A simple proof of L^{q}-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: Weak solutions

Giovanni P. Galdi*
Department of Mechanical Engineering and Materials Science University of Pittsburgh, U.S.A
email:galdi@pitt.edu
Mads Kyed ${ }^{\dagger}$
Fachbereich Mathematik
Technische Universität Darmstadt, Germany email: kyed@mathematik.tu-darmstadt.de

June 20, 2011

Abstract

This is the second of two papers in which simple proofs of L^{q}-estimates of solutions to the steady-state three-dimensional Oseen and Stokes equations in a rotating frame of reference are given. In this part, estimates are established in terms of data in homogeneous Sobolev spaces of negative order.

1 Introduction

As in [6], we study the system

$$
\begin{cases}-\Delta v+\nabla p-\mathcal{R} \partial_{3} v-\mathcal{T}\left(\mathrm{e}_{3} \wedge x \cdot \nabla v-\mathrm{e}_{3} \wedge v\right)=f & \text { in } \mathbb{R}^{3}, \tag{1.1}\\ \operatorname{div} v=0 & \text { in } \mathbb{R}^{3}\end{cases}
$$

where $\mathcal{R} \geq 0$ and $\mathcal{T}>0$ are dimensionless constants. Here, $v: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $p: \mathbb{R}^{3} \rightarrow \mathbb{R}$ represents an Eulerian velocity and pressure term, respectively, of a Navier-Stokes liquid in a frame of reference rotating with angular velocity $\mathcal{T} \mathrm{e}_{3}$ relative to some inertial

[^0]frame. The above system is the classical steady-state whole space Oseen ($\mathcal{R}>0$) or Stokes $(\mathcal{R}=0)$ problem with the extra term $\mathcal{T}\left(\mathrm{e}_{3} \wedge x \cdot \nabla v-\mathrm{e}_{3} \wedge v\right)$, which stems from the rotating frame of reference. Due to the unbounded coefficient $\mathrm{e}_{3} \wedge x$, this term can not be treated at a perturbation to the Oseen or Stokes operator.

In [6] we gave an elementary proof of L^{q}-estimates of solutions (v, p) to (1.1) in terms of data $f \in L^{q}\left(\mathbb{R}^{3}\right)^{3}, 1<q<\infty$. Such estimates had already been shown in [2] and [1], but with very technical and non-trivial proofs based on an appropriate coupling of the Littlewood-Payley decomposition theorem and multiplier theory. In [9] and [8] the approach of [2] and [1] was used to prove L^{q}-estimates of weak solutions to (1.1) in terms of data f in the homogeneous Sobolev space $D_{0}^{-1, q}\left(\mathbb{R}^{3}\right)^{3}$ of negative order. Our aim in this paper is to extend our approach from [6] and give an elementary proof of these estimates of weak solutions.

Our main theorem reads:
Theorem 1.1. Let $1<q<\infty, \mathcal{R}_{0}>0,0 \leq \mathcal{R}<\mathcal{R}_{0}$, and $\mathcal{T}>0$. For any $f \in D_{0}^{-1, q}\left(\mathbb{R}^{3}\right)^{3}$ there exists a solution $(v, p) \in D^{1, q}\left(\mathbb{R}^{3}\right)^{3} \times L^{q}\left(\mathbb{R}^{3}\right)$ to (1.1) that satisfies

$$
\begin{equation*}
\|\nabla v\|_{q}+\|p\|_{q} \leq C_{1}|f|_{-1, q}, \tag{1.2}
\end{equation*}
$$

with C_{1} independent of $\mathcal{R}_{0}, \mathcal{R}$, and \mathcal{T}. Moreover,

$$
\begin{equation*}
\left|\mathcal{R} \partial_{3} v\right|_{-1, q}+\left|\mathcal{T}\left(\mathrm{e}_{3} \wedge x \cdot \nabla v-\mathrm{e}_{3} \wedge v\right)\right|_{-1, q} \leq C_{2}\left(1+\frac{1}{\mathcal{T}^{2}}\right)|f|_{-1, q}, \tag{1.3}
\end{equation*}
$$

with $C_{2}=C_{2}\left(\mathcal{R}_{0}\right)$. Furthermore, if $(\tilde{v}, \tilde{p}) \in D^{1, r}\left(\mathbb{R}^{3}\right)^{3} \times L^{r}\left(\mathbb{R}^{3}\right), 1<r<\infty$, is another solution to (1.1), then

$$
\begin{equation*}
\tilde{v}=v+\alpha \mathrm{e}_{3} \tag{1.4}
\end{equation*}
$$

for some $\alpha \in \mathbb{R}$.
Remark 1.2. In [8, Theorem 2.1 and Proposition 3.2] it is stated that a solution $(v, p) \in$ $D^{1, q}\left(\mathbb{R}^{3}\right)^{3} \times L^{q}\left(\mathbb{R}^{3}\right)$ to (1.1) with $f \in D_{0}^{-1, q}\left(\mathbb{R}^{3}\right)^{3}$ satisfies

$$
\left|\mathcal{R} \partial_{3} v\right|_{-1, q}+\left|\mathcal{T}\left(\mathrm{e}_{3} \wedge x \cdot \nabla v-\mathrm{e}_{3} \wedge v\right)\right|_{-1, q} \leq C_{3}|f|_{-1, q}
$$

with C_{3} independent of \mathcal{T}. However, going through the proofs in [8], one finds out that this is not the case, and that the constant C_{3} does, in fact, depend on \mathcal{T} in the way shown in (1.3). More specifically, in [8, Appendix 2] the constant in the estimate of the Fourier multiplier clearly depends on \mathcal{T}; this estimate is later used in the proof of $[8$, Proposition 3.2].

