that
by the Yoneda Lemma 5.1 we have τK(g) = YC(J)(g)(τI(idI)) = τI(idI) ◦ g
for all g : K → I. Thus, as for f = τI(idI) we have YC(f)K(g) = f ◦ g it
follows from the Yoneda Lemma 5.1 that τ = YC(f) and f is unique with
this property. �

As full and faithful functors reflect isomorphisms we get that YC(I) ∼= YC(J)
implies I ∼= J and, therefore, the category C may be considered as a full
subcategory of Ĉ. Those A : Cop → Set with A ∼= YC(I) for some I ∈
Ob(C) are called representable. We give this definition an “official” status
as representability is a key concept used for defining most of the subsequent
notions.

Definition 5.2 Let C be locally small. Then A : Cop → Set is called repre-
sentable iff A ∼= YC(I) for some I ∈ Ob(C). ♦

Notice that by the Yoneda lemma for representable A the representing object
I with A ∼= YC(I) is unique up to isomorphism.

19

6 Grothendieck universes : big vs. small

Generally in category theory one doesn’t worry too much about its set-
theoretic foundations because one thinks that categories (namely toposes)
provide a better foundation for mathematics (see e.g. [LR]).
However, as we have seen in the previous section when discussing the Yoneda
lemma local smallness is of great importance in category theory. From the
definition of local smallness it is evident that we want to call a collection
“small” iff it is a set. Typical non-small collections are the collection of all
sets or the collection of all functors from Cop to Set. Already in traditional
algebra and topology to some extent one has to consider large collections
when quantifying over all groups, all topological spaces etc. In this case
the usual “excuse” is that in Zermelo-Fraenkel set theory ZF(C) one may
quantify over the universe of all sets and, therefore, also over collections
which can be expressed by a predicate in the language of set theory (i.e. a
first order formula using only the binary predicates = and ∈). In Gödel-
Bernays-vonNeumann class theory GBN one may even give an “ontological
status” to such collections which usually are referred to as classes.5 The
drawback, however, is that classes don’t enjoy good closure properties, e.g.
there doesn’t exist the class of all functions from class X to class Y etc.
Thus, the desire to freely manipulate big collections has driven categorists
to introduce the following notion of universe.

Definition 6.1 A Grothendieck universe is a set U such that the following
properties

(U1) if x ∈ a ∈ U then x ∈ U
(U2) if a, b ∈ U then {a, b} and a×b are elements of U
(U3) if a ∈ U then

⋃
a and P(a) are elements of U

(U4) the set ω of all natural numbers is an element of U
(U5) if f : a→ b is surjective with a ∈ U and b ⊆ U then b ∈ U

hold for U . ♦

Notice that the conditions (U1)–(U5) guarantee that U with ∈ restricted to

5For a first order formula φ(x) in the language of set theory one may form the class
{x | φ(x)} consisting of all sets a satisfying φ(a) (where a set is a class contained in some
class (e.g. {x | x = x}) as an element).

20

U×U provides a model for ZF(C) (i.e. a “small inner model”6 in the slang
of set theory). Thus, the universe U is closed under the usual set-theoretic
operations.7

Notice, however, that ZF(C) cannot prove the existence of Grothendieck
universes as otherwise ZF(C) could prove its own consistency in contradiction
to Gödel’s second incompleteness theorem. Nevertheless, one shouldn’t be
too afraid of inconsistencies when postulating Grothendieck universes as it
is nothing but a reflection principle claiming that what we have axiomatized
in ZF(C) “actually exists”. In other words, if ZF(C) + the assumption of a
Grothendieck universe were inconsistent then it were rather the fault of the
former8 than the fault of the latter.
If having accepted one Grothendieck universe why shouldn’t one accept
more? Accordingly, when really worrying about set-theoretic foundations
for category theory one usually adds to ZF(C) the requirement that for ev-
ery set a there is a Grothendieck universe U with a ∈ U . Accordingly,
for every Grothendieck universe U there is a Grothendieck universe U ′ with
U ∈ U ′ and, therefore, also U ⊆ U ′. Thus, this axiomatic setting guarantees
(at least) the existence9 of a hierarchy U0 ∈ U1 ∈ · · · ∈ Un ∈ Un+1 ∈ · · · of
universes which is also cumulative in the sense that U0 ⊆ U1 ⊆ · · · ⊆ Un ⊆
Un+1 ⊆ · · · holds as well.

In the rest of these notes we will not refer anymore to the set-
theoretical sophistications discussed in this section but, instead,
will use the notions “big” and “small” informally.

6Actually, the notion of universe is somewhat stronger than that of a small inner model
as the latter need not satisfy (U5) for arbirary functions f but only for first order definable
f as ensured by the set theoretic replacement axiom.

7We suggest it as an exercise(!) to directly derive from conditions (U1)–(U5) that
〈a, b〉 = {{a}, {a, b}} ∈ U whenever a, b ∈ U .

8What makes ZF so incredibly strong is the mixture of infinity, powersets and the
replacement axiom!

9Notice that in presence of the axiom of choice such a cumulative hierarchy can
be constructed internally by iterating the choice function u assigning to every set a a
Grothendieck universe u(a) with a ∈ u(a). Of course, nothing prevents us from iterating
this function u along arbitrary transfinite ordinals!

21

7 Limits and Colimits

A lot of important properties of categories can be formulated by requiring
that limits or colimits of a certain kind do exist meaning that certain functors
are representable.
Before introducing the general notion of limit and colimit for a diagram we
study some particular instances of these notions which, however, together
will guarantee that all (small) limits (or colimits) do exist.

Definition 7.1 (cartesian products)
Let C be a category. The (cartesian) product of a family A = (Ai | i ∈ I)
of objects in C is given by an object P of C together with a family π = (πi :
P → Ai | i ∈ I) of morphisms in C such that for every object C and every
family f = (fi : C → Ai | i ∈ I) there exists a unique morphism g : C → P
with fi = πi◦g for all i ∈ I. This unique morphism g will often be denoted as
〈fi〉i∈I and is called the mediating arrow from f to π. The object P together
with the family π is called product cone over A and πi : P → Ai is called
i-th projection. ♦

Next we will show that product cones are unique up to isomorphism.

Lemma 7.1 Suppose π = (πi : P → Ai | i ∈ I) and π′ = (π′i : P ′ → Ai |
i ∈ I) are product cones over A = (Ai | i ∈ I). Then for the unique arrows
f : P → P ′ and g : P ′ → P such that π′i ◦ f = πi and πi ◦ g = π′i for all i ∈ I
it holds that g ◦ f = idP and f ◦ g = idP ′, i.e. that the cones π and π′ are
canonically isomorphic.

Proof: Due to our assumptions we have that for all i ∈ I it holds that

πi ◦ g ◦ f = π′i ◦ f = πi

and, therefore, by uniqueness of mediating arrows idP = g ◦ f (because
πi ◦ idP = πi for all i ∈ I). Similarly one shows that f ◦ g = idP ′ . �

Notice that for I = ∅ a product cone (P, π) over (Ai | i ∈ I) is already
determined by the object P (because π has to be the empty family) which
has to satisfy the condition that for every object C ∈ Ob(C) there is a
unique morphism from C to P . Such objects P will be called terminal and
are usually denoted as T or 1.

22

Definition 7.2 (terminal objects)
An object T in C is called terminal iff for every C ∈ Ob(C) there is a unique
morphism C → T in C (often denoted as !C). ♦

In Set a product cone for A = (Ai | i ∈ I) is given by P =
∏

i∈I Ai where∏
i∈I

Ai = {s : I →
⋃
i∈I

Ai | ∀i ∈ I. s(i) ∈ Ai}

and π = (πi | i ∈ I) with πi(s) = s(i).
Terminal objects in Set are those sets containing precisely one element. Ac-
cordingly, we often write 1 for a terminal object.
We recommend it as an exercise(!) to construct products in the categories
Mon, Sp etc.

Definition 7.3 (equalisers) Let f, g : A→ B in C. An equaliser of f and g
is a morphism e : E → A such that

(i) f ◦ e = g ◦ e and

(ii) for every h : C → A with f ◦h = g ◦h there exists a unique morphism
k : C → E with h = e ◦ k. ♦

Requirement (ii) of the above definition is usually visualized by the following
diagram

E
e
- A

f
-

g
- B

C

k

6
.................

h

-

One easily checks that an equaliser e necessarily has to be a monomorphism
(exercise!). A mono which appears as equaliser of some parallel pair of mor-
phisms will be called regular. In Set an equaliser of f, g : A→ B is given by
E = {x ∈ A | f(x) = g(x)} and e : E ↪→ A : x 7→ x.

23

Definition 7.4 (small/finitely complete)
A category C has (small) limits iff C has products of (small) families of
objects and C has equalisers.
A category C has finite limits iff C has finite products (i.e. products for finite
families of objects) and C has equalisers.
A category C is small/finitely complete iff C has finite/small limits. ♦

Obviously, a category C has finite limits iff C has a terminal object, binary
products and equalisers (exercise!).
Next we consider the most important case of pullbacks which exist in all
categories with finite limits. Moreover, we will see that categories with a
terminal object and all pullbacks will also have all finite limits.

Definition 7.5 (pullbacks)
A pullback in a category C is a commuting square

P
p2- A2

A1

p1
?

f1

- I

f2
?

in C such that for all gi : B → Ai (i=1, 2) with f1 ◦ g1 = f2 ◦ g2 there exists
a unique h : B → P with pi ◦ h = gi for i=1, 2 as in the diagram

B

P
p2

-

.................................

h
-

A2

g
2

-

A1

p1

?

f1

-

g
1

-

I

f2

?

24

To indicate that a square is a pullback we write

P
p2- A2

A1

p1
?

f1

- I

f2
?

The pair p1, p2 is called pullback cone over f1, f2. ♦

Next we give a useful characterisation of having finite limits.

Theorem 7.1 Let C be a category with a terminal object 1. Then the fol-
lowing two conditions are equivalent

(1) C has pullbacks

(2) C has binary products and equalisers.

Proof: (1)⇒ (2) : Suppose C has pullbacks.
First we show that C has binary products. For objects A1, A2 in C consider
their pullback

A1×A2

π2- A2

A1

π1
?

- 1
?

then π1, π2 is a product cone over A1, A2 because for morphisms g1 : B → A1

and g2 : B → A2 it holds that !A1 ◦ g1 = !A2 ◦ g2 and, therefore, due to the
definition of pullback there exists a unique h : B → A1×A2 with πi ◦ h = gi
for i=1, 2 as required for a product cone. As C has binary products and a
terminal object it has all finite products.
For showing that C has equalisers suppose that f1, f2 : A → B. Then the
equaliser of f1 and f2 is constructed via the following pullback

E
f ′

- B

A

e
?

〈f1, f2〉
- B×B

δB
?

25

where δB = 〈idB, idB〉. The morphism e equalises f1 and f2 because we have

fi ◦ e = πi ◦ 〈f1, f2〉 ◦ e = πi ◦ δB ◦ f ′ = idB ◦ f ′ = f ′

for i=1, 2 and, accordingly, that f1 ◦ e = f2 ◦ e. Now suppose g : C → A with
f1 ◦ g = f2 ◦ g for which morphism we write g′. As for i=1, 2 we have

πi ◦ δB ◦ g′ = g′ = fi ◦ g = πi ◦ 〈f1, f2〉 ◦ g

and mediating arrows to product cones are unique we have that δB ◦ g′ =
〈f1, f2〉 ◦ g. Thus, there exists a unique arrow h : C → E with e ◦ h = g and
f ′ ◦ h = g′ as in

C

E
f ′

-

.................................

h
-

B

g ′

-

A

e

?

〈f1, f2〉
-

g

-

B×B

δB

?

Now suppose that h′ : C → E is a morphism with e ◦ h′ = g. Then we have
also f ′ ◦ h′ = g′ because

f ′ ◦ h′ = π1 ◦ δB ◦ f ′ ◦ h′ = π1 ◦ 〈f1, f2〉 ◦ e ◦ h′ =
= π1 ◦ 〈f1, f2〉 ◦ e ◦ h = π1 ◦ δB ◦ f ′ ◦ h =

= f ′ ◦ h

Thus, by uniqueness of mediating arrows to pullback cones it follows that
h′ = h. Thus, we have proved uniqueness of h and e is actually an equaliser
of f1 and f2.
(2)⇒ (1) : Suppose f1 : A1 → I and f2 : A2 → I. Let π1 : A1×A2 → A1 and
π2 : A1×A2 → A2 be a product cone and e : P → A1×A2 be an equaliser
of f1 ◦ π1 and f2 ◦ π2. We define pi = πi ◦ e for i=1, 2 and show that it is a

26

pullback cone over f1, f2. First of all the diagram

P
p2- A2

A1

p1
?

f1

- I

f2
?

commutes as we have

f1 ◦ p1 = f1 ◦ π1 ◦ e = f2 ◦ π2 ◦ e = f2 ◦ p2

Now suppose gi : B → Ai for i=1, 2 with f1◦g1 = f2◦g2. Then for g = 〈g1, g2〉
we have

f1 ◦ π1 ◦ g = f1 ◦ g1 = f2 ◦ g2 = f2 ◦ π2 ◦ g

and, therefore, there exists a unique morphism h : B → P with e ◦ h = g.
Thus, we have pi ◦ h = πi ◦ e ◦ h = πi ◦ g = gi for i=1, 2. The morphism h is
unique with this property as if pi ◦ h′ = gi for i=1, 2 then πi ◦ e ◦ h′ = gi for
i=1, 2 and, therefore, we have e ◦ h′ = 〈g1, g2〉 = g from which it follows that
h = h′. Thus, we have

P
p2- A2

A1

p1
?

f1

- I

f2
?

as desired. �

By inspection of the proof of Theorem 7.1 we get the following concrete
construction of pullbacks in Set, namely

P = {(x1, x2) ∈ A1×A2 | f1(x1) = f2(x2)}

and pi(x1, x2) = xi for i=1, 2.
From a logical point of view the pullback construction is important as it
amounts to reindexing a family of sets along a function. Suppose f : J → I
in Set and g = π1 :

∐
i∈I Ai → I for a family (Ai | i ∈ I) of sets. Then we

27

have ∐
j∈J

Af(j)

q
-
∐
i∈I

Ai

J

π1

?

f
- I

π1

?

where q(j, x) = (f(j), x) as follows from the obvious 1-1-correspondence be-
tween pairs (j, x) ∈

∐
j∈J Af(j) and tuples (j, (i, x)) with i = f(j) and x ∈ Ai.

Having seen how to compute pullbacks in Set we recommend it as an exer-
cise(!) to construct pullbacks in the categories Mon, Grp, Sp etc.

By dualisation for every kind of limit there is a dual notion of colimit as
summarised in the following table

C Cop

sum product
coequaliser equaliser
pushout pullback
initial object terminal object

We recommend it as an exercise(!) to show that Set has the above mentioned
colimits. What about Mon, Grp, Sp etc.?

Because of their great importance for reasoning about pullbacks we prove
the following lemmata.

Lemma 7.2 If m : A′ → A is a monomorphism in category C then for every
pullback diagram in C

B′
f ′
- A′

B

n
?

f
- A

m
?

the arrow n is a monomorphism, too.

28

Proof: Suppose g1, g2 : C → B′ with n ◦ g1 = n ◦ g2. Then we also have
f ′ ◦ g1 = f ′ ◦ g2 because m ◦ f ′ ◦ g1 = f ◦ n ◦ g1 = f ◦ n ◦ g2 = m ◦ f ′ ◦ g2 and
m is a mono by assumption. Thus, it follows that g1 = g2 by uniqueness of
mediating arrows. �

Lemma 7.3 Whenever the following diagram

A′′
g′
- A′

f ′
- A

K

a′′

?

g
- J

a′

?

f
- I

a
?

commutes in C and the right square is a pullback then the left square is a
pullback if and only if the whole outer rectangle is a pullback.

Proof: Suppose that the left square is a pullback. For showing that the outer
rectangle is also a pullback suppose that f ◦ g ◦ h = a ◦ k for some arrows
h : B → K and k : B → A. Then as the right square is assumed to be
a pullback there is a unique arrow α′ : B → A′ with g ◦ h = a′ ◦ α′ and
k = f ′ ◦ α′. Furthermore, due to the assumption that the left square is a
pullback there exists a unique map α′′ : B → A′′ with a′′ ◦ α′′ = h and
g′ ◦ α′′ = α′. The whole situation is summarised in the following diagram

B

A′′
g′
-

α ′′
-

A′
f ′

-

α ′

-
A

k

-

K

a′′

?

g
-

h

-

J

a′

?

f
- I

a

?

Thus α′′ is a mediating arrow from (h, k) to (f ◦ g, a). To show uniqueness
of α′′ with this property assume that α : B → A′′ with a′′ ◦ α = h and

29

f ′ ◦ g′ ◦ α = k. But then we have also that a′ ◦ g′ ◦ α = g ◦ a′′ ◦ α = g ◦ h
and, therefore, it follows that α′ = g′ ◦α by uniqueness of mediating arrows.
Thus, again by uniqueness of mediating arrows it follows that α = α′′.

For the reverse direction suppose that the outer rectangle is a pullback. For
showing that the left square is a pullback suppose that g ◦h = a′ ◦k for some
maps h : B → K and k : B → A′. Then we have also f ◦ g ◦ h = f ◦ a′ ◦ k =
a ◦ f ′ ◦ k. Thus, there exists a unique arrow α : B → A′′ with h = a′′ ◦α and
f ′ ◦ k = f ′ ◦ g′ ◦ α as the outer rectangle is assumed to be a pullback. The
situation is summarised in the following diagram

B

A′′
g′
-

α

-

A′
f ′

-

k

-
A

f ′◦ k

-

K

a′′

?

g
-

h

-

J

a′

?

f
- I

a

?

where k = g′ ◦ α follows from uniqueness of mediating arrows to the right
pullback. Thus α is a mediating arrow from (h, k) to (a′′, g′). For uniqueness
of α with this property suppose that h = a′′ ◦ β and k = g′ ◦ β. Then also
f ′ ◦ k = f ′ ◦ g′ ◦ β and, therefore, we have α = β by uniqueness of mediating
arrows to the outer pullback. �

Next we will define quite generally what is a limit for a diagram or a functor.
Later we will show that a category has limits for all small diagrams iff it “has
limits” in the sense of Definition 7.4.
But before we have to define precisely what we mean by a “diagram” in a
category which in turn requires the notion of graph to be defined next.

Definition 7.6 (graphs)
A (directed) graph is a tuple G = (G0, G1, d

G
0 , d

G
1) where G0 and G1 are sets

of nodes and edges, respectively, and dG0 , d
G
1 : G1 → G0 are functions called

source and target, respectively.

30

For graphs G and H a graph morphism from G to H is given by a pair
f = (f0, f1) where fi : Gi → Hi for i=0, 1 satisfying

dHi ◦ f1 = f0 ◦ dGi
for i=0, 1. ♦

Notice that graphs and graph morphisms give rise to a category Graph where
composition of graph morphisms is defined componentwise, i.e. (g ◦ f)i =
gi ◦ fi for i=0, 1, and idG = (idG0 , idG1). Obviously, the category Graph is
isomorphic to the functor category SetG

op

where G is the category

V
d0 -

d1

- E

with two objects E (“edges”) and V (“vertices”) whose only non-trivial ar-
rows are d0 and d1 from V to E.
Moreover, notice that every category C can be understood as a (possibly very
large) graph by forgetting composition and identities.
Next we will define what is a diagram in a category C and what are natural
transformations between diagrams “of the same shape”.

Definition 7.7 (diagrams)
Let C be a category and G = (G0, G1, d

G
0 , d

G
1) be a graph. A diagram in C

of shape G is a graph morphism D : G → C (where C is understood as a
graph).
For diagrams D,D′ : G → C a natural transformation from D to D′ is a
family τ = (τI : D(I) → D′(I) | I ∈ G0) such that for every edge e : I → J
in G (i.e. d0(e) = I and d1(e) = J) the diagram

D(I)
τI- D′(I)

D(J)

D(e)
?

τJ
- D′(J)

D′(e)
?

commutes. We use the notation τ : D → D′ for stating that τ is a natural
transformation from D to D′.
Diagrams of shape G and natural transformations between them form a cate-
gory Diag(G,C) where composition is defined componentwise, i.e. (τ ◦ σ)I =
τI ◦ σI , and (idD)I = idD(I). ♦

31

In order to formulate a notion of limit for diagrams of shape G we need as
an auxiliary notion a functor ∆G

C from C to Diag(G,C) assigning to every
object X in C “the constant diagram in C of shape G with value X”.

Definition 7.8 Let C be a category and G a graph. Then the functor ∆G
C :

C→ Diag(G,C) sends an object X ∈ Ob(C) to the diagram ∆G
C(X) with

∆G
C(X)(I) = X for I ∈ G0 and

∆G
C(X)(e) = idX for e ∈ G1

and a morphism f : X → Y in C to the natural transformation ∆G
C(f) :

∆G
C(X)→ ∆G

C(Y) with ∆G
C(f)I = f for I ∈ G0. ♦

Now we are ready to define what is a limit cone for a diagram D : G→ C.

Definition 7.9 (limit)
Let G be a graph and D : G → C be a diagram of shape G in the category
C. We define Cone(D) as the slice category ∆G

C↓D where a morphism from
cone τ ′ : ∆(X ′) → D to cone τ : ∆(X) → D is a C-morphism f : X ′ → X
making

∆(X ′)
∆(f)
- ∆(X)

D

τ
?

τ ′ -

commute in Diag(G,C).
A limit cone for D is a terminal object in Cone(D). ♦

We recommend it as an exercise(!) to verify that π : ∆G
C(P) → D is a limit

cone for diagram D : G→ C if and only if the contravariant functor

Diag(G,C)(∆(−), D) : Cop → Set

is representable, i.e. there exists a natural isomorphism

YC(P)
ϕ
∼=
- Diag(G,C)(∆(−), D)

with ϕP (idP) = π.

