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This is the second of two papers in which simple proofs of Lq-estimates of
solutions to the steady-state three-dimensional Oseen and Stokes equations in
a rotating frame of reference are given. In this part, estimates are established
in terms of data in homogeneous Sobolev spaces of negative order.

1 Introduction

As in [6], we study the system{
−∆v +∇p−R∂3v − T

(
e3 ∧x · ∇v − e3 ∧v

)
= f in R3,

div v = 0 in R3,
(1.1)

where R ≥ 0 and T > 0 are dimensionless constants. Here, v : R3 → R3 and p : R3 → R
represents an Eulerian velocity and pressure term, respectively, of a Navier-Stokes liquid
in a frame of reference rotating with angular velocity T e3 relative to some inertial
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frame. The above system is the classical steady-state whole space Oseen (R > 0) or
Stokes (R = 0) problem with the extra term T

(
e3 ∧x · ∇v − e3 ∧v

)
, which stems from

the rotating frame of reference. Due to the unbounded coefficient e3 ∧x, this term can
not be treated at a perturbation to the Oseen or Stokes operator.

In [6] we gave an elementary proof of Lq-estimates of solutions (v, p) to (1.1) in terms
of data f ∈ Lq(R3)3, 1 < q < ∞. Such estimates had already been shown in [2] and
[1], but with very technical and non-trivial proofs based on an appropriate coupling of
the Littlewood-Payley decomposition theorem and multiplier theory. In [9] and [8] the
approach of [2] and [1] was used to prove Lq-estimates of weak solutions to (1.1) in terms
of data f in the homogeneous Sobolev space D−1,q0 (R3)3 of negative order. Our aim in
this paper is to extend our approach from [6] and give an elementary proof of these
estimates of weak solutions.

Our main theorem reads:

Theorem 1.1. Let 1 < q < ∞, R0 > 0, 0 ≤ R < R0, and T > 0. For any
f ∈ D−1,q0 (R3)3 there exists a solution (v, p) ∈ D1,q(R3)3 × Lq(R3) to (1.1) that sat-
isfies

‖∇v‖q + ‖p‖q ≤ C1|f |−1,q, (1.2)

with C1 independent of R0, R, and T . Moreover,

|R∂3v|−1,q + |T
(

e3 ∧x · ∇v − e3 ∧v
)
|−1,q ≤ C2

(
1 +

1

T 2

)
|f |−1,q, (1.3)

with C2 = C2(R0). Furthermore, if (ṽ, p̃) ∈ D1,r(R3)3 × Lr(R3), 1 < r <∞, is another
solution to (1.1), then

ṽ = v + α e3 (1.4)

for some α ∈ R.

Remark 1.2. In [8, Theorem 2.1 and Proposition 3.2] it is stated that a solution (v, p) ∈
D1,q(R3)3 × Lq(R3) to (1.1) with f ∈ D−1,q0 (R3)3 satisfies

|R∂3v|−1,q + |T
(

e3 ∧x · ∇v − e3 ∧v
)
|−1,q ≤ C3|f |−1,q

with C3 independent of T . However, going through the proofs in [8], one finds out that
this is not the case, and that the constant C3 does, in fact, depend on T in the way
shown in (1.3). More specifically, in [8, Appendix 2] the constant in the estimate of the
Fourier multiplier clearly depends on T ; this estimate is later used in the proof of [8,
Proposition 3.2].

Before giving a proof of Theorem 1.1, we first recall some standard notation. By
Lq(R3) we denote the usual Lebesgue space with norm ‖·‖q. For m ∈ N and 1 < q <∞,
we use Dm,q(R3) to denote the homogeneous Sobolev space with semi-norm |·|m,q, i.e,

|v|m,q :=

( ∑
|α|=m

∫
R3

|∂αv(x)|q dx

) 1
q

, Dm,q := {v ∈ L1
loc(R3) | |v|m,q <∞}.
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We put Dm,q
0 (R3) := C∞0 (R3)

|·|m,q . We introduce homogeneous Sobolev spaces of neg-

ative order as the dual spaces D−m,q0 (R3) :=
(
Dm,q′

0 (R3)
)′

, and denote their norms by
|·|−m,q. Here, and throughout the paper, q′ := q/(q−1) denotes the Hölder conjugate of q.