Before giving a proof of Theorem 1.1, we first recall some standard notation. By $L^{q}\left(\mathbb{R}^{3}\right)$ we denote the usual Lebesgue space with norm $\|\cdot\|_{q}$. For $m \in \mathbb{N}$ and $1<q<\infty$, we use $D^{m, q}\left(\mathbb{R}^{3}\right)$ to denote the homogeneous Sobolev space with semi-norm $|\cdot|_{m, q}$, i.e,

$$
|v|_{m, q}:=\left(\sum_{|\alpha|=m} \int_{\mathbb{R}^{3}}\left|\partial^{\alpha} v(x)\right|^{q} \mathrm{~d} x\right)^{\frac{1}{q}}, D^{m, q}:=\left\{\left.v \in L_{l o c}^{1}\left(\mathbb{R}^{3}\right)| | v\right|_{m, q}<\infty\right\} .
$$

We put $D_{0}^{m, q}\left(\mathbb{R}^{3}\right):=\overline{\left.C_{0}^{\infty}\left(\mathbb{R}^{3}\right)^{|\cdot|}\right|_{m, q}}$. We introduce homogeneous Sobolev spaces of negative order as the dual spaces $D_{0}^{-m, q}\left(\mathbb{R}^{3}\right):=\left(D_{0}^{m, q^{\prime}}\left(\mathbb{R}^{3}\right)\right)^{\prime}$, and denote their norms by $|\cdot|_{-m, q}$. Here, and throughout the paper, $q^{\prime}:=q /(q-1)$ denotes the Hölder conjugate of q. For functions $u: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}$, we let $\operatorname{div} u(x, t):=\operatorname{div}_{x} u(x, t), \Delta u(x, t):=\Delta_{x} u(x, t)$ etc., that is, unless otherwise indicated, differential operators act in the spatial variable x only. We use $\mathcal{F} f=\widehat{f}$ to denote the Fourier transformation. We put $\mathrm{B}_{m}:=\left\{x \in \mathbb{R}^{3}| | x \mid<m\right\}$. Finally, note that constants in capital letters in the proofs and theorems are global, while constants in small letters are local to the proof in which they appear.

2 Proof of Main Theorem

As in [6], we make use of an idea going back to [5] and transform solutions to (1.1) into time-periodic solutions to the classical time-dependent Oseen and Stokes problem. For this purpose, we introduce the rotation matrix corresponding to the angular velocity $\mathcal{T} \mathrm{e}_{3}$:

$$
Q(t):=\left(\begin{array}{ccc}
\cos (\mathcal{T} t) & -\sin (\mathcal{T} t) & 0 \\
\sin (\mathcal{T} t) & \cos (\mathcal{T} t) & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

We split the proof into several lemmas. We begin to recall the following result; see [4] or [11].

Lemma 2.1. Let $\mathcal{R} \geq 0$ and $\mathcal{T}>0$. For any $h \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)^{3 \times 3}$ there is a solution

$$
\begin{equation*}
(v, p) \in D^{1,2}\left(\mathbb{R}^{3}\right)^{3} \cap L^{6}\left(\mathbb{R}^{3}\right)^{3} \times L^{2}\left(\mathbb{R}^{3}\right) \tag{2.1}
\end{equation*}
$$

to

$$
\begin{cases}-\Delta v+\nabla p-\mathcal{R} \partial_{3} v-\mathcal{T}\left(\mathrm{e}_{3} \wedge x \cdot \nabla v-\mathrm{e}_{3} \wedge v\right)=\operatorname{div} h & \text { in } \mathbb{R}^{3}, \tag{2.2}\\ \operatorname{div} v=0 & \text { in } \mathbb{R}^{3}\end{cases}
$$

that satisfies

$$
\begin{equation*}
\|\nabla v\|_{2}+\|p\|_{2} \leq C_{4}\|h\|_{2}, \tag{2.3}
\end{equation*}
$$

with C_{4} independent of \mathcal{R} and \mathcal{T}. Moreover

$$
\begin{equation*}
(v, p) \in \cap_{m=1}^{\infty} D^{m+1,2}\left(\mathbb{R}^{3}\right)^{3} \times D^{m, 2}\left(\mathbb{R}^{3}\right) \tag{2.4}
\end{equation*}
$$

In the next lemma we establish suitable L^{q}-estimates of the solution introduced above.
Lemma 2.2. Let $\mathcal{R} \geq 0$ and $\mathcal{T}>0$. Let $1<q<\infty$ and $h \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)^{3 \times 3}$. The solution (v, p) from Lemma 2.1 satisfies

$$
\begin{equation*}
\|\nabla v\|_{q}+\|p\|_{q} \leq C_{5}\|h\|_{q}, \tag{2.5}
\end{equation*}
$$

with C_{5} independent of \mathcal{R} and \mathcal{T}.

