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Abstract

The implication and finite implication problem for embedded multivalued database depen-
dencies are both shown to be algorithmically undecidable. The proof is by an interpretation of
semigroup word problems via systems of permuting equivalence relations into database depen-
dencies. In contrast, it is ghown that for each fixed premise H one has a decision procedure for
implications i = F.

1. Introduction. In the context of lossless decompositions, multivalued database dependencies
(mvd’s) have been introduced by Fagin (1977) and Zaniolo (1976) as a somehow weaker variant
of functional dependencies (fd's). A sound and complete [also with respect to finite databases)
axiomatization of mvd’s and of mvd’s and fd's together has been given by Beeri, Fagin, and Howard
(1977). In particular, the implication problem and the finite implication problem coincide and have an
algorithmic solution. Here, the (finite) implication problem for a given class of database dependencies
refers to a procedure deciding for any implication Fy A ... A Fy, = F, with dependencies F, F| from
the class, whether it is valid in all {finite) databases - where the attribute set of a database (which
is commaonly supposed to be finite) includes all the attributes occurring in the implication. The
algorithm is required to be uniform for all finite attribute sets and antecedents F1 A .. A Fy. In
contrast, the restricted (finite) implication problem asks whether for each fixed finite set Fy, ... F}
of dependencies the set of all dependencies F with Fy AL A F, = F valid in all (finite) databases is
a recursive set. Implication problems are closely related to first order logic decision problems. The
problems to be considered here can indeed be viewed as instances of such.

Departing from a rather direct interpretation of groups or semigroups into relations, unsolvability
has been shown for various clagses of dependencies, in particular for the important class of embedded
template dependencies (Beeri and Vardi (1981) and Chandra, Lewis, and Makowsky [1981)) and
even the subclass of projected join dependencies (Gurevich and Lewis (1982) and Vardi (1984)).
For typed template dependencies, Vardi (1934) obtained the unsolvability of the restricted (finite)
implication problem.

Embedded multivalued dependencies {emvd’s) are mvd's on a projection and a special case of
projected join dependencies. Emvd's being so closely related to the natural join, a positive solution
of the implication problem would have been appreciated. The nonexistence of an axicmatization
involving only a bounded number of attribute set variables has been shown by Parker and Parsaye-
Ghomi (1980} and Sagiv and Walecka (1982). Sagiv, Delobel, Parker, and Fagin {1981) pointed out
that no translation into propositional logic is possible. Day (1993) suggested an analogy with word
problems for modular lattices.

The erucial reduction, providing further evidence towards unsolvability, was the resule of Beeri
and Vardi (1981) that a solution of the (fnite) implication problem for emvd’s would also solve the
corresponding problem for implications of the form “a conjunction of emvd’s and s implies an
emvd”. Based on this and the unsolvability of the word problem for {(fnite) semigroups (Markov
(1947) and Post (1947), resp. Gurevich (1966)) one gets the following.
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Theorem 1 Implication and finile implication are algorithmically undecidable for embedded mulii-
vedued dependencies.

Corollary 2 fmplication and finite implicalion do not coincide for embedded multivalued dependen-
cies. There s no sound and complele recursive aziomalizalion of embedded multivalued dependeneies
with respect to finile dotabases.

Theorem 3 The restricted (finite) implication problem is solvable for the closs of functional and
ernbedded mulbivalued dependencics.

The undecidability proof relies on an interpretation of semigroups into certain systems of equiv-
alence relations on a set, translating semigroup relations into meet and sum relationships botween
subgroups of abelian groups, first, and then into meet and product relationships between equivalence
relations (section 6). These in turn can be captured by fd's and emvd’s, associating databases with
svstems of equivalences, canonically (section 4) - ¢f Gurevich and Lewis {1982), Cosmadakis, Kanel-
lakis, and Spyratos (1986) and Rauszer (1987). The striking fact is that associativity does not come
as a law encoded into dependencies of sufficient expressive power [which emvd's are not). Rather, it
is a by-product of a coordinatization result (section 7) for equivalence class geometries requiring only
a finite number of meet and product relations for a finite system of “generating” equivalence relations
which include a “coordinate system”. It is this result which connects the rather general database
methods of section 4 with the special algebraic ones of section 6 to provide the undecidability proof
in section B

As in Gurevich and Lewis (1982), the universal Horn theory of semigroups enters in a form where
somigroups are conceéived as ternary relational structures. In this version, the restricted decision
problem has a “solution”™ - there is only one Horn formula to be produced from a given antecedent.
So it comes as no surprise that the restricted problem is solvable for dependencies (section 5). A
primer on equivalence relations s given in section 3, a general coneept of interpretation of one theory
in ancther is explained in section 2. Finally, in section 9 we discuss related results in the theory of
lattices and relation algebras.

Quite a few techniques are borrowed from unsolvability results in modular lattices {Hutchinson
(1973), Lipshitz (1974)). In particular, von Neumann's (1960) concept of frame is adapted to systems
of equivalence relations to get a coordinatization. Yet, the setting is definitely not a lattice theoretic
one. For more comments on this see section 9. Most of the material is folklore in one context or
other, proofs are included to keep the paper sell contained.

The author is grateful to Alan Day, Achim Jung, Bernhard Thalbeim, and the referee for helpful
COMmments.

2. The method of interpretations. This has been developed by Tarski, mainly, of Shoenfield
(1967). Here, a rather elementary version is nesded. The framework i3 that of a class C of structures
and a language L related by a notion | of validity: 5 = F 1o be read as “the sentence F is valid
in the structure 57 or S satisfies F7. If 5 does not satisly F we also say that =8 falsifies F7.
The language L is built from atomic sentences each involving finitely many out of countably many
individual constants resp. relation symbols. Validity has to be defined for the atomic sentences
in such a manner that only the actually occuring constants matter. The language is supposed to
consist of certain propositional combinations of the atomic sentences and the concept of validity is
extended, accordingly. Thus, we may think of a structure as having only ﬁnir.:‘rl}r many constants
interpreted, including those occuring in the sentences under consideration. Saying that a structure
satisfies or falsifies a sentence always includes that all the constants cecuring in the sentence are
interpreted in the structure. The sentences to be considered will be mostly of the form H = F for
which falsification means that H but not F is valid in the structure.

Now, a solution of the (finite) validity problem L and € consists in an algorithm deciding for each
sentence in L whether it is valid in all (Anite) structures in C.

An interpretation of C) and L) into Gy and Ly associates effectively with each F' in L, a sentence
F' in Ly such that for each structure M in C) falsifying F there is structure M’ in Gy falsifying
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and, conversely, for each structure N in Oy falsifving F* a structure N' in C) falsifying F°. Here, finite
structures are supposed to correspond 1o finite ones. Therefore, F is (finitely) valid in C; if and only
if F" is (finitely) valid in Cy and if the (fnite) validity problem is unsolvable for L, and C; then the
game takes place for Ly, and &,

If there is also an interpretation of Cy and Ly into C; and L, then we speak of an eguivalence.

3. Equivalence relations. We outline some basics of the theory of equivalence relations, ef Dubreil
and Dubreil-Jacotin (1939), Ore (1242), and Cohn [1981).

Let [I{ E') denote the system of all equivalence relations on the set B - equivalently, one may think
of the associated partitions. For o in [I{E) and a, b in E we write aeb if and only if o is related to b
under o [often written as (a,b) € o). Let afe = {b € Elacd} denote the e—class of . Any such set
will be called an (equivalence) elass of ¢, The intersection v = oM F is defined by: avb if and only
if aceb and afb. For @, § in II{E) it is, of course, in II{E). « is finer than 3, o C 8, if ach implies
adh, in other words if oo = @M 4. We write id = ide for the identity relation and ¥ = Vg for the
total relation.