For functions u : R3×R→ R, we let div u(x, t) := divx u(x, t), ∆u(x, t) := ∆xu(x, t) etc.,
that is, unless otherwise indicated, differential operators act in the spatial variable x only.
We use Ff = f̂ to denote the Fourier transformation. We put Bm := {x ∈ R3 | |x| < m}.
Finally, note that constants in capital letters in the proofs and theorems are global, while
constants in small letters are local to the proof in which they appear.

2 Proof of Main Theorem

As in [6], we make use of an idea going back to [5] and transform solutions to (1.1) into
time-periodic solutions to the classical time-dependent Oseen and Stokes problem. For
this purpose, we introduce the rotation matrix corresponding to the angular velocity
T e3:

Q(t) :=

cos(T t) − sin(T t) 0
sin(T t) cos(T t) 0

0 0 1

 .

We split the proof into several lemmas. We begin to recall the following result; see [4]
or [11].

Lemma 2.1. Let R ≥ 0 and T > 0. For any h ∈ C∞0 (R3)3×3 there is a solution

(v, p) ∈ D1,2(R3)3 ∩ L6(R3)3 × L2(R3) (2.1)

to {
−∆v +∇p−R∂3v − T

(
e3 ∧x · ∇v − e3 ∧v

)
= div h in R3,

div v = 0 in R3
(2.2)

that satisfies

‖∇v‖2 + ‖p‖2 ≤ C4‖h‖2, (2.3)

with C4 independent of R and T . Moreover

(v, p) ∈ ∩∞m=1D
m+1,2(R3)3 ×Dm,2(R3). (2.4)

In the next lemma we establish suitable Lq-estimates of the solution introduced above.

Lemma 2.2. Let R ≥ 0 and T > 0. Let 1 < q <∞ and h ∈ C∞0 (R3)3×3. The solution
(v, p) from Lemma 2.1 satisfies

‖∇v‖q + ‖p‖q ≤ C5‖h‖q, (2.5)

with C5 independent of R and T .
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Proof. Assume first that q > 2. Let T > 0. For (x, t) ∈ R3 × R put

u(x, t) := Q(t)v
(
Q(t)>x−Rt e3

)
, p(x, t) := p

(
Q(t)>x−Rt e3

)
,

H(x, t) := Q(t)h
(
Q(t)>x−Rt e3

)
Q(t)>.

Then 
∂tu−∆u+∇p = divH in R3 × (0, T ),

div u = 0 in R3 × (0, T ),

u(x, 0) = v(x) in R3.

(2.6)

By well-known theory of the time-dependent Stokes equations, see for example [10, Sec.
5, Theorem 6], the Cauchy problem

∂tu1 −∆u1 = divH −∇p in R3 × (0, T ),

div u1 = 0 in R3 × (0, T ),

lim
t→0+

‖u1(·, t)‖6 = 0

has a solution with u1 ∈ Lr
(
R3 × (0, T )

)3
for all 1 < r <∞, and

‖∇u1‖Lr(R3×(0,T )) ≤ c1‖H‖Lr(R3×(0,T )),

with c1 independent of T . Put

u2(x, t) := (4πt)−3/2
∫
R3

e−|x−y|
2/4t v(y) dy. (2.7)

An elementary calculation shows that u2 ∈ L6
(
R3×(0, T )

)
, ∂tu2,∇u2,∇2u2 ∈ L6

loc

(
R3×

(0, T )
)
, and that u2 solves

∂tu2 −∆u2 = 0 in R3 × (0, T ),

div u2 = 0 in R3 × (0, T ),

lim
t→0+

‖u2(·, t)− v(·)‖6 = 0.

