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Abstract

For finite matroids, (skew) representability {in given characteristic)
cannot be characterized in terms of finitely many forbidden minors.
Skew representability cannot be decided, even.

1 Introduction

For a class F of fields or division rings let M F denote the class of all matroids
representable over some F in F. A forbidden miner characlerization of a
class M of matroids consists in a list of finite matroids such that a matroid
ig in A4 if and only if it does not contain any matroid from the list as a
minor. The characterization is finitary il the list is fnite. lmportant such
characterizations have been established, mostly by Tutte {ef [6]), including
the classes MF where F consists just of the 2- resp. 3-element field of Kahn
and Sevmour [7]. On the other hand, VAmos [13] has shown that for F
containing all fields of characteristic 0 there is no finitary characterization -
even if one allows a subadivision of the list such that the matroid is not in the
class if and only if it containg at least one minor from each sublist. Pursuing
an approach familiar in the study of modular lattices {of [3],[2]) we get the
following.

Theoreim 1 Lel F ponlam an ireﬁnilf dision ring r.l‘l'"lrl'.lf' eaclh integer d o
finite field having af least degree d over its prime subfield. Then there is no
finitary characterization of MF in terms of forbidden minors. If F is closed
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under wliraproducls, then there are infinilely many finile matvoids minimal
(with respect to the formation of minors) nol in MF,

The statement remaing true relatively to the class of all matroids given
by any combination of the following properties: fnite, finite rank, rank < 3,
combinatorial geometry. Though, it remains open whether M{F} has a
finitary characterization for each finite field F as conjectured by Rota [11].

Aceording to Vamos [12] membership in MF is decidable for finite ma-
trobds if F is the class of all felds. This extends to any recursively axioma-
tizable universal class of fields generated by its finite members. In contrast,
decidability fails for F the class of all division rings (of given characteristic),
due to Macintyre [8] and the following proposition - here, a division ring is
understood as a ring with unit and inversion where ' = 0. This implies
that there is no effective characterization of skew representability.

Proposition 2 Let F any class of division rings with undecidable universal
Horn theory., Then membership in MF is undecidable for finile matreids.

2 Linear spaces

A linear space P is given by a set of points (also denoted by P) and a system
of at least 2-clement subsets of P, called blocks or lines, such that any two
points are on a unique line - such are also known as “planar configurations™
or “geometries” of Kahn [3]. OF course, a linear space is determined by its
points and proper (ie. at least J-element) lines, already. Given a set P of
points in a projective space of any dimension, one obtains the induced lirear
spoce where the proper lines are the at least 3-element restrictions to P of
lines from the projective space (that's why we prefer this terminology).

For any linear space, the set consisting of all points, all lines, as well as
the empty set and the total set & vields a rank < 3 peometric lattice ardered
by inclusion. This will be the matroid associated with the linear space.

Observation 3 For o finite linear space P induced in a [left) projective
geometry over a division ring I the associated malroid 18 representable over
every exiension of sufficiently large (right) dimension over F.



Namely, P is an iterated truncation of the subgecmetry induced on P
and the proof infl] 7.4.10 can be modified.

Given two linear spaces P and P with digjoint point sets and a bijection
= between a line | from P and a line I from P' the glued space PP consists
of the points from P and P, identifying 4p with p, and has the proper lines
from P as well as F', in particular the line { = [,

Fixing n > 4 and a field F, let V' an n-dimensional F-vector space with basis
Ely--a8n. Lot P oconsist of the projective points on the plane (@ = Fe,
Feg 4+ Fey or on the line [; = Fe; 4+ Fejpq or of the form gy = Fileg = e4q)
for some ¢ < n. Let P be derived, analogously, from a second (disjoint)
F-vector space of dimension . Consider a permutation o of F Axing 0 and
1. It induces a bijection + between the points on the line L, , and those on
i' _, such that vFey, = Fel,and vF{eq ) —reg) = Flel | —ave! ) for rin F.
Let My, denote the matroid associated with the glued linear space Py

Lemma 4 M., is a rank 3 combinatorial geometry. If it is representable
over the division ring R then F embeds into B and o is an aulomorphism of

.

Proof. Let p be a representation of My, over i which we conceive as
join and rank preserving embedding of the geometrie lattice into the lattice
of subspaces of a Fdimensional R-vector space W, In particular, p provides
an representation of P and so an embedding of the projective plane §) over
F into the subspace lattice of W. Therefore, there is an embedding 3 of
Finto B and a S-semilinear map [ of @ into W inducing p|@). On the
other hand, for i < n — 1, the perspectivity p o L, N (p + py) between the
subspaces [; and [, of V' is induced by an F-linear map fi. In the same
way, the perspectivity pes ol O (p+ ppy) from pl; onto pf;_; 18 induced by
an R-linear map g and g0 = pfi.