Proof. Assume first that $q>2$. Let $T>0$. For $(x, t) \in \mathbb{R}^{3} \times \mathbb{R}$ put

$$
\begin{aligned}
& u(x, t):=Q(t) v\left(Q(t)^{\top} x-\mathcal{R} t \mathrm{e}_{3}\right), \quad \mathfrak{p}(x, t):=p\left(Q(t)^{\top} x-\mathcal{R} t \mathrm{e}_{3}\right) \\
& H(x, t):=Q(t) h\left(Q(t)^{\top} x-\mathcal{R} t \mathrm{e}_{3}\right) Q(t)^{\top}
\end{aligned}
$$

Then

$$
\begin{cases}\partial_{t} u-\Delta u+\nabla \mathfrak{p}=\operatorname{div} H & \text { in } \mathbb{R}^{3} \times(0, T) \tag{2.6}\\ \operatorname{div} u=0 & \text { in } \mathbb{R}^{3} \times(0, T) \\ u(x, 0)=v(x) & \text { in } \mathbb{R}^{3}\end{cases}
$$

By well-known theory of the time-dependent Stokes equations, see for example [10, Sec. 5, Theorem 6], the Cauchy problem

$$
\begin{cases}\partial_{t} u_{1}-\Delta u_{1}=\operatorname{div} H-\nabla \mathfrak{p} & \text { in } \mathbb{R}^{3} \times(0, T) \\ \operatorname{div} u_{1}=0 & \text { in } \mathbb{R}^{3} \times(0, T) \\ \lim _{t \rightarrow 0^{+}}\left\|u_{1}(\cdot, t)\right\|_{6}=0 & \end{cases}
$$

has a solution with $u_{1} \in L^{r}\left(\mathbb{R}^{3} \times(0, T)\right)^{3}$ for all $1<r<\infty$, and

$$
\left\|\nabla u_{1}\right\|_{L^{r}\left(\mathbb{R}^{3} \times(0, T)\right)} \leq c_{1}\|H\|_{L^{r}\left(\mathbb{R}^{3} \times(0, T)\right)}
$$

with c_{1} independent of T. Put

$$
\begin{equation*}
u_{2}(x, t):=(4 \pi t)^{-3 / 2} \int_{\mathbb{R}^{3}} \mathrm{e}^{-|x-y|^{2} / 4 t} v(y) \mathrm{d} y \tag{2.7}
\end{equation*}
$$

An elementary calculation shows that $u_{2} \in L^{6}\left(\mathbb{R}^{3} \times(0, T)\right), \partial_{t} u_{2}, \nabla u_{2}, \nabla^{2} u_{2} \in L_{l o c}^{6}\left(\mathbb{R}^{3} \times\right.$ $(0, T))$, and that u_{2} solves

$$
\begin{cases}\partial_{t} u_{2}-\Delta u_{2}=0 & \text { in } \mathbb{R}^{3} \times(0, T) \\ \operatorname{div} u_{2}=0 & \text { in } \mathbb{R}^{3} \times(0, T) \\ \lim _{t \rightarrow 0^{+}}\left\|u_{2}(\cdot, t)-v(\cdot)\right\|_{6}=0 . & \end{cases}
$$

Taking derivatives on both sides in (2.7) and applying Young's inequality, we obtain

$$
\left\|\nabla u_{2}(\cdot, t)\right\|_{L^{q}\left(\mathbb{R}^{3}\right)} \leq c_{2} t^{-\frac{3}{2}\left(\frac{1}{2}-\frac{1}{q}\right)}\|\nabla v\|_{2}
$$

with c_{2} independent of T. We claim that $u=u_{1}+u_{2}$ in $\mathbb{R}^{3} \times(0, T)$. This follows from the fact that $u_{1}+u_{2}$ satisfies (2.6), combined with a uniqueness argument, for example [7, Lemma 3.6]. We can now estimate

$$
\begin{aligned}
(T-1)\|\nabla v\|_{q}^{q} & =\int_{1}^{T} \int_{\mathbb{R}^{3}}|\nabla u(x, t)|^{q} \mathrm{~d} x \mathrm{~d} t \\
& \leq c_{3}\left(\left\|\nabla u_{1}\right\|_{L^{q}\left(\mathbb{R}^{3} \times(0, T)\right)}^{q}+\int_{1}^{T}\left\|\nabla u_{2}(\cdot, t)\right\|_{q}^{q} \mathrm{~d} t\right) \\
& \leq c_{4}\left(\|H\|_{L^{q}\left(\mathbb{R}^{3} \times(0, T)\right)}^{q}+\int_{1}^{T} t^{-\frac{3 q}{2}\left(\frac{1}{2}-\frac{1}{q}\right)}\|\nabla v\|_{2}^{q} \mathrm{~d} t\right) \\
& \leq c_{5}\left(T\|h\|_{q}^{q}+\left(T^{-\frac{3 q}{2}\left(\frac{1}{2}-\frac{1}{q}\right)+1}-1\right)\|\nabla v\|_{2}^{q}\right)
\end{aligned}
$$

with c_{5} independent of T, and also of \mathcal{R} and \mathcal{T}. Dividing both sides with T, and subsequently letting $T \rightarrow \infty$, we conclude, recall $q>2$ by assumption, that $\|\nabla v\|_{q} \leq$ $c_{5}\|h\|_{q}$. Finally, we deduce directly from (2.2), applying div on both sides in $(1.1)_{1}$, that $\Delta p=\operatorname{div} \operatorname{div} h$, which implies that $\|p\|_{q} \leq c_{6}\|h\|_{q}$, with c_{6} independent of \mathcal{R} and \mathcal{T}. Hence (2.5) follows in the case $q>2$.