32

We now will explicitate the above definition of limit which despite its con-
ciseness and elegance might be a little bit difficult to grasp when seeing it
the first time. First recall that a natural transformation τ : ∆(X) → D is
nothing but a family of C-morphisms (τI : X → D(I) | I ∈ G0) such that

X

D(I)
D(e)

-
�

τ I

D(J)

τ
J

-

commutes for all edges e : I → J in G1. (These commuting triangles
are thought of as the “side faces of the cone τ” explaining the terminol-
ogy “cone”.) Now for cones τ : ∆(X) → D and σ : ∆(Y) → D over D a
morphism from (Y, σ) to (X, τ) is nothing but a C-morphism f : Y → X
such that

Y
f

- X

D(I)
� τ I

σ
I -

commutes for all I ∈ G0.
From these considerations it should have become clear that products, equalis-
ers and pullbacks are particular instances of the general notion of limit. Next
we show that products and equalisers suffice for guaranteeing the existence
of limits for arbitrary (small) diagrams.

Theorem 7.2 A category C has limits for all (small) diagrams if and only
if C has (small) products and equalisers.

Proof: Suppose C has (small) limits. Then, it has in particular limits for
diagrams of the shape ∆(I), the discrete graph with ∆(I)0 = I and ∆(I)1 =
∅, whenever I is small. Thus C has products of I-indexed families of objects
for all small I. Furthermore, limits for diagrams of shape

• -- •

33

provide equalisers as there is an obvious 1-1-correspondence between mor-
phism g : X → A with f1 ◦ g = f2 ◦ g and cones

X

A
f1 -

f2

-
�

g

B

h

-

(the latter being determined already by g because h = f1 ◦ g = f2 ◦ g).
For the reverse direction assume that C has (small) products and equalisers.
Suppose D : G→ C is a diagram with G a small graph. We define

A :=
∏
I∈G0

D(I) and B :=
∏
e∈G1

D(d1(e))

and f, g : A→ B as the morphisms with

πe ◦ f = πd1(e) and πe ◦ g = D(e) ◦ πd0(e)

for e ∈ G1. Let m : P � A be an equalizer of f and g. We will show that

µI = πI ◦m (I ∈ G0)

is a limiting cone for D. First we show that µ = (µI | I ∈ G0) is a cone. For
that purpose suppose e : I → J is an edge in G. Then we have

D(e) ◦ µI = D(e) ◦ πI ◦m = πe ◦ g ◦m = πe ◦ f ◦m = πJ ◦m = µJ

as desired. Suppose τ : ∆(X)→ D is a cone over D. We have to show that
there is a unique morphism h : X → P such that

µI ◦ h = τI

for all I ∈ G0. As µI = πI ◦m the desired h has to satisfy πI ◦m ◦ h = τI for
all I ∈ G0. As this requirement determines m ◦ h uniquely and m is monic
it follows that h is determined uniquely. It remains to show the existence of
h with this property. Let α : X → A be the unique arrow with πI ◦ α = τI .
Thus, it suffices to show that α factors through m via some h. This, however,
is guaranteed if we can show that α equalises f and g, i.e. πe◦f ◦α = πe◦g◦α
for all e ∈ G1. For this purpose suppose e : I → J in G. Then we have

πe ◦ f ◦ α = πJ ◦ α = τJ = D(e) ◦ τI = D(e) ◦ πI ◦ α = πe ◦ g ◦ α

as desired. �

By inspection of the above proof we get that

34

Corollary 7.1 A category C has limits for all finite diagrams iff C has finite
products and equalisers.

As functors to C are particular cases of diagrams in C in the sense of Defi-
nition 7.7 it is clear that limits for diagrams subsume limits for functors. As
products and equalisers are limits for functors it follows from Theorem 7.2
and Corollary 7.1 that a category has all small/finite limits iff it has limits
for all functors F : D→ C where D is small/finite.

35

8 Adjoint Functors

Because of its great importance for our treatment of adjoint functors we
recall the notion of representable presheaf and give a simple characterisation
of representability.

Theorem 8.1 (characterisation of representability)
Let C be a (small) category. Then

(1) a (contravariant) presheaf F : Cop → Set is representable, i.e. iso-
morphic to YC(I) = C(−, I) for some I ∈ Ob(C), iff there exists an
x ∈ F (I) such that for every y ∈ F (J) there exists a unique morphism
u : J → I in C with y = F (u)(x)

(2) a (covariant) presheaf F : C → Set is representable, i.e. isomorphic
to C(I,−) for some I ∈ Ob(C), iff there exists an x ∈ F (I) such that
for all y ∈ F (J) there exists a unique morphism u : I → J in C with
y = F (u)(x).

Proof: We just prove (1) and leave the (analogous) argument for (2) to the
reader as an exercise(!).
Suppose F is representable, i.e. there exists a natural isomorphism ϕ :

YC(I)
∼=→ F . Then x = ϕI(idI) ∈ F (I) has the desired property as for

y ∈ F (J) the morphism ϕ−1
J (y) is the unique arrow u : J → I with

y = F (u)(x) which can be seen as follows. We have

F (u)(x) = F (u)(ϕI(idI)) = ϕJ(YC(I)(u)(idI)) = ϕJ(u) = ϕJ(ϕ−1
J (y)) = y

and if y = F (v)(x) then

ϕ−1
J (y) = ϕ−1

J (F (v)(x)) = YC(I)(v)(ϕ−1
I (x)) = YC(I)(v)(idI) = idI ◦ v = v .

For the reverse direction suppose that x ∈ F (I) such that for every y ∈
F (J) there exists a unique u : J → I with y = F (u)(x). Then by the
Yoneda lemma there exists a unique natural transformation ϕ : YC(I) →
F with ϕI(idI) = x. From the proof of the Yoneda lemma we know that
ϕJ(u) = F (u)(x). Thus, due to our assumption about x we know that ϕJ is
a bijection for all J ∈ Ob(C) and, therefore, the natural transformation ϕ is

an isomorphism in Ĉ. �

36

Definition 8.1 (category of elements)
Let C be a (small) category.

(1) For a (contravariant) presheaf F : Cop → Set its category of ele-
ments Elts(F) is defined as follows: its objects are pairs (I, x) ∈∐

I∈Ob(C) F (I), its morphisms from (J, y) to (I, x) are the C-morphisms

u : J → I with y = F (u)(x) and composition and identities are inher-
ited from C.

(2) For a (covariant) presheaf F : C → Set its category of elements
Elts(F) is defined as follows: its objects are pairs (I, x) ∈

∐
I∈Ob(C) F (I),

its morphisms from (I, x) to (J, y) are the C-morphisms u : I → J with
y = F (u)(x) and composition and identities are inherited from C. ♦

Notice that for a contravariant presheaf F : Cop → Set the category Elts(F)
is isomorphic to the comma category F op↓1 (where F op : C → Setop). Sim-
ilarly, for a covariant presheaf F : C → Set the category Elts(F) is iso-
morphic to 1↓F . Alternatively, for a contravariant presheaf F : Cop → Set
the category Elts(F) is isomorphic to YC↓F and for a covariant presheaf
F : C → Set the category Elts(F) is isomorphic to (YCop↓F)op. The verifi-
cation of these claims we leave to the reader as an exercise(!).

Using the terminology of Definition 8.1 we can reformulate Theorem 8.1 quite
elegantly as follows.

Theorem 8.2 Let C be a small category. Then F : Cop → Set is repre-
sentable iff Elts(F) has a terminal object and F : C→ Set is representable
iff Elts(F) has an initial object.

Proof: We prove the claim just for contravariant F . For covariant F the
argument is analogous by duality.
By Theorem 8.1 F is representable iff there exists an x ∈ F (I) such that for
every y ∈ F (J) there is a unique arrow u : J → I with y = F (u)(x), i.e.
iff (I, x) is terminal in Elts(F). Thus F is representable iff Elts(F) has a
terminal object. �

Based on the notion of representability we are ready to define the notion of
adjointness.

37

Definition 8.2 (left and right adjointable)
A functor F : A→ B is called right adjointable iff for every B ∈ Ob(B) the
functor YB(B) ◦ F op = B(F (−), B) : Aop → Set is representable.
A functor U : B → A is called left adjointable iff for all A ∈ Ob(A) the
functor A(A,U(−)) : B→ Set is representable. ♦

Obviously, due to Theorem 8.1 a functor F : A → B is right adjointable iff
for every object B in B there exists a morphism εB : F (U0B)→ B such that
for every object A in A and f : F (A) → B there exists a unique morphism
g : A→ U0B with f = εB ◦ F (g) as indicated in the diagram

U0B F (U0B)
εB - B

A

g

6
................

F (A)

F (g)

6

f

-

A typical example is the diagonal functor ∆ : C → C×C sending X to
(X,X) and f to (f, f). That ∆ is right adjointable means that for every
(A,B) ∈ Ob(C×C) there exists an object P in C together with ε(A,B) =
(π1, π2) : (P, P) → (A,B) such that for every (f, g) : ∆(C) → (A,B), i.e.
f : C → A and g : C → B, there exists a unique morphism h : C → P with
(π1, π2) ◦ ∆(h) = (f, g), i.e. π1 ◦ h = f and π2 ◦ h = g, as indicated in the
diagram

P (P, P)
(π1, π2)

- (A,B)

C

h

6
.................

(C,C)

(h, h)

6

(f
, g

)

-

It is easy to see (exercise!) that C has binary products if and only if the
functor ∆ : C→ C×C is right adjointable.
More generally, a category C has limits of diagrams of shape G if and only
if the functor

∆G
C : C→ Diag(G,C)

38

is right adjointable, i.e.

limD ∆G
C(limD)

π
- D

X

h

6
.................

∆G
C(X)

∆G
C(h)

6

τ

-

A further example, particularly interesting from a “logical” point of view,
is the following characterisation of function spaces. Let A be a set. Then
the functor (−)×A : Set → Set (sending f : Y → X to f×A : Y×A →
X×A : (y, a) 7→ (f(y), a)) is right adjointable, i.e. there exists a set BA

together with a map ε : BA×A→ B such that for every f : C×A→ B there
exists a unique map g : C → BA with ε ◦ (g×A) = f . Naturally for BA

one chooses the set of all functions from A to B and defines ε : BA×A→ B
as the evaluation map sending (f, a) to f(a). Now given f : C×A → B
the unique map g : C → BA with ε ◦ (g×A) = f is obtained by defining
g(c)(a) = f(c, a). One readily checks that g is determined uniquely by this
requirement. Accordingly, we may write λ(f) for denoting this unique map
g. The situation is summarized in the following diagram

BA BA×A
ε
- B

C

λ(f)

6
.................

C×A

λ(f)×A

6

f

-

whose shape should be already quite familiar.

Next we consider examples for functors which are left adjointable. Let U :
Mon→ Set be the functor sending a monoid M to its underlying set U(M)
and a monoid homomorphism h : M → M ′ to the function h. As U forgets
the monoid structure it is often called “forgetful functor”. This forgetful
functor U is left adjointable as for every set X the functor Set(X,U(−)) :
Mon → Set is representable via ηX : X → U(X∗) where X∗ is the monoid
of words over X whose binary operation is concatenation of words

x1x2 . . . xn · y1y2 . . . ym = x1x2 . . . xny1y2 . . . ym

39

and whose neutral element is given by the empty word (often denoted as
ε). The map ηX sends x ∈ X to the word x consisting just of the single
“letter” x. It is easy to verify that for every monoid M and every function
f : X → U(M) there exists a unique monoid homomorphism h : X∗ → M
(sending x1x2 . . . xn to h(x1x2 . . . xn) = f(x1) ·f(x2) · ... ·f(xn) and the empty
word to h(ε) = 1M , the neutral element of the monoid M). The situation is
summarized in the following diagram

X
ηX- U(X∗) X∗

U(M)

U(h)

?

f

-

M

h

?

.................

Actually, for every equationally10 defined notion of algebraic structure (as e.g.
group, ring, vector space (over a fixed scalar field k) etc. the forgetful functor
to Set is left adjointable where for every set X the map ηX : X → U(FX)
is the inclusion of the set X of generators into the underlying set of the free
algebraic structure FX over X.

Definition 8.3 (adjunction)
An adjunction is a tuple (F,U, ϕ) where F : A → B and U : B → A are
functors and ϕ is a family

ϕA,B : B(F (A), B)
∼=→ A(A,U(B))

of bijections natural in A and B, i.e. the diagram

B(F (A), B)
ϕA,B- A(A,U(B))

B(F (A′), B′)

B(F (f), g)

?

ϕA′,B′
- A(A′, U(B′))

A(f, U(g))

?

10Notice, however, that fields are an exception! Actually, there is no free field over the
empty set of generators. If there were a free field F then it would have to be isomorphic
to Z2 as the hypothetical unique morphism from F to Z2 has to be one to one. However,
there is no homomorphism from Z2 to Q and, therefore, there cannot exist a free field.

40

commutes for all morphisms f : A′ → A in A and g : B → B′ in B.
We write F a U iff there is a ϕ such that (F,U, ϕ) is an adjunction. ♦

Obviously, in the above definition the condition on ϕ can be formulated
more concisely as the requirement that ϕ is a natural isomorphism from
B(F (−1),−2) to A(−1, U(−2)) in the functor category SetA

op×B.
Now if F : A→ B is right adjointable then using strong choice principles one
can augment F to an adjunction (F,U, ϕ) as follows. For every B ∈ Ob(B)
choose a map εB : F (U0B)→ B representing B(F (−), B). The object part of
U is defined by putting U(B) = U0B. The morphism part of U is defined by
sending every map g : B → B′ in B to the unique arrow U(g) : U0B → U0B

′

making the diagram

F (U0B)
εB - B

F (U0B
′)

F (U(g))

?

εB′
- B′

g

?

commute. We recommend it as an exercise(!) to show that the so defined U
is actually a functor, i.e. preserves composition and identities. The natural
isomorphism ϕ is defined at A ∈ Ob(A) and B ∈ Ob(B) by sending an arrow
f : F (A)→ B to the unique arrow ϕA,B(f) : A→ U(B) making the diagram

FUB
εB - B

FA

F (ϕA,B(f))

6

f

-

commute. As εB represents B(F (−), B) the mapping ϕA,B is a bijection
between B(F (A), B) and A(A,U(B)). We recommend it as an exercise(!) to
verify that ϕ is actually a natural transformation.
Analogously, every left adjointable functor U : B→ A can be augmented to
an adjunction (F,U, ϕ) choosing for every object A in A an arrow ηA : A→
U(F0A) representing the presheaf A(A,U(−)).

41

Moreover, for every adjunction (F,U, ϕ) one can show that the functors F
and U are right and left adjointable, respectively. An element representing
A(A,U(−)) is given by ηA = ϕA,FA(idFA), called unit of the adjunction at
A, and an element representing B(F (−), B) is given by εB = ϕ−1

UB,B(idUB),
called counit of the adjunction at B. One can show (exercise!) that the so
defined η and ε are natural tranformations, i.e.

η : IdA ⇒ UF and ε : FU ⇒ IdB

respectively, satisfying the so-called “triangle equalities”

εF ◦ Fη = idF and Uε ◦ ηU = idU

i.e. the diagrams

FA
FηA- FUFA UB

ηUB- UFUB

FA

εFA
?

=========
UB

UεB
?

=========

commute for all A ∈ Ob(A) and B ∈ Ob(B), respectively.11

Conversely, from natural transformations η : IdA ⇒ UF and ε : FU ⇒ IdB
satisfying the triangle equalites εF ◦ Fη = idF and Uε ◦ ηU = idU one can

construct a natural isomorphism ϕ : B(F (−1),−2)
∼=→ A(−1, U(−2)) such

that (F,U, ϕ) is an adjunction with ηA = ϕA,FA(idFA) and εB = ϕ−1
UB,B(idUB)

simply by putting ϕA,B(f) = U(f) ◦ ηA.

Before studying properties of adjunctions we observe that adjoints are unique
up to isomorphism.

Theorem 8.3 (uniqueness of adjoints)
The right adjoints of a functor are all isomorphic and so are its left adjoints.

Proof: Suppose (F,U, ϕ) and (F,U ′, ϕ′) are adjunctions. Let ε and ε′ be the
corresponding counits of the adjunctions. We define a natural transformation

11e.g. the commutation of the first triangle follows from

ϕA,FA(εFA ◦ FηA) = ϕUFA,FA(εFA) ◦ ηA = idUFA ◦ ηFA = ηFA = ϕA,FA(idFA)

because ϕA,FA is one-to-one

42

ι : U ⇒ U ′ as follows: for B ∈ Ob(B) let ιB : U(B) → U ′(B) be the unique
arrow in A such that ε′B ◦ F (ιB) = εB. Notice that ιB is an isomorphism
whose inverse is given by the unique arrow ι−1

B satisfying εB ◦ F (ι−1
B) = ε′B.

That ι = (ιB)B∈Ob(B) is a natural transformation can be seen as follows.
Suppose that g : B → B′ then we have

ε′B′ ◦ F (U ′(g) ◦ ιB) = ε′B′ ◦ FU ′g ◦ F (ιB) = g ◦ ε′B ◦ F (ιB) = g ◦ εB

and

ε′B′ ◦ F (ιB′ ◦ U(g)) = ε′B′ ◦ F (ιB′) ◦ FUg = εB′ ◦ FUg = g ◦ εB

and, therefore, also ε′B′ ◦ F (U ′(g) ◦ ιB) = ε′B′ ◦ F (ιB′ ◦ U(g)) from which it
follows that U ′(g) ◦ ιB = ιB′ ◦ U(g) as desired.
Analogously, one proves that left adjoints of a functor are unique up to
isomorphism. �

Theorem 8.4 Right adjointable functors preserve colimits and left adjointable
functors preserve limits.

Proof: We just prove the first claim as the second one follows by duality.
Thus, suppose that F : A → B is right adjointable, i.e. for all B ∈ Ob(B)
there is an arrow εB : FUB → B such that for all f : FA → B in B there
is a unique arrow g : A → UB in A such that εB ◦ Fg = f . Now suppose
D : G→ A is a diagram in A with colimiting cocone µ : D ⇒ ∆(A). We will
show that

Fµ = (F (µI) : F (D(I))→ F (A))I∈G0

is a colimiting cocone for F◦D. First we show that Fµ is a cocone. For
that purpose suppose u : I → J in G. Then we have FµJ ◦ F (D(u)) = FµI
because µJ◦D(u) = µI (as µ is a cocone overD) and F preserves composition.
Thus, it remains to show that Fµ is a colimiting cocone for F◦D. For that
purpose suppose τ : F◦D ⇒ ∆(X). For I ∈ G0 let σI : D(I) → UX be the
unique arrow satisfying εX ◦ F (σI) = τI . We show that σ : D ⇒ ∆(UX).
For u : I → J in G we have

εX ◦F (σI) = τI = τJ ◦F (D(u)) = εX ◦F (σJ) ◦F (D(u)) = εX ◦F (σJ◦D(u))

and, therefore, also σI = σJ ◦D(u). Accordingly, there exists a unique arrow
h : A→ UX with h ◦ µI = σI for all I ∈ G0. Thus, for all I ∈ G0 we have

εX ◦ Fh ◦ FµI = εX ◦ FσI = τI

43

from which it follows that k = εX ◦ Fh is a mediating arrow from Fµ to τ .
We have to show that k is unique with this property. Suppose k′ : FA→ X
with k′ ◦ FµI = τI for all I ∈ G0. Then there exists h′ : A → UX with
εX ◦ Fh′ = k′. Then for all I ∈ G0 we have

εX ◦ F (h′◦µI) = εX ◦ Fh′ ◦ FµI = k′ ◦ FµI = τI = εX ◦ F (σI)

from which it follows that h′◦µI = σI for all I ∈ G0. Thus, we have h = h′ (as
µ is a colimiting cocone) and, accordingly, also k = εX ◦ Fh = εX ◦ Fh′ = k′

as desired. �

Next we characterise some properties of a functor under the assumption that
it has a right adjoint.

Theorem 8.5 Suppose F a U : B → A is an adjunction with unit η : Id ⇒
UF . Then

(1) F is faithful iff all ηA are monic

(2) F is full iff all ηA are split epic, i.e. ηA ◦ s = id for some s : UFA→ A

(3) F is full and faithful iff η is a natural isomorphism.

Proof:
ad (1) : For morphisms f1, f2 : A′ → A in A we have

ηA ◦ f1 = ηA ◦ f2 iff UFf1 ◦ ηA′ = UFf2 ◦ ηA′ iff Ff1 = Ff2

from which it follows that F is faithful iff all ηA are monic.
ad (2) : If F is full then for all A ∈ Ob(A) there is a map sA : UFA → A
with F (sA) = εFA : FUFA → FA. Thus, we have idUFA = ϕ(εFA) =
ϕ(idFA ◦ F (sA)) = ηA ◦ sA as desired.
For the reverse direction suppose ηA◦sA = idUFA for all A ∈ Ob(A). Suppose
g : FA′ → FA. We show that g = Ff for f = sA ◦ Ug ◦ ηA′ . As F a U it is
equivalent to show that Ug ◦ ηA′ = UFf ◦ ηA′ which can be seen as follows

UFf ◦ ηA′ = ηA ◦ f = ηA ◦ sA ◦ Ug ◦ ηA′ = Ug ◦ ηA′

ad (3) : immediate from (1) and (2). �

Actually, claim (3) of Theorem 8.5 can be strengthened as follows.

44

Lemma 8.1 If F a U : B → A and UF is isomorphic to IdA then η is a
natural isomorphism, too.

Proof: Let ι : Id⇒ UF be a natural isomorphism. Then η is an isomorphism
as for every A the arrow ηA is inverted by jA = ι−1

A ◦UεFA ◦UFιA which can
be seen as follows. We have

jA ◦ ηA = ι−1
A ◦ UεFA ◦ UFιA ◦ ηA = ι−1

A ◦ UεFA ◦ ηUFA ◦ ιA = ι−1
A ◦ ιA = idA

and from this it follows that

ι−1
A ◦ ηA ◦ jA ◦ ιA = (naturality of η)

= ι−1
A ◦ UFjA ◦ UFιA ◦ ηA = (naturality of ι−1)

= jA ◦ ιA ◦ ι−1
A ◦ ηA =

= jA ◦ ηA = idA

and therefore ηA ◦ jA = ιA ◦ ι−1
A = idUFA. �

We leave it as an exercise(!) to formulate and verify the dual analogues of
Theorem 8.5 and Lemma 8.1.

45

9 Adjoint Functor Theorems

Already back in the 1960ies P.J.Freyd proved a couple of theorems provid-
ing criteria for the existence of adjoints under fairly general assumptions.
The exposition of Freyd’s Adjoint Functor Theorems given in this section
essentially follows the presentation given in [ML].

We need the following two lemmas whose easy proof we leave as a straight-
forward exercise(!) to the reader.