Let o the map of P' into the subspace lattice of W such that o'p = o 1o
for pon ' and p'p = pp, otherwise. Then ¢ is a respresentation of P' in
W giving rise to ', fl. g, analoguously. With these one can compose an
F-gemilinear map f of the subspace [ of V' onto the subapace ' of V*

= 'ru11---.||":11.-||l‘I 15-|J:I+---HJn ot -0 Sl faca

Then, k induces the map ¢~ "p[l which is nothing else than . Thus, ¢ is an
automorphism. The converse i obwvious.
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Lemma 5 Any al most re/27-element miner of an My, is representable over
a transcendental extension of F.

Proof. Let N be such a minor. For N of rank at most 2 the claim is
trivial. N of rank 3 can be considered as a linear space and by Observation 3
it. suffices to show that it is somorphic to one induced in the projective space
associated with the vector space W which is the amalgamation of V' and v
over [ = ['. More precisely, let W such that there are embeddings ¢V — W
and ¢ : V' = W where the eg; and «'¢} (i < n — 1) together with eg; = '
(i = n—1,n) form a basis. An easy counting argument vields that there i3 a
j such that N does not meet ' nor contain any -:‘pr'; Al ;p; ple NOW, define
 such that dp = ep for pin Pand fp = ¢'p lor pin @ or on lf for i < j or
p =g, or p= Fel. Then, extend & to the lf, i > §, by downward induection:

dp = (6Fe + dFel, )N (dg + dpy)

if ponl, g on p1-and p. g, p; are collinear . Clearly, the domain of § includes
N, all collinearities are preserved, and no new ones are introduced (due o
independency ).

3 Axiomatic correspondences

When considering axiomatizability questions for classes of matroids it is con-
venient to consider matroids as frst order structures as in Vamos [13]: for
each n there is an n-ary predicate singling out the independent n-tuples. The
concept, of representation then can be seen as an axiomatic correspondence
{in the sense of Mal'cev [9] of [3]) between matroids and vector spaces e
a class of three sorted structures with sorts for matroid peints, vectors, and
scalars - subject to certain first order axioms. In particular, the represen-
tation is encoded into a binary relation between matroid pointg and vectors
(for a representation in the projective space one relates to a point all vectors
in a one dimensional vector subspace). Ultraproducts (cf [10], [4]) can be
formed by taking ultraproducts of the sorts, separately. The following are
more or less well known.

Lemma 6 Let M be o finile matroid representable vver a transcendental
extension field of o field F. If F is the rationals, then M is representable
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over F. If F is finile, then M is representable over a finite exlension of F
as well as a sirmply transcendental extension of F.

Lemma T For any finite matroid M there is an infeger d such that for any
prime p, if M is represenlable over a field of characleristic p, then M is
representable over GF{p?). If a finite matreid is representable over some
field, then it is representable over some field of finite characleristic.

The proof relies on the fact that a finite matroid embedded into an ultra-
product of matroids can be embedded into some (even almost all) factors -
embeddability can be expressed by a first order sentence and Les' Theorem
{cf [4]) can be applied. Also observe that any (nontrivial) ultrapower of F
containg an element a transcendental over F; namely, if F is the rationals or
is a simply transcendental extension, by ¢, of a subfield take o represented
by the sequence 1,2 ... resp. £ 0% .. Moreover, every ultraproduct of the
GF(p"), p fixed, containg an element transcendental over GF(p) - e.g. repre-
sented by a sequence of primitives. Now, the first lemma is immediate by an
iterated application of these observations and the fact that a representation
of a finite matroid uses a Anitely generated subfield, only.

For the second lemma we refer to 7.3.4 in [1] reading off the bound from a
constructive proof of the Nullstellensatz or using the fact that the algebraic
numbers are embedded into an ultraproduct of the algebraic closures of the
GF(p), p ranging over any infinite set of primes.

4 Forbidden minors

Clearly, we may assume that F is closed under taking division subrings and
that it containg an infinite field or infinitely many Anite Gelds (since a simply
generated division ring is commutative). Assume that there were a finitary
characterization of MF with m a bound on the size of matroids in this
characterization.

The first case splits into 3 subecases: F containg a) all finite felds of a
fixed characteristic, or b) a simply transcendental extension of a finite prime
field, or ¢) the rationals. In that case let £ one of these having at least 4
elements. Then there is a permutation ¢ of F which is not an automorphism.
For n > 2Tm all minors of M, having size at most, m are representable over a
transcendental extension of F' [Lemma 5) whence they are in MF by Lemma

-
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6. In view of the assumed characterization, this would mean that M, is in
MF contradicting Lemma 4.

In the second case, F containg only fOnite fields, for each p there is a
maximum degree d, taken by any I in F over GF(p), and there is no bound
on the dy. Let My be the projective plane over GF({p#*'). Then none of the
Mpisin MF. Let d a common bound from Lemma 7 for all matroids of size
at most m and dp > d. Then all minors of M, having at most m-elements
are representable over {';F[pd"} which iz in F, a contradiction.

If F is closed under ultraproducts, a matroid is in MF il and only each
of it finite submatroids is - this is an immediate consequence of Mal'cov's
embedding of a structure into an ultraproduct of its finite relative substruc-
tures. So, there is a characterization by a list of finite minimal forbidden
minors - and the list cannot be fnite.