Let 2 be a countably infinite set of names (for equivalence relations). A system of equivalences is
a pair (£, &) where E is a set and k a map from a finite set = C 2 into [I{E). In other terms, we
consider relational structures with base set E and family ki of binary relations under axioms requiring
that these relations are equivalence relations. Let [T denote the class of all (E, ) and [y the subelass
consisting of those satisfyving ee= k(£) = id.

An isemorphisrm between two systems (E, &) and (E', }'} of equivalences (having the same domain
=) is given by a bijection ¢ : E' — E' such that for all £ € = the equivalence &'(£) is the d-image of
ME).

[E{ﬂr E" C E we can [orm the restriction (E', b E") where k| E'(£) = h(g) N E™.

Given an equivalence relation g on E the guotient set E/ i consists of all p-classes a/y, a € E. For
e 2 pin IIE) there is an equivalence relation ofp on the quotient set E/p such that two p-classes
are related if and only if they lie in a common c-class. In other words, for p-classes @ and b we have
ey b if and only ecch. So, for p C n{LE (£} we can form the guotient system (E ) p = (Efp hfi)
where h/p(€) = h{£)/p. In particular, with g = Neez A(E) each (K, k) in 11 has a canonical quotient
in Il;.

Considering a direct product [T A let §; be the kernel of the projection m onto A; and # =
My Leo sbyt if and only if si] = ¢[i] and s85t if and only if s[j] = ¢[;] for all j # i

If £ is a subset of the direct product of sets A, £ € =, and if k(£) = 0¢|E, then we call (E, &)
a systemn of projection kernels if the projections restricted to £ are still onto: we(E) = A, for all £.
One also speaks of a subdirect decomposgition of E. Of course, such is in 1.

Proposition 4 Each systern (E_h) of equivalences in Ly is isomorphic lo a system of projeclion
kernels.

Proof. Let Ag the quotient set E/A(E) of all k(£)—classes. Define ¢ from £ into the direct product
of the A, by

$le) = (e/RI£)E € Z).

Let B the image of E under ¢. Having (£, &) in [1; forces ¢ to be one-to-one. O

For two relations, ao 3 is the relationad product (which may happen not to be an equivalence even if
o/ are) - aloee J)bif and only if there is ¢ with aoc and efb. If @3 are reflexive then o, § C o 3;
also, o © JF implies § = e F = For Two equivalence relations o, 9 are said to permule if
o= Fow-see Fig 1

Proposition 5 {a) @, 3 in I[E) permule if and only if oo 3 € U[E) if and only if fowc H[E).
{b) The products formed from finitely many faclors oul of a fived sel of poirwise permuting eqguio-
alences are agein equivalences and give rise o o join semilatiice, i.e. they salisfy the associalive,



i1 [ L

L

X X

permuting nonpermuting

Figure 1: Permutability

commulative, and idempotency (oo = a) laws , ond 0 © F iff oe = 4.
fe) Modular Low: For any e, B, in L[ E)

a 2y implies e N (Foy) = {an B) e

Praof. The product operation, applied to any binary relations, is associative. Products of reflexive
relations are reflexive. The transitivity of a reflexive relation v amounts to v oy = . Now, for
v = o 3, symmetry is equivalent o o e § = Jo o and implies yoy =woaofoffi=zaef=ila
and 2 were supposed to be equivalence relations. (b) follows, immediately.

(c) Let ace 11 (F o v)b, Le. and and afeyh for some e. Then eab since & 2+ and acc since o is
an equivalence relation. Thus ace M Seyd which proves an (o) C (@ 8) o, For the converse
inclusion observe that a1 Beyh implies aod and af o vb, trivially. O

Proposition 6 {a) (E, o1, ca) is isomorphic to some (A » As, 07, 8) if and only if cn Naz = id
and oo =V L

(b} (E, oy, g, 003) 18 isomorphic lo some (A = Ay x Ay, 0,05, 8) if and only of the oy permule,
iy 0oy 0 cky = V oand oy N (g oog) = id for any permutation €, 5.k of {1,2,3}.

Proof. In (b) let «f the product of the oy, j # i. By the Modular Law, of Mo} = o for distinet
i, J, k. S0, the intersection of all r.ti:ﬂ ig id and Proposition 4 vields a subdirect decomposition into
Ay's and one may assume that oy is the restriction of & to E, whenee of = §|E. Let a; € Ay,
e € Az, and 3 € Az be given. Since the projection maps are onto, there are (ai, az, aa), (b, b, ba),
and (e, ez, ¢3) in E. Due to af ood =V there is [z, y, 2) in E with (e, e3, e)ed{x, y, 2)ad (b, by, by).
But, necessarily, z = e and y = by, 30 we have (z by, o) in E. By hypothesis, o o o) = V. thus
there is (uw, v, w) in £ such that [z, by, eq)e(u, v, whed (o), aq, a3). Here, v = by, w = oy, and « = a,
whence [, by, 3) isin E. (a) 18 even simpler. OF course, this can be generalized to any Onite number
of factors. O

Combining Propesitions 4 and 6 we arrive at a structural understanding of permutability: Define
the join e 3 of two equivalence relations as the smallest equivalence relation containing both o and

g

a3 = Ur_un_.ﬁ'ﬂuu-..-:ﬁ.

Now, two equivalence relations o and 2 permute if and only if after factoring out N 3 each class K
of the join a v 8 is directly decomposed by the restrictions o K and 5K,

The languages Ly and Ly, associated with systems of equivalences are defined in terms of atomic
sentences having one of the forms o« © 3 (inclusion), v = N @ (meel senlenee), and v = @ o 3
(product sentence), respectively, with distinet o, 7,7 in Z,,. Let Ly consist of all implications of the

form
Hion...nHy=F n...AF,

where the H; and Py are atomic. Motivated by the special fd4+emvd implications considered in
Lemma 4 of Beerl and Vardi (1981), let Ly, consist of those sentences in Ly where me = 1 and F)
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is a product sentence v = v o 4 such that the inclusion sentences o © v and § € v are among the
H;. The validity of an atomic sentence in a system [E &) of equivalences is defined in the obvious
fashion: eg. (E. R} = o C §if and only if h{a) C© &{3) - provided that « and 3 are in the domain
of h. OFf course, this means that the corresponding first order sentences are valid in the relational
structure (K, f(£)ecz).

Proposition 7 Let u C R(E) C 7 for all £ € Z. Then for any alomic sentence F the following are
eguitalend:

1. (E.h) EF.

2 (Eh/p=F.

3T HT) EF for cvery equivalence class T of 7.

Proof. Consider a sentence ¢ o § = 4 and write o in place of i(a). For any a, b, ¢ with p-classes
i, b, & one has aceh if and only il aefué ﬁlf;..l.b whenee (o ) u = afpe 3/ p. Similarly, aeb and
a3h if and only if ur:r,-";:il and r.:,l":]'lu"lr.s-!i whenee (e B)/u = o/ pn 3/ p. In particular, csubselegd if and
only if e/ © 8/, This proves the equivalence of 1 and 2. The equivalence of 1 and 3 follows from
(o F)T = T o 8|T. O One concludes

Proposition 8 I1 is equivalent o Il with regard to any fragment of Ly via passing to canonical
quotients and leaving senfences unchanged. O

In section 6 we will consider a certain structure on . and call cortain finite subsets closed. For now,
the only point of interest is that for each finite = C = there i3 at least one closed Z° 2 2. Denote
by II¢ the subelass of 11 consisting of those (£, h) with domain of k being a closed set.

Proposition 9 [1° is eguivalent fo 11 with regard te any fragment of Ly (leaving senlences un-

changed).