Taking derivatives on both sides in (2.7) and applying Young’s inequality, we obtain

‖∇u2(·, t)‖Lq(R3) ≤ c2 t
− 3

2
( 1
2
− 1

q
) ‖∇v‖2,

with c2 independent of T . We claim that u = u1 + u2 in R3 × (0, T ). This follows from
the fact that u1 + u2 satisfies (2.6), combined with a uniqueness argument, for example
[7, Lemma 3.6]. We can now estimate

(T − 1)‖∇v‖qq =

∫ T

1

∫
R3

|∇u(x, t)|q dxdt

≤ c3
(
‖∇u1‖qLq(R3×(0,T )) +

∫ T

1
‖∇u2(·, t)‖qq dt

)
≤ c4

(
‖H‖q

Lq(R3×(0,T )) +

∫ T

1
t
− 3q

2
( 1
2
− 1

q
)‖∇v‖q2 dt

)
≤ c5

(
T‖h‖qq + (T

− 3q
2
( 1
2
− 1

q
)+1 − 1)‖∇v‖q2

)
,
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with c5 independent of T , and also of R and T . Dividing both sides with T , and
subsequently letting T → ∞, we conclude, recall q > 2 by assumption, that ‖∇v‖q ≤
c5‖h‖q. Finally, we deduce directly from (2.2), applying div on both sides in (1.1)1, that
∆p = div div h, which implies that ‖p‖q ≤ c6‖h‖q, with c6 independent of R and T .
Hence (2.5) follows in the case q > 2.

The case q = 2 is included in Lemma 2.1. Consider now 1 < q < 2. In this case we
will establish (2.5) by a duality argument. Consider for this purpose ϕ ∈ C∞0 (R3)3×3.
For notational purposes, we put

Lv := −∆v −R∂3v − T
(

e3 ∧x · ∇v − e3 ∧v
)
, (2.8)

L∗v := −∆v +R∂3v + T
(

e3 ∧x · ∇v − e3 ∧v
)
. (2.9)

As in Lemma 2.1, one can show the existence of a solution (ψ, η), in the class (2.1) and
(2.4), to the adjoint problem {

L∗ψ +∇η = divϕ in R3,

divψ = 0 in R3.
(2.10)

By arguments as above, one can also show that

∀r ∈ (2,∞) : ‖∇ψ‖r + ‖η‖r ≤ c7‖ϕ‖r, (2.11)

with c7 independent ofR and T . The summability properties of (v, p) and (ψ, η), ensured
by Lemma 2.1 and supplemented by [6, Theorem 1], enables us to calculate

|
∫
R3

∇v : ϕdx| = |
∫
R3

v · divϕdx| = |
∫
R3

v · L∗ψ dx|

= |
∫
R3

Lv · ψ dx| = |
∫
R3

div h · ψ dx| = |
∫
R3

h : ∇ψ dx|

≤ ‖h‖q‖∇ψ‖q′ ≤ c7‖h‖q‖ϕ‖q′ ,

(2.12)

where the third equality follows by partial integration in the same manner as in [6, Proof
of Lemma 2.3], and last estimates from (2.11) since 2 < q′ < ∞. Having established
(2.12) for arbitrary ϕ, we conclude that ‖∇v‖q ≤ c7‖h‖q. Finally, the estimate ‖p‖q ≤
c8‖h‖q follows simply from the fact that ∆p = div div h. We have thus established (2.5)
also in the case 1 < q ≤ 2. This concludes the lemma.

In the next lemma we establish estimates of the lower order terms on the left-hand
side of (1.1).

Lemma 2.3. Let R > 0 and T > 0. Let 1 < q <∞ and h ∈ C∞0 (R3)3×3. The solution
(v, p) from Lemma 2.1 satisfies

|R∂3v|−1,q + |T
(

e3 ∧x · ∇v − e3 ∧v
)
|−1,q ≤ C6

(
1 +

1

T 2

)
‖h‖q, (2.13)

with C6 = C6(R0).
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Proof. Consider first 1 < q ≤ 2. For (x, t) ∈ R3 × R put

u(x, t) := Q(t)v
(
Q(t)>x

)
, p(x, t) := p

(
Q(t)>x

)
,

H(x, t) := Q(t)h
(
Q(t)>x

)
Q(t)>.

