
Complexity in Higher Types

Thomas Powell

University of Innsbruck

Logic, Complexity and Automation

part of Computational Logic in the Alps 2016

Obergurgl, Austria

5 September 2016

Thomas Powell (Innsbruck) 5 September 2016 1 / 16



Background

What I normally research:

Proof theory

Strong classes of higher-order recursive functionals

Computational interpretations of subsystems of mathematics

But today my talk will be a bit more practical:

1. What is the complexity of a higher-order functional program?

2. Some ideas on a general monadic denotational semantics.

3. Stuff for the future...

Warning: This is all very informal!

Thomas Powell (Innsbruck) 5 September 2016 2 / 16



Background

What I normally research:

Proof theory

Strong classes of higher-order recursive functionals

Computational interpretations of subsystems of mathematics

But today my talk will be a bit more practical:

1. What is the complexity of a higher-order functional program?

2. Some ideas on a general monadic denotational semantics.

3. Stuff for the future...

Warning: This is all very informal!

Thomas Powell (Innsbruck) 5 September 2016 2 / 16



Throughout the talk we will work over a simple call-by-value functional
language. However, the main ideas could be adapted to other settings.

Let e : nat be some closed expression such that e→∗ n.

Normally we interpret e as the natural number represented by the numeral n
i.e.

JeK = n.

But what if we also want information on the cost of evaluating e? Suppose
that e→k n.

Then we could interpret e as a pair, corresponding to a cost and a value i.e.

[e] = (k, n).

Thomas Powell (Innsbruck) 5 September 2016 3 / 16



Throughout the talk we will work over a simple call-by-value functional
language. However, the main ideas could be adapted to other settings.

Let e : nat be some closed expression such that e→∗ n.

Normally we interpret e as the natural number represented by the numeral n
i.e.

JeK = n.

But what if we also want information on the cost of evaluating e? Suppose
that e→k n.

Then we could interpret e as a pair, corresponding to a cost and a value i.e.

[e] = (k, n).

Thomas Powell (Innsbruck) 5 September 2016 3 / 16



Throughout the talk we will work over a simple call-by-value functional
language. However, the main ideas could be adapted to other settings.

Let e : nat be some closed expression such that e→∗ n.

Normally we interpret e as the natural number represented by the numeral n
i.e.

JeK = n.

But what if we also want information on the cost of evaluating e? Suppose
that e→k n.

Then we could interpret e as a pair, corresponding to a cost and a value i.e.

[e] = (k, n).

Thomas Powell (Innsbruck) 5 September 2016 3 / 16



Now suppose that t : nat→ nat is a closed expression and t→∗ λx.s(x).

Normally we interpret t as a function f : JnatK→ JnatK such that if e→∗ n
and s(n)→∗ m then f(n) = m i.e.

JteK = JtKJeK = f(n) = m.

But what about the complexity of t? Suppose that t→l λx.s(x). Then we
could define [t] = (l, f).

But we also want information about the complexity of s. Suppose that
s(n)→c(n) m. Then we define

[t] = (l, λn.(1 + c(n), f(n))︸ ︷︷ ︸
‘size’

)

In particular, this definition is compositional i.e. we can compute [te] from [t]
and [e] = (k, n):

[te] = [t] ? [e] = [t] ? (k, n) = (k + l + 1 + c(n), f(n)) = (k + l + 1 + c(n),m).

Thomas Powell (Innsbruck) 5 September 2016 4 / 16



Now suppose that t : nat→ nat is a closed expression and t→∗ λx.s(x).

Normally we interpret t as a function f : JnatK→ JnatK such that if e→∗ n
and s(n)→∗ m then f(n) = m i.e.

JteK = JtKJeK = f(n) = m.

But what about the complexity of t? Suppose that t→l λx.s(x). Then we
could define [t] = (l, f).

But we also want information about the complexity of s. Suppose that
s(n)→c(n) m. Then we define

[t] = (l, λn.(1 + c(n), f(n))︸ ︷︷ ︸
‘size’

)

In particular, this definition is compositional i.e. we can compute [te] from [t]
and [e] = (k, n):

[te] = [t] ? [e] = [t] ? (k, n) = (k + l + 1 + c(n), f(n)) = (k + l + 1 + c(n),m).