Pragf. Consider (E, k) in 11 falsifying H = F - in particular all £ oceuring in H = F are in the

domain = of k. Extend & to &' with domain =° defining A'(£) arbitrarily for £ @ =, Then (E,4') is
in II¢ and falsifies H = F. O

4. Databases. We recall some definitions following Kanellakis (1990), of also Fagin and Vardi
(1986) and Paredaens et al. (1989). Fix a countably infinite attribute set Uy, Under the pure
universal relation assumption (which is quite appropriate for implication problems), a database d is
given by a finite subset IV of Uy, for each A in IV a domain A[A] of values of the attribute A, and
a subset (relation) v of the direct product [Licr AlA]. For a tuple £ in r and X C U7 let £.X] be the
restriction of ¢ to X.

The atomic sentences to be considersd are the functional dependencies [Bd's) X — ¥ and the
embedded multivalued dependencies (emvd’s) [X, Y] with finite XY C L. Validity is defined as
follows: o |: X = ¥Vifand only il for all 5, ¢ € r, i.fa'[.:'lf: = L:.JL'] Llen al:}": = l[}’] - provided X and ¥
are subsets of U, at all. d = [X,¥] if and only if for every £, 8 € r with ,[X N Y] = &[X N Y] there
exists § € r with ¢{X] = §;[X] and t[Y] = t4[¥]; in other words, the restriction of r to XY = XUV is
the natural join of the restrictions of X and V. The original notion of an emvd X —— ¥V|Z amounts
to [XY, X{Z - ¥)] and, conversely, (X, Y] to

Let Loppa (and L) consist of all implications H = F where F is an emvd and H a conjunction
of emvd’s (and fd’s). Let Ly empd CONSISE of all implications

Hin. .. AHy=F AL A Fy

where the H; and Fj are fd's or emvd’s. X NY < (X = Y]V,

One could also consider a notion of fd or emvd and then of implication, too, which also mentions
the attribute set IV - to be interpreted only in databases with attribute set I7 {an mvd then is an
emvd [X, Y] with I = XY}, A U-implication of " and emvd's can be considered a V-implication
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for every V' 2 UV and the first holds for all databases with attribute set U7 if the latter does for
Vi a U-database can be turned into a V-database by adding singleton domains the converse being
achieved by projection; and this change of point of view has no impact on the validity of dependencies
with attributes in U, Consequently, an implication is valid if and oaly if 30 is the corresponding [V-
implication where [f is the set of attributes actually occurring in the implication.

Also, one might introduce typed and untyped versions of the implication problem by considering
only databases with A[A| N A[B] = @ for all A # B resp. A[A] = A[B] for all A, B. Again, for
emvd’s this does not change the implication problem. BEach database can be turned into a untyped
one by replacing each AlA] by A = Uaeer AlA] and into a typed one by replacing the values v € AlA]
by pairs (v, A). Thus, the question of decidability does not depend on which approach we take.

For U-implications there is a well known translation into a languapge of frst order logic based
on one U-ary relation symbol {Beeri and Vardi [1981)). Since there are complete caleuli working
uniformly for all possible sets of relation symbaols the above considerations yvield the following.

Theorerm 100 Thhe sel q,l" valid fr.!f ervd-irmplications s recursively enumerable. O

MNow, consider a subset B of a direct product of sets Ay, A © UV, Le. a database. Then one has
projection maps 74 : E — Ay yielding for each ¢ € F its A—component 7,(t) = 4] in Ay
With each of these maps one has its kernel equivalence relation 4. For a set X of attributes write
By = Maex Pa. Thus sipt il and only if s[X] = {[X]. The following is obwvious but fundamental
and can be found in Rauszer (1987), in principle, for [d's in Cosmadakis, Kanellakis, and Spyratos
(1986), already.

Lemma 11 For any dotebase d, and sets XY, 2 of its attribules
Uy Coy iff d=X Y

fz=0xnbv f d=XY 2 ZAZ 4 XY
ﬂ_f-—}-' = l:]x 9{]1-"' I._ﬂ'-[.l: = [I,}’]
and, if X.Y, 2 are pairwise digjoint, then

z=Oxcty f dE[XZYZAX 9 ZAY = 2

Praof. 8y © 0y means that s[X| = {[X] implies s[Y] = {[Y] for all 5, ¢ € 7 Le. that X — ¥ holds in
d. In particular, #y = fy il and only if X — Y and ¥ — X hold in d. By definition @3y = 0y N8y
vielding the second elaim. The third is a special case of the fourth. 8z = fy ally implies dy C #z and
ty C Bz whence the validity of X — Z and ¥ — Z. Now, consider ¢, 8 € v with §,[Z] = £;[Z] and
observe that 2 = XZNYZ. Then 8zt so by hypothesis there exists £ € r with §,8y ity or, in
other words, 4 [X] = {[X] and t[¥] = &;[¥] from which we get §[X 2] = X Z] and Y 2] = [V 2]
using the fd's already derived. But this shows d = [XZ, Y Z]. In the converse direction, we have
By C fz and fy C 0z from the [d's. Finally, consider {,0z¢; or t,[Z] = £;[Z]. Then the emvd yields
alcr with 6[X] = {X] and t[¥] = 2[¥] which amounts to iy e fhile. O

Theorem 12 [I and Ln (Lns) are equivalent to T and Ljdiemod {Ls ).

Praof. Choose a bijection ¢ of Za onto U writing the images of a, #, v as A, B, C for convenience.
Translate H = Fin Ly into H' = F'in Ly, emes replacing each atomic sentence by a conjunction of
atomic sentences according to Lemma 11, Given (B &) in I, by Propositions 8 and 4 we may assume
it is a system of projection kernels. So, let £ = ¢(Z), Alp(£)] = A, and r = E to obtain a database.
Conversely, a database gives rise to a system of projection kernels. So we got an interpretation.
When L, is concerned and F is v = @ o 3, then form H' ag before and let F' be the emvd
[AC, BC|. Observe that by the definition of Ly, the conjunction H eontaing o € v and 3 C +, so
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Table 1: Example
AlB|C AL

a | b|lela e
a |[¥W|lela | e
a | e | e e | ay
a o |at | e

Figure 2: Example in partition form

H' has the fl’'s 4 = C and B — C as conjuncts. Again, by Lemma 11 H holds in d if and only H'
holds. But, assuming H or H' we now have F equivalent to F', too.

For the converse interpretation let X v+ ax be a bijection from the set of all finite subsets of Us
onto =, Given H = F in L risempg add in H' the conjunction of all ey Moy = ayyy where XY
are subsets of the attribute set of H = F while translating the fd's and emvd’s according to Lemma
I1: X =+ Y by axy €Y and (X, Y] by oxry = ey o @y, The structures are again associated via
Propositions 8 and 4. The additional hypotheses make sure that hay) is associated with fy. O

Erample. We slightly modify example 2.3.12 in Kanellakis {1990). Consider attributes A, B, C, A" (7
and the relation r given by Table 1.

Then, the fd AA' — O is witnessed by Mo’ C + and the emvd [AB, AC) by o = o+, On the
other hand, 4" = o M+ is witnessed by the conjunction O — ACAAC - C' ol W's and @ = Fao oy
by the conjunction [AB, AC'] A B = A C" = A of an emvd and fd's.

Let e, B, v, o, denote the associated partitions. Listing the tuples in r as 1, ... 6 we indicate
the partitions in the Ggure by encircling and labeling their equivalence classes - not caring about
singletons and representing 2-element classes by an edge, see Fig, 2.

Constructing a database [rom a system of equivalences one has to list the classes of a 8, somehow,
e, in the form .kf, e ,k,‘; where each &; i3 the first element in its § —class. Of course, the superscripts
& may be omitted, see Table 2.