5 Undecidability

Using Mal'cev correspondences, again, one easily sees that if F is recursively
axiomatizable then so is MF. In particular, the finite forbidden minors form
an enumerable set. On the other hand, 50 do the Gnite members of MF in
view of Lemma 7. This yields decidability. OF course, better algorithms can
be derived from constructive versions of the lemma.

Consider a universal Horn formula o in the language of division rings given
as I =+ v = w where I is a finite conjunction of relations s = ¢. Let T
consist of 0,1 and all subterms cccurring in . Let M be a finite geometry
associated with a linear space having basis g, ap, 0y and for 1 < i< 7 < 3
a IIa:idiLim:.Fl.l} “unit” point ey on the line o Voay such that oa, o3, ¢m are
collinear - shortly a “frame” ®. Let g a map from T into (g V ay) — aa with
pl = ay, gl = g, ™! = ay if ut = ay, and ps = gt if 5 = ¢ is a relation
from £, but pv # pw. Assume that with every compeosed term w in T there
are points p,g in M such that the following collinearities hold (just written
as juxtaposition): pagpes, paeciy, geapt, gazag, popu il uw = 8 4 1 peagpl,
POy, goiCe, gpas, gagpu if u = <& peagps, pajas, goapd, goses, pgpu if
w = sl peaapd, paiaa, gpeiz, gazas, goapn i =1 Y and gt £ m.

The matroid M or rather (M, & u) is called a test matreid for o is it
containg only the points required by the above Le. at most 3 p(T)] + 6 points



. For any finite geometry it can be checked whether, for some €& and g, it
is a test matroid for ¢ or not. Thus, for any o the isomorphism types of its
test matroids can be effectively determined. The proof of the Proposition is
now immediate by the lollowing.

Lemma B o is valid in F if and only if no test maotveid for o can be repre-
sented over I,

Proof. 1f v is an interpretation falsifying o in F let e, ey, ¢35 a basis of
an F-vector space, a; = Fej, oy = Fleg — ¢4), and pt = Fley — vit)ez) for
t e T. Add the auxiliary points Fle; — vses — ey), F[—vtey +e3) if s+t in
T; Fler — vtey), Fleg + vies — vleg) U —t in T Fleg — vses) Pl —wlez + e3)
if st in T'; Fle; — vtey), Fleg = wley) 87 in T and ¢t # 0. Then one gets
a subgeometry of the projective plane which is a test matroid for o

Conversely, assume that some test matroid (M, @, g) for o is representexd
in the F-vector space V. Then we may assume that M I8 a subgeometry
of the projective plane and since frames are uniguely coordinatizable over F
we may choose a basis such that we get the above coordinate description for
the frame. Then the description also applies to the pt with a map » from T
to I defined, accordingly. Now, in view of the collinearities this coordinate
description extends to the auxiliary points and vields vs + 08 = (s + t) for
s+ tin T and so on, e » I8 an interpretation of T in the division ring F.
By hypothesis, the relations R are satsified under i, but pv # vw.

References

[1] T.Brylwaski, Constructions, in: N.White, ed., Theory of Ma-
troids (Encyel. of Math. 26, Cambridge University Press 1986)
127-222

[2] A.Day, C.Herrmann, B.lénsson, J.B.Nation, and D.Pickering,
Small non-arguesian lattices, Algebra Universalis, to appear

[3] C.Herrmann and W_Poguntke, The class of sublattices of normal
subgroup lattices is not elementary, Algebra Universalis 4 (1974)
28(-286



[4] Ch.U.Jensen and H.Lenzing, Model Theoretic Algebra (Gordon
and Breach, Amsterdam 1989)

[5] J.Kahn, Characteristic sets of matroids, J.London Math Soc. 26
(1982) 207-217

[6] J.Kahn, A geometric approach 1o forbidden minors for GF(3), J.
Comb. Th. A 37 (1984) 1-12

[7] J.Kahn and P.Seymour, On forbidden minors for GF(3), Proc.
Amer. Math. Soc. 102 {19858) 437-440

[H] J‘L.Mﬂ.ﬂiﬂL}rn‘:, The word problem for division rings, .].E_}'I!]LI.L[':IEi.I:?
38 [l".-'.I'TEII 428-436

[9] A.LMal'cev, The Metamathematics of Algebraic Systems (North
Holland, Amsterdam 1971)

[10] ALMal'eev, Algebraic Systems [Springer, Berlin 1973)

[11] G-C.Rota, Combinatorial theory old and new, in: Proc. Int.
Congr. of Math. (Nice 1970) 229-233

[12] P.Vidmos, A necessary and sufficient condition for a matroid to be
linear, in: Mbius Algebras (Proc. Conl. Waterloo, 1971) 170-174

[13] P.Vamaos, The missing axiom of matroid theory is lost forever, .
London Math. Soe. 18 (1978) 403-408

Address: Christian Herrmann
Fachbereich Mathematik der Technischen Hochschule
Schlossgartenste.7
D61 Darmstadt, Germany