Thomas Powell (Innsbruck) 5 September 2016 4 / 16



Now suppose that t : nat→ nat is a closed expression and t→∗ λx.s(x).

Normally we interpret t as a function f : JnatK→ JnatK such that if e→∗ n
and s(n)→∗ m then f(n) = m i.e.

JteK = JtKJeK = f(n) = m.

But what about the complexity of t? Suppose that t→l λx.s(x). Then we
could define [t] = (l, f).

But we also want information about the complexity of s. Suppose that
s(n)→c(n) m. Then we define

[t] = (l, λn.(1 + c(n), f(n))︸ ︷︷ ︸
‘size’

)

In particular, this definition is compositional i.e. we can compute [te] from [t]
and [e] = (k, n):

[te] = [t] ? [e] = [t] ? (k, n) = (k + l + 1 + c(n), f(n)) = (k + l + 1 + c(n),m).

Thomas Powell (Innsbruck) 5 September 2016 4 / 16



Now suppose that t : nat→ nat is a closed expression and t→∗ λx.s(x).

Normally we interpret t as a function f : JnatK→ JnatK such that if e→∗ n
and s(n)→∗ m then f(n) = m i.e.

JteK = JtKJeK = f(n) = m.

But what about the complexity of t? Suppose that t→l λx.s(x). Then we
could define [t] = (l, f).

But we also want information about the complexity of s. Suppose that
s(n)→c(n) m. Then we define

[t] = (l, λn.(1 + c(n), f(n))︸ ︷︷ ︸
‘size’

)

In particular, this definition is compositional i.e. we can compute [te] from [t]
and [e] = (k, n):

[te] = [t] ? [e] = [t] ? (k, n) = (k + l + 1 + c(n), f(n)) = (k + l + 1 + c(n),m).

Thomas Powell (Innsbruck) 5 September 2016 4 / 16



What is the complexity of a higher-order functional? Let’s work with a
concrete example map : (nat→ nat)× nat∗ → nat∗ defined by

map(h, [])→ [] map(h, x :: a)→ h(x) :: map(h, a)

The term map is already in normal form, so [map] = (0, ). What is the ‘size’
of map?

Suppose map takes as arguments a value v : nat→ nat of size (c, f) and a list
of numerals [a1, . . . , aj ]. Then

map(v, [a1, . . . , aj ])→
1+j+

∑
i≤j c(ai) [f(a1), . . . f(aj)].

So we could define

[map] = (0, λ(c, f), a.(1 + |a|+
∑

c(ai), [f(a1), . . . , f(an)]))

and we would have [map(t, e)] = [map] ? ([t] , [e]).

Thomas Powell (Innsbruck) 5 September 2016 5 / 16



What is the complexity of a higher-order functional? Let’s work with a
concrete example map : (nat→ nat)× nat∗ → nat∗ defined by

map(h, [])→ [] map(h, x :: a)→ h(x) :: map(h, a)

The term map is already in normal form, so [map] = (0, ). What is the ‘size’
of map?

Suppose map takes as arguments a value v : nat→ nat of size (c, f) and a list
of numerals [a1, . . . , aj ]. Then

map(v, [a1, . . . , aj ])→
1+j+

∑
i≤j c(ai) [f(a1), . . . f(aj)].

So we could define

[map] = (0, λ(c, f), a.(1 + |a|+
∑

c(ai), [f(a1), . . . , f(an)]))

and we would have [map(t, e)] = [map] ? ([t] , [e]).

Thomas Powell (Innsbruck) 5 September 2016 5 / 16



What is the complexity of a higher-order functional? Let’s work with a
concrete example map : (nat→ nat)× nat∗ → nat∗ defined by

map(h, [])→ [] map(h, x :: a)→ h(x) :: map(h, a)

The term map is already in normal form, so [map] = (0, ). What is the ‘size’
of map?

Suppose map takes as arguments a value v : nat→ nat of size (c, f) and a list
of numerals [a1, . . . , aj ]. Then

map(v, [a1, . . . , aj ])→
1+j+

∑
i≤j c(ai) [f(a1), . . . f(aj)].

So we could define

[map] = (0, λ(c, f), a.(1 + |a|+
∑

c(ai), [f(a1), . . . , f(an)]))

and we would have [map(t, e)] = [map] ? ([t] , [e]).