Table 2: Subdirect decomposition
Al B|lC| A |

1|1

T = = g =

S b S L0 D e
R =
L L
o s s L0 =




5. Solvability. In this section, we prove some positive results about dependencies. In accordance
with Lemma 11 we conceive a database d as a set E' together with a map 4w f{A) of Uy into II{E).
We write f{X) = Nacx F(A). For the validity of a dependency or implication, what matters is only
the values f{A) of attributes A actually occurring in it. A database d = (E, #) is called monolithic
il there is an equivalence relation g on E such that g © 84 for all A and all p-classes are at least
2-plement.

Lemma 13 For each dalabase there is a monolithic one satisfying precisely the same f’s and emod’s
{and preserving finitencss ).

Proof. Trivial set theory vields a database d = (E, f) and an equivalence relation g € [aer f4 on E
having each class 2-element, and d}'l.l'-" imomorphic to d. Now apply Proposition 7 and Lemma 11, O

Let H a finite conjunction of fd's and emvd’s and V' the set of attributes occuring in H. We use
H = F to mean that H = F holds in all databases - restricting to finite databases elaims and prools
are verbally the same. We write X — Y for the difference set.

Lemma 14 HEX Y ifandonly ¢f ¥ ~VCX - Vand HEXNV 2 YNV,

Proof. Assume H = X — ¥ and consider a database d satislving H. Construct d' putting f{4) =¥
for A @V oand ff{A) = f(A) for A € V. Then in d' we have f'(Z) = f[Z V) for all Z. Since
dEX 2 Yitlllowsd =X NV < YN V. Since d and d' coincide on V', this fd holds in d, too.
Now, assume thereis A€ ¥ -V, A ¢ X. By Lemma 13, we may suppose that J is monolithic. But,
redefining f'[A) = id we get d' satisfying H and ['[¥) = id C p C J{X) contradicting the validity
of X =+ Y. The converse implication is trivial.O

Lemma 15 H | [X,Y] if and enly if one of the following takes ploce
1. XY CV and HE[X,Y].

X =-V=V-VndHH=X=2YVY = X.

LY - VEXand HEXNYNV YNV

4 X -VCYand HEXNYNV XNV,

Progf. Assume H | [X, Y] and consider monolithic d satisfying H. If therewere A€ X -V, AgY
and B e Y —V, B¢ X we could redefine f'{A) = f'(B) = id and f'(C) = f[C), elsewhere, to
obtain d' = H but ff{X)e 1Y) =dd C p C f{XNY). Now, assume ¥ - V C X — V. Choosing
Ae X -V, AgY, and redefining ‘,I'"[.-'*i:l = id we get d satisfying H and ‘,I'"[I] = id whence
FUY) = [X)e 1Y) = X NY). Since f'(B) = [(B) forall B e Y, it follows f(Y)= f(XNY)
and s0 H = XNY — Y. By the preceeding lemma we get H E X NY NV = YNV, Le case
3. Similarly, X — V € ¥ — V leads to case 4. So it remaing to consider X -V =¥V -V £ QL
Agsume that f{(X N V) £ fIiXnY¥YNV) £ J(YN V). Then there is a pair (a.b) € J(XNYNY)
with {a,d) & fIX N V) and [a,b) @ fIY N V). Forall A € X — V redefine ['{A) as the equivalence
o consisting of the diagonal and (a,b) and (b a) whereas f'(B) = f(B), else. Then o' = H and
F(X)e filY)=id © &« = f{X NY), a contradiction. So we arrive at 2. in this case. Apgain, the
converse implication is trivial. O

Proof of Thim.3. Let a conjunction H of id's and emvd's be given. Consider fd-consequences,
frst. By Lemma 14, the set {X < Y |H = X — Y} of d-consequences is the union of the sets
{52 = TW|W C 2 C U} where 5,7 are contained in the attribute set of H and H 5 — T
Each of these sets is recursive, obvicusly. And there are only finitely many such 5§ — T, so the union
is recursive, too. Por emvd's the reasoning 18 analogous using Lemma 15, O

The following is, implicitly, in Lemma 4 in Beeri and Vardi (1981}, It allows to remove the fd's
from the antecedent of an implication. From the authors point of view, this is the crucial step in the
undecidability result, so it deserves a proof the be included here. The proof is immediate by Lemma
17 and 18, below.

Theorem 16 For the class D of all dotabases, there is an equivalence belween Logyg ond Ly
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Let [, a disjoint copy of U, and A + A a bijeetion. Let 'Y = U U, LY and LY . the
corresponding languages and DY the corresponding class of databases. For finite [' let Iy the
conjunction of all A <= A and A = A, Ain U, and let UY = U UL, Let LY, the fragment of L*
consisting of H = F where F is an emvd over U, and and H i3 a conjunction of emvd's over 074

and of dpr.
Lemma 17 D and L, can be interpreted into DY and L},

.F’fwf. Given H = F let F" = F. One may assume that the fd's in H are of the form X — A
with A not in X. Under the hypothesis Iy each such [ is equivalent to the Ut-mvd [UF — A, X A
Namely, under this hypothesis, f*(U'Y — A) C f{XA) whenee fX = f(X UA)o f(UT — A) implies
FX C fliX U A)e f(XA) = fIXA). The converse {that the [d implies the mvd) is trivial : from
FX = fIXA)one gets fX = f(XA)o f(UT ~ A).

So, let H' arise from H by replacing the fd’s by the corresponding mvd’s and forming the con-
junction with fir. For a model (£, f) of H in D define (E, f*) in D such that f*4 = frd = f4
Conversely, from a model (E, /%) of H' pass to (E, f) just by restricting f*. O

Lemma 1B D* and L} can be interpreted into DY and Limu.

Proaof. For X C Ut let X* 2 X the smallest set containing with A also A and conversely, Given
H = Fin L}, let H = F' arise by omitting all fd’s and replacing [X, ¥] by [X 1. ¥*]. Under the
hypothesis Irp, H is equivalent to H', F o F' (just sinee fX = fX*). Thus any model of H not
satislving F is also a model of H' not satisfying F'. Conversely, given a model (E, [) of H' not
satisfving I, define f'A = f'A = fAN fA to abtain a model of H not satisfying F. O

6. Abelian congruence systems. As a first step towards unsolvability, we interpret the universal
Horn theory of semigroups into subgroup systems of abelian groups. The basic ideas are well known
ef Lipshitz (1974). However, having the language Lne in mind, we have to a use a language for
semigroups which corresponds to an understanding as ternary relational structures of Gurevich and
Lewis (1982). As a primer in (general) alpebra we recommend Kurosh [1963)

To define the language Lgg. let X be a countably infinite set of generator symbaols and consider
atomic sentences of the form z = ry and £ = 4. Let Lgg consist of all sentences H = F where H is
a conjunction of atomic sentences and F of the form x = 5. Let S consist of all pairs (5, o) where S
is a semigroup and ¢ a map of a finite X © X into 5. A semigroup is an algebraic structure with
an associative binary operation, usually written as multiplication. It 18 a moneid if it has a neutral
element e satisfying ae = ea for all a. Any semigroup can be embedded into a monoid by just adding
a neutral element.

An abelian group M is a commutative monoid (written additively with neutral element 0) having for
each a a (uniquely determined) inverse —a such that a+ {—a) = 0. A subgroup is a subset containing
0 and closed under addition and inversion. With two subgroups N, K of M the smallest subgroup
containing both N and K is

NeK={n+k|lne N ke K}=K+N.
For subgroups one has the Modular Law
A2C=ANB+C)=AnB+C.

Namely, if a is in the left hand side, ie. a =b+cwitha e A be Bee Cthenb=a~c€ A
whenee &6 € AN G and a also in the right hand side. The converse is trivial. Products of ErOUpE are
direct products of the underlying sets with operations component wise. An homomorphism v of an
abelian group M into another, N, is a map a v+ ar {exceptionally, we write application of maps on
the right, in this context) of M to N such that

(a+ byr =ar+ b forall a be M.
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It easily follows
b = 0 and (—a)r = —{ar).
A homomorphism is an embedding if it is one-to-one and an endomorphism, if M = N as groups.