Lemma 9.1 Let C be a category with small limits and U : C→ B a functor
preserving small limits. Then for every object B in B the comma category
B↓U has small limits.

Lemma 9.2 Let C be a locally small category and U : C → B a functor.
Then for every object B in B the comma category B↓U is locally small, too.

The key idea of the general Adjoint Functor Theorem (FAFT) is to establish
the existence of a weakly initial object from which there follows the exis-
tence of an initial object under the assumptions of local smallness and small
completeness.

Definition 9.1 An object W of a category C is called weakly initial iff for
every object A of C there exists a morphism from W to A. ♦

Lemma 9.3 Let C be a locally small category having all small limits. Then
C has an initial object if and only if C has a weakly initial object.

Proof: Obviously, every initial object in C is also weakly initial in C.
Conversely, suppose that W is weakly initial in C. Let i : I � W be an
equaliser of all endomorphisms of W which exists because C(W,W) is small
and C has all small limits. We show that I is initial in C. Let A be an object
in C. Then there exists a map f from W to A and thus f ◦ i : I → A. For
uniqueness suppose that f1, f2 : I → A. Let e : E � I be an equaliser of f1

and f2. As W is weakly initial there exists a map p : W → E. As i equalises
all endomorphisms of W we have i = i ◦ e ◦ p ◦ i. As i is monic it follows that
idI = e ◦ p ◦ i. Thus, we have also e ◦ p ◦ i ◦ e = e from which it follows that
p ◦ i ◦ e = idE as e being an equaliser is monic. Thus e is an isomorphism
(with inverse p ◦ i) from which it follows that f1 = f2 as desired. �

46

Theorem 9.1 (General Adjoint Functor Theorem (FAFT)) Let C be a lo-
cally small category with small limits. Then a functor U : C → B has a left
adjoint iff U preserves small limits and satisfies the following

Solution Set Condition For every object B of B there exists
a small family (fi : B → U(Xi))i∈I such that for every map
g : B → U(X) for some i ∈ I there is a map h : Xi → X with
g = U(h) ◦ fi.

Proof: Due to Theorem 8.4 a functor U preserves limits whenever it has a
left adjoint F . Moreover, for every B ∈ B the unit ηB : B → UFB of F a U
at B is initial in B↓U from which it follows that the solution set condition
holds.
Suppose that U preserves small limits and the solution set condition holds.
For U having a left adjoint it suffices to show that for every B ∈ B the
comma category B↓U has an initial object. This, however, follows from
Lemma 9.3 because B↓U is locally small by Lemma 9.2, has all small limits
by Lemma 9.1 and the solution set condition gives rise to a weakly initial
object in B↓U by taking the product of the small family (fi)i∈I in B↓U . �

Notice that the solution set condition is actually necessary as can be seen
from the following counterexample. Let C = Ordop where Ord is the large
poset of (small) ordinals considered as a category. Let U be the unique
functor from C to the terminal category 1. Obviously, all assumptions of
Theorem 9.1 are satisfied with the exception of the solution set condition.
Now if U had a left adjoint this would give rise to an initial object in C which
does not exist as there is no greatest (small) ordinal.
Next we discuss a few applications of FAFT.
First we show that for every category A of equationally defined algebras (and
all homomorphisms between them) the forgetful functor U : A → Set has
a left adjoint F , i.e. that free A-algebras always exist. Every equationally
defined class A of algebras is locally small and has small limits which are
preserved by U . Thus, the assumptions of FAFT are satisfied. The solution
set condition is also valid for the following reason. Let I be a set. Then for
every A ∈ A every function f : I → A factors through the least subalgebra
of A generated by the image of I under f . As up to isomorphism there is
just a small collection of algebras in A which are generated by a subset of
cardinality less or equal the cardinality of I there is up to isomorphism just
a small collection of maps f : I → A such that A is the only subalgebra of A

47

containing the image of I under f . Thus, the forgetful functor U : A→ Set
has a left adjoint F .
From universal algebra one knows that the map ηI sending elements of I
to the corresponding generators in U(F (I)) is one-to-one provided A con-
tains algebras of arbitrarily big size. This can be shown also by the following
“abstract nonsense” argument without any inspection of the actual construc-
tion of the free algebra F (I). Suppose ηI(i) = ηI(j) for some i, j ∈ I with
i 6= j. Let A be an algebra with A ≥ |I|. Then there exists a function
f : I → U(A) which is one-to-one. Thus, by adjointness there exists a ho-
momorphism h : F (I) → A with f = U(h) ◦ ηI rendering ηI(i) = ηI(j)
impossible because we have h(ηI(i)) = f(i) 6= f(j) = h(ηI(j)).
Notice, however, that the forgetful functor from the category CBool of com-
plete Boolean algebras to Set does not have a left adjoint because there
exist12 arbitrarily big complete Boolean algebras generated by a countable
subset. As CBool is locally small and has small limits preserved by the
forgetful functor U this counterexample illustrates again the necessity of the
solution set condition.
Next we consider the forgetful functor U from CompHaus to Set where
CompHaus is the full subcategory of Sp on compact Hausdorff spaces.
FAFT is applicable because CompHaus is locally small and has small limits
which are preserved by U . Let I be a set. Then every map f : I → U(X)
factors through f [I], the closure of the image of X under f . Thus, for
verifying the solution set condition it suffices to consider only maps f : I →
U(X) with dense image. For any such map f the size of X is bounded by
the size of P2(I) for the following reason. Define e : X → P2(I) by sending
x ∈ X to the collection of all J ⊆ I with x ∈ f [J]. For showing that
e is one-to-one suppose x1 and x2 are distinct elements of X. Then there
exist open disjoint sets U1 and U2 with xi ∈ Ui for i = 1, 2 from which it
follows that f−1[U1] 6∈ e(x2) and f−1[U2] 6∈ e(x1). But for i = 1, 2 we have
xi ∈ f [f−1[Ui]] since for every open neighbourhood V of xi the sets f [I] and
Ui ∩ V have non-empty intersection (as f [I] is dense in X by assumption).
Thus f−1[Ui] ∈ e(xi) for i = 1, 2 and, therefore, since f−1[U1] 6∈ e(x2) and
f−1[U2] 6∈ e(x1) it follows that e(x1) 6= e(x2) as desired. Up to isomorphism
there is just a small collection of compact Hausdorff spaces with cardinality
less or equal 22|I| . As CompHaus is locally small up to isomorphism there

12as has been shown in R. Solovay New proof of a theorem of Gaifman and Hales
Bull.Amer.Math.Soc.72, 1966, pp.282–284

48

is just a small collection of continuous maps in CompHaus that start from
I and have dense image. Thus, the solution set condition holds for U from
which it follows by FAFT that U has a left adjoint. By an even simpler
argument it can be shown (exercise!) that the forgetful functor from Haus,
the category of Hausdorff spaces and continuous maps, into Sp has a left
adjoint, i.e. that Haus forms a full reflective subcategory of Sp.

Next we prove the Special Adjoint Functor Theorem providing a criterion
which is easier to check than the solution set condition but requires slightly
stronger assumptions.

Definition 9.2 A family (Ci)i∈I of objects in a category C is called cogen-
erating iff maps f, g : Y → X in C are equal whenever for all i ∈ I it holds
that h ◦ f = h ◦ g for all h : X → Ci. ♦

Lemma 9.4 Let C be a locally small category with small limits and infima
of arbitrary families of subobjects. If C has a cogenerating family (Ci)i∈I then
C has an initial object.

Proof: Let 0 be the intersection, i.e. infimum, of all subobjects of
∏

i∈I Ci.
Suppose f, g : 0 → X. Then the equaliser e : E � 0 of f and g is an
isomorphism because 0 is already the least subobject of

∏
i∈I Ci. Thus, it

follows that f = g.
For initiality of 0 it remains to show that for every object X of C there exists
some morphism from 0 to X. Consider the pullback

Y-
n

-
∏
i∈I

Ci

X

g

?
-

m
-
∏
i∈I

∏
h:X→Ci

Ci

f

?

where πi,h ◦m = h and πi,h ◦ f = πi. As the family (Ci)i∈I is cogenerating
for C it follows that m is monic and, therefore, the map n is monic, too, by
Lemma 7.2. As Y is a subobject of

∏
i∈I Ci there is a map k from 0 to Y

and, therefore, we have g ◦ k : 0→ X as desired. �

49

Theorem 9.2 (Special Adjoint Functor Theorem (SAFT)) Let C be a locally
small category with small limits, infima of arbitrary families of subobjects and
a cogenerating family (Ci)i∈I . Then for locally small categories B a functor
U : C → B has a left adjoint iff U preserves small limits and infima of
arbitrary families of subobjects.

Proof: Of course, if U has a left adjoint then it preserves all limits, i.e. in
particular small limits and arbitrary intersections of subobjects.
For showing the reverse direction suppose that U preserves small limits and
arbitrary intersections of subobjects. We will show that for all objects B of
B the comma category B↓U has an initial object from which it then follows
that U has a left adjoint. From Lemma 9.1 and 9.2 it follows that B↓U
is locally small and has small limits. As C has and U preserves arbitrary
intersections of subobjects it follows that B↓U has arbitrary intersections
of subobjects, too. As B is locally small the collection

⋃
i∈I B(B,U(Ci)) is

small, too, and one easily shows that it provides a cogenerating family for
B↓U . Thus, it follows by Lemma 9.4 that B↓U has an initial object. �

In most examples the extra assumption of subobjects being closed under
arbitrary intersections is redundant as in these cases the categories under
consideration are well-powered in the following sense.

Definition 9.3 A category C is well-powered iff for every object A of C the
poset SubC(A) of subobjects of A is small. ♦

Obviously, if a category C is well-powered and has small limits then C has
also arbitrary intersections of subobjects. Moreover, if U : C→ B preserves
small limits then U preserves13 also arbitrary intersections of subobjects.
This gives rise to the following even more useful version of the Special Adjoint
Functor Theorem (SAFT).

Theorem 9.3 Let C be a category which is locally small, well-powered and
small complete. If C admits a small cogenerating family and U : C→ B with
B locally small then U has a left adjoint iff U preserves small limits.

13From preservation of pullbacks it follows that monos are preserved, too.

50

Proof: The claim is immediate from Theorem 9.2 because if C is well-powered
and U preserves small limits then U preserves also arbitrary intersections of
subobjects. �

As an illustration of the power of SAFT we show that the inclusion U of
the category CompHaus of compact Hausdorff spaces into the category
Sp has a left adjoint β called Stone-Čech compactification. Obviously, both
CompHaus and Sp are locally small, have small limits and are well-powered.
Due to Urysohn’s Separation Lemma continuous maps to the space [0, 1]
separate points in compact Hausdorff spaces. Thus, by Theorem 9.3 the
forgetful functor U has a left adjoint β. Unwinding the proof of SAFT
one can see that for a space X its reflection14 to CompHaus is given by
ηX : X → β(X) where β(X) is the closure of the image of the map

ηX : X → X̃ : x 7→ (f 7→ f(x))

with X̃ =
∏

f∈Sp(X,[0,1])[0, 1] (which is compact by Tychonoff’s Theorem).

14a left adjoint to a full and faithful functor is commonly called a reflection

51

10 Monads

Every adjunction F a U : B → A induces a so-called monad (T, η, µ) on A
where T = U◦F : A → A, η : IdA → T is the unit of the adjunction and
µ : T 2 → T is given by µA = UεFA. Using the triangular equalities for unit
η and counit ε of the adjunction F a U it is a straightforward exercise(!) to
show that (T, η, µ) is a monad in the sense of the following definition.

Definition 10.1 (monad)
A monad on a category C is given by a triple (T, η, µ) with T : C → C,
η : IdC → T and µ : T 2 → T satisfying the following equalities

µ ◦ ηT = idT = µ ◦ Tη and µ ◦ Tµ = µ ◦ µT

as illustrated by the diagrams

T
ηT - T 2 �

Tη
T T 3 Tµ

- T 2

T

µ

?==
==

==
==

==
==

==
=

===============
T 2

µT

?

µ
- T

µ

?

The natural transforms η and µ are called unit and multiplication of the
monad, respectively. ♦

Of course, there arises the question to which extent every monad is induced
by an adjunction. The answer will be positive but in most cases there is
not a unique such adjunction even up to isomorphism. But we will show
that there is a minimal and a maximal solution to this problem, the so-
called Kleisli category CT and the so-called category CT of Eilenberg-Moore
algebras, respectively.
But before we will give a few examples of monads which shall provide some
intuition for this notion. Let C be some category of algebras (e.g. Mon,
Grp, Ab etc.) and U be the forgetful functor from C to Set. As seen in
the previous section this forgetful functor U has a right adjoint F : Set→ C
sending X to the free algebra over X. Then for T = UF we have that T (X)
is the underlying set of F (X), i.e. T (X) = X∗ in case of C = Mon. The

52

function ηX : X → T (X) inserts the generators into the generated algebra,
i.e. in case C = Mon we have that ηX(x) is the single letter word consisting
of the letter x. More complex is µX : T 2(X)→ T (X) sending a term t over
T (X) to the term µX(t) over X by interpreting the generators occuring in t
as elements of T (X). In case C = Mon the operation µ sends w1 . . . wk in
X∗∗ with wi = xi,1 . . . xi,ni

to x1,1 . . . x1,n1 . . . xk,1 . . . xk,nk
in X∗. Notice that

in computer science this operation is called “flattening” (of lists).
Generally, in computer science monads play an important role because they
allow one to capture so-called “computational effects” as for example non-
termination. Consider the functor L : Set → Set (called lifting) sending X
to L(X) = X+{∗} where ∗ is a distinguished element (representing nonter-
mination). For f : X → Y the map L(f) : L(X) → L(Y) behaves on X
like f and sends ∗ to ∗. Let ηX be the function including X into X+{∗}
and µX : L2(X)→ L(X) be the function sending the “two different “∗’s” of
L2(X) to ∗ and elements of X to themselves. One readily checks that this
defines a monad on Set for which we will see later on that it captures non-
termination (because the Kleisli category SetL will turn out as isomorphic
to the category of sets and partial functions).
Slightly more refined examples of “computational monads” are the following
ones.
Fix a set R of so-called “responses” and let T : Set → Set be the functor
sending X to T (X) = RRX

and f : X → Y to

T (f) = RRf

: φ 7→ (p 7→ φ(p◦f))

i.e. T (f) = λφ:RRX
.λf :RY .φ(λx:X.p(f(x))) in the language of simply typed

λ-calulus as familiar from functional programming. The unit ηX : X → RRX

sends x ∈ X to the map ηX(x) : RX → R : p 7→ p(x) and the multiplication
µX is given by Rη

RX , i.e.

µX(Φ) = λp:RX .Φ(ηRX (p)) = λp:RX .Φ(λφ:RRX

.φ(p))

in λ-calculus notation. This monad is called “continuation monad” as a
“computation” φ ∈ RRX

is thought of as a “generalised point of X” described
by its “response” φ(p) to an “observation” or “continuation” p. We leave it
as an exercise(!) to show that the continuation monad is induced by the
adjunction R(·) a (R(·))op : Setop → Set.
Another example is the so-called state monad which is described as follows.
Fix a set S of states and define T (X) = (X×S)S whose elements c are

53

thought of as “elements of X with a side effect” because given a state s ∈ S
applying c to it gives rise to a pair c(s) = (x, s′) where x ∈ X is the resulting
value and s′ is the (possibly) altered state after executing c in state s. The
unit of the state monad is given by ηX(x)(s) = (x, s) sending x ∈ X to the
side-effect free computation s 7→ (x, s). Its multiplication µ is given by

µX(C) = λs:S.π1(C(s))(π2(C(s)))

where C : S → (X×S)S×S. We leave it as an exercise(!) to show that the
state monad is induced by the adjunction (·)×S a (·)S : Set→ Set.
Notice that just for ease of exposition we have defined the above computa-
tional monads on Set. However, for the purposes of denotational semantics
they should rather be defined on the cartesian closed category PreDom
of predomains15 and Scott continuous functions between them (which does
contain Set as a full subcategory). Moreover, the monads T : PreDom →
PreDom should be “enriched over PreDom” in the sense that the mor-
phism parts of T are themselves continuous functions in PreDom. Notice
that this latter requirement makes sense for all cartesian closed categories C.
Such monads are usually called “strong monads” where the “enrichment” is
often referred to as “the strength of the monad”.

Next we will describe the construction of the Kleisli category CT for a monad
T on C.

Theorem 10.1 (Kleisli category)
Let (T, η, µ) be a monad on a category C. Then we may construct a category
CT , the so-called Kleisli category for T , with the same objects as C but with
CT (A,B) = C(A, TB) where composition in CT is given by

g ◦CT
f = µC ◦ Tg ◦ f

as illustrated in the diagram

TB
Tg
- T 2C

A

f

6

g ◦CT
f
- TC

µC

?

g †

-

15A predomain is a partial order with suprema of ω-chains. A Scott continuous function
between predomains is a monotonic mapping preserving suprema of ω-chains.

54

where g† = µC ◦ Tg is called the “lifting of g”. In CT the identity on A is
given by ηA : A→ TA in C.

Proof: Straightforward equational reasoning using the defining equations for
a monad. The details are left as an exercise(!) to the reader. �

Remark Notice that one may equivalently define monads in terms of lifting
(·)† (instead of multiplication) in the following way. One postulates a function
T : Ob(C)→ Ob(C) together with maps ηA : A→ TA and a lifting operation

(·)† : C(A, TB)→ C(TA, TB)

for all A,B ∈ Ob(C) satisfying the requirements

(1) ηA
† = idTA

(2) f † ◦ ηA = f

(3) (g† ◦ f)† = g† ◦ f †

for all f : A → TB and g : B → TC in C. One easily checks (exercise!)
that requirements (1), (2) and (3) are satisfied for the lifting operation (·)†
as defined in the proof of Theorem 10.1. Similarly one checks that from data
T , η and (·)† satisfying conditions (1), (2) and (3) one can define a monad
by putting T (f) = (ηB ◦ f)† for f : A→ B in C and µA = idTA

†. We leave it
as an exercise(!) to show that these two processes are inverse to each other.

Next we will show that every monad (T, η, µ) on C is induced by an adjunc-
tion FT a UT : CT → C.

Theorem 10.2 Let (T, η, µ) be a monad on C. Then putting for f : X → Y
in C and h : X → Y in CT

FT (X) = X and FT (f) = ηY ◦ f
UT (X) = TX and UT (h) = µY ◦ T (h)

gives rise to an adjunction FT a UT : CT → C inducing the original monad
(T, η, µ).

Proof: It is a straightforward exercise(!) to verify that FT and UT are actually
functors. The natural isomorphism ϕ is given by

ϕX,Y : CT (FT (X), Y)→ C(X,UT (Y)) : f 7→ f .

We leave it as an exercise(!) to verify that ϕ is actually natural. �

55

Theorem 10.3 Let F a U : D → C be an adjunction and (T, η, µ) the
induced monad. Then there exists a unique functor K : CT → D with F =
K◦FT and UT = U◦K as illustrated in

D

C
FT

-

F

-

CT

K

6

UT
- C

U

-

Proof: For X ∈ C we have K(X) = K(FT (X)) = F (X). For h : X → Y
in CT , i.e. h : X → TY in C, we have U(K(h)) = UT (h) = µY ◦ T (h) from
which it follows that U(K(h)) ◦ ηX = µY ◦ T (h) ◦ ηX = µY ◦ ηTY ◦ h = h
and accordingly K(h) = εFY ◦F (h) as follows from the universal property of
ηX . We leave it as an exercise(!) to the reader to verify that the so defined
K is actually a functor from CT to D and, moreover, satisfies the equalities
F = K◦FT and UT = U◦K. �

Thus FT a UT may be considered as the initial factorization of the monad
T into an adjunction inducing it. Next we will construct a terminal such
factorization for every monad T .

Theorem 10.4 (Eilenberg-Moore algebras)
Let (T, η, µ) be a monad on C. Then an (Eilenberg-Moore) algebra w.r.t. T
(or T -algebra) is a pair (A,α) where A is an object of C and α : TA → A
making the diagrams

A
ηA - TA T 2A

Tα
- TA

A

α

?

===============
TA

µA

?

α
- A

α

?

commute. An algebra morphism from (A,α) to (B, β) is a morphism h :

56

A→ B in C making the diagram

TA
Th

- TB

A

α

?

h
- B

β

?

commute.
Eilenberg-Moore algebras and their morphisms give rise to a category CT with
composition and identities inherited from C.

Proof: Trivial verification left to the reader as an exercise!. �

Notice that for every object A in C from the defining equations for a monad it
follows that (TA, µA) is an algebra w.r.t. T , namely the free algebra generated
by A as follows from the next theorem.

Theorem 10.5 Let (T, η, µ) be a monad on C. Then putting

F T (X) = (TX, µX) and F T (f) = T (f)

UT (A,α) = A and UT (h) = h

gives rise to an adjunction F T a UT : CT → C inducing the original monad
(T, η, µ).

Proof: We leave it as a straightforward exercise(!) to the reader to verify
that F T and UT as defined above are actually functors.
For showing that F T a UT we construct the desired natural isomorphism ϕ as
follows: an h ∈ CT (F T (X), (A,α)) is sent to ϕ(h) = h◦ηX ∈ C(X,UT (A,α)).
That the so defined ϕ is actually a natural transformation is left to the reader
as an exercise(!). The map ϕ is one-to-one as if h1, h2 : F T (X)→ (A,α) are
algebra homorphisms with ϕ(h1) = ϕ(h2), i.e. h1 ◦ ηX = h2 ◦ ηX , then we
have

h1 = h1 ◦ µX ◦ TηX = α ◦ Th1 ◦ TηX = α ◦ Th2 ◦ TηX = h2 ◦ µX ◦ TηX = h2

57

For showing that ϕ is onto suppose f : X → A = UT (A,α). Then α ◦ T (f) :
F T (X)→ (A,α) as can be seen from the following commuting diagram

T 2X
T 2f

- T 2A
Tα

- TA

TX

µX

?

Tf
- TA

µA

?

α
- A

α

?

because T (α◦T (f)) = Tα◦T 2f and ϕ(α◦T (f)) = α◦Tf ◦ηX = α◦ηA◦f = f
as desired.
Obviously, the unit of F T a UT is the original η. For (A,α) we have ε(A,α) = α
and thus UT εFTX = µX . Thus F T a UT induces the original monad. �

Theorem 10.6 Let (T, η, µ) be the monad on C induced by an adjunction
F a U : D→ C. Then there exists a unique functor L : D→ CT making the
diagram

C
F T

- CT UT
- C

D

L

6

U

-

F

-

commute.