Note that u, p, and H are smooth and 2π
T -periodic in the t variable. We can therefore

expand these fields in their Fourier-series. More precisely, we have

u(x, t) =
∑
k∈Z

uk(x) eiT kt, p(x, t) =
∑
k∈Z

pk(x) eiT kt,

H(x, t) =
∑
k∈Z

Hk(x) eiT kt,

with

uk(x) :=
T
2π

∫ 2π/T

0
u(x, t) e−iT kt dt, pk(x) :=

T
2π

∫ 2π/T

0
p(x, t) e−iT kt dt,

Hk(x) :=
T
2π

∫ 2π/T

0
H(x, t) e−iT kt dt.

As one may easily verify,{
∂tu−∆u+∇p−R∂3u = divH in R3 × R,
div u = 0 in R3 × R.

(2.14)

Replacing in (2.14) u, p, and H with their respective Fourier series, we find that each
Fourier coefficient satisfies{

iT kuk −∆uk +∇pk −R∂3uk = divHk in R3,

div uk = 0 in R3.
(2.15)

In the case k = 0, (2.15) reduces to the classical Oseen system. By well-known theory,
see for example [3, Theorem VII.4.2],

‖∇u0‖q +R|∂3u0|−1,q ≤ c1‖H0‖q ≤ c2‖h‖q, (2.16)

with c2 independent ofR and T . Consider now k 6= 0. By Minkowski’s integral inequality
and Lemma 2.2, we find that

‖∇uk‖q ≤
T
2π

∫ 2π/T

0

(∫
R3

|∇u(x, t)|q dx

)1/q

dt = ‖∇v‖q ≤ C5‖h‖q,

and similarly ‖pk‖q ≤ C5‖h‖q. We can thus conclude from (2.15) that

|T k||uk|−1,q ≤ ‖∇uk‖q + ‖pk‖q +R|∂3uk|−1,q ≤ c3‖h‖q +R|∂3uk|−1,q, (2.17)
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with c3 independent of R and T . A simple interpolation argument yields

|∂3uk|−1,q ≤ c4(ε|uk|−1,q + ε−1‖∇uk‖q) (2.18)

for all ε > 0. We now choose ε = |T k|/(2Rc4) in (2.18) and apply the resulting estimate
in (2.17). It follows that

|uk|−1,q ≤ c5
1

|T k|

(
1 +

R2

|T k|

)
‖h‖q (k 6= 0), (2.19)

with c5 independent of R and T . We observe at this point that v(x) = u(x, 0) =∑
k∈Z uk(x), and put

v1 := v − u0. (2.20)

We then define

U(x, t) := Q(t)v1
(
Q(t)>x

)
= u(x, t)− u0 =

∑
k 6=0

uk(x) eiT kt .

The first equality above follows from the fact that Q(t)u0(Q(t)>x) = u0(x) for all t ∈ R,
which one easily verifies directly from the definition of u0. Now let ϕ ∈ C∞0 (R3)3 and
put Φ(x, t) := Q(t)ϕ(Q(t)>x). Since Φ is smooth and 2π/T -periodic in t, we can write
Φ in terms of its Fourier-series:

Φ(x, t) =
∑
k∈Z

Φk(x) eiT kt, Φk(x) :=
T
2π

∫ 2π/T

0
Φ(x, t) e−iT kt dt.