Thomas Powell (Innsbruck) 5 September 2016 5 / 16



What is the complexity of a higher-order functional? Let’s work with a
concrete example map : (nat→ nat)× nat∗ → nat∗ defined by

map(h, [])→ [] map(h, x :: a)→ h(x) :: map(h, a)

The term map is already in normal form, so [map] = (0, ). What is the ‘size’
of map?

Suppose map takes as arguments a value v : nat→ nat of size (c, f) and a list
of numerals [a1, . . . , aj ]. Then

map(v, [a1, . . . , aj ])→
1+j+

∑
i≤j c(ai) [f(a1), . . . f(aj)].

So we could define

[map] = (0, λ(c, f), a.(1 + |a|+
∑

c(ai), [f(a1), . . . , f(an)]))

and we would have [map(t, e)] = [map] ? ([t] , [e]).

Thomas Powell (Innsbruck) 5 September 2016 5 / 16



Underlying all this is the notion of a monadic translation. Define [−] on types
as

[D] := C × JDK︸︷︷︸
s(D)

[X → Y ] := C × (s(X)→ [Y ]︸ ︷︷ ︸
s(X→Y )

)

For all types we have [X] = C × s(X), the idea being that the C is some
structure which contains intensional information about objects t : X, while
s(X) represents a ‘size’ or potential (at ground types the usual denotation).

In a traditional denotational semantics, we would have (at base types):

Whenever e→∗ n then JeK = n.

Our denotational semantics aims to capture something more, for example:

Whenever e→k n then [e] = (k, n).

Thomas Powell (Innsbruck) 5 September 2016 6 / 16



Underlying all this is the notion of a monadic translation. Define [−] on types
as

[D] := C × JDK︸︷︷︸
s(D)

[X → Y ] := C × (s(X)→ [Y ]︸ ︷︷ ︸
s(X→Y )

)

For all types we have [X] = C × s(X), the idea being that the C is some
structure which contains intensional information about objects t : X, while
s(X) represents a ‘size’ or potential (at ground types the usual denotation).

In a traditional denotational semantics, we would have (at base types):

Whenever e→∗ n then JeK = n.

Our denotational semantics aims to capture something more, for example:

Whenever e→k n then [e] = (k, n).

Thomas Powell (Innsbruck) 5 September 2016 6 / 16



Example I. A strict semantics.

C := {1,⊥}, and [t] is given by

[x] ρ := (1, ρ(x))

[0] ρ := (1, 0)

[s] ρ := (1, λn.(1, n+ 1))

[λx.t] ρ := (1, λa. [t] ρax)

[ts] ρ := (AND([t]0 , [s]0 , ([t]1 [s]1)0), ([t]1 [s]1)1)

[fx] ρ := [r] ρ

for recursive functions fx→ r.

The intensional part captures termination: If e→∗ n then [e] = (1, n) and vice
versa.

Thomas Powell (Innsbruck) 5 September 2016 7 / 16



Example IIa. An exact cost semantics.

C := N⊥, and [t] is given by

[x] ρ := (0, ρ(x))

[0] ρ := (0, 0)

[s] ρ := (0, λn.(0, n+ 1))

[λx.t] ρ := (0, λa. [t]+ ρ
a
x)

[ts] ρ := ([t]0 + [s]0 + ([t]1 [s]1)0, ([t]1 [s]1)1)

[fx] ρ := [r]+ ρ

for recursive functions fx→ r.

The intensional part captures cost: If e→k n then [e] = (k, n) and vice versa.

Thomas Powell (Innsbruck) 5 September 2016 8 / 16



Example IIb. A bounded cost semantics.

C := N⊥, and [t] is given by

[x] ρ := (0, ρ(x))

[0] ρ := (0, 0)

[s] ρ := (0, λn.(0, n+ 1))

[λx.t] ρ := (0, λa. [t]+ ρ
a
x)

[ts] ρ := ([t]0 + [s]0 + ([t]1 [s]1)0, ([t]1 [s]1)1)

[fx] ρ :=
∨

[r]+ ρ

for recursive functions fx→ r.

The intensional part bounds the cost: If e→k n then [e] = (l, n) with k ≤ l
and vice versa.

Thomas Powell (Innsbruck) 5 September 2016 9 / 16



We are interested in soundness and adequacy of these kinds of translations.