Proof: We determine the functor L from the requirements (1) F T = L ◦ F
and (2) U = UT ◦L. From (2) it follows that L(g) = U(g) for all morphisms
g in D and that L(A) is of the form (U(A), αA). From (1) it follows that
L(F (X)) = F T (X) = (TX, µX). For determining the structure map αA
of L(A) consider the algebra morphism L(εA) : L(F (UA)) → L(A) where
εA : FUA → A is the counit of F a U at A. As UT (L(εA)) = U(εA) and

58

L(F (UA)) = F T (UA) = (T (UA), µUA) we have

UFUFUA
UFUεA- UFUA

UFUA

µUA

?

UεA
- UA

αA

?

and, therefore, it follows that

αA = αA ◦ UFUεA ◦ UFηUA = UεA ◦ µUA ◦ UFηUA = UεA

because µUA = UεFUA.
According to these consideration the object part of L is given by

L(A) = (UA,UεA)

and its morphism part by L(g) = U(g).
First we show that (UA,UεA)) is actually an algebra. That

UεA ◦ ηUA = idUA

is just one of the triangle equalities of the adjunction (F,U, η, ε). That

UFUFUA
UFUεA- UFUA

UFUA

UεFUA

?

UεA
- UA

UεA

?

follows from functoriality of U and naturality of ε : FU ⇒ Id.
That L is functorial follows from functoriality of U and L(g) = U(g).
Requirement (1) holds as for X ∈ Ob(C) we have

L(F (X)) = (UFX,UεFX) = (TX, µX) = F T (X)

and for f : X → Y in C we have

L(F (f)) = U(F (f)) = T (f) = F T (f) .

59

Requirement (2) holds as for A ∈ Ob(D) we have

UT (L(A)) = UT (UA,UεA) = UA

and for g : A→ B in D we have

UT (L(g)) = UT (U(g)) = U(g) .

Thus, we have shown that L is actually the unique functor from D to CT

with L ◦ F = F T and UT ◦ L = U . �

If U : Mon → Set is the forgetful functor and F a U its left adjoint then
for the induced monad T = UF one readily checks that SetT is equivalent
to the category of monoids and their homomorphisms and that SetT is the
full subcategory of free monoids. As not every monoid is free the comparison
functor SetT ↪→ SetT is not essentially surjective.

Beck’s Monadicity Theorem

There is a famous theorem of J. Beck characterising those adjunctions F a
U : D→ C where the functor L of Theorem 10.6 is an equivalence, i.e. those
adjunctions whose right adjoint—up to equivalence—is a forgetful functor
for a category of algebras. A functor U : D → C is called monadic iff it
has a left adjoint F such that the comparison functor L : D → CT is an
equivalence where T = UF is the monad induced by F a U . For formulating
Beck’s Monadicity Theorem we need the following terminology.

Definition 10.2 A pair f, g : A → B is reflexive iff they have a common
section, i.e. an morphism s : B → A with f ◦ s = idB = g ◦ s.
A pair f, g : A → B is called contractible iff there exist a map q : B → C
and sections t and s of f and q respectively making the diagram

B
t
- A

f
- B

Q

q
?

s
- B

g
?

q
- Q

q
?

commute.
If U : D→ C then a pair f, g : X → Y is U -contractible iff Uf, Ug : UX →
UY is a contractible pair in D. ♦

60

Notice that for a contractible pair f, g : A → B the map q is necessarily a
coequalizer of f and g.

Theorem 10.7 A functor U : C→ D is monadic iff the following conditions
hold

(1) U has a left adjoint

(2) U reflects isomorphism

(3) C has coequalizers of reflexive U-contractible pairs and U preserves
them.

Proof: For a proof of Beck’s Theorem see e.g. section 3.3. of [BW1] or Chapter
VI of [ML]. �

As shown in Chapter VI of [ML] for every category A of equationally defined
algebras the forgetful functor U : A → Set is monadic. As shown in [ARV]
categories of equationally defined algebras correspond to those monads T on
Set for which the functor T : Set → Set is finitary, i.e. preserves filtered16

colimits.
Using Beck’s monadicity theorem one can show that P : Setop → Set is
monadic. Its left adjoint is Pop : Set → Setop. Thus Setop is equivalent
to the category of algebras for the ‘double dualization’ monad P2 on Set.
The category Setop itself is equivalent to the category of complete boolean
algebras whose morphisms preserve infinite joins and meets.
Taking instead of P2 the filter monad on Set one obtains the category of
continuous lattices and Scott continuous maps preserving arbitrary infima.
As shown in [BW1] for the ultrafilter monad on Set its category of algebras
is equivalent to the category CompHaus.
It is easy to see that the category of algebras for the covariant powerset monad
P : Set → Set is equivalent to the category of complete sup-semi-lattices
with sup-preserving maps as morphisms.

16A category is filtered iff every finite digram in it admits a cocone. A filtered colimit
is a colimit for a diagram whose shape is a filtered category.

61

Part II CATEGORICAL LOGIC

62

11 Cartesian Closed Categories and λ–Calculus

First we recall the definition of exponentials and introduce the notion of a
cartesian closed category.

Definition 11.1 A category C is called cartesian closed iff C has finite prod-
ucts and exponentials, i.e. for all A,B ∈ Ob(C) there exists an object BA in C
together with a morphism ε : BA×A→ B such that for every f : C×A→ B
there exist a unique map λ(f) : C → BA with f = ε ◦ (λ(f)×A) as indicated
in the diagram

BA BA × A
ε
- B

C

λ(f)

6

C × A

λ(f)×A

6

f

-

We write ccc as an abbreviation for “cartesian closed category”. ♦

Notice that C is a ccc iff it has finite products and for every A,B ∈ Ob(C)
the presheaf C((−)×A,B) is representable.
Recall that for maps f : A → B, g : C → D in C the map f × g is defined
as the unique morphism h : A× C → B ×D making the diagram

A �
π1

A× C
π2 - C

B

f

?
�

π1
B ×D

h

? π2 - D

g

?

commute, i.e. f × g = 〈f ◦π1, g ◦π2〉. Moreover, for fi : B → Ai (i=1, 2) and
g : C → B it holds that

〈f1, f2〉 ◦ g = 〈f1◦g, f2◦g〉

because πi ◦ 〈f1◦g, f2◦g〉 = fi ◦ g = πi ◦ 〈f1, f2〉 ◦ g for i=1, 2.

The following claim is easy to show and will be used very often subsequently.

63

Lemma 11.1 In a cartesian closed category C we have

λ(f) ◦ g = λ(f ◦ (g×A))

for morphism f : C × A→ B and g : D → C in C.

Proof: Left as an exercise! �

The following are examples of ccc’s

(1) the category Set of sets and functions

(2) the category Pos of posets and monotone functions

(3) the category Cpo of chain complete posets and (Scott) continuous
functions.

Nonexamples are the categories of (abelian) groups, vectors spaces and topo-
logical spaces.17

11.1 Exponentials in Presheaf Categories

A very wide class of ccc’s is provided by categories of presheaves, i.e. cate-
gories of the form Ĉ for some small category C. Such categories have small
limits (that are computed pointwise) and, thus, in particular all finite prod-

ucts. We will show next that Ĉ has also all exponentials.
The Yoneda lemma tells us how exponentials have to look like provided they
exist. Let A and B be objects in Ĉ. Then by Yoneda we have for all objects
I in C that

BA(I) ∼= Ĉ(YC(I), BA) ∼= Ĉ(YC(I)×A,B)

where the second isomorphism is due to the assumption that Ĉ is cartesian
closed. The morphism part of the presheaf BA can be read off from the

17In abelian groups and vector spaces 0 ∼= 1 and, therefore, there is precisely one mor-
phism from A to B whenever BA exists. A proof that Sp is not cartesian closed can be
found on pp.353-355 of vol.2 of [Bor] as proof of his Proposition 7.1.2.

64

following commuting diagram

Ĉ(Y(I)×A,B)
∼=- Ĉ(Y(I), BA)

∼=- BA(I)

C(Y(J)×A,B)

Ĉ(Y(u)×A,B)

? ∼=- Ĉ(Y(J), BA)

Ĉ(Y(u), BA)

? ∼=- BA(J)

BA(u)

?

where u : J → I in C. Yoneda tells us also how to construct the natural
isomorphism

λ : Ĉ((−)×A,B)
∼=−→ Ĉ((−), BA)

as from commutation of the diagram

Ĉ(C×A,B)
λC - Ĉ(C,BA)

Ĉ(Y(I)×A,B)

Ĉ(c×A,B)

?

====
λY(I)

Ĉ(Y(I), BA)

Ĉ(c, BA)

?

— pretending that λY(I) is identity — we get that

(1)
[
λC(τ)I(c)

]
J
(u, a) = τJ(C(u)(c), a)

for all τ : C×A→ B, c ∈ C(I), u : J → I and a ∈ A(J). As the representing
element ε : BA×A→ B has to satisfy λBA(ε) = idBA we get from (1) that

(2) εI(ϕ, a) = ϕI(idI , a)

for ϕ : Y(I)×A→ B and a ∈ A(I).

The following theorem says that the above considerations actually give rise
to exponentials.

Theorem 11.1 Let C be a small category. Then the category of presheaves
Ĉ = SetC

op

over C is cartesian closed. For A,B ∈ Ĉ their exponential BA is
given by

BA(I) = Ĉ(Y(I)×A,B) and BA(u) = Ĉ(Y(u)×A,B)

65

for I ∈ Ob(C) and u : J → I in C. The counit ε : BA×A → B (also called
evaluation map) is given by

εI(ϕ, a) = ϕI(idI , a)

for ϕ ∈ BA(I) and a ∈ A(I). For τ : C×A → B its exponential transpose
λ(τ) : C → BA is given by[

λ(τ)I(c)
]
J
(u, a) = τJ(C(u)(c), a)

for c ∈ C(I), u : J → I in C and a ∈ A(J).

Proof: It is an easy exercise (left to the reader) to check naturality of ε and
λ(τ) as defined above. It remains to verify that

(β) ε ◦ (λ(τ)×A) = τ for all τ : C×A→ B and

(η) λ(ε ◦ (σ×A)) = σ for all σ : C → BA

i.e. that ε ◦ ((−)×A) is a natural bijection inverse to λ as desired.
Condition (β) holds since[

ε ◦ (λ(τ)×A)
]
I
(c, a) = εI(λ(τ)I(c), a)) =

= λ(τ)I(c)(idI , a) =

= τI(C(idI)(c), a) =

= τI(c, a)

and condition (η) holds since we have

λ(ε ◦ (σ×A))I(c)(u, a) = (ε ◦ (σ×A))J(C(u)(c), a) =

= εJ(σJ(C(u)(c)), a) =

= σJ(C(u)(c))(idJ , a) = (naturality of σ)

= BA(u)(σI(c))(idJ , a) =

=
[
σI(c)

]
J
(Y(u)(idJ), a) =

= σI(c)(u, a)

66

where u : J → I. �

Admittedly, the construction of exponentials in presheaf categories may ap-
pear as somewhat complicated at least at first sight. However, they tend to
look much nicer in particular cases like the following ones.

(1) Suppose C is a group, i.e. a category G with a single object ∗ all whose

morphisms are isomorphisms. Then for objects A and B in Ĝ according to
the general construction above the underlying set BA(∗) of the exponential
BA consists of all natural transformations τ : Y(∗)×A→ B. Obviously, such
a τ is uniquely determined by the map t : A(∗)→ B(∗) : a 7→ τ(1, a) where
we write 1 for id∗ because by naturality of τ we have

τ(g, a) = τ(g, A(g)(A(g−1)(a))) = B(g)(τ(1, A(g−1)(a))) = B(g)(t(A(g−1)(a)))

i.e. τ(g,−) = B(g)◦t◦A(g−1). Moreover, one easily checks that for arbitrary
functions t : A(∗) → B(∗) there is a unique natural transformation τ with
τ(1, a) = t(a), namely τ(g, a) = B(g)(t(A(g−1)(a))).18 Thus, the exponential

BA in Ĝ is isomorphic to the set B(∗)A(∗) on which G acts by sending t ∈
B(∗)A(∗) to BA(g)(t) = B(g) ◦ t ◦ A(g−1) for g in G.19

It is an instructive exercise(!) to explicitate how the global elements 1→ BA

correspond to the morphisms from A to B in Ĝ.

18We have to show that

B(h)(τ(g, a)) = τ(Y(∗)(h)(g), A(h)(a))

for which purpose we explicitate both sides of the equation. For the left hand side we have

B(h)(τ(g, a)) = (B(h) ◦B(g) ◦ t ◦A(g−1))(a)

and for the right hand side we have

τ(Y(∗)(h)(g), A(h)(a)) = τ(gh,A(h)(a)) = (B(gh) ◦ t ◦A((gh)−1))(A(h)(a)) =
= (B(gh) ◦ t ◦A(h−1g−1))(A(h)(a)) =
= (B(gh) ◦ t ◦A(g−1) ◦A(h−1)) ◦A(h))(a) =

= (B(h) ◦B(g) ◦ t ◦A(g−1))(a)

and thus both sides of the equation are actually equal as desired.
19This action is actually contravariant as

BA(gh)(t) = B(gh)◦t◦A(h−1g−1) = B(h)◦B(g)◦t◦A(g−1)◦A(h−1) = (BA(h)◦BA(g))(t)

due to the contravariance of A and B.

67

(2) Let 2 be the ordinal 2 considered as a category. We write α : 0 → 1
for the only nontrivial arrow of 2. One readily checks (exercise!) that 2̂ is
isomorphic to the comma category Set↓Set whose morphisms are commuting
squares of the form

X1

f1- Y1

X0

Xα
?

f0

- Y0

Yα
?

For objects X = (X1, Xα, X0) and Y = (Y1, Yα, Y0) their exponential Y X can
be constructed as follows

(Y X)0 = Y X0
0 ,

(Y X)1 = {(f0, f1) ∈ Y X0
0 ×Y X1

1 | Yα ◦ f1 = f0 ◦Xα}

(Y X)α(f0, f1) = f0.

The evaluation map ε : Y X ×X → Y is given by

ε0(f, x) = f(x) and ε1((f0, f1), x) = f1(x) .

We leave it as an exercise(!) to verify that these data do actually satisfy the
required conditions.

11.2 Categorical semantics of typed λ-calculus in ccc’s

We now define a formal language, the typed λ-calculus, and show how it
serves as a so-called internal language for cartesian closed categories. Over
the last 25 years the typed λ-calculus (originally invented in the 1930ies
by A. Church) has experienced a renaissance in (theoretical) computer sci-
ence as a foundation for functional programming. Objects of a ccc appear
as interpretations of type expressions of the typed λ-calculus and its terms
are interpreted as morphisms of the ccc under consideration. Contexts, i.e.
variable declarations Γ of the form x1:A1, . . . , xn:An, get interpreted as the
cartesian product of (the interpretations of) the Ai and variable xi in context
Γ gets interpreted as the projection on Ai.

68

But before describing the interpretation of typed λ-calculus in ccc’s we care-
fully define its syntax.
The types (or type expressions) of simply typed λ–calculus are defined in-
ductively from a collection of base types via the following rules

• every base type is a type

• if A and B are types then A→B is a type.

These are the type expressions of traditional typed λ-calculus. For the pur-
poses of an interpretation in cartesian closed categories, i.e. from a semantical
point of view, it turns out as convenient to close types under the following
two additional rules

• 1 is a type (also called unit type)

• if A and B are types then A×B is a type.

Contexts are expressions of the form

x1:A1, . . . , xn:An

where A1, . . . , An are type expressions and x1, . . . , xn is a list of pairwise
distinct variables. The purpose of a context x1:A1, . . . , xn:An is to declare
the variables x1, . . . , xn together with their types A1, . . . , An. We use captial
Greek letters Γ,∆, . . . as (meta)variables ranging over contexts.
Let C be a cartesian closed category. For interpreting the type expressions
in C we first fix an assignment of [[B]] ∈ Ob(C) for bases types B which is
extended to arbitrary type expressions via the following inductive clauses

• [[A→B]] = [[A]]→ [[B]]

• [[A×B]] = [[A]]× [[B]]

• [[1]] = 1C

where X→Y stands for the exponential Y X in C and 1C is a chosen terminal
object in C. Contexts are interpreted as cartesian products, i.e.

[[x1 : A1, . . . , xn : An]] = [[A1]]× · · · × [[An]]

69

Next we will define the terms of typed λ-calculus. Terms not only have a
type but are also defined relative to contexts in which their free variables are
declared. We write

Γ ` t : A

for the judgement that t is a term of type A in context Γ. Traditionally, one
would call already t a term but, actually, one needs context Γ to determine
the meaning of t (as we shall see the type A of t will be determined uniquely
by t and Γ). The interpretation of Γ ` t : A will be a morphism from [[Γ]] to
[[A]] in C, i.e.

[[Γ ` t : A]] : [[Γ]]→ [[A]]

and will be defined by structural recursion over terms. We will now intro-
duce the various term formation rules together with the clauses fixing the
interpretation of the constructed terms.
First of all variables declared in the context are terms, i.e.

(Var)
x1 : A1, . . . , xn : An ` xi : Ai

which is interpreted as

πi : [[x1 : A1, . . . , xn : An]] −→ [[Ai]]

i.e. projection on the i-th component.
Explicit definition of functions is provided by the rule

Γ, x : A ` t : B
(λ)

Γ ` λx:A.t : A→B

where
[[Γ ` λx:A.t : A→B]] = λ([[Γ, x : A ` t : B]])

i.e. ε ◦ ([[Γ ` λx:A.t : A→B]]× [[A]]) = [[Γ, x : A ` t : B]].
Application of functions to arguments is provided by the rule

Γ ` t : A→B Γ ` s : A
(App)

Γ ` t(s) : B

where the resulting term is interpreted as

[[Γ ` t(s)]] = ε ◦ 〈[[Γ ` t]], [[Γ ` s]]〉

70

Notice that we have written Γ ` t and Γ ` s instead of Γ ` t : A→B and
Γ ` s, respectively, which is justified by the fact that for derivable judgements
Γ ` s : A the type A is determined uniquely simply because for each term
former there is precisely one introduction rule.
This pleasant feature will be preserved by the remaining rules which we
introduce next.
The following rule allows one to construct pairs

Γ ` t : A Γ ` s : B
(Pair)

Γ ` 〈t, s〉 : A×B

where the constructed term will be interpreted as

[[Γ ` 〈t, s〉 : A×B]] = 〈[[Γ ` t : A]], [[Γ ` s : B]]〉

The following two rules (for i=1, 2)

Γ ` t : A1×A2
(Proji)

Γ ` πi(t) : Ai

allow one to select components of pairs. Terms constructed by these rules
will be interpreted as

[[Γ ` πi(t) : Ai]] = πi ◦ [[Γ ` t : A1×A2]]

with πi : [[A1]]×[[A2]]→ [[Ai]] the respective projection maps in C.
The unique element of 1 may be constructed by the rule

(Unit)
Γ ` ∗ : 1

where [[Γ ` ∗ : 1]] = ![[Γ]], the unique morphism from [[Γ]] to 1C in C.
Up to now we have not considered equality between terms which we will do
next. However, for this purpose we need a notion of substitution which on
the semantical level will be interpreted as composition of morphisms in C.
Let Γ ≡ x1 : A1, . . . , xn : An and ∆ be contexts. A substitution σ : ∆ → Γ
is an n-tuple σ = 〈t1, . . . , tn〉 such that ∆ ` ti : Ai for i=1, . . . , n whose
interpretation in C is given by

[[σ]] = 〈[[∆ ` t1]], . . . , [[∆ ` tn]]〉 : [[∆]]→ [[Γ]] .

71

Now for Γ ` t : A applying substitution σ : ∆→ Γ to it gives rise to a term
∆ ` t[σ] : A whose interpretation is given by

[[∆ ` t[σ] : A]] = [[Γ ` t : A]] ◦ [[σ : ∆→ Γ]]

and which can be obtained syntactically by replacing (simultaneously) every
free occurrence of xi by ti, i.e.

t[σ] ≡ t[t1, . . . , tn/x1, . . . , xn]

for which we often employ the more readable notation t[~t/~x], where, of course,
one has to rename bound variables of t in such a way that substituting ti for xi
in t does not bind free variables of ti, i.e. we employ capture-free substitution
as it is commonly called.
That capture-free substitution actually amounts to composition on the se-
mantical level is the contents of the following lemma.

Lemma 11.2 (Substitution Lemma)
Whenever Γ ` t : A and σ : ∆→ Γ then

[[∆ ` t[σ] : A]] = [[Γ ` t : A]] ◦ [[σ]] .

Proof: We first show the claim for variable substitutions υ = 〈~t〉 where all
ti are variables declared in ∆. Obviously, such variable substitutions are
interpreted as target tuplings of projections.
We proceed by induction on derivations of Γ ` t : A. All cases are trivial
with exception of the rule (λ) for which we exhibit the argument. Suppose
as induction hypothesis that for sequent Γ, x:A ` t : B it holds that [[∆ `
t[υ] : B]] = [[Γ, x:A ` t : A]]◦ [[υ]] for all variable substitutions υ : ∆→ Γ, x:A.
Let υ ≡ 〈v1, . . . , vn〉 : ∆→ Γ be a variable substitution. Then we have

[[Γ ` λx:A.t]] ◦ [[υ]] = λ([[Γ, x:A ` t]]) ◦ [[υ]] =

= λ([[Γ, x:A ` t]] ◦ ([[υ]]×id[[A]])) =

= λ([[Γ, x:A ` t]] ◦ [[〈v1, . . . , vn, x〉]]) = (ind.hyp.)

= λ([[∆, x:A ` t[~v, x/~x, x]]]) =

= [[∆ ` λx:A.t[~v/~x]]] =

= [[∆ ` λx:A.t[υ]]]

72

where 〈v1, . . . , vn, x〉 : ∆, x : A→ Γ, x : A is again a variable substitution.
Now we prove the claim for general substitutions σ : ∆ → Γ. Again we
proceed by induction on derivations of Γ ` t : A. Again all cases are trivial
with exception of the rule (λ) for which we exhibit the argument. Suppose
as induction hypothesis that for sequent Γ, x:A ` t : B it holds that [[∆ `
t[σ] : B]] = [[Γ, x:A ` t : A]] ◦ [[σ]] for all substitutions σ : ∆ → Γ, x:A. Now
suppose τ ≡ 〈t1, . . . , tn〉 : ∆→ Γ. Then we have

[[Γ ` λx:A.t]] ◦ [[τ]] = λ([[Γ, x:A ` t]]) ◦ [[τ]] =

= λ([[Γ, x:A ` t]] ◦ ([[τ]]×id[[A]])) = (*)

= λ([[Γ, x:A ` t]] ◦ [[〈t1, . . . , tn, x〉]]) = (ind.hyp.)