The case $q=2$ is included in Lemma 2.1. Consider now $1<q<2$. In this case we will establish (2.5) by a duality argument. Consider for this purpose $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)^{3 \times 3}$. For notational purposes, we put

$$
\begin{align*}
& L v:=-\Delta v-\mathcal{R} \partial_{3} v-\mathcal{T}\left(\mathrm{e}_{3} \wedge x \cdot \nabla v-\mathrm{e}_{3} \wedge v\right) \tag{2.8}\\
& L^{*} v:=-\Delta v+\mathcal{R} \partial_{3} v+\mathcal{T}\left(\mathrm{e}_{3} \wedge x \cdot \nabla v-\mathrm{e}_{3} \wedge v\right) \tag{2.9}
\end{align*}
$$

As in Lemma 2.1, one can show the existence of a solution (ψ, η), in the class (2.1) and (2.4), to the adjoint problem

$$
\begin{cases}L^{*} \psi+\nabla \eta=\operatorname{div} \varphi & \text { in } \mathbb{R}^{3} \tag{2.10}\\ \operatorname{div} \psi=0 & \text { in } \mathbb{R}^{3}\end{cases}
$$

By arguments as above, one can also show that

$$
\begin{equation*}
\forall r \in(2, \infty):\|\nabla \psi\|_{r}+\|\eta\|_{r} \leq c_{7}\|\varphi\|_{r} \tag{2.11}
\end{equation*}
$$

with c_{7} independent of \mathcal{R} and \mathcal{T}. The summability properties of (v, p) and (ψ, η), ensured by Lemma 2.1 and supplemented by [6, Theorem 1], enables us to calculate

$$
\begin{align*}
\left|\int_{\mathbb{R}^{3}} \nabla v: \varphi \mathrm{d} x\right| & =\left|\int_{\mathbb{R}^{3}} v \cdot \operatorname{div} \varphi \mathrm{~d} x\right|=\left|\int_{\mathbb{R}^{3}} v \cdot L^{*} \psi \mathrm{~d} x\right| \\
& =\left|\int_{\mathbb{R}^{3}} L v \cdot \psi \mathrm{~d} x\right|=\left|\int_{\mathbb{R}^{3}} \operatorname{div} h \cdot \psi \mathrm{~d} x\right|=\left|\int_{\mathbb{R}^{3}} h: \nabla \psi \mathrm{d} x\right| \tag{2.12}\\
& \leq\|h\|_{q}\|\nabla \psi\|_{q^{\prime}} \leq c_{7}\|h\|_{q}\|\varphi\|_{q^{\prime}}
\end{align*}
$$

where the third equality follows by partial integration in the same manner as in [6, Proof of Lemma 2.3], and last estimates from (2.11) since $2<q^{\prime}<\infty$. Having established (2.12) for arbitrary φ, we conclude that $\|\nabla v\|_{q} \leq c_{7}\|h\|_{q}$. Finally, the estimate $\|p\|_{q} \leq$ $c_{8}\|h\|_{q}$ follows simply from the fact that $\Delta p=\operatorname{div} \operatorname{div} h$. We have thus established (2.5) also in the case $1<q \leq 2$. This concludes the lemma.

In the next lemma we establish estimates of the lower order terms on the left-hand side of (1.1).
Lemma 2.3. Let $\mathcal{R}>0$ and $\mathcal{T}>0$. Let $1<q<\infty$ and $h \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)^{3 \times 3}$. The solution (v, p) from Lemma 2.1 satisfies

$$
\begin{equation*}
\left|\mathcal{R} \partial_{3} v\right|_{-1, q}+\left|\mathcal{T}\left(\mathrm{e}_{3} \wedge x \cdot \nabla v-\mathrm{e}_{3} \wedge v\right)\right|_{-1, q} \leq C_{6}\left(1+\frac{1}{\mathcal{T}^{2}}\right)\|h\|_{q} \tag{2.13}
\end{equation*}
$$

with $C_{6}=C_{6}\left(\mathcal{R}_{0}\right)$.

Proof. Consider first $1<q \leq 2$. For $(x, t) \in \mathbb{R}^{3} \times \mathbb{R}$ put

$$
\begin{aligned}
& u(x, t):=Q(t) v\left(Q(t)^{\top} x\right), \quad \mathfrak{p}(x, t):=p\left(Q(t)^{\top} x\right) \\
& H(x, t):=Q(t) h\left(Q(t)^{\top} x\right) Q(t)^{\top}
\end{aligned}
$$

Note that u, \mathfrak{p}, and H are smooth and $\frac{2 \pi}{\mathcal{T}}$-periodic in the t variable. We can therefore expand these fields in their Fourier-series. More precisely, we have

$$
\begin{aligned}
& u(x, t)=\sum_{k \in \mathbb{Z}} u_{k}(x) \mathrm{e}^{i \mathcal{T} k t}, \quad \mathfrak{p}(x, t)=\sum_{k \in \mathbb{Z}} \mathfrak{p}_{k}(x) \mathrm{e}^{i \mathcal{T} k t} \\
& H(x, t)=\sum_{k \in \mathbb{Z}} H_{k}(x) \mathrm{e}^{i \mathcal{T} k t}
\end{aligned}
$$

with

$$
\begin{aligned}
& u_{k}(x):=\frac{\mathcal{T}}{2 \pi} \int_{0}^{2 \pi / \mathcal{T}} u(x, t) \mathrm{e}^{-i \mathcal{T} k t} \mathrm{~d} t, \quad \mathfrak{p}_{k}(x):=\frac{\mathcal{T}}{2 \pi} \int_{0}^{2 \pi / \mathcal{T}} \mathfrak{p}(x, t) \mathrm{e}^{-i \mathcal{T} k t} \mathrm{~d} t \\
& H_{k}(x):=\frac{\mathcal{T}}{2 \pi} \int_{0}^{2 \pi / \mathcal{T}} H(x, t) \mathrm{e}^{-i \mathcal{T} k t} \mathrm{~d} t
\end{aligned}
$$

As one may easily verify,

$$
\begin{cases}\partial_{t} u-\Delta u+\nabla \mathfrak{p}-\mathcal{R} \partial_{3} u=\operatorname{div} H & \text { in } \mathbb{R}^{3} \times \mathbb{R} \tag{2.14}\\ \operatorname{div} u=0 & \text { in } \mathbb{R}^{3} \times \mathbb{R}\end{cases}
$$