Strict semantics: If [e]0 = 1 then [e] can be reduced to a normal form -
adequacy results of this kind are proven by Berger (2005) and are used to
establish strong normalisation of λ-calculi extended with bar recursion
operators.

Exact costs: Denotational cost semantics first explored by Sands (1990) among
others, generalised and lifted to a categorical setting by Van Stone (2003).

Bounded costs: A cost semantics which is sound w.r.t. a higher-type bounding
relation v is studied for variants of system T by Danner et al. (2012 & 2015).
Extended to call-by-name PCF by Kim (2016).

Thomas Powell (Innsbruck) 5 September 2016 10 / 16



We are interested in soundness and adequacy of these kinds of translations.

Strict semantics: If [e]0 = 1 then [e] can be reduced to a normal form -
adequacy results of this kind are proven by Berger (2005) and are used to
establish strong normalisation of λ-calculi extended with bar recursion
operators.

Exact costs: Denotational cost semantics first explored by Sands (1990) among
others, generalised and lifted to a categorical setting by Van Stone (2003).

Bounded costs: A cost semantics which is sound w.r.t. a higher-type bounding
relation v is studied for variants of system T by Danner et al. (2012 & 2015).
Extended to call-by-name PCF by Kim (2016).

Thomas Powell (Innsbruck) 5 September 2016 10 / 16



We are interested in soundness and adequacy of these kinds of translations.

Strict semantics: If [e]0 = 1 then [e] can be reduced to a normal form -
adequacy results of this kind are proven by Berger (2005) and are used to
establish strong normalisation of λ-calculi extended with bar recursion
operators.

Exact costs: Denotational cost semantics first explored by Sands (1990) among
others, generalised and lifted to a categorical setting by Van Stone (2003).

Bounded costs: A cost semantics which is sound w.r.t. a higher-type bounding
relation v is studied for variants of system T by Danner et al. (2012 & 2015).
Extended to call-by-name PCF by Kim (2016).

Thomas Powell (Innsbruck) 5 September 2016 10 / 16



We are interested in soundness and adequacy of these kinds of translations.

Strict semantics: If [e]0 = 1 then [e] can be reduced to a normal form -
adequacy results of this kind are proven by Berger (2005) and are used to
establish strong normalisation of λ-calculi extended with bar recursion
operators.

Exact costs: Denotational cost semantics first explored by Sands (1990) among
others, generalised and lifted to a categorical setting by Van Stone (2003).

Bounded costs: A cost semantics which is sound w.r.t. a higher-type bounding
relation v is studied for variants of system T by Danner et al. (2012 & 2015).
Extended to call-by-name PCF by Kim (2016).

Thomas Powell (Innsbruck) 5 September 2016 10 / 16



Problem. In general, soundness and particularly adequacy seem to be
difficult to prove: The more complex the relationship between t : X and the
component [t]0 ∈ C, the more intricate and messy the resulting induction
tends to be.

Can we give a uniform framework and adequacy proof which captures a wide
range of monadic translations, including those which bound the cost of
programs?

Proofs of this kind typically have

an important combinatorial part - does the translation work for the
building blocks of our language?

a quite technical but rather uniform domain-theoretic part verifying that
it works for arbitrary terms.

Therefore it makes sense to seperate these parts if possible.

Adequacy proof = Combinatorial part︸ ︷︷ ︸
easy to check

+ Domain-theoretic part︸ ︷︷ ︸
uniform

Thomas Powell (Innsbruck) 5 September 2016 11 / 16



Problem. In general, soundness and particularly adequacy seem to be
difficult to prove: The more complex the relationship between t : X and the
component [t]0 ∈ C, the more intricate and messy the resulting induction
tends to be.

Can we give a uniform framework and adequacy proof which captures a wide
range of monadic translations, including those which bound the cost of
programs?

Proofs of this kind typically have

an important combinatorial part - does the translation work for the
building blocks of our language?

a quite technical but rather uniform domain-theoretic part verifying that
it works for arbitrary terms.

Therefore it makes sense to seperate these parts if possible.

Adequacy proof = Combinatorial part︸ ︷︷ ︸
easy to check

+ Domain-theoretic part︸ ︷︷ ︸
uniform

Thomas Powell (Innsbruck) 5 September 2016 11 / 16



Problem. In general, soundness and particularly adequacy seem to be
difficult to prove: The more complex the relationship between t : X and the
component [t]0 ∈ C, the more intricate and messy the resulting induction
tends to be.