= λ([[∆, x:A ` t[~t, x/~x, x]]]) =

= [[∆ ` λx:A.t[~t/~x]]] =

= [[∆ ` λx:A.t[τ]]]

where 〈t1, . . . , tn, x〉 : ∆, x : A → Γ, x : A. Notice that in (∗) we have used
that [[∆, x : A ` ti]] = [[∆ ` ti]] ◦ π where π : [[∆]]× [[A]]→ [[∆]] as ensured by
the already established claim for variable substitutions. �

Next we will show that the (β) and (η) rule (as defined below in Theo-
rem 11.2) of typed λ-calculus are valid under interpretations in arbitrary
cartesian closed categories. For this purpose consider an arbitrary, but fixed
ccc C together with an arbitrary, but fixed assignment of objects of C to base
types.

Theorem 11.2 (Soundness of typed λ-calculus)

(1) If Γ, x:A ` t : B and Γ ` s : A then [[Γ ` (λx:A.t)(s)]] = [[Γ ` t[s/x]]],
i.e. the rule

(β) Γ ` (λx:A.t)(s) = t[s/x] : B

holds.

(2) If Γ ` t : A→B then [[Γ ` λx:A.t(x)]] = [[Γ ` t]] for fresh x, i.e. the rule

(η) Γ ` λx:A.t(x) = t : A→B

73

holds.

Proof:
ad (1) : Let Γ ≡ x1:A1, . . . , xn:An and

f = [[Γ, x:A ` t : B]] and g = [[Γ ` s : A]]

then

[[Γ ` (λx:A.t)(s)]] = ε ◦ 〈λ(f), g〉 = ε ◦ (λ(f)×id[[A]]) ◦ 〈id[[Γ]], g〉 =

= f ◦ 〈id[[Γ]], g〉 = [[Γ, x:A ` t]] ◦ [[〈~x, s〉]] =

= [[Γ ` t[s/x]]]

where the last equality follows from the Substitution Lemma 11.2.

ad (2) : Let Γ ≡ x1:A1, . . . , xn:An then

[[Γ ` λx:A.t(x)]] = λ([[Γ, x:A ` t(x)]]) =

= λ(ε ◦ ([[Γ ` t]]×id[[A]])) =

= [[Γ ` t]]

where the second equality follows from [[Γ, x:A ` t]] = [[Γ ` t]] ◦ π1 (due to
the Substitution Lemma 11.2) and [[Γ, x:A ` x]] = π2. �

Traditionally, the (typed) λ-calculus is often considered without the rule (η)
(because λx:A.t(x) is considered anyway as more explicit than t). On the
semantical level this can be simulated by considering the following weakening
of the notion of cartesian closedness. One just requires for all objects A and
B a (weak) exponential object BA together with an evaluation morphism
ε : BA × A → B and for every f : C × A → B a chosen morphism λ(f) :
C → BA satisfying f = ε ◦ (λ(f) × idA) (without claiming that there is no
other morphism g with f = ε ◦ (g × idA) !) where these choices are required
to satisfy the constraint

λ(f) ◦ h = λ(f ◦ (h× idA))

for all h : D → C in order to guarantee the validity of the Substitution
Lemma. Categorically, this means that there is a (natural) section

C((−)×A,B)
λ

- C((−), BA)

of the natural transformation ε ◦ ((−)× idA) : C((−), BA)→ C((−)×A,B).

74

Completeness of Typed λ-Calculus w.r.t. CCCs

For typed λ-calculus one may construct a term model, the so-called classifying
model, where two terms (in context) receive the same interpretation if and
only if they are provably equal. Moreover, every morphism in the classifying
model arises as interpretation of some term, i.e. the model is universal20

w.r.t. syntax.
The objects of the classifying model C are the contexts of typed λ-calculus and
the morphisms from ∆ to Γ ≡ x1:A1, . . . , xn:An are tuples τ = 〈t1, . . . , tn〉
with ∆ ` ti : Ai for i=1, ..., n modulo provable equality, i.e. 〈t1, . . . , tn〉
and 〈t′1, . . . , t′n〉 get identified iff ∆ ` ti = t′i : Ai is provable for i=1, ..., n.
Composition in C is given by (syntactical) substitution, i.e. for σ : Θ→ ∆ the
composite τ ◦ σ : Θ → Γ is given by 〈t1[σ], . . . , tn[σ]〉. Binary products in C
are given by juxtaposition, i.e. Γ×∆ ≡ Γ,∆ (where, of course, the variables
declared in Γ and ∆ have to be made distinct by appropriate21 renaming) and
a terminal object in C is provided by the empty context. For contexts Γ ≡
x1:A1, . . . , xn:An and ∆ ≡ y1:B1, . . . , ym:Bm their exponential ∆Γ is given by
the context f1:B1

Γ, . . . , fm:Bm
Γ where Bj

Γ ≡ A1→A2→ . . .→An→Bj. The
evaluation map

∆Γ × Γ
ε
- ∆

is given by ε ≡ 〈f1(x1) . . . (xn), . . . , fm(x1) . . . (xn)〉.
Obviously, the interpretation of typed λ-calculus in C which interprets base
types B as x:B has the property that types and contexts get interpreted as
themselves and that Γ ` t : A gets interpreted as the equivalence class of 〈t〉
modulo provable equivalence. Accordingly, the interpretation of Γ ` t : A
and Γ ` t′ : A in C are equal if and only if Γ ` t = t′ : A is provable. The
model C is also universal because a morphism from ∆ to Γ as given by the
equivalence class of a substitution τ ≡ 〈t1, . . . , tn〉 arises as the interpretation
of this substitution τ .
From these considerations the following theorem is immediate.

20This terminology comes from semantics of programming languages where a modelM
is called universal for a language L iff every object in M arises as interpretation of some
program (i.e. closed term) of L. Compare this with the notion of Turing universal meaning
that for every computable function there is a program denoting it. From the latter point
of view universality is a property of a language w.r.t. a given model whereas the former
use of universal rather expresses a property of a model w.r.t. a given language!

21actually, we consider contexts up to renaming of the variables bound in them.

75

Theorem 11.3 (Completeness of typed λ-calculus) If Γ ` t = s : A holds
in all cartesian closed models then Γ ` t = s : A is provable.

Notice that our proof of completeness would not work if we required that all
ccc’s are wellpointed in the sense that morphisms f, g : A → B are already
equal if f ◦ a = g ◦ a for all a : 1→ A (which is the case for all set theoretic
models).22

22Nevertheless, the typed λ-calculus is actually complete w.r.t. well-pointed models.
The proof of this fact, however, requires a more intelligent technique and can be found
in H. Friedman Equality between functionals pp.22–37, Lecture Notes in Math., Vol. 453,
Springer, Berlin, 1975.

76

12 Elementary Toposes

The aim of this section is to introduce a class of categories, called elementary
toposes, which are “well-behaved” to such an extent that they allow one to in-
terpret (almost) all constructions which can be found in “real” mathematics
traditionally based on set theory (see [LR]). As we have seen in the previous
section in cartesian closed categories one may construct arbitrary function
spaces. However, e.g. for the development of analysis, one also needs power
objects P(A) which “internalize” the collection of subobjects of A analo-
gously to the way how the exponential BA “internalizes” the collection of all
morphisms from A to B. In particular, this implies that the object Ω = P(1)
of so-called truth values is available in an elementary topos. From this one
will be able to construct the usual logical operations on Ω like ∧,⇒,∨,∀,∃
and ¬.
Elementary toposes were originally introduced by F. W. Lawvere and M. Tier-
ney during a collaboration in winter term 1969/1970 at Dalhousie University
in Canada.

Definition 12.1 (elementary topos)
An (elementary) topos is a category E such that

(1) E has finite limits

(2) E has all exponentials

(3) E has a subobject classifier, i.e. a mono t : 1� Ω such that for every
subobject m : P � A there exists a unique morphism χm : A → Ω
(called the classifying morphism for m) such that

P - 1

A

m
?

?

χm
- Ω

t
?

?

is a pullback square. ♦

Notice that elementary toposes might be equivalently defined as cartesian
closed categories E for which there exists a monomorphism t : 1 → Ω for
which the following conditions hold

77

i) pullbacks of t along arbitrary morphisms (with codomain Ω) in C exist
and

ii) for every mono m : P � A there exists a unique (classifying) map
χ : A→ Ω with

P - 1

A

m
?

?

χ
- Ω

t
?

?

i.e. m ∼= χ∗t.

At first sight this definition appears as somewhat weaker because it does not
(explicitly) require the existence of pullbacks. The existence of the latter,
however, follows from the fact that E automatically has all equalisers which
can be seen as follows. Suppose f, g : B → A in E. Let δA = 〈idA, idA〉 :
A� A×A be the diagonal on A and eqA : A×A→ Ω be the classifying map
for δA. Consider the diagram

E - A - 1

B

e
?

?

〈f, g〉
- A×A

δA
?

?

eqA
- Ω

t
?

?

where the right square and the outer rectangle are pullbacks. Then by
Lemma 7.3 the left inner square is a pullback, too, from which it follows
that e is an equaliser for f and g.
The paradigmatic23 example of an elementary topos is Set where Ω = {t, f}
and t : 1→ Ω : ∗ 7→ t. For a subobject m : P � A its classifying morphism
is the function χm : A → Ω where χm(x) = t iff x ∈ m[P], i.e. x is in the
image of P under m. In Set for every χ : A→ Ω one may always choose the
canonical pullback

χ−1({t}) - 1

A

m
?

∩

χm
- Ω

t
?

?

23We will soon see that there is a lot of other elementary toposes, in particular presheaf
categories Ĉ = SetC

op

for small categories C though these are definitely not the only ones!

78

where m is an inclusion, i.e. m(x) = x for all arguments x of m.
Such a notion of inclusion, however, is not available in arbitrary elementary
toposes because, firstly, morphisms in a topos in general are not just set-
theoretic functions and, secondly, there is no universal notion of equality for
elements of different objects (if m : P � A and a : 1 → P then it does
not make sense to ask whether a : 1 → P and m ◦ a : 1 → A are equal
because they are different morphisms in the topos!). The latter observation
is the reason why subobjects of A are conceptualized as equivalence classes
of monos into A as in the following

Definition 12.2 (subobjects)
Let C be a category. A subobject of A ∈ Ob(C) is a monomorphism into A.
For subobjects m : P � A and n : Q� A we say that m is contained in n
(notation m ≤ n) iff there exists a morphism f : P → Q with n ◦ f = m as
illustrated in the diagram24

P
f

- Q

A
�

n

⊃
⊂

m
-

and we say that m and n are equal as subobjects (notation m ∼ n) iff m ≤ n
and n ≤ m. We write SubC(A) for the collection of subobjects of A modulo
the relation ∼. If C has pullbacks (of monomorphisms along arbitrary mor-
phisms in C) then SubC extends to a functor SubC : Cop → Set by putting
SubC(f)([m]∼) = [f ∗m]∼ where f ∗m is the pullback of m along f . ♦

Notice that SubC is a contravariant functor to Set only if C is well-powered,
i.e. if SubC(A) is small for all objects A in C, which, however, can always be
achieved by assuming sufficiently many Grothendieck universes. Moreover,
all conditions on SubC that we consider in the context of toposes can be
reformulated in a purely elementary way avoiding any reference to collections
of the form SubC(A) (see e.g. the presentation in [McL]). However, assuming
the existence of SubC as a presheaf allows one to express the existence of a
subobject classifier in terms of representability of SubC from which it follows
immediately that subobject classifiers are unique up to isomorphism.

24necessarily f is unique with this property and itself a monomorphism!

79

Lemma 12.1 Let C be a category with pullbacks (of monos along arbitrary
morphisms). Then C has a subobject classifier iff SubC : Cop → Set is a
representable presheaf.

Proof: If t : 1 → Ω is a subobject classifier for C then the natural transfor-
mation ι : YC(Ω)→ SubC with ιΩ(idΩ) = t is an isomorphism in Ĉ.
For the reverse direction suppose that ι : YC(Ω) → SubC is a natural iso-
morphism. Let > : U � Ω be an element of the equivalence class ιΩ(idΩ).
Then for every m : P � A there exists a unique morphism χ : A→ Ω with
m ∼ χ∗>, namely χ = ι−1

A ([m]). It remains to show that U is terminal in C.
For every object A in C we have

A - U

A

wwwww
- Ω

>
?

?

giving rise to a map from A to U in C. For unicity assume that f1, f2 : A→ U
in C. Then we have

A
fi- U ===== U

A

wwwww
fi
- U

wwwww
-
>
- Ω

>
?

?

for i=1, 2 from which it follows by uniqueness of classifying maps that >·f1 =
> · f2. Thus, as > is monic we get f1 = f2 as desired. �

From inspection of the proof it follows that a mono > : U � Ω is a subobject
classifier iff > = ιΩ(idΩ) for a natural isomorphism ι : YC(Ω) → SubC. As
representing objects for SubC are unique up to isomorphism it follows that
subobject classifiers are unique up to isomorphism.
As not only the existence of a subobject classifier, but also the existence of
finite limits and exponentials can be formulated in terms of representability
of certain presheaves being an elementary topos is a property of a category
rather than (the requirement of) additional structure.
But notice that all these representability requirements can be expressed with-
out any reference to Set (as e.g. in C. McLarty’s book [McL]), i.e. in a purely
elementary way which can be formalized in first order predicate logic. Thus,

80

the notion of elementary topos is independent from set theory as formalized
by the first order theory ZFC. As we shall see soon toposes are structures
which are strong enough to perform within them those usual set-theoretic
constructions (cartesian products, function spaces, power sets etc.) that are
needed in the actual practice of modern mathematics (analysis, algebra, ge-
ometry etc.). Thus, elementary toposes can be considered as a foundation for
mathematics alternative to (axiomatic) set theory. This view of foundations
has been forcefully propagated and developed by F. W. Lawvere since middle
of 1960ies already. For a most readable textbook account of his view see his
book Sets for Mathematics (CUP 2003) [LR] together with R. Rosebrugh.
The main difference between topos theory and axiomatic set theory lies in
the different choice of basic concepts. In the topos case the basic notions are
types (objects of the category) and functions between them (morphisms of the
category) which is in accordance with the practice of modern mathematics.
The basic assumption of ZFC is an untyped universe of all sets (which is a
bit disputable from an ontological point of view!) and a binary relation ∈
on this universe of sets telling which sets are elements of which sets. In ZFC
functions show up as a derived notion, namely as particular sets of pairs
where (following a suggestion of Kuratowski) a pair 〈x, y〉 is “implemented”
as the set {{x}, {x, y}}. Natural numbers are also “implemented” (following
a suggestion of J. von Neumann) as 0 = ∅ and n+1 = n ∪ {n}. All this
kind of coding necessitated by ZFC’s choice of basic notions makes it appear
as somewhat artificial in the sense that its basic concepts do not match the
basic concepts of actual mathematical practice.25

A further most useful aspect of topos theory is that it allows for a great
variety of different models in contrast to ZFC for which it is fairly hard to
construct different models (as e.g. P. Cohen’s construction26 of forcing models
for ZFC where the Continuum Hypothesis fails).
The following theorem in one step provides us already with a great variety
of different models for the axioms for an elementary topos.

25Notice, however that set theory is much stronger than (the logic of) toposes even if
they are boolean, i.e. validate classical logic. The reason is the absence of ZFC’s replace-
ment axiom which allows one to transfinitely iterate P. In most of modern mathematics
this incredible strength of ZFC is not needed at all! However, there are exceptions like
D. Martin’s proof of Borel Determinacy !

26which, by the way, can be given a most understandable explanation in topos theoretic
terms (see [MM] but known already in the early 1970ies!)

81

Theorem 12.1 For every small category C the category Ĉ = SetC
op

of
presheaves over C is an elementary27 topos.

Proof: We have already seen in the previous section that Ĉ is cartesian
closed. Using Yoneda (again) we can easily find a candidate for the subobject
classifier Ω as it has to satisfy

(1) Ω(I) ∼= Ĉ(YC(I),Ω) ∼= SubĈ(YC(I))

for all objects I in C. This suggests to define Ω as

(2) Ω(−) = SubĈ(YC(−))

i.e. the morphism part of Ω operates by taking pullbacks

YC(u)−1S - S

YC(J)

YC(u)∗i

?

∩

YC(u)
- YC(I)

i

?

∩

employing the fact that for subobjects m : P � A in Ĉ there exists a
canonical28 inclusion im : Sm ↪→ A where Sm is the image of P under m in
A. Canonical subobjects of YC(I) are called sieves of I and can be identified
with those sets S of morphisms in C such that for all u ∈ S it holds that
cod(u) = I and uv ∈ S for all v ∈ Mor(C) with cod(v) = dom(u). Evidently,
for a sieve S of I and morphism u : J → I in C the sieve YC(u)−1S consists
of all morphisms v : K → J in C with uv ∈ S.
Condition (1) also suggest us how to construct the classifying morphism

χ : A → Ω for P ↪→ A. By naturality of the isomorphism Ĉ(YC(I),Ω) ∼=
SubĈ(YC(I)) we have

Ĉ(A,Ω)
∼= - SubĈ(A)

Ĉ(YC(I),Ω)

Ĉ(a,Ω)
? ∼=- SubĈ(YC(I))

SubĈ(a)
?

27Actually, Ĉ is a Grothendieck topos, i.e. besides being an elementary topos it has small
limits and colimits and a small generating family, namely (YC(I))I∈Ob(C).

28Notice that this is possible only because SetC
op

is so close to Set and, therefore,
inherits enough structure from it!

82

for all generalised elements a : YC(I)→ A from which it follows that

(3) χ(a) = a∗P = {u : J→I | A(u)(a) ∈ P}

according to our identification of Ω(I) with SubĈ(YC(I)). Condition (3) also
tells us how to construct the subobject classifier t : 1 → Ω. As t is the
classifying map for the subobject id1 : 1→ 1 it follows from (3) that

(4) tI(∗) = >I = {u ∈ Mor(C) | cod(u) = I}

i.e. t picks the maximal sieve of I for every I ∈ Ob(C).
We leave it as a straightforward exercise(!) to the inclined reader to verify
that t : 1 → Ω as defined by (2) and (4) is actually a subobject classifier
where the construction of classifying maps is given by (3). �

Now let us look at Ω in some particular presheaf toposes.29

Example 12.1 If I is a set then Ω in SetI is given by the constant family
({0, 1})i∈I where ti(∗) = 0 (assuming that 0 codes “true”). Notice that this
Ω has 2|I| many global elements!

Example 12.2 Let C be the category 0
α−→ 1. In Ĉ the truth value object

Ω up to isomorphism looks as follows: Ω(1) = {f, u, t}, Ω(0) = {t, f} and
Ω(α) is the identity on {t, f} and sends u to t (the “undecided” truth value u
corresponds to the sieve on 1 consisting of just α).

Example 12.3 If C is a monoid M (considered as a category) then Ω con-
sists of all right ideals in M , i.e. subsets I of M such that x ∈ I and y ∈M
implies xy ∈ I, and Ω(x)(I) = {y ∈M | xy ∈ I}.

Example 12.4 If C is a group G then according to Example 12.3 the truth
value object Ω of the topos Ĉ of G-actions has {G, ∅} as underlying set because
G and ∅ are the only right ideals in G which, moreover, are left invariant by
all actions of group elements.

The above examples are already sufficient for exhibiting the relations between
the notions introduced in the next definition.

29We leave it as an exercise(!) to explicitate the construction of exponentials in these
examples!

83

Definition 12.3 (2-valued, boolean, wellpointed)

Let C be a nonempty small category and E = Ĉ the corresponding presheaf
topos. Let f : 1→ Ω be the classifying map for the subobject 0� 1 in E.

• E is 2-valued iff ΩE has precisely 2 global elements, i.e. |E(1,Ω)| = 2.

• E is boolean iff [t, f] : 1+1→ Ω is an isomorphism.

• E is wellpointed iff morphisms f, g : A → B in E are already equal
whenever fa = ga for all global elements a of A, i.e. for all a : 1→ A
in E. ♦

Obviously, for all (nonempty) sets I the topos SetI is boolean but not 2-
valued if I contains more than one element. On the other hand for every
monoid M the truth value object Ω of the topos M̂ of right M -actions (see
Example 12.3) contains just 2 global elements, namely M and ∅, (why?) and,
accordingly, is 2-valued whereas [t, f] : 1+1→ Ω is not an isomorphism if M

contains non-trivial right ideals (as e.g. the monoid (N,+, 0)), i.e. M̂ is not
boolean in such cases. Thus, the properties “2-valued” and “boolean” are
independent in contrast to common superstition!
One easily checks that Ĉ is 2-valued iff C(J, I) is inhabited for all I, J ∈ C.

First notice that subobjects of 1 in Ĉ correspond to sieves in C, i.e. collections
S of objects in C such that J ∈ S whenever u : J → I and I ∈ S. Thus
Ĉ is 2-valued iff every nonempty sieve in C coincides with Ob(C). If all
hom-sets of C are inhabited then all nonempty sieves in C coincide with
Ob(C). For the reverse direction consider for every I ∈ C the nonempty
sieve SI = {J ∈ C | C(J, I) 6= ∅} which by assumption has to coincide with
Ob(C) and thus all C(J, I) are inhabited.

For every group G the topos Ĝ of G-actions is both boolean and 2-valued
(see Example 12.4). But if G is nontrivial then Ĝ is not wellpointed as the
representable object G = YG(∗) has then no global elements but admits more
than one endomap (namely, by Yoneda, as many as there are elements in the
group G).
However, if a (presheaf) topos is wellpointed then it is 2-valued and boolean
as we shall see next.

Theorem 12.2 Let C be a nonempty small category and E = Ĉ the cor-
responding presheaf topos. Then E is 2-valued and boolean whenever E is
wellpointed.