Replacing in (2.14) u, \mathfrak{p}, and H with their respective Fourier series, we find that each Fourier coefficient satisfies

$$
\begin{cases}i \mathcal{T} k u_{k}-\Delta u_{k}+\nabla \mathfrak{p}_{k}-\mathcal{R} \partial_{3} u_{k}=\operatorname{div} H_{k} & \text { in } \mathbb{R}^{3} \tag{2.15}\\ \operatorname{div} u_{k}=0 & \text { in } \mathbb{R}^{3}\end{cases}
$$

In the case $k=0$, (2.15) reduces to the classical Oseen system. By well-known theory, see for example [3, Theorem VII.4.2],

$$
\begin{equation*}
\left\|\nabla u_{0}\right\|_{q}+\mathcal{R}\left|\partial_{3} u_{0}\right|_{-1, q} \leq c_{1}\left\|H_{0}\right\|_{q} \leq c_{2}\|h\|_{q} \tag{2.16}
\end{equation*}
$$

with c_{2} independent of \mathcal{R} and \mathcal{T}. Consider now $k \neq 0$. By Minkowski's integral inequality and Lemma 2.2, we find that

$$
\left\|\nabla u_{k}\right\|_{q} \leq \frac{\mathcal{T}}{2 \pi} \int_{0}^{2 \pi / \mathcal{T}}\left(\int_{\mathbb{R}^{3}}|\nabla u(x, t)|^{q} \mathrm{~d} x\right)^{1 / q} \mathrm{~d} t=\|\nabla v\|_{q} \leq C_{5}\|h\|_{q}
$$

and similarly $\left\|\mathfrak{p}_{k}\right\|_{q} \leq C_{5}\|h\|_{q}$. We can thus conclude from (2.15) that

$$
\begin{equation*}
|\mathcal{T} k|\left|u_{k}\right|_{-1, q} \leq\left\|\nabla u_{k}\right\|_{q}+\left\|\mathfrak{p}_{k}\right\|_{q}+\mathcal{R}\left|\partial_{3} u_{k}\right|_{-1, q} \leq c_{3}\|h\|_{q}+\mathcal{R}\left|\partial_{3} u_{k}\right|_{-1, q} \tag{2.17}
\end{equation*}
$$

with c_{3} independent of \mathcal{R} and \mathcal{T}. A simple interpolation argument yields

$$
\begin{equation*}
\left|\partial_{3} u_{k}\right|_{-1, q} \leq c_{4}\left(\varepsilon\left|u_{k}\right|_{-1, q}+\varepsilon^{-1}\left\|\nabla u_{k}\right\|_{q}\right) \tag{2.18}
\end{equation*}
$$

for all $\varepsilon>0$. We now choose $\varepsilon=|\mathcal{T} k| /\left(2 \mathcal{R} c_{4}\right)$ in (2.18) and apply the resulting estimate in (2.17). It follows that

$$
\begin{equation*}
\left|u_{k}\right|_{-1, q} \leq c_{5} \frac{1}{|\mathcal{T} k|}\left(1+\frac{\mathcal{R}^{2}}{|\mathcal{T} k|}\right)\|h\|_{q} \quad(k \neq 0) \tag{2.19}
\end{equation*}
$$

with c_{5} independent of \mathcal{R} and \mathcal{T}. We observe at this point that $v(x)=u(x, 0)=$ $\sum_{k \in \mathbb{Z}} u_{k}(x)$, and put

$$
\begin{equation*}
v_{1}:=v-u_{0} . \tag{2.20}
\end{equation*}
$$

We then define

$$
U(x, t):=Q(t) v_{1}\left(Q(t)^{\top} x\right)=u(x, t)-u_{0}=\sum_{k \neq 0} u_{k}(x) \mathrm{e}^{i \top k t} .
$$

The first equality above follows from the fact that $Q(t) u_{0}\left(Q(t)^{\top} x\right)=u_{0}(x)$ for all $t \in \mathbb{R}$, which one easily verifies directly from the definition of u_{0}. Now let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)^{3}$ and put $\Phi(x, t):=Q(t) \varphi\left(Q(t)^{\top} x\right)$. Since Φ is smooth and $2 \pi / \mathcal{T}$-periodic in t, we can write Φ in terms of its Fourier-series:

$$
\Phi(x, t)=\sum_{k \in \mathbb{Z}} \Phi_{k}(x) \mathrm{e}^{i \mathcal{T} k t}, \quad \Phi_{k}(x):=\frac{\mathcal{T}}{2 \pi} \int_{0}^{2 \pi / \mathcal{T}} \Phi(x, t) \mathrm{e}^{-i \mathcal{T} k t} \mathrm{~d} t .
$$

We now compute, using Parseval's identity and (2.19),

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{3}} v_{1}(x) \cdot \varphi(x) \mathrm{d} x\right| & =\left|\frac{\mathcal{T}}{2 \pi} \int_{0}^{2 \pi / \mathcal{T}} \int_{\mathbb{R}^{3}} U(x, t) \cdot \Phi(x, t) \mathrm{d} x \mathrm{~d} t\right| \\
& =\left|\int_{\mathbb{R}^{3}} \sum_{k \neq 0} u_{k}(x) \cdot \Phi_{k}(x) \mathrm{d} x\right| \\
& \leq \sum_{k \neq 0}\left|u_{k}\right|_{-1, q}\left\|\nabla \Phi_{k}\right\|_{q^{\prime}} \\
& \leq c_{5}\left(1+\frac{\mathcal{R}^{2}}{\mathcal{T}}\right)\|h\|_{q} \sum_{k \neq 0} \frac{1}{|\mathcal{T} k|}\left\|\nabla \Phi_{k}\right\|_{q^{\prime}} \\
& \leq c_{5}\left(1+\frac{\mathcal{R}^{2}}{\mathcal{T}}\right) \frac{1}{\mathcal{T}}\|h\|_{q}\left(\sum_{k \neq 0} \frac{1}{|k|^{q}}\right)^{\frac{1}{q}}\left(\sum_{k \neq 0}\left\|\nabla \Phi_{k}\right\|_{q^{\prime}}^{q^{\prime}}\right)^{\frac{1}{q^{\prime}}} .
\end{aligned}
$$