Under composition, the endomorphisms of M form a monold End{ M), the endomorphism mornoid,
with neutral element ¢ = id

E.[TH}I = [ur]s andae —aforallae M, r.s € Er:dIIM].

These identities mean that End{M) acts on M on the right via a ~» ar. The lollowing in well known
(cf Kurosh (1963; 10.5) and basic for the intended interpretation.

Proposition 19 Every (finile) monoid can be embedded into the endomorphism monoid of some
{finite) abelian group.

Proof. Choose a finite feld &, and let A consist of all formal sums

Z Ags with A, € k and all but finitely many A, =10
S5 5

with addition defined by

EA,H I ZFFE: Z':’:"'F g ) s

Al FES sES

In particular, two sums are equal, if and only if A, = g, for all their coefficients. In other words, A
is a k-vector space with basis 5. With r € 5 associate the map ¢, given by

Z.ﬁ.,ﬂr » [Z LH]r:Z{ E Ag)t.
5

FES S aeSarmt

Straightforward calculation shows that (a + b)r = ar + b and (ars) = (ar)s for all a,b € A and
v, 8 € 5. I br = ¢ then Iy = (le)r = (le)s = 1s whence v = & Thus, r v+ ¢ 18 an embedding of 5
into End(A). O

Let 0 denote the one-element subgroup of the abelian group A. With each endomorphism r of A we
associate its (negative) graph
'y = {I:r.l:1 u.-r] a e .4}.

Lemma 20 The graph ', of an endomorphism of A is a subgroup of the abelian group A? and
Uy C 0, if and only if r = 5. A subgroup B of A* is of the form ) if and only if

Bri(0x A) =0 and B + (0 x A) = A,

Praof. Uy is a subgroup sinee (g, —ar) + (b b} = {a+ b, ~(a + b)r) and —{a, —ar) = [—a, —{—a)r.
Also, Iy (0 x A) = {(0,0¢)} = {(0,00} and 'y + (0 =% A) = {[a, —ar) + (0,8))a,b & A} = A%
Conversely, given B define ¢a) = b if and only if (o, ~b) € B. ¢ is well defined, sinee from
[a, =¢) € B it follows (0,b = ¢) = [a, —¢) = (g, =b) € B whenee (0,6 —¢) € BN (0 x A) and so
b—ec=0and b= ¢isdefined on all of A sinee for any a € A by hypothesis there are (b, ~br) € B
and (0,¢) € 0 x A with {a,0) = (b, &) + (0, ¢) whenee @ = b and (g, —ar) € B. Finally, if [, T T,
then for all a there is b with (a, —ar) = (b, —=bs), 1.e. @ = b and ar = bs which means that v and s
are the same (being maps). O

In order to recapture the composition of endomorphisms, too, we have to use the abelian group A*
and its coronical frame of subgroups consisting of the following subgroups:

Ay =Ax0 Ae=0xAx0 Ay =0 x A

10



Ey={{a,—a,0)ac A}, Ey={{a,0 —a)lac A}
By = {(0,a, —a)|a € A}.
Observe, that A; + A; is isomorphic to A x A; eg. (0, b,0) v (g, b) for i = 1,5 = 2. Now, we
associate with each endomorphism r of A and ordered pair i # 7 in 3 = {1,2, 3} the graph subgroup
Ly of Ay + Ay eg.
Cra = {la, —ar,0)|a € A}.

In particular, for the identity endomorphism e we have Uiy = Biyy.

Lemma 21 For any abelion group A, permutation i j.k of 3, and endomorphisms v, 8.8 of A
Ly = [rrij { I-‘gjj_-} M{Ay+ A) ifft=rs
[rrl_; T -E'k_f:] M [."41 { -"ik:] — I-irl.b |:I1r1j I E{k} n |:-"1-k | fij] — 11rk_15-

Proof. Consider 4,7,k being 1,2, 3. Then U + Doy = {{a, —ar,0) + ({0, b, =bs) |a.b € A} =
{[u, ar 4 b, !i.'s}|u,il{: .Jl]- —: M and HI‘I{J‘IL | .43] = {[u ar 4= b, E!.'s}l|u,|'.ll: A —ar 4+ b= ﬂ]-
= {l{e,0, —ars) |a € A}. The second claim follows using 5 = e resp. + = ¢ (and renaming the
indices). O

The concept of a group with system of subgroups will be based on the language Ly, considered in
section 3. Just, we have some structure on the set = of constants. Namely, we assume that it
includes particular names §, cepy €4 €y fyg where [ © 3 and 4,5, & is a permutation of 3. Also, we
assume that for every =,y € X there are names poy, Peijk. Peijim, 80d peg where [ 2 min 3. OF
course, all these names are supposed to be distinet. And we assume that every name in = is one
of these,

The basic names are the oy and ey referring to the frame and the pyy; referring to endomorphisms
vy = riz). Moreover, § for a special purpose. The remaining ones are needed to speak about the
sums resp. relational products involved in the definition of a frame, the characterization of graph
congruences [Lemma 31) corresponding to graph subgroups, and the ‘geometric multiplication' of
the latter (Lemma 21). Thus, for a given finite X © X, we want all these to be available and define

(X)) = {de}ul {:,J,Irr,,,:J |[iZ£i€3 € X}
L.l{r:m., Peijic | 1, J: & & permutation of 3, r € XU {er|] C3)
M pzijim [ I £l #FmED re X} ’
U{Pz;ﬁ;k i, 7, k a permutation of 3, = # y € X}

Call a finite subset = eclosed if and only = = Z{X) for some finite X € X .

Let A consist of all quadruples (A%, f,r, X)), called systerms of subgroups, where A is an abelian
group, [ a map from the closed subset =(X) of S into the svstem of all subgroups of A°, and r a
map of X into End( A} such that for all 2,4 € X

fla) = Y A, flag) =0, fleg) = By

i
f':';}' = By + By, f':ic;k] = E:J Ay
Flpeiy) = Lopmigs Flonige) = Depanig + Ai
Tlowm) = Ceizyig + Eims S {Pegige) = Crpzig + Crigpe-
In other words, given A we have no choice implementing a “frame-name’. For ‘g-names’ implemen-

tation is determined by the map r. Just § can be interpreted, arbitrarily.
For e, 8, in = the validity of an atomic formula is defined as follows

(A%, f,r, X) | a C B ff fla) C f(8)
(4%, £,7. X) E an 8= ff fla) N F(8) = i)
(A%, fr, X) oo g =7 iff f(a) + f(8) = fx).

11



Theorem 22 8§ and Len can be inferpreted into A and Ly,.

Proof. Given a formula H = F in Lsg having generator symbols in X, let H' be the conjunction of
the following sentences (the first two types of which encode the given multiplicative relationships in
H)

Peike = Ot 1 Pegige where z — Ty occurs in H

iy = pyiy where ¥ = y ocours in H
8 C oy, and § = pg_ja iz Where I 18 g = .

Then choose F' as opod = aye. Observe that for systems in 4 satisfying H' the elaim F' is equivalent
to r{xy) = rly). Indeed, if F' holds then by the Modular Law Urjagpnz = Drpgne N (A + Ag) =
(Crizgyaz M Az} + fid) =0+ fid) = f(4) C Uejponz whenee r{xg) = r(po) by Lemma 20, Conversely,
il r{zg) = ripg), then f{§) = Leprgyiz and F* follows from Pppzgiz + A2 = A + Ay

Given (S, o) embed S into End(A) according to Proposition 19. For = € X let r{z) the image
of o{x) under this embedding. Let (A% f,r, X be the associated structure in A such that f[d) =
S {peg1a N pyg1z). By Lemma 21, if (5, o) satishes H then (A%, f,r, X) satishes H' and o(xq) # o{m)
amounts to F' not being satisfied.