84

Proof: Assume that E = Ĉ is wellpointed.
Suppose E is not 2-valued, i.e. there exists a further global element u : 1→ Ω
besides t and f. Let i : U � 1 be the subobject classified by u. The maps
t ◦ i and f ◦ i are different as they classify different subobjects of U , namely
U and 0, respectively. Thus, by wellpointedness there exists a global element
u : 1→ U separating t ◦ i and f ◦ i. Obviously, the map u is an isomorphism
from which it follows that U ∼= 1 in contradiction to the assumption t 6= u.
Thus E is 2-valued.
Let χ : Ω→ Ω be the classifying map for the monomorphism [t, f] : 1+1� Ω.
As t, f ≤Ω [t, f] it follows that t∗[t, f] ∼= id1

∼= f∗[t, f]. Thus χ ◦ t = t = χ ◦ f
from which it follows by wellpointedness that χ = t ◦ !Ω. Thus, we have
[t, f] ∼= idΩ and, accordingly, the map [t, f] is an isomorphism, i.e. the topos
E is boolean. �

Notice that Definition 12.3 makes sense already for arbitrary elementary
toposes because one can show (see e.g. [MM]) that they have all finite colim-
its, that 0� 1 and that [t, f] : 1+1� Ω. Moreover, wellpointed elementary
toposes all have the following property which makes them behave like Henkin
models for higher order logic (see Chapter 13)

Lemma 12.2 If E is a wellpointed topos then non-initial objects of E have
global elements.

Proof: Suppose A is an object of E. The unique morphism 0→ A is a mono
classified by f and it is an isomorphism iff A is initial. Thus A is non-initial
iff tA = t◦!A and fA = t◦!A are different in which case by wellpointedness of
A there exists an a : 1→ A with tA ◦ a 6= fA ◦ a. �

A topos E is called localic if the subobjects of 1E constitute a generating
family for E. Typical examples are presheaf toposes of the form P̂ where P is
a posetal category as e.g. the one considered in Example 12.2. One readily
checks (reusing the second part of the proof of Theorem 12.2) that if a localic
topos is 2-valued then it is also boolean.
Finally, we leave it as an exercise(!) to show that for small categories C the

presheaf topos Ĉ is boolean iff C is a groupoid, i.e. all morphisms in C are isos.
Thus Ĉ is boolean and 2-valued iff C is a connected groupoid (“connected”
meaning that all homsets of C are inhabited). As SetI is wellpointed iff

|I| = 1 (why?) it follows that Ĉ is wellpointed if and only if C is equivalent
to 1, the trivial nonempty category.

85

13 Logic of Toposes

We will show how to interpret higher order constructive (intuitionistic) logic
(HOL) in an arbitrary elementary topos E which remains fixed throughout
the whole section.

Definition 13.1 For A ∈ Ob(E) let ≤A be the partial order on SubE(A)
where [m1] ≤A [m2] iff there exists a (necessarily unique) monomorphism m
with m2m = m1. Via the canonical isomorphism E(A,Ω) ∼= SubE(A) we
consider ≤A also as a partial order on E(A,Ω), the set of predicates on A,
putting χ1 ≤A χ2 iff [χ∗1t] ≤A [χ∗2t]. ♦

Pullbacks along arbitrary morphisms of E preserve this order.

Lemma 13.1 Let f : B → A be a morphism in E. Then SubE(f) = f ∗ :
SubE(A) → SubE(B) and, therefore, also E(f,Ω) : E(A,Ω) → E(B,Ω) are
monotonic w.r.t. the order defined in Definition 13.1.

Proof: Consider the diagram

f ∗A1
- A1

f ∗A2

f ∗m
?

?

- A2

m
?

?

B

f ∗m2
?

?

f
- A

m2
?

?

where m1 = m2m. The claim for SubE(f) follows from the fact that f ∗m1
∼=

f ∗m2 ◦ f ∗m.
Then monotonicity of E(f,Ω) follows from the fact that χi ◦f classifies f ∗mi

whenever χi classifies mi. �

In the following we write tA as an abbreviation for t◦!A.

Lemma 13.2 Let χ : A → Ω and a : I → A. Then χ ◦ a = tI iff a factors
through the mono m : P � A classified by χ.

86

Proof: If χ ◦ a = tI = t◦!I then there exists a (necessarily unique) morphism
f : I → P with m ◦ f = a (and !P ◦ f = !I). On the other hand if m ◦ f = a
then χ ◦ a = χ ◦m ◦ f = t ◦ !P ◦ f = t ◦ !I = tI . �

Next we show that SubE(A) has binary meets w.r.t. ≤ and that these are
preserved by pullbacks along arbitrary morphisms f : B → A.

Lemma 13.3 Let ∧ : Ω × Ω → Ω be the classifying map for the monomor-
phism 〈t, t〉 : 1� Ω× Ω, i.e.

1 - 1

Ω× Ω

〈t, t〉
?

?

∧
- Ω

t
?

?

Then for χ1, χ2 : A→ Ω it holds that ∧ ◦ 〈χ1, χ2〉 = tA iff χ1 = tA = χ2.

Proof: Obviously, we have χ1 = tA = χ2 iff 〈χ1, χ2〉 factors through 〈t, t〉
which in turn by Lemma 13.2 is equivalent to ∧ ◦ 〈χ1, χ2〉 = tA. �

Next we introduce an equality predicate for arbitrary objects of E.

Definition 13.2 (equality predicate)
For A ∈ Ob(E) let eqA : A× A→ Ω be the classifying map for the diagonal
δA = 〈idA, idA〉 : A→ A× A. For eqΩ : Ω× Ω→ Ω we often write ⇔. ♦

Lemma 13.4 Let a1, a2 : I → A. Then eqA ◦ 〈a1, a2〉 = tI iff a1 = a2.

Proof: By Lemma 13.2 we have eqA ◦ 〈a1, a2〉 = tI iff 〈a1, a2〉 factors through
δA, i.e. a1 = a2. �

Thus, in particular, for χ1, χ2 : A→ Ω we have⇔◦〈χ1, χ2〉 = tA iff χ1 = χ2.

Lemma 13.5 Let χ1, χ2 : A→ Ω and a : I → A. Then χ1 ◦ a = tI = χ2 ◦ a
if and only if ∧ ◦ 〈χ1, χ2〉 ◦ a = tI .

Proof: By Lemma 13.3 we have χ1 ◦a = tI = χ2 ◦a iff ∧◦〈χ1 ◦a, χ2 ◦a〉 = tI .
The claim follows as 〈χ1 ◦ a, χ2 ◦ a〉 = 〈χ1, χ2〉 ◦ a. �

87

Theorem 13.1 (conjunction)
For every A ∈ Ob(E) the poset SubE(A) is a ∧-semilattice w.r.t. ≤, i.e.
has finite infima, that are preserved by SubE(f) : SubE(A) → SubE(B) for
arbitrary morphisms f : B → A in E. Moreover, if χ1, χ2 : A → Ω classify
subobjects m1 : P1 � A and m2 : P2 � A, respectively, then ∧ ◦ 〈χ1, χ2〉
classifies the infimum of m1 and m2.

Proof: Let χ1 and χ2 be the classifying maps for m1 and m2, respectively.
Let m : P � A be the subobject classified by ∧ ◦ 〈χ1, χ2〉. We show that
m is the infimum of m1 and m2. By Lemma 13.2 and Lemma 13.5 for all
n : Q � A we have n ≤A m iff ∧ ◦ 〈χ1, χ2〉 ◦ n = tQ iff χ1 ◦ n = tQ and
χ2 ◦ n = tQ iff n ≤A m1 and n ≤A m2. Thus m = m1 ∧m2 as desired.
Now suppose f : B → A. Then ∧◦ 〈χ1, χ2〉 ◦ f = ∧◦ 〈χ1 ◦ f, χ2 ◦ f〉 classifies
both f ∗m and the infimum of f ∗m1 and f ∗m2. Thus f ∗ preserves meets of
subobjects. �

Instead of ∧ ◦ 〈χ1, χ2〉 we usually write χ1 ∧ χ2 in accordance with the fact
that it is the infimum of χ1 and χ2 in E(A,Ω).

Next we introduce implication as a binary operation on Ω.

Definition 13.3 (implication)
Let ⇒ : Ω × Ω → Ω be defined as ⇔ ◦ 〈∧, π1〉 where π1 : Ω × Ω → Ω is the
projection on the first component. ♦

Again, for reasons of readability, we often write χ1⇒χ2 as an abbreviation
for ⇒◦ 〈χ1, χ2〉.

Lemma 13.6 Let χ1, χ2 : A→ Ω then χ1 ≤A χ2 iff ⇒◦ 〈χ1, χ2〉 = tA.

Proof: For χ1, χ2 : A→ Ω we have

⇒◦ 〈χ1, χ2〉 = tA iff (Lemma 13.4)

∧ ◦ 〈χ1, χ2〉 = χ1 iff

χ1 ≤A χ2

where the second equality follows from the fact that in arbitrary posets x ≤ y
iff x is the infimum of x and y. �

88

Lemma 13.7 For maps χ1, χ2 and χ from A to Ω we have

χ ∧ χ1 ≤A χ2 iff χ ≤A χ1⇒χ2 .

Proof: Let m : P � A, m1 : P1 � A and m2 : P2 � A be the subobjects
classified by χ, χ1 and χ2, respectively. Then we have

χ ≤A χ1⇒χ2 iff (Lemma 13.2)

(χ1⇒χ2) ◦m = tP iff (Lemma 13.6)

χ1 ◦m ≤P χ2 ◦m iff (χi ◦m classifies m∗mi)

m∗m1 ≤ m∗m2 iff (m ◦ (−) order reflecting)

m ◦m∗m1 ≤ m ◦m∗m2 iff (m ◦m∗mi
∼= m ∧mi)

m ∧m1 ≤A m ∧m2 iff (as m ∧m1 ≤A m holds anyway)

m ∧m1 ≤A m2 iff (as m ∧m1 is classified by χ ∧ χ1)

χ ∧ χ1 ≤A χ2

i.e. the poset SubE(A) has Heyting implication30. �

Notice that pullback functors f ∗ preserve Heyting implication because we
have ⇒◦ 〈χ1, χ2〉 ◦ a = ⇒◦ 〈χ1 ◦ a, χ2 ◦ a〉 for arbitrary a : I → A.

Summarizing we have

Theorem 13.2 In E every SubE(A) is a poset with finite infima and Heyting
implication which structure is preserved by f−1 : SubE(A)→ SubE(B) for all
f : B → A in E.

Proof: For conjunctions and implication the claim is immediate from the
previous lemmas. Every SubE(A) has a greatest element idA classified by
tA. Preservation of greatest elements is immediate from tA ◦ f = tB for all
f : B → A. �

Next we will introduce universal quantification over objects in E.

30A poset H with binary meets admits Heyting implication iff for all a, b ∈ H there
exists a necessarily unique a⇒b ∈ H such that

x ≤ a⇒b iff x ∧ a ≤ b

for all x ∈ H.

89

For that purpose and also later on the following notational convention turns
out as necessary and useful. If f : A → B is a map in E then we write
pfq : 1→ BA as an abbreviation for

λ(1×A π2→ A
f→ B)

called name of f because it exhibits f : A → B as a global element of the
exponential BA.

Definition 13.4 (universal quantification)
We define ∀A : ΩA → Ω as the classifying map for ptA

q, i.e.

1 - 1

ΩA

ptA
q

?

?

∀A
- Ω

t
?

?

for all objects A of E. ♦

Lemma 13.8 For p : I → ΩA we have ∀A ◦ p = tI iff ε ◦ (p×idA) = tI×A.

Proof: Obviously ∀A ◦ p = tI iff the map p factors through ptA
q (via !I) which

in turn is equivalent to ε◦((ptAq◦ !I)×idA) = ε◦(p×idA), i.e. tI×A = ε◦(p×idA)
because ε ◦ ((ptA

q◦ !I)×idA) = tA ◦ π2 ◦ (!I×idA) = tI×A. �

Theorem 13.3 For all p : I → ΩA and χ : I → Ω we have

χ ◦ π ≤I×A ε ◦ (p×idA) iff χ ≤I ∀A ◦ p

where π : I×A→ I is the first projection.

Proof: Let m : P � I be the subobject classified by χ. Then we have

χ ≤I ∀A ◦ p iff (Lemma 13.2)

∀A ◦ p ◦m = tP iff (Lemma 13.8)

ε ◦ ((p ◦m)×idA) = tP×A iff

ε ◦ (p×idA) ◦ (m×idA) = tP×A iff

χ ◦ π ≤I×A ε ◦ (p×idA)

90

where the last equivalence follows from Lemma 13.2) and the fact that χ ◦ π
classifies the subobject m×idA (as (χ◦π)∗t ∼= π∗χ∗t = π∗m = m×idA). �

The following equivalent variant of Theorem 13.3 will turn out as more useful
when we consider proof rules for the internal logic.

Theorem 13.4 Let ϕ : I×A → Ω and ψ : I → Ω be maps in E. Then for
∀A(ϕ) := ∀A ◦ λ(ϕ) it holds that

ψ ◦ π ≤I×A ϕ iff ψ ≤I ∀A(ϕ)

where π : I × A→ I is the first projection.

Proof: Immediate from Theorem 13.3 instantiating p by λ(ϕ). �

The Internal Language

We have seen that in an elementary topos E one can interpret the logical
operations > (truth), ∧ (conjunction), ⇒ (implication) and ∀A (universal
quantification over A). We next will introduce a formal language, called
internal language of E 31, which is based on typed λ-calculus and contains
constants for denoting the objects and morphisms of E including the above
mentioned logical operations >, ∧, ⇒ and ∀A.
More precisely, the internal language of E is the typed λ-calculus over the
collection Ob(E) of base types augmented by a constant of type BA for ev-
ery morphism f : A → B. As E is cartesian closed it is obvious how to
interpret the internal language of E in the cartesian closed category E (a
constant for object A will be interpreted as A and a constant for morphism
f : A → B will be interpreted as pfq : 1 → BA). The terms Γ ` ϕ : Ω of
type Ω in context Γ are called propositions in context Γ and will be inter-
preted as morphisms [[Γ]]→ ΩE, i.e. as subobjects of [[Γ]] via the isomorphism
SubE([[Γ]]) ∼= E([[Γ]],ΩE). If Γ is a context and Γ ` ϕi : Ω (i=1, . . . , n) and
Γ ` ϕ : Ω are propositions in context Γ then we write

Γ | ϕ1, . . . , ϕn ` ϕ
31The internal language of E is also often called the Mitchell-Bénabou language because

the internal language was introduced beginning of the 1970ies originally by Jean Bénabou
and later (independently) by W. Mitchell.

91

for the judgement

[[Γ`ϕ1]] ∧ . . . ∧ [[Γ`ϕn]] ≤[[Γ]] [[Γ`ϕ]]

where the left hand side is the (finite) meet of the [[Γ`ϕi]] in E([[Γ]],Ω). Often
we write Φ as an abbreviation for the list ϕ1, . . . , ϕn under which convention
the general form of judgements is a sequent

Γ | Φ ` ϕ

where Γ ≡ x1 : A1, . . . , xn : An is called variable context and Φ ≡ ϕ1, . . . , ϕn
is called propositional context or context of assumptions.
Next we formulate a few proof rules stating closure properties of sequents
valid in arbitrary elementary toposes E. As we shall see later these proof
rules are complete in the sense that they are strong enough to characterise
validity in all elementary toposes.
We begin with a few structural rules of fairly “bureaucratic” nature, (almost)
too trivial to be found worth mentioning in informal reasoning but, never-
theless, absolutely necessary for formalizing even the most basic derivations.

Structural Rules

σ : ∆→ Γ Γ | Φ ` ϕ
(Subst)

∆ | Φ[σ] ` ϕ[σ]

Γ | Φ ` ψ
(Weak)

Γ | Φ, ϕ ` ψ

Γ | Φ, ϕ, ϕ ` ψ
(Contr)

Γ | Φ, ϕ ` ψ

Γ | Φ1, ϕ1, ϕ2,Φ2 ` ψ
(Perm)

Γ | Φ1, ϕ2, ϕ1,Φ2 ` ψ

Γ ` ϕ : Ω
(Ax)

Γ | ϕ ` ϕ
Γ | Φ ` ϕ Γ | Φ, ϕ ` ψ

(Cut)
Γ | Φ ` ψ

Next we turn to the proper logical rules describing how to use the connectives
>, ∧, ⇒ and the quantifiers ∀A.
Notice that for sake of readability we employ the notation ∀x:A.ϕ instead of
the more clumsy (but “official”) notation ∀A(λx:A.ϕ).

92

Logical Rules

(>)
Γ | Φ ` >

Γ | Φ ` ϕ1 Γ | Φ ` ϕ2
(I∧)

Γ | Φ ` ϕ1 ∧ ϕ2

Γ | Φ ` ϕ1 ∧ ϕ2
(E∧1)

Γ | Φ ` ϕ1

Γ | Φ ` ϕ1 ∧ ϕ2
(E∧2)

Γ | Φ ` ϕ2

Γ | Φ, ϕ ` ψ
(I⇒)

Γ | Φ ` ϕ⇒ψ

Γ | Φ ` ϕ⇒ψ Γ | Φ ` ϕ
(E⇒)

Γ | Φ ` ψ

Γ, x:A | Φ ` ϕ(x)
(I∀)

Γ | Φ ` ∀x:A.ϕ(x)

Γ | Φ ` ∀x:A.ϕ(x)
(E∀)

Γ, x:A | Φ ` ϕ(x)

Notice that in the last two rules for ∀ we (implicitly) assume that for the ϕi
in Φ it holds that Γ ` ϕi : Ω.
The attentive reader may have noticed the absence of the logical connectives
⊥ (falsity), ∨ (disjunction) and ∃ (existential quantification). But due to
a nice trick going back to B. Russell and D. Prawitz we may define these
further logical operation as follows

(⊥) ⊥ ≡ ∀p:Ω.p
(∨) ϕ ∨ ψ ≡ ∀p:Ω. (ϕ⇒p)∧(ψ⇒p)⇒ p

(∃) ∃x:A.ϕ(x) ≡ ∀p:Ω. (∀x:A.ϕ(x)⇒p)⇒p

which is possible only because in contrast to first order logic we have quan-
tification over Ω available. It is a straightforward, but most instructive ex-
ercise(!) to verify the following derived rules

(⊥)
Γ | Φ,⊥ ` ϕ

Γ | Φ ` ϕ1
(I∨1)

Γ | Φ ` ϕ1 ∨ ϕ2

Γ | Φ ` ϕ2
(I∨2)

Γ | Φ ` ϕ1 ∨ ϕ2

Γ | Φ ` ϕ1 ∨ ϕ2 Γ | Φ, ϕ1 ` ψ Γ | Φ, ϕ2 ` ψ
(E∨)

Γ | Φ ` ψ

93

Γ | Φ ` ϕ(t)
(I∃)

Γ | Φ ` ∃x:A.ϕ(x)

Γ | Φ ` ∃x:A.ϕ(x) Γ, x:A | Φ, ϕ(x) ` ψ
(E∃)

Γ | Φ ` ψ

where in the last two rules for ∃ we assume (implicitly) that Γ, x:A ` ϕ(x) : Ω,
Γ ` ψ : Ω and Γ ` t : A.
We leave it as an exercise(!) to show that in E we have

(I) Γ, x:A | Φ, ϕ(x) ` ψ iff Γ | Φ,∃x:A.ϕ(x) ` ψ
(II) Γ, x:A | Φ, ψ ` ϕ(x) iff Γ | Φ, ψ ` ∀x:A.ϕ(x)

for Γ ` ψ : Ω and Γ, x:A ` ϕ : Ω.

Reinterpreting the rules for ⊥, ∨ and ∃ back to the (arbitrary elementary)
topos E we observe that

Theorem 13.5 For all elementary toposes E

(1) the posets SubE(A) contain least elements ⊥A that are preserved by f−1

for arbitrary maps f : B → A in E

(2) the posets SubE(A) have binary joins that are preserved by f−1 for ar-
bitrary maps f : B → A in E

(3) for all subobjects r : R� C×A there exists a subobject ∃A(r) : I � C
such that for all subobjects m : P � C it holds that

∃A(r) ≤C m iff r ≤C×A π∗m

where π : C×A→ C is the first projection and, moreover, for all maps
f : D → C in E it holds that f ∗∃A(r) ∼= ∃A((f×idA)∗r).

Proof: From validity of rule (⊥) it follows that SubE(A) contains a least
element ⊥A classified by [[x:A ` ⊥]]. Validity of the rule (Subst) guarantees
that f ∗⊥A ∼= ⊥B for all morphisms f : B → A in E.
For existence of binary joins in SubE(A) suppose that m and n are subobjects
of A classified by ϕ : A→ Ω and ψ : A→ Ω, respectively. One easily checks
that

x:A | ϕ ∨ ψ ` θ iff x:A | ϕ ` θ and x:A | ψ ` θ
for all x:A ` θ : Ω. From this observation it follows that m∨n is classified by
x:A ` ϕ∨ψ. Validity of the rule (Subst) entails that f ∗(m∨n) ∼= f ∗m∨ f ∗n
for all morphisms f : B → A in E.

94

Suppose the subobject r : R � C×A is classified by ρ : C×A → Ω in
E. Let ∃A(r) be defined as [[z:C ` ∃x:A.ρ(z, x)]]. From the equivalence (I)
above and the Substitution Lemma 11.2 it follows that for every subobject
m : P � C it holds that ∃A(r) ≤C m if and only if r ≤C×A π∗m. That
f ∗∃A(r) ∼= ∃A((f×idA)∗r) is immediate from the validity of the rule (Subst)
in E. �

Notice that in the proof of Theorem 13.5 we have made essential use of rea-
soning in the internal logic of E in order to establish some purely categorical
properties of E. It is a typical phenomenon of working in topos theory that
one jumps back and forth between categorical/diagramatic reasoning and
logical reasoning valid in the internal logic. Of course, one usually chooses
the point of view allowing the more transparent argument.
To illustrate the usefulness of the internal point of view we further analyse
what Theorem 13.5(3) says in purely categorical terms. Instantiating the
subobject r by 〈f, idA〉 : A� C×A, the graph of f : A → C, condition (3)
of Theorem 13.5 says that ∃A(〈f, idA〉) is the least subobject i : I � C with

A
e
- I

C×A

〈f, idA〉
?

?

π
- C

i
?