Recalling that $1<q \leq 2$, we employ the Hausdorff-Young inequality to estimate

$$
\left(\sum_{k \neq 0}\left\|\nabla \Phi_{k}\right\|_{q^{\prime}}^{\|^{\prime}}\right)^{\frac{1}{q^{\prime}}} \leq\left(\int_{\mathbb{R}^{3}}\left[\frac{\mathcal{T}}{2 \pi} \int_{0}^{2 \pi / \mathcal{T}}|\nabla \Phi(x, t)|^{q} \mathrm{~d} t\right]^{\frac{q^{\prime}}{q}} \mathrm{~d} x\right)^{\frac{1}{q^{\prime}}}
$$

Applying Minkowski's integral inequality to the right-hand side above, we obtain

$$
\left(\sum_{k \neq 0}\left\|\nabla \Phi_{k}\right\|_{q^{\prime}}^{q^{\prime}}\right)^{\frac{1}{q^{\prime}}} \leq\left(\frac{\mathcal{T}}{2 \pi} \int_{0}^{2 \pi / \mathcal{T}}\left[\int_{\mathbb{R}^{3}}|\nabla \Phi(x, t)|^{q^{\prime}} \mathrm{d} x\right]^{\frac{q}{q^{\prime}}} \mathrm{d} t\right)^{\frac{1}{q}}=\|\nabla \varphi\|_{q^{\prime}}
$$

We thus conclude that

$$
\left|\int_{\mathbb{R}^{3}} v_{1}(x) \cdot \varphi(x) \mathrm{d} x\right| \leq c_{6}\left(1+\frac{\mathcal{R}^{2}}{\mathcal{T}}\right) \frac{1}{\mathcal{T}}\|h\|_{q}\|\nabla \varphi\|_{q^{\prime}}
$$

and consequently, since φ is arbitrary,

$$
\begin{equation*}
\left|v_{1}\right|_{-1, q} \leq c_{7}\left(1+\frac{\mathcal{R}^{2}}{\mathcal{T}}\right) \frac{1}{\mathcal{T}}\|h\|_{q} \tag{2.21}
\end{equation*}
$$

with c_{7} independent of \mathcal{R} and \mathcal{T}. By the same interpolation argument as in (2.18), we estimate

$$
\begin{equation*}
\left|\partial_{3} v_{1}\right|_{-1, q} \leq c_{8}\left(\left|v_{1}\right|_{-1, q}+\left\|\nabla v_{1}\right\|_{q}\right) \tag{2.22}
\end{equation*}
$$

Combining now $(2.22),(2.21),(2.20),(2.16)$, and (2.5), we obtain

$$
\begin{equation*}
\forall q \in(1,2]:\left|\mathcal{R} \partial_{3} v\right|_{-1, q} \leq c_{9}\left(1+\frac{1}{\mathcal{T}^{2}}\right)\|h\|_{q} \tag{2.23}
\end{equation*}
$$

with $c_{9}=c_{9}\left(\mathcal{R}_{0}\right)$.
Consider now $2<q<\infty$. Let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)^{3}$. Recall (2.8) and (2.9). By [6, Lemma 2.1] there is a solution $(\psi, \eta) \in D^{1,2}\left(\mathbb{R}^{3}\right)^{3} \cap L^{6}\left(\mathbb{R}^{3}\right)^{3} \times L^{6}\left(\mathbb{R}^{3}\right)$ to

$$
\begin{cases}L^{*} \psi+\nabla \eta=\varphi & \text { in } \mathbb{R}^{3} \tag{2.24}\\ \operatorname{div} \psi=0 & \text { in } \mathbb{R}^{3}\end{cases}
$$

satisfying (2.4). Moreover, since Δ commutes with $L^{*},(\Delta \psi, \Delta \eta)$ satisfies

$$
\begin{cases}L^{*} \Delta \psi+\nabla \Delta \eta=\operatorname{div} \nabla \varphi & \text { in } \mathbb{R}^{3} \tag{2.25}\\ \operatorname{div} \Delta \psi=0 & \text { in } \mathbb{R}^{3}\end{cases}
$$

Repeating the argument from above leading to (2.23), we also obtain

$$
\begin{equation*}
\forall r \in(1,2]:\left|\mathcal{R} \partial_{3} \Delta \psi\right|_{-1, r} \leq c_{10}\left(1+\frac{1}{\mathcal{T}^{2}}\right)\|\nabla \varphi\|_{r} \tag{2.26}
\end{equation*}
$$

with $c_{10}=c_{10}\left(\mathcal{R}_{0}\right)$. As in (2.12), we compute

$$
\int_{\mathbb{R}^{3}} \partial_{3} v \cdot \varphi \mathrm{~d} x=\int_{\mathbb{R}^{3}} \partial_{3} v \cdot L^{*} \psi \mathrm{~d} x=-\int_{\mathbb{R}^{3}} L v \cdot \partial_{3} \psi \mathrm{~d} x=-\int_{\mathbb{R}^{3}} \operatorname{div} h \cdot \partial_{3} \psi \mathrm{~d} x .
$$