Can we give a uniform framework and adequacy proof which captures a wide
range of monadic translations, including those which bound the cost of
programs?

Proofs of this kind typically have

an important combinatorial part - does the translation work for the
building blocks of our language?

a quite technical but rather uniform domain-theoretic part verifying that
it works for arbitrary terms.

Therefore it makes sense to seperate these parts if possible.

Adequacy proof = Combinatorial part︸ ︷︷ ︸
easy to check

+ Domain-theoretic part︸ ︷︷ ︸
uniform

Thomas Powell (Innsbruck) 5 September 2016 11 / 16



Recall that
[D] := C × JDK︸︷︷︸

s(D)

[X → Y ] := C × (s(X)→ [Y ]︸ ︷︷ ︸
s(X→Y )

)

Suppose that

IX(e, c) is an arbitrary ‘cost’ relation between closed terms e : X and
total objects of c ∈ C while

SD(v, s) is a ‘size’ relation between values of type D and s ∈ JDK defined
at all ground types.

Define the relation PX(e, α) between closed terms e : X and α ∈ [X] as follows:

PD(e, α) := α0 6= ⊥ ⇒ ∃v(e→∗ v ∧ ID(e, α0) ∧ SD(v, α1))

PX→Y (e, α) := α0 6= ⊥ ⇒ ∃v



e→∗ v ∧ IX→Y (e, α0)

∧∀w, β(SX(w, β)⇒ PY (vw, α1β))︸ ︷︷ ︸
SX→Y (v,α1)



Thomas Powell (Innsbruck) 5 September 2016 12 / 16



Recall that
[D] := C × JDK︸︷︷︸

s(D)

[X → Y ] := C × (s(X)→ [Y ]︸ ︷︷ ︸
s(X→Y )

)

Suppose that

IX(e, c) is an arbitrary ‘cost’ relation between closed terms e : X and
total objects of c ∈ C while

SD(v, s) is a ‘size’ relation between values of type D and s ∈ JDK defined
at all ground types.

Define the relation PX(e, α) between closed terms e : X and α ∈ [X] as follows:

PD(e, α) := α0 6= ⊥ ⇒ ∃v(e→∗ v ∧ ID(e, α0) ∧ SD(v, α1))

PX→Y (e, α) := α0 6= ⊥ ⇒ ∃v



e→∗ v ∧ IX→Y (e, α0)

∧∀w, β(SX(w, β)⇒ PY (vw, α1β))︸ ︷︷ ︸
SX→Y (v,α1)



Thomas Powell (Innsbruck) 5 September 2016 12 / 16



Recall that
[D] := C × JDK︸︷︷︸

s(D)

[X → Y ] := C × (s(X)→ [Y ]︸ ︷︷ ︸
s(X→Y )

)

Suppose that

IX(e, c) is an arbitrary ‘cost’ relation between closed terms e : X and
total objects of c ∈ C while

SD(v, s) is a ‘size’ relation between values of type D and s ∈ JDK defined
at all ground types.

Define the relation PX(e, α) between closed terms e : X and α ∈ [X] as follows:

PD(e, α) := α0 6= ⊥ ⇒ ∃v(e→∗ v ∧ ID(e, α0) ∧ SD(v, α1))

PX→Y (e, α) := α0 6= ⊥ ⇒ ∃v



e→∗ v ∧ IX→Y (e, α0)

∧∀w, β(SX(w, β)⇒ PY (vw, α1β))︸ ︷︷ ︸
SX→Y (v,α1)


Thomas Powell (Innsbruck) 5 September 2016 12 / 16



All previous translations are simple instances of this. In particular:

Strict semantics:

C = {1,⊥}
IX(e,1) always true,

Snat(n,m) := (n = m)

PX(e, α)⇔ (α0 = 1⇒ ∃v(e→∗ v ∧ α1 ≈ JvK))

where α1 ≈ JvK can be read as α1 is ‘strictly denoted’ by JvK.

Bounded costs:

C = N⊥
IX(e, k) := ∀e′(e→i e′ → i ≤ k)

Snat(n,m) := (n ≤ m)

PX(e, α)⇔ (α0 6= ⊥ ⇒ ∃v(e→k v ∧ k ≤ α0 ∧ v v α1))

where v is a essentially the bounding relation of Danner et al. (2012 & 2015).