Conversely, let (A%, [+, X) in 4 a model of H' not satisfying F'. Choose a{z) = riz), z € X
and 5 as the subsemigroup these generate in End(A). If z = xy is in H then p., = oge 1 pegige 18 in
H' and we get

Crizpie = (A + Ak} O (Crizpig + Coigisie) = Crizieqypis
by Lemma 21 whence r{z) = r{x)r(y) by Lemma 20 and so o(z) = o{x)a(y) by definition of o.
Similarly, o(z) = oy} if # = y cccurs in H. Hence, H is satisfied in (S, o). Moreover, by the above
remark the failure of F'in (A%, f v, X) entails that of F in (5,0). O

From systems of subgroups we can pass to systems of equivalence relations, naturally. A congruence
of the abelian group M is an equivalence relation ¢ on M such that

afth implies a4+ e b+ e
Full compatibility with + and — follows, easily - ¢f Kurosh (1963; 18.5).
Proposition 23 For an abelian group M there is a bijective correspondence

Nyg={Jaec M|al}, afybifa-beN
befween subgroups N of M and congruences U of M. Also
e = e N g

Oywow =Oyally =0 olly.

In particular, any bwo congruences of an abelian group permute.

Proof. Ny is a subgroup since af(), 00 leads to a4+ b 0 a+0 = affd and —a = —a+00 —a+a=10. Oy
is a congruence since a — boh—c € N impliesb o= ~(a-bl e N, a-ec=[a-b +(b—-c) € N, and
(a+d)—(b+d) =a—-be N. Moreover, ally,bilfa—~be Nyilfa-b0ilTa=(a-b)+b00+b=b
and a € Ny, il ally iff a =a —~ 0 N. Finally, ally, b implies a — b = n + k for some n € & and
k€ K, whenee ally a — n = b+ k Ogh and, conversely, allyeflgb implies a —c € N, e~ b € K, and
g=b=(a-e)+{c-beEN+K O

A system (A% kv, X)) s in AG (an abelion congruence system) il and only if there is (A9, fr, X) in
A such that [ and & have the same finite domain = C = and k(£) is the congruence associated
with the subgroup Jrl[..';']l for each £ = Then, from Theorem 22 we have, immediately

Corollary 24 There is an interpretation of 8 and Lgg into AQ and Ly, O
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Figure 3: Coordinatization

The congruences associated with the canonical frame of subgroups of A® form the canenical frame
of congruences of A%, The congruence associated with a Iy is called an ij-graph congruence.

7. Coordinatization. Coordinatization can be understood as showing that certain systems of
equivalences are isomorphic to abelian congruence systems. Since we have to work with the very
restricted language Lo, we cannot introduce any “axioms” - besides those expressing the fact that we
work with equivalence relations. All we are allowed to do is to form conjunctions of atomic sentences
and make them part of an antecedent - Le. to reguire some of the equivalence relations to be moets
or products of certain others, or some of them to be comparable. This isn't really much to work
with. So it may be a surprise that one arrives at an abelian group, after all. As an introduction, we
study the 2-dimensional case of Reidemeister (1968) or Denes and Keedwell (1974).

A Fnefis a set B together with 3 equivalence relations e, o, €12 such that
v (v = evg Mz = e Mgy = 4d

fEy] BflEy = ] 9 &2 = {2 = v

A loop 18 an algebraic structure A with a binary operation -+ and a constant () such that a + 00 =
04+ a=uaforalec A and such that for all @, b in A there are unigque ¢, d in A such that a4+ e =6
and a4+ a = b

Proposition 25 For a loop A we gel o 3-net on E = A* such that ¢y = 8 and oy = O are the
kernels of the projections and

(@, 0)e2(0,b) if and only if a = b
a+ b= e if and enly i (a, b)epa(e, 0).

Eoch 3-net is womorphic fo the 3-nel associaled with a suilable loop.

Geometrically, think of a “plane”, say the real plane. Choose an origin 0 and two “ccordinate
axes” g, ¢ passing through it. Using the parallels to g and ¢, each point of the plane is uniguely
determined by its pair of coordinates on g and g'. Thus, the plane can be understood as a direct
product A = Ay where A, corresponds to g and Az to ¢ Choosing units 1 and 1’ on g and g one
can establish a one-to-one correspondence r 5+ ' between g and g such that the lines through », '
and 1, 1" are parallel. So, one can identify the plane with a set A4* and g with A x 0, §" with 0 % A.
Now, addition on A can be defined as in Figure 3.

The system of equivalences considered here consists of the plane E and b listing the three parti-
tiong into parallels given by the two axes and the line through the two unit points. For the prool we

use the following

Lemma 26 Let v be an equivalence relotion on Ay x Ay sueh that yoly, = id and vo 0, = V and let
0y € Ay, Og € Ay be fired. Then there is a funigue) map [ Ay = Ay with fla) = b iff (e, 0)5(0,, 5)
and, in porticular, [(0,) =0z [ is a bjection i, in addition, vyN @ =id and ye ] = V.
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Proof. [ is well defined since (a,04)v(0,,5) and (o, 0g)7(0,, ¥) jointly imply [0y, 8)~(0,, ¥) whence
(0, by (1 05{0,, 0") and b =¥ by hypothesis. On the other hand, given ¢ € A, in view ol vy 8, =V
there is (x, b) with (a, 0 )y(x, B)#(0,, 0:) where, necessarily, x = 0, whence f{a) = b The analogous
reasoning establishes the inverse map. O

Proof of Proposition 23. Given a loop A define ¢, on A* such that (a, b)eys(e,d) if and only if
a+ b=+ d Itis easily seen that this vields a 3-net together with the projection kernels oy
Conversely, if we consider systems of equivalences up to isomorphism only, by Lemma 6 (a) we may
assume that £ = A4; x 4; and oy = &, Moreover, choosing (; € 4;, Lemma 26 provides us with a
bijection [ : A — Ay with f{e) = b if and only if {a, 0)e,(0, b). Ldentifying Ay with A = A; we have
(e, D)eyz (0, b) if and only if @ = b while retaining all other properties. Defining a + b = ¢ if and only
if [, b)ega(e, 0) we have to show that this results into a loop. Firstly, from e o oy = V for any a, b
we have ¢, d such that (&, e, d)ea(0,0) whenee d = 0 which means that a + b is always defined.
Having {a, bleialc’, 0), too, we get from transitivity (¢, 0)eg(c’, 0) whence (e, 0)egs M e, 0) and so
¢ = ¢. Therefore, addition is well defined. The other properties [which are not needed later on) are
proved in a similar fashion. O

In the planar case one needs some kind of Desargues’ Law in order to obtain an abelian group.
Geometers know that this comes for free in 3 dimensions but did not bother to write that down
for so rudimentary geometries as are the ones we have to consider. So we have to follow Herrmann
(1987). From the notions of the canonical frame of subgroups resp. congruences of A* we abstract
the following properties which a 3-dimensional analogue of a 3-net should have. A permuling frame
af equivalences on E is a family rx,:,f.i_f,lzi # j € 3) of equivalence relations on E such that every two
of them permute and

|

2
3
4

M [u_f o0y = id
€4y Moy = id

(1}
(2)
€00y = 0y O (1)
(4)

g = Epy = [c,j = LJJ,} M I:r_u, L= uu,}

for every permutation i, 7, k of 3 and, in addition, o o a2 ¢ a3 is the total equivalence relation on E.

Geometrically, we have 3 coordinate axes and a unit point on each of them, resp. the 3 lines
conngcting the 3 unit pointg - and all parallel classes determined by these lines. In particular,
restricting any equivalence class K of an oy o oy (which one might view as a coordinate plane) one
obtains a 3-net (K, oy K, oy K, ;| K). Whereas the loop associated with a 3-net isn’t a really big deal,
the heavenly gift of a third dimension turns frames of permuting equivalences into easily understood
algebraic objects. This has been stated in slightly more general form as Thm.1 of Herrmann {1987).