Put $\Theta_{i}:=\mathcal{F}^{-1}\left[\frac{\xi_{j}}{|\xi|^{2}} \widehat{h_{i j}}(\xi)\right], i=1,2,3^{1}$. Then $\Theta \in L^{r}\left(\mathbb{R}^{3}\right)^{3}$ for all $r \in(3 / 2, \infty),\|\nabla \Theta\|_{q} \leq$ $c_{11}\|h\|_{q}$, and $\Delta \Theta=\operatorname{div} h$. It follows that

$$
\left|\int_{\mathbb{R}^{3}} \partial_{3} v \cdot \varphi \mathrm{~d} x\right|=\left|\int_{\mathbb{R}^{3}} \Theta \cdot \partial_{3} \Delta \psi \mathrm{~d} x\right| \leq\|\nabla \Theta\|_{q}\left|\partial_{3} \Delta \psi\right|_{-1, q^{\prime}} \leq c_{12}\|h\|_{q}\left|\partial_{3} \Delta \psi\right|_{-1, q^{\prime}}
$$

Since $q^{\prime} \in(1,2)$, we deduce by (2.26) that

$$
\left|\int_{\mathbb{R}^{3}} \partial_{3} v \cdot \varphi \mathrm{~d} x\right| \leq c_{13}\left(1+\frac{1}{\mathcal{T}^{2}}\right)\|h\|_{q}\|\nabla \varphi\|_{q^{\prime}}
$$

We conclude $\left|\mathcal{R} \partial_{3} v\right|_{-1, q} \leq c_{14}\left(1+\mathcal{T}^{-2}\right)\|h\|_{q}$, with $c_{14}=c_{14}\left(\mathcal{R}_{0}\right)$.
Since $\mathcal{T}\left(\mathrm{e}_{3} \wedge x \cdot \nabla v-\mathrm{e}_{3} \wedge v\right)=\Delta v-\nabla p+\mathcal{R} \partial_{3} v+\operatorname{div} h$, the estimates already obtained in (2.5) together with the estimate for $\mathcal{R} \partial_{3} v$ above imply

$$
\left|\mathcal{T}\left(\mathrm{e}_{3} \wedge x \cdot \nabla v-\mathrm{e}_{3} \wedge v\right)\right|_{-1, q} \leq c_{15}\left(1+\frac{1}{\mathcal{T}^{2}}\right)\|h\|_{q}
$$

with $c_{15}=c_{15}\left(\mathcal{R}_{0}\right)$. We have thus established (2.13) completely.
We can now finalize the proof of the main theorem.

Proof of Theorem 1.1. Except for the uniqueness statement, Lemma 2.1-2.3 establish the theorem in the case $f=\operatorname{div} h$ for some $h \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)^{3 \times 3}$. It remains to extend to the general case $f \in D_{0}^{-1, q}\left(\mathbb{R}^{3}\right)^{3}$. Consider therefore $f \in D_{0}^{-1, q}\left(\mathbb{R}^{3}\right)^{3}$. Choose a sequence $\left\{h_{n}\right\}_{n=1}^{\infty} \subset C_{0}^{\infty}\left(\mathbb{R}^{3}\right)^{3 \times 3}$ with $\lim _{n \rightarrow \infty} \operatorname{div} h_{n}=f$ in $D_{0}^{-1, q}\left(\mathbb{R}^{3}\right)^{3}$. Let $\left(v_{n}, p_{n}\right)$ be the solution from Lemma 2.1 corresponding to the right-hand side div h_{n}. Then choose $\kappa_{n} \in \mathbb{R}^{3}$ such that $0=\int_{\mathrm{B}_{1}} v_{n}-\kappa_{n} \mathrm{~d} x$. From Lemma 2.2 and Poincaré's inequality, it follows that $\left\{\left(v_{n}-\kappa_{n}, p_{n}\right)\right\}_{n=1}^{\infty}$ is a Cauchy sequence in the Banach space

$$
\begin{aligned}
& X_{m}:=\left\{(v, p) \in L_{l o c}^{1}\left(\mathbb{R}^{3}\right)^{3} \times L_{l o c}^{1}\left(\mathbb{R}^{3}\right) \mid\|(v, p)\|_{X_{m}}<\infty\right\} \\
& \|(v, p)\|_{X_{m}}:=\|\nabla v\|_{q}+\|p\|_{q}+\|v\|_{L^{q}\left(\mathrm{~B}_{m}\right)}
\end{aligned}
$$

for all $m \in \mathbb{N}$. Consequently, there is an element $(v, p) \in \cap_{m \in \mathbb{N}} X_{m}$ with the property that $\lim _{n \rightarrow \infty}\left(v_{n}-\kappa_{n}, p_{n}\right)=(v, p)$ in X_{m} for all $m \in \mathbb{N}$. Recall (2.8). It follows that $\lim _{n \rightarrow \infty}\left[L\left(v_{n}-\kappa_{n}\right)+\nabla p_{n}\right]=L v+\nabla p$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)^{3}$. By construction, $\lim _{n \rightarrow \infty}\left[L v_{n}+\nabla p_{n}\right]=$ f in $D_{0}^{-1, q}\left(\mathbb{R}^{3}\right)^{3}$. We thus deduce that $\lim _{n \rightarrow \infty} L \kappa_{n}=f-[L v+\nabla p]$. Consequently, $f-[L v+\nabla p]=L \kappa$ for some $\kappa \in \mathbb{R}^{3}$. It follows that $(v+\kappa, p) \in D^{1, q}\left(\mathbb{R}^{3}\right)^{3} \times L^{q}\left(\mathbb{R}^{3}\right)$ solves (1.1). Moreover, since $\left(v_{n}, p_{n}\right)$ satisfies (1.2) and (1.3) for all $n \in \mathbb{N}$, so does $(v+\kappa, p)$. This concludes the first part of the theorem.