Thomas Powell (Innsbruck) 5 September 2016 13 / 16



All previous translations are simple instances of this. In particular:

Strict semantics:

C = {1,⊥}
IX(e,1) always true,

Snat(n,m) := (n = m)

PX(e, α)⇔ (α0 = 1⇒ ∃v(e→∗ v ∧ α1 ≈ JvK))

where α1 ≈ JvK can be read as α1 is ‘strictly denoted’ by JvK.

Bounded costs:

C = N⊥
IX(e, k) := ∀e′(e→i e′ → i ≤ k)

Snat(n,m) := (n ≤ m)

PX(e, α)⇔ (α0 6= ⊥ ⇒ ∃v(e→k v ∧ k ≤ α0 ∧ v v α1))

where v is a essentially the bounding relation of Danner et al. (2012 & 2015).

Thomas Powell (Innsbruck) 5 September 2016 13 / 16



All previous translations are simple instances of this. In particular:

Strict semantics:

C = {1,⊥}
IX(e,1) always true,

Snat(n,m) := (n = m)

PX(e, α)⇔ (α0 = 1⇒ ∃v(e→∗ v ∧ α1 ≈ JvK))

where α1 ≈ JvK can be read as α1 is ‘strictly denoted’ by JvK.

Bounded costs:

C = N⊥
IX(e, k) := ∀e′(e→i e′ → i ≤ k)

Snat(n,m) := (n ≤ m)

PX(e, α)⇔ (α0 6= ⊥ ⇒ ∃v(e→k v ∧ k ≤ α0 ∧ v v α1))

where v is a essentially the bounding relation of Danner et al. (2012 & 2015).

Thomas Powell (Innsbruck) 5 September 2016 13 / 16



Aim. A general semantics of the form

[x] ρ := (cx, ρ(x))

[0] ρ := (c0, 0)

[s] ρ := (cs, λn.(c
′
s, n+ 1))

[λx.t] ρ := (cλx.t, λa.Φt([t] ρ
a
x))

[ts] ρ := (m([t]0 , [s]0 , ([t]1 [s]1)0), ([t]1 [s]1)1)

[fx] ρ := Ψf ([r] ρ)

for recursive functions fx→ r, where

cx, c0, cs and cλx.t are elements of a ‘cost domain’ C;

m : C × C × C → C is a continuous function;

Φt and Ψf are continuous functions [X]→ [X], where r, t : X.

We want a set of conditions on these components in terms of IX and Snat such
that:

Theorem. For all closed terms e : X we have PX(e, [e]).

Thomas Powell (Innsbruck) 5 September 2016 14 / 16



Aim. A general semantics of the form

[x] ρ := (cx, ρ(x))

[0] ρ := (c0, 0)

[s] ρ := (cs, λn.(c
′
s, n+ 1))

[λx.t] ρ := (cλx.t, λa.Φt([t] ρ
a
x))

[ts] ρ := (m([t]0 , [s]0 , ([t]1 [s]1)0), ([t]1 [s]1)1)

[fx] ρ := Ψf ([r] ρ)

for recursive functions fx→ r, where

cx, c0, cs and cλx.t are elements of a ‘cost domain’ C;

m : C × C × C → C is a continuous function;

Φt and Ψf are continuous functions [X]→ [X], where r, t : X.

We want a set of conditions on these components in terms of IX and Snat such
that:

Theorem. For all closed terms e : X we have PX(e, [e]).

Thomas Powell (Innsbruck) 5 September 2016 14 / 16



The difficultly in proving a theorem of this kind for arbitrary terms lies in the
fact that we allow arbitrary (potentially non-terminating) recursive functions.
However, we can initially avoid this by looking at finitary systems with
bounded recursion (via bounded fixpoints fixn or stratified rewrite systems
fnx→ r(n−1)).

Let e(n) denote e with all function symbols replaced by fn.

Lemma (combinatorial part) For all closed terms e(n) : X we have

PX(e(n),
[
e(n)

]
).

Proof. Induction on n and typing of e - it’s here that we do the important
work.