Theorem 27 The sels E with frames of permuling equivalences are up lo isomorphism exactly the
abelion groups A* with cononical frames of congruences.

The basic steps are the isomorphism from arbitrary £ to an F = A? with certain conditions on
the frame including that the oq are intersections of projection kernels [Lemma 29), the definition
of an abelian group structure on A in that situation (Lemma 30}, and the characterization of those
equivalence relations which are graph congruences [Lemma 31). With {1,3) we quote the instance
i=1,5=2af (1), ete.

Lemma 28 For a frame of permuting equivalences let ¢ the product of all ey in arbitrary order and
o = (¥ 9 0¥, Ser i, 3,k a permutation of 3. Then

€120 €23 = €12 0 €13 = €23 D €13 = & (3)
ty Me = id ()
€y = e, 1M [eiy © o) (7)
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Proof. [5) is immediate by Proposition 5 (b) and the fact that ey © ¢ o g5, by [4). With [4) and
(2} it follows ay Me C oy Mey = id. Pinally, sinee £ = v, by (3}, the Modular Law applies and with
(1) one gets af M (e 0 o) = gy 0 (o) Nog) = gy 0id = ¢y O

Ad hoc definition. Let A be aset and 0 € A, A O-nice frame of A* is a frame of permuting
equivalences on A* such that for every permutation 4, .k of 3

(@, g, ag g (B, by, by) AT ay = by (&)

(ay, o, g ) (By, b, bs) i gy = By (9)
(@1, a2, as)ei(by, ba, ba) WfF (o], 0y, ay)eqy (B, b, B5)
where a = ai, b = bi,u; = |'.I:_-|!:|!.I; =by,al, =8, =0, 06 = by
[ﬁIE-:ZLI.{.I-!I::ﬂ:LI;:n,b}:Ll_f:qu-Zuk:f.ILZ-!ik:LHZb_f (10}

Every canonical frame of congruences is (-nice.

Lemma 29 Every sel E with frame of permuting equivalences is isomorphic to some sel A* with
O-nice frame.

.F’fwf. By Proposition 6 II-:"] we may assume that & = Ay » Az w0 Ay with [H] And [".-'J] For each f
choose an element 0 in A, and let 0 = (0, 0,0) - not mentioning the subseript where there is no need
for doing so. Now, the of —class of 0 can be identified with A; x Az (forgetting the third component
) and with the restrictions of o, o, and ;3 Lemma 26 applies to provide a bijection fi5 of 4 onto
Ay, More precisely,

_|rwl[1'} =y i [:.'J:: . ﬂ}t.,z{ﬂ,y, D}I.
Similarly, we have fiy. Let A = A; and identify A, with A via f5' and Ay with 4 via f;3'. More
formally, map A, x Az x Az bijectively onto A*

(a.b.e) v (a, frg' (), fi3'(e))

and continue with the image of the old system under this map using the old notations. Observe,
that all frame relations and {H] [".-'J] remmain in power and that

(e, 0, 0)eqn(0,6,0) i a=b, (a,0,00,(0,0,¢) i a=c (11}

Now, (0,8, 0)eg (0,0, ¢) implies (0, b, 0)ey (2, 0, 216200, 0, ¢) for some (x, g, 2) by (4z). Havinges © o
and ¢35 © ab (cf (4)) it follows z = 0 and y = 0 whence, by (11), b = = = ¢ Conversely,
(0, b, 0yegalb, 0, 0)eq (0,0, 5) whenee (0,8 0)eq 0 e5(0,0,5) and [0, b, 0)eay (0,0, 8) by (44). Summariz-
ing,
(0,8, 0)es(0,0,e) iTb=0¢

s0 no symmetry has been lost. Coming to the proof of (10), firstly, ay = by is necessary since )3 C of.
So we assume ay = by, Since om0 €12 0 0 00y = €12 0 0 by permutability and transitivity, the pair
[y, g, 0), (By, by, 0) 38 in ey o 0y i and only so is the pair (a,, aq, 03], (b, b, ay) is so. Both being in
oy, one of them is in ¢y il and only the other is (in view of (T)3). But, in the case a; = 0 and b =10,
for the first pair we already know by (11) that this happens if and only if g, = by O

Lemma 30 Ifm,:,f.i_.,: is ¢ O-nice frame on AY, hen A is an abelian group such thal for all permuta-
tions i, 4,k af 3

at b=l (o, ag ay)eyb, by, by) (12)
where oy —a,a =0y —caqp =by = by =10
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Progf. Define
@4 b= i [a,b0)eg(e,0,0) and a +g b= ¢ iff {a,b, 0)ey (0,0,0)

and, similarly, a +; b according to (12);;. Recall that ey = ey due to [4). That addition is well
defined is seen as in the proof of Proposition 25. By this definition and (10,5)

(a4 pz b, 0, 0)egg (o, b 0eg (0,8 40 a, 0)egalb 44 a,0,0)
whenee [a+q & 0,00y Moy (b 4y a,0,0) and in view of (2)4)
i g & = 0 +g @, and similarly a +45 b= b +j; @
Again, by the definition and (10s)
[z A0 b, 0,00 0{a, b, 0)ew (a, 0, B)eala 44 b, 0,0)
whence (a9 & 0,00 oo 45 & 0,0) and by (6,)
a+tpzb=a-+y3b and similarly g+ b=a-+g b

Now, one easily pgets that addition is commutative and does not depend on the subscripts. H.g.
gtpb=a+pb=btya=btma=atub=a+syb=>b+a Also, 0is nentral by definition. To
get an inverse of a observe that by (3y,) there is (b, ¢, d) with Degy(b, e, d)ogla, 0, 0) where necessarily
b= a and d = 0 which then yields a + ¢ = 0 according to the definition of addition. Finally, by (12)
and (10)

({a 4+ b) + ), 0,0)e3{a + b0, elegala, b clegg(a, 0, b+ e)egga + (b4 e)),0,0)

whence ({a+b)+el, 0, e {a+ (b+e), 0, 0) which results into the associative law (a+b)+e = a+ [bée)
by another use of (6,). O

Lemma 31 Let oy, ¢y a O-nice frame on A where A s an abelion group with addition according lo

{12) fe.y. a canonical frame of congruences). Then an equivalence relation p of E corresponds to an

ij-graph congruence of the group A if and only if it permutes with cey and abl o, ey and ey where
k #i,7 and if one has

pey = id (13)

POy = dy oy (14}

In particular, all oy and ey ore congruences of A%,
Proof. Consider p C o ¢ ¢y, Then from the Modular Law and [1),(2) it follows that

o= I:Irj-nuk]ll_l{rqnujj (13}

.

16}
p=(poeg) Niogoa). (17}

p=lpoey)nloe rrj},

For example, (16) is obtained from {poeg ) Mo, = po e Mag, and e, M iy, = ik r::'L r r::;qk Mexy = i
where we used (2) and the fact that of is a projection kernel.

Let i = 1, = 2. Now, (x, y.c)pla, b, o) implies (x g, d)loa o po aala, b, d) whence [z, g, d){poas) N
oty [, by ) by permutability and also (z, 4. d)pla, b d) by [153). This amounts to

[z, y, e)pla, b e) M [z, p, d)pla, b, d). (18)

Thus, (z, 3, 0)pla, b 0) implies (x 4w, g, 0)egalx, g, w)pla, b wleggla 4w, b 0), in view of (1244), (104,),
and (16,4} one has
[z, 4. 0)pla, b, 0) implies [z + w,y, 0)pla + w, b, 0). (19}
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Now, let (x,y, z)pla, b ). Sinee p € of in view of [14), we have z = ¢ and (x, 5, 0)pla, b, 0) by [18).
Then, given [u, v, w) application of [19) vields (z + w,y, 0)pla + w, 5, 0). The analogue of (19) for
addition in the second component leads to (x4 uw, ¥+ v, 0)pla +u, b+, 0). Finally, (18) (and z = ¢)
resulliE in [I o,y kv, 2 4 v.r.::llr:[u: b otr, B w0 o 'ru}l. Eummﬂ:iﬂng

(£, 9, 2)pla, b, ¢) implies {z + u, g+ v,z + w)pla + w, b+ v, ¢+ w).