?

f -

i.e. the image of f : A → C. From leastness of i it follows (exercise!) that
e is a strong epi, i.e. e is an epi such that m is an isomorphism whenever
e = mg for some monomorphism m. One easily checks that e : A → I is
a strong epi in this sense iff ∃A(〈e, idA〉) ∼= idI (exercise!). Thus, condition
(3) of Theorem 13.5 tell us that in E every map f factors as a strong epi
followed by a monomorphism and that such factorisations are stable under
pullbacks along arbitrary morphisms in E. Categories with finite limits and
such pullback stable (strong epi/mono) factorisations are traditionally called
regular. On the other hand in every regular category C we have existential
quantification as given by the (strong epi/mono) factorisation of π ◦ r. One
easily checks (exercise!) that in a topos E the image of f : A→ C is classified
by (the interpretation of) z : C ` ∃x:A.z=f(x). This allows us also to show
that in an elementary topos every epimorphism is strong: suppose e : A� C
is epic then by validity of the rule (Subst) we have

[[z : C ` ∃x:A.z=e(x)]] ◦ e = [[x′ : A ` ∃x:A.e(x′)=e(x)]] = tA = tC ◦ e

95

from which it follows that

[[z : C ` ∃x:A.z=e(x)]] = tC

i.e. that e is a strong epimorphism. Thus, every topos is balanced in the
sense that a morphism is an isomorphism whenever it is epic and monic (as
a monic strong epimorphism necessarily is an isomorphism).
We suggest it as a further exercise(!) to verify that in a topos E a subobject
r : R� C×A is (isomorphic to) the graph of a map from A to C iff for the
classifying map ρ : C×A→ Ω the judgement

x : A | ` ∃!z:C. ρ(z, x)

holds in E where, as usual, ∃!z:C.ρ(z, x) stands as an abbreviation for

∃z:C. (ρ(z, x) ∧ ∀z′:C.(ρ(z′, x)⇒z=z′))

i.e. unique existence. Thus, in an elementary topos E the following Axiom of
Unique Choice

(AC!) ∀R : P(B×A).(∀x:A.∃!y:B.R(y, x))⇒∃f :BA.∀x:A.R(f(x), x)

holds for all objects A and B in E, saying that functional relations from A
to B coincide with functions from A to B.
Adding the following two valid axiom schemes

(Extfun) ∀f, g : BA. (∀x:A.f(x)=g(x))⇒ f=g

(Extprop) ∀u, v : Ω. (u⇔v)⇒u=v

makes our version of constructive (intuitionistic) higher order logic complete
w.r.t. interpretation in elementary toposes.
Above we have tacitly assumed the validity of the usual equality axioms for
= whose verification we leave to the inclined reader as an exercise(!). We
just notice that in presence of quantification over powerobjects one could
introduce equality on A as a derived notion defining

x =A y ≡ ∀P :P(A). (P (x)⇒P (y))

which idea goes back to the baroque philosopher G.W.Leibniz whose point
of view was that objects are equal iff they share the same properties.

96

As a further illustration of the power of the internal logic of toposes we show
how it can be used to prove the existence of finite colimits in toposes. First
of all the initial object of E is (up to isomorphism) given by the subobject
0 � 1 classified by u:1 ` ⊥ : Ω, i.e. the least subobject of 1. If A and
B are objects of the topos then their categorical sum A+B appears as the
subobject of P(A)×P(B) classified by the predicate

P :P(A), Q:P(B) `
(
∃!x:A.P (x)∨∃!y:B.Q(y)

)
∧
(
∀x:A, y:B.¬(P (x)∧Q(y))

)
A coequalizer of f, g : A→ B can be constructed as follows: first define (via
universal quantification over P(B×B)) the least equivalence relation R on
B with R(f(a), g(a)) for all a ∈ A (all understood in the internal sense) and
then take as coequaliser of f and g the (strong) epi q : B � Q appearing in
the (strong epi/mono) factorisation

B
q
-- Q

P(B)

m
?

?
λ(ρ) -

where ρ : B×B → Ω is the classifying map for the subobject R� B×B.
As a further application of the internal logic of toposes consider the following
extensivity property of (binary sums).

Theorem 13.6 (extensivity of sums)
Suppose the squares

B1

g1- A1 B2

g2- A2

J

b1
?

f
- I

a1
?

J

b2
?

f
- I

a2
?

commute in an elementary topos E. Then both squares are pullbacks if and
only if the square

B1+B2

g1+g2- A1+A2

J

[b1, b2]
?

f
- I

[a1, a2]
?

97

is a pullback.

Proof: Employ the following construction of pullbacks using the internal logic
of E : given maps f : A → C and g : B → C in E then their pullback is
given by the subobject P � A×B classified by x:A, y:B ` f(x) =C g(y).
Details are left to the reader. �

Kripke-Joyal Semantics

We have seen already how to interpret higher order logic in a topos where
a formula ϕ in context x1:A1, . . . , xn:An gets interpreted as a subobject of
A1×· · ·×An.32 This has the disadvantage that the most pleasant illusion of
“elements” is totally lost. Well, for non-wellpointed toposes E one certainly
does not know a predicate ϕ : A→ Ω when knowing the collection of global
points a : 1→ A of A with ϕ◦a = t. But, obviously, the predicate ϕ : A→ Ω
is fully determined by the collection of all generalised elements a : I → A
satisfying ϕ (notation a ϕ), i.e. ϕ ◦ a = tI . Now Kripke-Joyal semantics
exploits this observation by specifying (by structural recursion over ϕ) the
collection of all generalised elements a with a ϕ thus reestablishing the
form of the Tarskian definition of truth.
Before giving the clauses of the Kripke-Joyal semantics we state the following
two principles holding for (often called forcing relation)

Monotonicity If a ϕ for a : I → A and u : J → I then au ϕ

Local Character If a : I → A and e : J � I epic with ae ϕ then a ϕ.

whose straightforward verification we leave as an exercise(!) for the reader.

Theorem 13.7 (Truth Conditions à la Kripke-Joyal)
In an elementary topos E for predicates ϕ, ψ : A → Ω and generalized ele-
ments a : I → A we have that

(>) a tA always holds

(∧) a ϕ ∧ ψ iff a ϕ and a ψ

32Notice that at least from now on we often drop the semantic brackets [[·]] when they
are clear from the context. Moreover, in the end the distinction between object and
metalanguage is not the greatest insight of logic after all!

98

(⇒) a ϕ⇒ψ iff for all u : J → I, au ϕ implies au ψ

(⊥) a fA iff I ∼= 0

(∨) a ϕ ∨ ψ iff there exist jointly epic maps u : J → I and v : K → I,
i.e. [u, v] : J+K � I epic, such that au ϕ and av ψ

and for predicates ρ : C×A→ Ω and generalised elements c : I → C we have

(∀) c ∀A(ρ) iff c×idA ρ

(∃) c ∃A(ρ) iff 〈ce, a〉 ρ for some epi e : J � I and a : J → A.

Proof: Clause (>) is trivial and clause (∧) follows from Lemma 13.3. Clause
(⊥) is left as an easy exercise!
(⇒) : Suppose a ϕ⇒ψ. Then by monotonicity for all u : J → I we have
au ϕ⇒ψ from which it follows by Lemma 13.7 that ϕau ≤J ψau. Thus, if
au ϕ, i.e. ϕau = tJ , then ψau = tJ , i.e. au ψ. For the reverse direction
suppose that for all u : J → I, au ϕ implies au ψ. By Lemma 13.6 for
a ϕ⇒ψ it suffices to show that ϕa ≤I ψa. Let m : P � I be the subobject
classified by ϕa. Then we have ϕam = tP . Thus, by assumption it follows
that ψam = tP and, therefore, for the subobject n : Q� I classified by ψa
we have that m ≤I n, i.e. ϕa ≤I ψa as desired.
(∨) : First observe that for subobjects m : P � X and n : Q � X of
an object X in E with m ∨ n ∼= idX then m and n are jointly epic, i.e.
[m,n] : P+Q� X.
For ϕ, ψ : A→ Ω let m and n be the corresponding subobjects of A and m′

and n′ their pullbacks along a : I → A as depicted in

P ′ - P Q′ - Q

I

m′

?

?

a
- A

m
?

?

I

n′

?

a
- A

n
?

?

Now suppose that a ϕ∨ψ, i.e. ϕa ∨ ψa = (ϕ∨ψ)a = tI . Then m′∨n′ ∼= idI
as m′ and n′ are classified by ϕa and ψa, respectively. Thus, by the above
observation m′ and n′ are jointly epic. Moreover, we have ϕam′ = tP ′ and
ψan′ = tQ′ . Thus, the desired claim holds putting u = m′ and v = n′.
For the reverse direction suppose that u : J → I and v : K → I are jointly
epic with au ϕ and av ψ. Then au and av factor through m and n,

99

respectively. Accordingly, we have that both au and av factor through m∨n.
Thus, their source tupling a ◦ [u, v] = [au, av] factors through m∨n as well
from which it follows that ϕ∨ψ ◦a ◦ [u, v] = tJ+K . Thus, finally ϕ∨ψ ◦a = tI
because [u, v] is epic.
(∀) : First notice that ∀A(ρ) ◦ c = ∀A(ρ ◦ (c×idA)). Thus, by Theorem 13.4
c ∀A(ρ) is equivalent to ρ ◦ (c×idA)) = tI×A, i.e. c×idA ρ as desired.
(∃) : Let r : R� C×A be the subobject classified by ρ and let

R
e′
-- im(πr)

C

m′

?

?

πr -

be the (strong epi/mono) factorisation of πr where by Theorem 13.5 the
subobject m′ is classified by ∃A(ρ).
Suppose c ∃A(ρ). Then c factors through m′ via some map u : I → im(πr),
i.e. c = m′u. Now consider the diagram

J
v
- R-

r
- C×A

I

e
??

u
- im(πr)

e′
??
-
m′
- C

π
?

and let a : J → A be the map with rv = 〈ce, a〉. Thus, the map 〈ce, a〉 factors
(via v) through the subobject r classified by ρ, i.e. 〈ce, a〉 ρ as desired.
For the reverse direction suppose e : J � I is an epi and a : J → A with
〈ce, a〉 ρ. Then 〈ce, a〉 factors through r via some map v : J → R, i.e.
〈ce, a〉 = rv. Then ce = πrv = m′e′v from which it follows that ce ∃A(ρ)
because ∃A(ρ) classifies m′. Thus, due to the local character of from
ce ∃A(ρ) it follows that c ∃A(ρ) because e is epic. �

We suggest it as an exercise(!) to show that for well-pointed toposes E the
above Kripke-Joyal semantics boils down to the usual Tarski semantics when
restricted to global elements. Since well-pointed toposes are 2-valued and
boolean for every ϕ : A → Ω and a : 1 → A either ϕ ◦ a = t or ϕ ◦ a = f.
Moreover, since in well-pointed toposes every non-initial object has a global
element a global truth value p : 1 → Ω equals t iff p◦!A = tA for some non-
initial A. Moreover, in well-pointed toposes a morphism p : A → Ω equals

100

tA iff p ◦ a = t for all a : 1 → A. Most of the clauses of Theorem 13.7
translate straightforwardly. Only the cases of disjunction and existential
quantification require a bit of thought. For illustration we just discuss the
case of existential quantification. Suppose ρ : C × A→ Ω then c ∃A(ρ) iff
there exists a : I → A with !I : I → 1 epic and ρ ◦ 〈c◦!I , a〉 = t. W.l.o.g. we
may assume that I is not initial since otherwise 0 ∼= 1 and E is the trivial
topos where all propositions are true. But by Lemma 12.2 the non-initial
object I has a global element i : 1 → I and thus ρ ◦ 〈c, ai〉 = > whenever
ρ ◦ 〈c◦!I , a〉 = t. Thus c ∃A(ρ) iff there exists a : 1→ A with 〈c, a〉 ρ.

In case of presheaf toposes Kripke-Joyal semantics takes the following even
simpler form based on the observation that a predicate ϕ : A → Ω is de-
termined already by the set of generalized elements a : Y(I) → A with
ϕa = tY(I).

Theorem 13.8 (Kripke-Joyal semantics for presheaf toposes)

Let E be a presheaf topos Ĉ for some small category C. If A is an object of E,
a ∈ A(I) and f : J → I is a morphism in C then we write a�f for A(f)(a)
to make notation more readable. For predicates ϕ : A→ Ω and a ∈ A(I) we
write I ϕ(a) iff a ∈ P (I) for the subpresheaf P ↪→ A classified by ϕ.
Then for predicates ϕ, ψ : A→ Ω and a ∈ A(I) we have that

(>) I tA(a) always holds

(∧) I (ϕ∧ψ)(a) iff I ϕ(a) and I ψ(a)

(⇒) I (ϕ⇒ψ)(a) iff for all f : J → I, J ϕ(a�f) implies J ψ(a�f)

(⊥) I fA(a) never holds

(∨) I (ϕ∨ψ)(a) iff I ϕ(a) or I ψ(a)

and for predicates ρ : C×A→ Ω and c ∈ C(I) we have

(∀) I ∀A(ρ)(c) iff J ρ(c�f, a) for all f : J → I in C and a ∈ A(J)

(∃) I ∃A(ρ)(c) iff I ρ(c, a) for some a ∈ A(I).

Proof: Exploiting the 1-1-correspondence between A(I) and morphism from

YC(I) to A in Ĉ as ensured by Yoneda most of the claims are immediate from
Theorem 13.7. For (⊥), (∨) and (∃) one has to exploit the specific nature of

101

presheaf toposes where 0(I) = ∅, (P∨Q)(I) = P (I)∪Q(I) and where a map
e : A→ B is epic iff all eI : A(I)→ B(I) are surjective functions.
Details are left to the reader as a straightforward exercise! �

Axiom of Choice in Toposes

We have seen already that the axiom of unique choice holds in every topos.
But what about

(AC) ∀R : P(B×A).(∀x:A.∃y:B.R(y, x))⇒∃f :BA.∀x:A.R(f(x), x)

the general axiom of choice in higher order logic?

Theorem 13.9 (Diaconescu)
Every elementary topos validating (AC) is already boolean.

Proof: Let 0 and 1 be the two global elements of 2 = 1+1 as given by left
and right injection of 1 into 2. For ϕ ∈ Ω we define

Vi = {x ∈ 2 | x=i ∨ ϕ} ∈ P(2)

for i=0, 1. Thus it holds that ∀V ∈{V0, V1}.∃x∈2. x ∈ V . From this instanti-
ating A by {V0, V1} and B by 2 in (AC) it follows that

∃f ∈ 2{V0,V1}.∀V ∈{V0, V1}.f(V) ∈ V

Thus, it holds that (f(V0) ∈ V0) ∧ (f(V1) ∈ V1), i.e. by definition of the Vi
that (f(V0)=0 ∨ ϕ) ∧ (f(V1)=1 ∨ ϕ), from which it follows by distributivity
that

(f(V0)=0 ∧ f(V1)=1) ∨ ϕ

But the latter entails ϕ ∨ ¬ϕ which can be seen as follows. Of course, ϕ
entails ϕ∨¬ϕ. On the other hand f(V0)=0∧ f(V1)=1 implies ¬ϕ because if
ϕ then V0 = V1 from which it follows that 0 = 1, a contradiction. �

Thus, unrestricted choice entails classical logic but not33vice versa. See e.g.
Chapter VI of [MM] for boolean toposes not validating AC.
Validity of the logical scheme (AC) in a topos E is equivalent to the following
principle called Internal Axiom of Choice

33Notice that even the stronger theory ZF does not prove AC.

102

(IAC) If e is epic then eA is epic, too, for all objects A of E.

as shown on pp.312-315 of [MM]. A stronger principle is the following prin-
ciple called External Axiom of Choice

(EAC) Every epimorphism e splits, i.e. there is a section s with e ◦ s = id.

Obviously, (EAC) entails (IAC) because every functor preserves split epi-
morphism and thus, in particular, the functors (−)A do. Notice that for

nontrivial groups G in the presheaf topos Ĝ the unique map from the rep-
resentable presheaf to 1 is a non-split epi because the representable presheaf
does not have any global element. As shown in 1.974 of [FS])

Theorem 13.10 A topos satisfies (EAC) if and only if it satisfies (IAC) and
1 is projective, i.e. every A with A� 1 has a global element.34

Proof: Suppose E validates IAC and an object of E has a global element
whenever its terminal projection is epic. For showing that EAC holds suppose
e : B → A is epic. Consider the pullback diagram

C
e′
-- 1

BA

p

?

eA
-- AA

pidA
q

?

where e′ is epic since it arises as pullback of eA which is epic by IAC. Thus
e′ has a section s′ : 1 → C. Then the transpose s : A → B of ps′ : 1 → BA

gives rise to a section of e as desired. �

In a nontrivial well-pointed topos every object A with global support, i.e.
A → 1 epic, has a global element a : 1 → A since tA and fA are different.
Thus, by Theorem 13.10 well-pointed toposes satisfying (IAC) satisfy (EAC)
as well.

34Generally an object C in E is called projective (or a choice object) iff E(C,−) : E→ Set
preserves epimorphisms, i.e. for every epimorphism e : A� B and every g : C → B there
exists an f : C → A with e ◦ f = g.

103

Natural Numbers in Toposes

The category Setf of finite sets and maps between them is an example of
a well-pointed topos satisfying (EAC). Thus, in order to guarantee the ex-
istence of some infinite type as e.g. the type of natural numbers we need a
further axiom.35

The following definition of natural numbers object (NNO) like many other
notions in this field goes back to F.W.Lawvere.

Definition 13.5 (Natural Numbers Object)
A natural numbers object (NNO) in a category C with terminal object 1 is
an object N in C together with morphisms z : 1→ N (zero) and s : N → N
(successor) such that for all objects A in C and morphisms a : 1 → A and
t : A→ A there exists a unique morphism h : N → A making the diagram

A
t
- A

1
z
-

a
-

N

h
6

s
- N

h
6

commute. ♦

The intuition behind the definition of NNO is that for every a ∈ A and
t : A→ A there exists a unique sequence h : N → A such that

h(z) = a and h(s(n)) = t(h(n))

i.e. the definition of NNO captures the idea of iteration. We leave it as an
exercise(!) to the reader to show that in presence of exponentials (i.e. “higher
types”) from iteration one can derive the principle of primitive recursion
guaranteeing for all maps g : A→ B and h : N×A×B → B the existence of
a unique map R(g, h) = f : N×A→ B such that

f(z, a) = g(a) and f(s(n), a) = h(n, a, f(n, a))

for all n ∈ N and a ∈ A.
The definition of NNO not only guarantees the existence of sufficiently many
algorithmic functions but also the usual induction principle

35Just as in ZFC which is modelled by the hereditary finite sets as long as one does not
postulate the infinity axiom.

104

Theorem 13.11 (induction principle for NNOs)
Let E be an elementary topos with NNO N . If m : P � N is a subobject of
N such that

(1) z : 1→ N factors through m and

(2) s ◦m factors through m

then m is an isomorphism.
Moreover, the topos E validates the induction principle

(IndN) ∀P :P(N). P (z)⇒ (∀n:N.P (n)⇒P (s(n)))⇒ ∀n:N.P (n) .

Proof: Let a : 1 → P with ma = z and t : P → P with sm = mt. Then
there exists a (unique) map h : N → P such that hz = a and hs = th. Thus
we have

N
s
- N

1
a
-

z
-

P

m
6

t
- P

m
6

N

h
6

s
-

z -

N

h
6

from which it follows that mh = idN . But then also mhm = m from which it
follows that hm = idP because m is monic. Thus m is an isomorphism with
h as its inverse.
The verification of (IndN) is left as an exercise(!) to the reader. �

It is routine to show that the image of the NNO in Set under the functor
∆ : Set→ Ĉ is again a NNO in Ĉ.

Axiomatizing the Category S of Constant Sets

The foundational claim of topos theory as forcefully promoted by Lawvere
(see [LR]) is that (most) mathematics can be performed in elementary toposes
with NNO. As we have seen there are plenty of different such toposes.
In order to get more “classical” one might also postulate booleanness or even
the axiom of choice. Lawvere has suggested (see e.g. [LR]) to axiomatize

105

the classical category S of constant sets as an elementary wellpointed topos
admitting a NNO and satisfying the axiom of choice.
Notice, however, that not every such topos S will be isomorphic to Set as e.g.
S may be countable due to the Theorem of Löwenheim and Skolem (guaran-
teeing the existence of countable models for consistent theories formulated in
a countable language). But, actually, the category Set itself is also a relative
notion, namely e.g. some model of ZFC which again may be countable (from
the external point of view). Thus, in the end nothing (essential) is lost when
replacing Set by an arbitrary topos S of constant sets satisfying Lawvere’s
axioms.

106

14 Some Exercises in Presheaf Toposes

An excellent reference for examples of and computations in presheaf toposes
is [PRZ] which we strongly recommend for this purpose.

A topos is called localic iff subobjects of 1 (called subterminals) generate in
which case we say that the topos is localic.

Lemma 14.1 Let C be a small category. Then Ĉ is localic iff C is posetal.

Proof: Suppose C is posetal. Then all representable objects of Ĉ are subter-
minal. Since representable objects generate it follows that Ĉ is localic.
For the reverse direction suppose Ĉ is localic. We show that every repre-
sentable object Y(I) is subterminal. For that purpose consider the subobject
S ⊆ Y(I) consisting of all u : J → I with uv1 = uv2 for all v1, v2 : K → J .
Let χ : Y(I) → Ω be the classifying map for S. Suppose χ 6= >Y(I). Since

by assumption Ĉ is localic there exists a τ : U → Y(I) with U subterminal
and χ ◦ τ 6= >U . Thus there exists a map v : J → I with χJ(v) 6= >J and
vw1 = vw2 for all w1, w2 : K → J , i.e. v ∈ S(J) but χJ(v) 6= >J which
clearly is impossible since χ classifies S ⊆ Y(I). Thus we have shown that
χ = >Y(I) and, accordingly, we have S = Y(I) from which it follows that
idI ∈ S and therefore v1 = v2 whenever v1, v2 : J → I. Since this holds for
all objects I of C it follows that C is indeed posetal. �

Corollary 14.1 If for a small category C the topos Ĉ is localic and 2-valued
then C ' 1 and thus Ĉ ' Set.

Proof: If Ĉ is localic then by the previous theorem C is posetal. If C were
not equivalent to the terminal category 1 then in Ĉ there would exist non-
trivial subterminals corresponding to nontrivial global elements of Ω which
is impossible due to the assumption that Ĉ is 2-valued. �

An alternative argument is the following one: if Ĉ is 2-valued then 0 and 1
are the only subterminals from which it follows by the assumption of Ĉ being
localic that C is wellpointed which we have already seen to entail that C is
equivalent to the terminal category.