Lemma (domain-theoretic part) Suppose that [e]0 6= ⊥. Then there is
some n such that

[
e(n)

]
0

= [e]0 and
[
e(n)

]
1
v [e]1.

Proof. Standard.

Theorem. For all closed terms e : X we have PX(e, [e]).

Thomas Powell (Innsbruck) 5 September 2016 15 / 16



The difficultly in proving a theorem of this kind for arbitrary terms lies in the
fact that we allow arbitrary (potentially non-terminating) recursive functions.
However, we can initially avoid this by looking at finitary systems with
bounded recursion (via bounded fixpoints fixn or stratified rewrite systems
fnx→ r(n−1)).

Let e(n) denote e with all function symbols replaced by fn.

Lemma (combinatorial part) For all closed terms e(n) : X we have

PX(e(n),
[
e(n)

]
).

Proof. Induction on n and typing of e - it’s here that we do the important
work.

Lemma (domain-theoretic part) Suppose that [e]0 6= ⊥. Then there is
some n such that

[
e(n)

]
0

= [e]0 and
[
e(n)

]
1
v [e]1.

Proof. Standard.

Theorem. For all closed terms e : X we have PX(e, [e]).

Thomas Powell (Innsbruck) 5 September 2016 15 / 16



The difficultly in proving a theorem of this kind for arbitrary terms lies in the
fact that we allow arbitrary (potentially non-terminating) recursive functions.
However, we can initially avoid this by looking at finitary systems with
bounded recursion (via bounded fixpoints fixn or stratified rewrite systems
fnx→ r(n−1)).

Let e(n) denote e with all function symbols replaced by fn.

Lemma (combinatorial part) For all closed terms e(n) : X we have

PX(e(n),
[
e(n)

]
).

Proof. Induction on n and typing of e - it’s here that we do the important
work.

Lemma (domain-theoretic part) Suppose that [e]0 6= ⊥. Then there is
some n such that

[
e(n)

]
0

= [e]0 and
[
e(n)

]
1
v [e]1.

Proof. Standard.

Theorem. For all closed terms e : X we have PX(e, [e]).

Thomas Powell (Innsbruck) 5 September 2016 15 / 16



The difficultly in proving a theorem of this kind for arbitrary terms lies in the
fact that we allow arbitrary (potentially non-terminating) recursive functions.
However, we can initially avoid this by looking at finitary systems with
bounded recursion (via bounded fixpoints fixn or stratified rewrite systems
fnx→ r(n−1)).

Let e(n) denote e with all function symbols replaced by fn.

Lemma (combinatorial part) For all closed terms e(n) : X we have

PX(e(n),
[
e(n)

]
).

Proof. Induction on n and typing of e - it’s here that we do the important
work.

Lemma (domain-theoretic part) Suppose that [e]0 6= ⊥. Then there is
some n such that

[
e(n)

]
0

= [e]0 and
[
e(n)

]
1
v [e]1.

Proof. Standard.

Theorem. For all closed terms e : X we have PX(e, [e]).

Thomas Powell (Innsbruck) 5 September 2016 15 / 16



Some results

Extension of existing cost semantics. In particular we can generalise
bounding relation of Danner et al. to a standard call-by-value higher
order language with arbitrary recursion.

Provide a uniform framework in which a variety of cost semantics can be
understood.

Enable one to obtain new monadic denotational semantics for which
soundness and adequacy can be easily verified.

This is all work in progress! However the main goal for the future would be to
utilise the translations to analyse programs. For example:

Can we automatically solve the extracted recursive equations which e.g.
characterise cost of a program?

Can we give a set of conditions which guarantee that this cost functional
can be defined in a weak system?

Thomas Powell (Innsbruck) 5 September 2016 16 / 16



Some results

Extension of existing cost semantics. In particular we can generalise
bounding relation of Danner et al. to a standard call-by-value higher
order language with arbitrary recursion.

Provide a uniform framework in which a variety of cost semantics can be
understood.

Enable one to obtain new monadic denotational semantics for which
soundness and adequacy can be easily verified.

This is all work in progress! However the main goal for the future would be to
utilise the translations to analyse programs. For example:

Can we automatically solve the extracted recursive equations which e.g.
characterise cost of a program?

Can we give a set of conditions which guarantee that this cost functional
can be defined in a weak system?

Thomas Powell (Innsbruck) 5 September 2016 16 / 16