We now compute, using Parseval’s identity and (2.19),

|
∫
R3

v1(x) · ϕ(x) dx| = | T
2π

∫ 2π/T

0

∫
R3

U(x, t) · Φ(x, t) dxdt|

= |
∫
R3

∑
k 6=0

uk(x) · Φk(x) dx|

≤
∑
k 6=0

|uk|−1,q‖∇Φk‖q′

≤ c5
(

1 +
R2

T

)
‖h‖q

∑
k 6=0

1

|T k|
‖∇Φk‖q′

≤ c5
(

1 +
R2

T

)
1

T
‖h‖q

(∑
k 6=0

1

|k|q
) 1

q
(∑
k 6=0

‖∇Φk‖q
′

q′

) 1
q′

.

Recalling that 1 < q ≤ 2, we employ the Hausdorff-Young inequality to estimate(∑
k 6=0

‖∇Φk‖q
′

q′

) 1
q′

≤
(∫

R3

[
T
2π

∫ 2π/T

0
|∇Φ(x, t)|q dt

] q′
q

dx

) 1
q′

.
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Applying Minkowski’s integral inequality to the right-hand side above, we obtain(∑
k 6=0

‖∇Φk‖q
′

q′

) 1
q′

≤
(
T
2π

∫ 2π/T

0

[ ∫
R3

|∇Φ(x, t)|q
′
dx

] q
q′

dt

) 1
q

= ‖∇ϕ‖q′ .

We thus conclude that

|
∫
R3

v1(x) · ϕ(x) dx| ≤ c6
(

1 +
R2

T

)
1

T
‖h‖q‖∇ϕ‖q′ ,

and consequently, since ϕ is arbitrary,

|v1|−1,q ≤ c7
(

1 +
R2

T

)
1

T
‖h‖q, (2.21)

with c7 independent of R and T . By the same interpolation argument as in (2.18), we
estimate

|∂3v1|−1,q ≤ c8(|v1|−1,q + ‖∇v1‖q). (2.22)

Combining now (2.22), (2.21), (2.20), (2.16), and (2.5), we obtain

∀q ∈ (1, 2] : |R∂3v|−1,q ≤ c9
(

1 +
1

T 2

)
‖h‖q, (2.23)

with c9 = c9(R0).

Consider now 2 < q < ∞. Let ϕ ∈ C∞0 (R3)3. Recall (2.8) and (2.9). By [6, Lemma
2.1] there is a solution (ψ, η) ∈ D1,2(R3)3 ∩ L6(R3)3 × L6(R3) to{

L∗ψ +∇η = ϕ in R3,

divψ = 0 in R3
(2.24)

satisfying (2.4). Moreover, since ∆ commutes with L∗, (∆ψ,∆η) satisfies{
L∗∆ψ +∇∆η = div∇ϕ in R3,

div ∆ψ = 0 in R3.
(2.25)

Repeating the argument from above leading to (2.23), we also obtain

∀r ∈ (1, 2] : |R∂3∆ψ|−1,r ≤ c10
(

1 +
1

T 2

)
‖∇ϕ‖r, (2.26)

with c10 = c10(R0). As in (2.12), we compute∫
R3

∂3v · ϕdx =

∫
R3

∂3v · L∗ψ dx = −
∫
R3

Lv · ∂3ψ dx = −
∫
R3

div h · ∂3ψ dx.
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Put Θi := F−1
[ ξj
|ξ|2 ĥij(ξ)

]
, i = 1, 2, 31. Then Θ ∈ Lr(R3)3 for all r ∈ (3/2,∞), ‖∇Θ‖q ≤

c11‖h‖q, and ∆Θ = div h. It follows that

|
∫
R3

∂3v · ϕdx| = |
∫
R3

Θ · ∂3∆ψ dx| ≤ ‖∇Θ‖q|∂3∆ψ|−1,q′ ≤ c12‖h‖q|∂3∆ψ|−1,q′ .

Since q′ ∈ (1, 2), we deduce by (2.26) that

|
∫
R3

∂3v · ϕdx| ≤ c13
(

1 +
1

T 2

)
‖h‖q‖∇ϕ‖q′ .

We conclude |R∂3v|−1,q ≤ c14(1 + T −2)‖h‖q, with c14 = c14(R0).