To prove the statement of uniqueness, assume that $(\tilde{v}, \tilde{p}) \in D^{1, r}\left(\mathbb{R}^{3}\right)^{3} \times L^{r}\left(\mathbb{R}^{3}\right)$ is another solution to (1.1). Put $w:=v-\tilde{v}$ and $\mathfrak{q}:=p-\tilde{p}$. It immediately follows that $\Delta \mathfrak{q}=0$, which, since $\mathfrak{q} \in L^{q}\left(\mathbb{R}^{3}\right)+L^{r}\left(\mathbb{R}^{3}\right)$, implies that $\mathfrak{q}=0$. Now put $U(x, t):=$

[^1]$Q(t) w\left(Q(t)^{\top} x\right)$ for $(x, t) \in \mathbb{R}^{3} \times \mathbb{R}$. Since U is smooth and $2 \pi / \mathcal{T}$-periodic in t, we can write U in terms of its Fourier-series
$$
U(x, t)=\sum_{k \in \mathbb{Z}} U_{k}(x) \mathrm{e}^{i \mathcal{T} k t}, U_{k}(x):=\frac{\mathcal{T}}{2 \pi} \int_{0}^{2 \pi / \mathcal{T}} U(x, t) \mathrm{e}^{-i \mathcal{T} k t} \mathrm{~d} t
$$

As one may easily verify, U_{k} satisfies $i \mathcal{T} k U_{k}-\Delta U_{k}-\mathcal{R} \partial_{3} U_{k}=0$ in $\mathscr{S}^{\prime}\left(\mathbb{R}^{3}\right)^{3}$. Thus, Fourier transformation yields $\left(i\left(\mathcal{T} k-\mathcal{R} \xi_{3}\right)+|\xi|^{2}\right) \widehat{U_{k}}=0$. It follows that $U_{k}=0$ for all $k \neq 0$. Moreover, since $\left(-i \mathcal{R} \xi_{3}+|\xi|^{2}\right) \widehat{U_{0}}=0$, it follows that $\operatorname{supp}\left(\widehat{U_{0}}\right) \subset\{0\}$. Consequently, since $U_{0} \in D^{1, q}\left(\mathbb{R}^{3}\right)^{3}+D^{1, r}\left(\mathbb{R}^{3}\right)^{3}, U_{0}=b$ for some $b \in \mathbb{R}^{3}$. It follows that $U(x, t)=b=Q(t) w\left(Q(t)^{\top} x\right)$ for all $t \in \mathbb{R}$ and $x \in \mathbb{R}^{3}$. Thus, $Q(t)^{\top} b$ is t-independent, and so $b=\alpha \mathrm{e}_{3}$ for some $\alpha \in \mathbb{R}$. We conclude that $w(x)=U_{0}(x)=\alpha \mathrm{e}_{3}$.

References

[1] R. Farwig. An L^{q}-analysis of viscous fluid flow past a rotating obstacle. Tohoku Math. J. (2), 58(1):129-147, 2006. 2
[2] R. Farwig, T. Hishida, and D. Müller. L^{q}-theory of a singular winding integral operator arising from fluid dynamics. Pac. J. Math., 215(2):297-312, 2004. 2
[3] G. P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I: Linearized steady problems. Springer Tracts in Natural Philosophy. 38. New York: Springer-Verlag, 1994. 6
[4] G. P. Galdi. On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications. Friedlander, S. (ed.) et al., Handbook of mathematical fluid dynamics. Vol. 1. Amsterdam: Elsevier. 653-791, 2002. 3
[5] G. P. Galdi. Steady flow of a Navier-Stokes fluid around a rotating obstacle. Journal of Elasticity, 71:1-31, 2003. 3
[6] G. P. Galdi and M. Kyed. A simple proof of L^{q}-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: Strong solutions. Preprint, 2011. $1,2,3,5,8$
[7] G. P. Galdi and M. Kyed. Steady-state Navier-Stokes flows past a rotating body: Leray solutions are physically reasonable. Arch. Ration. Mech. Anal., 200(1):21-58, 2011. 4
[8] S. Kracmar, S. Necasová, and P. Penel. L^{q}-approach of weak solutions to stationary rotating oseen equations in exterior domains. Q. Appl. Math., 68(3):421-437, 2010. 2
[9] S. Kračmar, Š. Nečasová, and P. Penel. L^{q}-approach to weak solutions of the Oseen flow around a rotating body. Rencławowicz, Joanna (ed.) et al., Parabolic
and Navier-Stokes equations. Part 1. Proceedings of the confererence, Będlewo, Poland, September 10-17, 2006. Warsaw: Polish Academy of Sciences, Institute of Mathematics. Banach Center Publications 81, Pt. 1, 259-276, 2008. 2
[10] O. A. Ladyzhenskaya. The mathematical theory of viscous incompressible flow. Second English edition. Gordon and Breach Science Publishers, New York, 1969. 4
[11] A. L. Silvestre. On the existence of steady flows of a Navier-Stokes liquid around a moving rigid body. Math. Methods Appl. Sci., 27(12):1399-1409, 2004. 3

[^0]: *Partially supported by NSF grant DMS-1062381.
 ${ }^{\dagger}$ Supported by the DFG and JSPS as a member of the International Research Training Group Darmstadt-Tokyo IRTG 1529.

[^1]: ${ }^{1}$ Following the summation convention, we implicitly sum over repeated indices.