Theorem 14.1 For a small category C the global sections functor Γ : Ĉ →
Set has left adjoint ∆ which in turn has a further left adjoint π.

107

Proof: The left adjoint ∆ to Γ sends a set S to the constant presheaf with
value S and f : S → T to the natural transformation ∆(f) with ∆(f)I = f
for all I ∈ C. The unit of ∆ a Γ at S sends x ∈ S to the global element
ηS(x) : 1 → ∆(S) with (ηS(x))I(∗) = x. For f : S → Γ(A) the unique
φ : ∆(S)→ A with Γ(φ) ◦ ηS = f is given by φI(x) = f(x)I(∗) ∈ A(I).
The left adjoint π to ∆ sends a presheaf A to the set π(A) of connected
components of Elts(A). The unit ηA : A → ∆(π(A)) sends a ∈ A to the
connected components inhabitated by a. Obviously, a natural transformation
φ : A → ∆(S) is constant on connected components and, therefore, the
unique f : π(A)→ S with ∆(f) ◦ ηS = φ sends a connected component of A
to the constant value of φ on it. �

Theorem 14.2 Let C be a small category. Then Γ : Ĉ → Set has a right
adjoint ∇ iff the terminal object in Ĉ appears as retract of a representable
object.

Proof: If Γ has a right adjoint then Γ preserves colimits. Since 1 is a colimit
of representable objects and Γ preserves colimits it follows that Γ(Y(I)) 6= ∅
for some object I in C. Thus there exists e : 1→ Y(I) exhibiting 1 as retract
of the representable object Y(I).
Suppose 1 appears as retract of some Y(I). Then there exists e : 1 → Y(I).
For every object J of C we have eJ : J → I and eJ ◦u = eK for all u : K → J
in C. In particular, for eI we have eIeI = eI , i.e. eI is a retract. Next observe
that Γ(A) ∼= {a ∈ A(I) | A(eI)(a) = a} by sending α : 1 → A to αI(∗).
Conversely, given a ∈ A(I) with A(eI)(a) = a this induces an α : 1→ A with
αJ(∗) = A(eJ)(a) for objects J in C. Moreover, for f : A→ B and a ∈ A(I)
with A(eI)(a) = a we have B(e)(fI(a)) = fI(A(eI)(a)) = fI(a). Thus, up
to isomorphism Γ looks as follows: Γ(A) = {a ∈ A(I) | A(eI)(a) = a}
and Γ(f)(a) = fI(a). From now on we work with this isomorphic copy of
Γ. Define G : C → Set as G = Γ ◦ Y. More explicitly, we have G(J) =
{u : I → J | ueI = u} and G(v)(u) = vu for v : J → K in C. Then
the right adjoint to Γ is given by ∇(S) = SG(−). Its counit at S is given
by εS : Γ(∇(S)) → S : γ 7→ γ(eI). Suppose f : Γ(A) → S. We have to
show that there exists a unique φ : A → ∇(S) with εS ◦ Γ(φ) = f , i.e.

108

φI(a)(eI) = f(a) for a ∈ Γ(A). By naturality of φ we have for u ∈ G(J) that

A(J)
φJ- SG(J)

A(I)

A(u)
?

φI
- SG(I)

SG(u)

?

and thus for a ∈ A(J) we have (since A(eI)(A(u)(a)) = A(ueI)(a) = A(u)(a)
and thus A(u)(a) ∈ Γ(A)) that

φJ(a)(u) = φJ(G(u)(eI)) = SG(u)(φJ(a))(eI) =
= (SG(u) ◦ φJ)(a)(eI) = (φI ◦ A(u))(a)(eI) =
= φI(A(u)(a))(eI) =

= f(A(u)(a))

from which it follows that φ is determined uniquely f . Moreover, this obser-
vation tells us how φ has to look like provided it exists, namely

φJ(a)(u) = f(A(u)(a))

for a ∈ A(J) and u ∈ G(J). It is a straightforward exercise to show that the
so defined φ is actually natural. Moreover, for a ∈ Γ(A) we have

(εS ◦ Γ(φ))(a) = φI(a)(eI) = f(A(eI)(a)) = f(a)

and thus we have εS ◦ Γ(φ) = f as desired. �

For the reverse implication of Theorem 14.2 we have the following alternative
Proof: Suppose e0 : 1→ Y(I0). Let G = Γ ◦ Y : C→ Set. The right adjoint
to Γ is given by∇(S) = SG(−). The unit ηA : A→ ∇(Γ(A)) of the adjunction
Γ a ∇ at A is given by

(ηA)I(a)(i) = a ◦ i

for a : I → A and i : 1 → I. It is a straightforward exercise to show that
the so defined η is actually natural. For showing that η is the unit of Γ ` ∇
we have to show that for φ : A → ∇(S) there exists a unique f : Γ(A) → S
with ∇(f) ◦ ηA = φ, i.e.

φI(a)(i) =
[
∇(f) ◦ ηA

]
I
(a)(i) = f(a ◦ i)

109

for a : I → A and i : 1→ I. For α : 1→ A we may put a := α◦ !I0 : I0 → A
and then have

f(α) = f(a ◦ e0) = φI0(a)(e0) = φI0(α◦ !I0)(e0)

from which it follows that f is uniquely determined by φ. Now for a : I → A
and i : 1→ I we have[
∇(f)◦ηA

]
I
(a)(i) = f(a◦ i) = φI0(a◦ i◦ !I0)(e0) = φI(a)(i◦ !I0 ◦e0) = φI(a)(i)

and thus ∇(f) ◦ ηA = φ as desired. �

Notice that in case Γ : Ĉ → Set has a right adjoint ∇ we have Γ∆ ∼= IdSet.
From Lemma 8.1 it follows that the counit η : IdSet → Γ∆ is a natural
isomorphism and thus by Theorem 8.5 the functor ∆ is full and faithful.
By uniqueness of adjoints from Γ∆ ∼= IdSet it follows that Γ∇ ∼= IdSet and
thus by the dual versions of Lemma 8.1 and Theorem 8.5 that ∇ is also
full and faithful and that εS : Γ(∇(S)) → S is an isomorphism for all S ∈
Set. That’s what Lawvere calls a UIAO situation (for Unity and Identity of
Adjoint Opposites), i.e. L a F a R with F ◦ L = Id = F ◦ R where as above
from Lemma 8.1 it follows that both L and R are full and faithful.
For the Sierpiński topos 2̂ the global sections functor is given by Γ(A) = A(1).
Its right adjoint ∇ is given by ∇(S)(1) = S and ∇(S)(0) = {∗}. The left
adjoint of Γ is given by ∆(S)(0→1) = idS. The left adjoint π of ∆ is given by
π(A) = A(0). The functor π has a further left adjoint given by L(S)(1) = ∅
and L(S)(0) = S.
Let Mn be the monoid whose elements besides the unit 1 are e0, . . . , en−1

with eiej = ei for 1 ≤ i, j < n.

The presheaf topos M̂1 consists of retractions and maps between them since
for an object X of M̂1 the map rX(x) = x · e0 is a retraction (because
rX(rX(x)) = x · e0 · e0 = x · e0e0 = x · e0 = rX(x)) and for a morphism
f : X → Y we have f(rX(x)) = f(x · e0) = f(x) · e0 = rY (f(x)). For X in

M̂1 we have Γ(X) = {x ∈ X | rX(x) = x}. For a set S let ∆(S) be the set S
with right action of M1 given by x · e0 = x for x ∈ S. One easily checks that
∆ ` Γ ` ∆, i.e. that ∆ and ∇ coincide.36 Thus, also π coincides with Γ.
The presheaf topos M̂2 may be considered as the topos of reflexive graphs
where for an object X of M̂2 the underlying set of X is thought of as the set

36The transpose of f : S → Γ(X) is the morphism f : ∆(S) → X and the transpose of
g : Γ(X)→ S is the morphism ǧ : X → ∆(S) sending x ∈ X to ǧ(x) = g(x · e0)

110

of edges and Γ(X) = {x ∈ X | x · e0 = x = x · e1} is thought of as the set
of loops (which are identified with the nodes of the graph). Since for x ∈ X
we have x · ei · ej = x · eiej = x · ei it follows that x · e0 and x · e1 are loops
corresponding to the source and target node of edge x, respectively. Notice
that Γ(X) is the set of global elements of X and for h : X → Y the map
Γ(h) is the restriction of h to Γ(X) (which factors through Γ(Y)). The left
adjoint ∆ of the global sections functor Γ sends a set S to the set S on which
M2 acts as x · ei = x for i = 0, 1. The right adjoint ∇ to Γ sends a set S
to the M2-action ∇(S) whose underlying set is S × S on which M2 acts as
(x0, x1) · ei = (xi, xi) for i = 0, 1. Notice that ∇(S) is the “chaotic” graph
where for all x, y ∈ S there exists precisely one edge from x to y whereas
∆(S) is the “discrete” graph with as few edges as possible. The left adjoint
π to ∆ sends X to the connected components of the graph X, i.e. Γ(X)/∼X
where ∼X is the least equivalence relation on Γ(X) containing all pairs of
the form (x · e0, x · e1). For f : X → Y the map f respects ∼X to ∼Y and,
therefore, the map π(f) : π(X) → π(Y) : [x]∼X

7→ [f(x)]∼Y
is well defined

and provides the morphism part of the functor π.
Notice that for the topos of graphs Ĝ where G is the category

V
d0 -

d1

- E

the situation is different because Γ : Ĝ→ Set does not have a right adjoint
∇ since none of the representable objects of Ĝ has a global element. As
emphasized by F. W. Lawvere this may be seen as a qualitative distinction
between M̂2 and Ĝ.

111

15 Sheaves

Sheaves (germ. Garben) are discussed in detail in [MM]. Here we just give a
short introduction to this vast field, mostly without proofs.

Definition 15.1 Let X be a topological space and O(X) the lattice of open
subsets of X. A sheaf over X is a presheaf A : O(X)op → Set such that for
every U ∈ O(X) and sieve U on U with

⋃
U = U every f : U → A has a

unique extension f̄ : O(X)/U → A.
We write Sh(X) for the full subcategory of SetO(X)op on sheaves over X. ♦

Notice that a natural transformation f : U → A amounts to a choice of an
f(V) ∈ A(V) for all V ∈ U which is compatible in the sense that

A(V ∩W ↪→ V)(f(V)) = f(V ∩W) = A(V ∩W ↪→ W)(f(W))

for all V,W ∈ U . The requirement that f has a unique extension f̄ :
O(X)/U → A along the inclusion of U into O(X)/U amounts to the re-
quirement that there exists a unique a = f̄(U) ∈ A(U) such that f(V) =
A(V ↪→ U)(a) for all V ∈ U .
A typical example of a sheaf over X is Rd where Rd(U) is the set of all
continuous functions from U to R and Rd(V ↪→ U)(f) = f�V , the restriction
of f : U → R to the open set V ⊆ U . This makes sense also when replacing
R by an arbitrary topological space. In case of a discrete space I we write
∆(I) for the ensuing sheaf. Obviously ∆(I)(U) consists of all locally constant
maps from U to I.

Theorem 15.1 For a topological space X the category Sh(X) is closed under
limits taken in SetO(X)op, is an exponential ideal in SetO(X)op, i.e. BA is a
sheaf whenever A ∈ SetO(X)op and B ∈ Sh(X), and Sh(X) is a topos where
Ω(U) = {V ∈ O(X) | V ⊆ U}, Ω(V ↪→ U)(W) = V ∩W and > : 1 → Ω is
given by >U = U .

Proof: It is straightforward but tedious to verify the first two claims (see
[MM] for details).
It is easy to see that Ω is a sheaf. Suppose that A ∈ Sh(X) and P is a subsheaf
of A. Then P ↪→ A is classified by the map χ : A → Ω sending a ∈ A(V)
to the greatest open subset V of U such that A(V ↪→ U)(a) ∈ P (V). Notice

112

that for verifying the existence of a greatest such V one needs that P itself
is a sheaf. �

A. Grothendieck – motivated by some questions in algebraic geometry – has
generalised the notion of “topology” to arbitrary small categories C. We will
present the notion of Grothendieck topology a bit later on. First we present
the more accessible notion of coverage as used in [Joh].

Definition 15.2 A coverage Cov on a small category C assigns to every
object I of C a set Cov(I) of sieves on I such that for every S ∈ Cov(I) and
u : J → I in C there exists R ∈ Cov(J) with R ⊆ u∗S.
A sheaf w.r.t. Cov is a presheaf A over C such that for every S ∈ Cov(I) and
f : S → A there exists a unique f̄ : Y(I)→ A making the diagram

S ⊂ - Y(I)

A

f
? f̄

-

commute. We write ShCov(C) for the full subcategory of SetC
op

on sheaves
w.r.t. Cov. ♦

In the following we say that a “presheaf A has the sheaf property w.r.t. a
sieve S on I” iff every f : S → A has a unique extension to a f̄ : Y(I)→ A.
Recall also the fact that f̄ : Y(I)→ A extends f : S → A iff f̄ ◦Y(u) = f(u)

for all u ∈ S (identifying A(I) with Ĉ(Y(I), A) by Yoneda).
Next we prove to lemmas allowing one to augment a covering without chang-
ing the sheaves.

Lemma 15.1 Let Cov be a coverage on C and A a Cov-sheaf. If R is a sieve
on I and S ∈ Cov(I) with S ⊆ R then A has the sheaf property w.r.t. R.

Proof: Suppose f : R → A. Since A is a sheaf there exists a unique f̄ :
Y(I)→ A coinciding with f on S. It remains to show that f̄ coincides with
f also on R.
Let u : J → I in R. Then for all v : K → J in u∗S we have

f̄ ◦ Y(u) ◦ Y(v) = f̄ ◦ Y(uv) = f(uv) = f(u) ◦ Y(v)

where the second equality holds because uv ∈ S. Since u∗S contains a cover
(in the sense of Cov) it follows that f̄ ◦ Y(u) = f(u). Thus f̄ extends f . �

113

Lemma 15.2 Let Cov be a coverage on C and A be a Cov-sheaf. If R is a
sieve on I and S ∈ Cov(I) such that u∗R contains a cover in the sense of
Cov for all u : J → I in S then A has the sheaf property w.r.t. R.

Proof: Suppose f : R → A. For u : J → I in S let ϕu : u∗R → R be
defined as ϕu(v) = uv and fu = f ◦ ϕu : u∗R → A. Then there exists

a unique morphism f̃u : Y(J) → A with f̃u ◦ m = fu where m : u∗R ↪→
Y(Y). Let au = f̃u(idJ). We next show that u 7→ au gives rise to a natural

transformation f̃ : S → A. Suppose u : J → I in S and v : K → J . Let
ψ : (uv)∗S → u∗S with ψ(w) = vw and n : (uv)∗S ↪→ Y(K). Obviously, we
have fuψ = fuv and m ◦ ψ = Y(v) ◦ n as indicated in the following diagram

Y(J) �
m
�u∗S

fu- A

Y(K)

Y(v)
6

�
n
�(uv)∗S

ψ
6

f uv

-

Thus we have f̃u ◦Y(v) ◦ n = f̃u ◦m ◦ ψ = fu ◦ ψ = fuv = f̃uv ◦ n from which

it follows that f̃u ◦Y(v) = f̃uv (since A has the sheaf property w.r.t. (uv)∗S)

from which it follows that f̃ is actually a natural transformation from S to
A. Since A is a Cov-sheaf and S ∈ Cov(I) there exists a unique morphism

f̄ : Y(I)→ A extending f̃ along the inclusion S ↪→ Y(I). We will show that
f̄ extends f and is unique with this property.
Let u : J → I in R. Then for v : K → J in u∗S we have uv ∈ R ∩ S and
f̃uv = f(uv) = f(u) ◦ Y(v) (notice that (uv)∗S = Y(K) since uv ∈ S) and
thus

f̄ ◦ Yu ◦ Yv = f̄ ◦ Y(uv) = f̃uv = f(u) ◦ Y(v)

from which it follows that f̄ ◦ Y(u) = f(u) since u∗S contains a cover in the
sense of Cov. Thus, we have shown that for all u ∈ R we have f̄ ◦Y(u) = f(u),
i.e. that f̄ extends f as desired.
Suppose g : Y(I) → A with g ◦ Y(u) = f(u) for all u ∈ R. Let u : J → I in

S. Then for v ∈ u∗R we have uv ∈ R∩S and f̃uv = f(uv) = f(u) ◦Y(v) and
thus

g ◦ Y(u) ◦ Y(v) = g ◦ Y(uv) = f(uv) = f(u) ◦ Y(v) = f̃uv = f̃u ◦ Y(v)

114

from which it follows that g ◦Y(u) = f̃u since by assumption u∗R contains a
cover in the sense of Cov. Thus, we have shown that for all u ∈ S we have
g ◦ Y(u) = f̃u = f̄(u) from which it follows that g = f̄ since S ∈ Cov(I) and
A is a Cov-sheaf. Thus we have shown uniqueness of f̄ . �

We have the following analogue of Theorem 15.1

Theorem 15.2 Let Cov be a coverage on a small category C. Then ShCov(C)
is closed under limits taken in SetC

op

, is an exponential ideal in SetC
op

, i.e.
BA is a sheaf whenever A ∈ SetC

op

and B ∈ ShCov(C), and ShCov(C) is a
topos.
The subobject classifier Ω for ShCov(C) can be described as follows. For I ∈
C, Ω(I) consists of all Cov-closed sieves on I, i.e. sieves S on I such that
u : J → I is in S whenever u∗S ∈ Cov(J), Ω(u)(S) = u∗S and >I = >I .

Proof: It is straightforward but tedious to verify the first two claims (see
[MM] for details).
It is easy to see that Ω is a sheaf. Suppose that A ∈ ShCov(C) and P is a sheaf
of A. Then P ↪→ A is classified by the map χ : A→ Ω sending a ∈ A(V) to
the sieve χI(a) = {u : J → I | A(u)(a) ∈ P (J)}. Notice that for verifying
that χI(a) is closed one needs that P itself is a sheaf. �

A coverage Cov on C can be saturated to a so-called Grothendieck topology
on C which notion we define next.

Definition 15.3 A Grothendieck topology on a small category C is a cov-
erage J with >I ∈ J (I) for all I ∈ C and satisfying the following locality
property

(L) if R is a sieve on I and S ∈ J (I) with u∗R ∈ J (J) for all u : J → I
in S then R ∈ J (I). ♦

Notice that the locality property entails that J (I) is upward closed within
sieves on I.
Obviously, Grothendieck topologies on C are closed under (componentwise)
intersections. Thus, for every coverage Cov there exists a least Grothendieck
topology J on C with Cov ⊆ J . Notice that this way J is obtained from
Cov by an inductive definition which in general stabilizes at a very transfinite
ordinal.
The next lemma says that sheaves w.r.t. Cov and sheaves w.r.t. the induced
J coincide.

115

Lemma 15.3 Let J be the least Grothendieck topology containing Cov. Then
a presheaf A ∈ SetC

op

is a Cov-sheaf iff it is a J -sheaf.

Proof: Obviously, since Cov ⊆ J every J -sheaf is also a Cov-sheaf.
For the reverse inclusion it suffices to show that the collection JA of all sieves
S on some I such that for all u : J → I, A satisfies the sheaf condition w.r.t.
u∗S forms a Grothendieck topology. Obviously JA is a coverage containing
all maximal sieves >I . So it remains to show that JA satisfies the locality
property (L). Suppose R is a sieve on I and S ∈ JA(I) with u∗R ∈ JA(J) for
all u : J → I in S. We have to show that R ∈ JA(I), i.e. that A has the sheaf
property w.r.t. to all reindexings of R. Let u : J → I. Then u∗S ∈ JA(J)
and for all v : K → J in u∗S we have v∗u∗R = (uv)∗R ∈ JA(K) since uv ∈ S.
Thus by Lemma 15.2 the presheaf A satisfies the sheaf condition w.r.t. u∗R
as desired. �

One can show that a subobject J of Ω in Ĉ is a Grothendieck topology if
and only if the classifying map j : Ω→ Ω for J ↪→ Ω satisfies the conditions

(j1) j ◦ > = >

(j2) j ◦ ∧ = ∧ ◦ (j × j)

(j3) j ◦ j = j.

In an arbitrary topos E it makes sense to consider maps j : Ω→ Ω satisfying
the conditions (j1)-(j3). Such maps are called Lawvere-Tierney toplogies on
topos E. A mono m : P � X in E is called j-dense iff its characteristic
map χ : A → Ω satisfies j ◦ χ = >A. One then defines an object A of E to
be a j-sheaf iff E(m,A) : E(X,A) → E(P,A) is a bijection for all j-dense
monos m in E. One can show that the full subcategory Ej of E on j-sheaves
is a topos and that the inclusion i : Ej ↪→ E has a finite limit preserving left
adjoint a called sheafification. Moreover, if j is the characteristic map for a
Grothendieck topology J on C then Ĉj coincides with ShJ (C). Accordingly,

the inclusion of ShJ (C) into Ĉ has a finite limit preserving left adjoint (also
called sheafification.
By definition a Grothendieck topos is a topos equivalent to one of the form
ShJ (C) where J is a Grothendieck topology on a small category C.
Grothendieck toposes can be characterized more abstractly as follows.

Theorem 15.3 E is a Grothendieck topos iff E is a locally small elementary
topos with small sums and a small generating family.

116

Proof: See e.g. [MM]. �

For Grothendieck toposes ShJ (C) one can give a Kripke-Joyal semantics
which differs from the one for SetC

op

only for ⊥, ∨ and ∃, namely as follows

(⊥) I ⊥ iff ∅ ∈ J (I)

(∨) I (φ∨ψ)(a) iff there exists a J -covering family (uj : Ij → I)j∈J such
that for all j ∈ J , Ij φ(auj) or Ij ψ(auj)

(∃) I ∃x:A.ρ(x, c) iff there exists a J -covering family (uj : Ij → I)j∈J
and a family

(
aj ∈ A(Ij)

)
j∈J such that Ij ρ(aj, cuj) for all j ∈ J

where (uj : Ij → I)j∈J is J -covering iff the induced sieve on I is in J (I).
Thus, for disjunctions and existential statements it is easier to be valid in
ShJ (C) than in SetC

op

because it suffices for them to hold only “locally” and
they need not necessarily hold “globally”.

117