Since T
(

e3 ∧x ·∇v−e3 ∧v
)

= ∆v−∇p+R∂3v+div h, the estimates already obtained
in (2.5) together with the estimate for R∂3v above imply

|T
(

e3 ∧x · ∇v − e3 ∧v
)
|−1,q ≤ c15

(
1 +

1

T 2

)
‖h‖q,

with c15 = c15(R0). We have thus established (2.13) completely.

We can now finalize the proof of the main theorem.

Proof of Theorem 1.1. Except for the uniqueness statement, Lemma 2.1–2.3 establish
the theorem in the case f = div h for some h ∈ C∞0 (R3)3×3. It remains to extend
to the general case f ∈ D−1,q0 (R3)3. Consider therefore f ∈ D−1,q0 (R3)3. Choose a

sequence {hn}∞n=1 ⊂ C∞0 (R3)3×3 with limn→∞ div hn = f in D−1,q0 (R3)3. Let (vn, pn) be
the solution from Lemma 2.1 corresponding to the right-hand side div hn. Then choose
κn ∈ R3 such that 0 =

∫
B1
vn − κn dx. From Lemma 2.2 and Poincaré’s inequality, it

follows that {(vn − κn, pn)}∞n=1 is a Cauchy sequence in the Banach space

Xm := {(v, p) ∈ L1
loc(R3)3 × L1

loc(R3) | ‖(v, p)‖Xm <∞},
‖(v, p)‖Xm := ‖∇v‖q + ‖p‖q + ‖v‖Lq(Bm)

for all m ∈ N. Consequently, there is an element (v, p) ∈ ∩m∈NXm with the property
that limn→∞(vn − κn, pn) = (v, p) in Xm for all m ∈ N. Recall (2.8). It follows that
limn→∞[L(vn−κn)+∇pn] = Lv+∇p in D′(R3)3. By construction, limn→∞[Lvn+∇pn] =
f in D−1,q0 (R3)3. We thus deduce that limn→∞ Lκn = f − [Lv + ∇p]. Consequently,
f−[Lv+∇p] = Lκ for some κ ∈ R3. It follows that (v+κ, p) ∈ D1,q(R3)3×Lq(R3) solves
(1.1). Moreover, since (vn, pn) satisfies (1.2) and (1.3) for all n ∈ N, so does (v + κ, p).
This concludes the first part of the theorem.

To prove the statement of uniqueness, assume that (ṽ, p̃) ∈ D1,r(R3)3 × Lr(R3) is
another solution to (1.1). Put w := v − ṽ and q := p − p̃. It immediately follows that
∆q = 0, which, since q ∈ Lq(R3) + Lr(R3), implies that q = 0. Now put U(x, t) :=

1Following the summation convention, we implicitly sum over repeated indices.
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Q(t)w(Q(t)>x) for (x, t) ∈ R3 × R. Since U is smooth and 2π/T -periodic in t, we can
write U in terms of its Fourier-series

U(x, t) =
∑
k∈Z

Uk(x) eiT kt, Uk(x) :=
T
2π

∫ 2π/T

0
U(x, t) e−iT kt dt.

As one may easily verify, Uk satisfies iT kUk − ∆Uk − R∂3Uk = 0 in S ′(R3)3. Thus,

Fourier transformation yields
(
i(T k − Rξ3) + |ξ|2

)
Ûk = 0. It follows that Uk = 0 for

all k 6= 0. Moreover, since
(
− iRξ3 + |ξ|2

)
Û0 = 0, it follows that supp(Û0) ⊂ {0}.

Consequently, since U0 ∈ D1,q(R3)3 +D1,r(R3)3, U0 = b for some b ∈ R3. It follows that
U(x, t) = b = Q(t)w(Q(t)>x) for all t ∈ R and x ∈ R3. Thus, Q(t)>b is t-independent,
and so b = α e3 for some α ∈ R. We conclude that w(x) = U0(x) = α e3.
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