But this means that p is a congruence of the abelian group A*. Thus, the Lemma is shown referring
to Lemma 20 and Proposition 23, O

Proof of Theorem 27. Let E e a set with arbitrary permuting frame €, €34 of equivalences. By
Lemma 29 we may assume that £ = A% and that the frame is O-nice. Then Lemmas 30 and 31
provide us with an abelian group structure on A such that the frame equivalences are congruences of
A By (8), @y corresponds to the subgroup A, = Ax0® For ¢y, we have (o, b, ¢)eo0 1 (a+6,0, 00,50
and ¢ =0 (by (12)) i a+ b= =0 {by (10)). S0 ez corresponds to Eye. Similarly for the other
indices showing that we indeed have the canonical frame of congruences. O

B. Unsolvability. Considering the language Ly, for systems (E, &) of equivalence relations assume
the set =, to be structured as in section 6. In particular, we have the notion of a *closed set” defined
there. Let 119 the subelass of 11 consisting of all (E, h) with & having closed domain.

Observe, that the relational product ¢ is not an operation symbol in our language - otherwise
no interpretation into databases and emvd's would be possible. Bue, the coordinatization results
involve some products of the basic equivalence relations. The necessity to speak about these is the
very reason why we introduced the auxiliary names and why we work with closed subsets of names:
within such, for any basic name we also have the associated anxiliary names available.

Given X © X let Hy be the conjunction of the following atomic sentences (splitting an identity
into two inclusions, if needed) where x,y € X, T C 3, 4, 7, k a permutation of 3, and | £ m in 3.

CEp Oy = g . O3y = &g (20}

€ My = g, €45 © Oy = g, €45 © g = € (21}
GO =€, g = e = € oy (22)

Pt Moy = pragy D kg = g, Py © Gy = 2y (23)
Prijgk = Peif © Ok Peiflm = Peij © Chm (24)
Prijik N Ok = Priey Prijie [ Gy = Pokj (25)
Payiik = Paij © Pyik (26)

Lemma 32 (E &) in [I° is isomorphic to (A*, f) for some abelian congruence system (A® for, X)
in AG if and only if i salisfies Hy, hlog) = id and Biog) = V.

Proof. An abelian congruence system satisfies all the claimed relations, obviously. Conversely, let
(E, k) be given. For convenience, we write £ in place of A(E). [20)-(22) wogether with oy = id and
r¥y ensure that we have a permuting frame oy, ¢y on E. (In more detail: in view of ey = id, (1) and
(2) are special cases of (20) and (21). From (20) we have oy = oy o oy, so (3) follows from [21).
Moreover, € = e © ¢ from (22) and we obtain (4) from the second part of (22). Finally, all of the
oy and ey permute sinee their products are again equivalence relations - of Prop.a: oy oy = gy by
[Eﬂ], o © €4y = cyy by {El], £4j © Gk = €ijk DY [El], €f © e = € by [EE].}I S0 Theorem 27 allows us to
assume that the given frame is the canonical frame of congruences of some abelian group A%

By (23), (24), and Lemma 31 the pey, x € X, are graph congruences. (Namely, (13) and (14) are
special cases of (23) - we already know oy = id and o o iy = iy, Moreover, pgy permutes with ay,
¥ €4, Ald €5, since the product with each of these is again an equivalence relation: Peij ooy = dyy by
(23}, Pif ¢ = Peygp bY (24}, Prii®Eim = fPeijim DY (24).) Thus, by definition, there are endomorphisms
v, 7, 2) of A such that Pzij 18 the congruence associated with iy g ey
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Switching to subgroups via Proposition 23, by Lemma 21 we get that [Ippp g i+ Bl DA+ Ag)
equals Uprg ¢ e and by (24),(25) that it equals Dv e i deyitee (Namely, Pzis © ik = Poijie DV (24) and
Paijge N gy = poge by (25).) With Lemma 20 it follows r{z.{, j) = r(x, i k). Similarly, we get that
vz, 1, 7) is independent of 4, too. Then {24) and {26) show that we indeed have an abelian congruence
system (A% &, r, X) associated with the map x »» r(x) = r{x,4,7) of X into End(A). (Namely,
denoting by f{£) the subgroup associated with £ = A{E) we have f{p.;]) = Uypy by construction
and flpzige] = Lrpzpig + Ae by (24), f(peiim) = etz + Eim by (24), f(peyije) = Deiarig + Degge by
(26).) O Now, we are ready for the crucial

Theorem 33 There s an inlerprelation of AQ and Ly, info 11° and Ly,

Proof. Given H = F in Ly, let F' = F and

H=HrHyn .l'ﬂl'l. g 6T oy
Fede

where ¥ i3 the set of all £ occuring in H = F and X a finite subset of X, such that ¥ := (X} 2 ¥,

For any structure (A? A, r, X) in AG we have (A% &) in 11° and (by Lemma 32) Hy satisfied as well
as fe[og) = id and ey} = V. Therefore, (A% h,r, X)) E H = F il and only if (A% h) E H' = .

Conversely, let [E k) in I1* with domain = 2 ¥ a model of H' not satisfying F'. Redefine
.I'L[{:I = hl:E::l for £ oocuring in H = F" and .'J.{E}I = h.l:r_ug], elae. In [E, .h}l the sentence H' is valid
but F' is not - since the values of the constants ocouring in these sentences have not been changed.
Observe that due to H' we have hiag) C FL{E::I C Feleepieay) for all £ € =, Hence by Proposition 7 we
first may form the quotient {E'. ') = (E, h:l}"flzr_ua] and still have H' valid but not £, By the same
Proposition, there is a elass E" of &' [cgpy) such that in the restrietion (EY, A"} we have H' valid but
not F*. But now we have h"(og) = id and h"{ay) = V.

Moreover, having Hy satisfied, Lemma 32 applies and there is (A% f,r, X)) in AG such that

(E", k") is isomorphic to (A*, f). In particular, this abelian congruence system satisfies H' but not
oo

Proof of Theorem 1. Propositions 24, 33, 9 and 12 combine to an interpretation of & and Lgq into
D and L, via the structure classes AQ, [1°, and [ and the language Lr,. The crucial Theorem 16
of Beerl and Vardi (1981} then carries the interpretation on to D and Leged. Therefore, it suffices
to show that (fnite) validity is algorithmically undecidable for Lgp and 5. Given a finite collection
of semigroup words over X choose a new generator symbaol ry for each subword w(ry, ... xs) and
form a conjunction Hy, of atomic sentences such that for any map o of X into a semigroup S one
has wia(x,), ..., o(x,)) = a{z,) if and only if (5, 0) E H, - this is easily achieved inducting on the
complexity of w. Now, translate an implication

Wy =y Moo N il = Ty = Wy = )

into
He AH, Ay, =, Ao A H, AH, Axy, =, AHg AHy = 5y, = 24,

Shortly, there is an interpretation of semigroups as algebraic structures into semigroups as ternary
relational structures with regard to universal Horn formulas of Beeri and Vardi (1981). Thus, a
solution of the (fnite) validity problem for Lgy and 8§ would provide a decision procedure for the
proper implications in the universal Horn theory of (finite) semigroups which is also referred to as the
word problem for (finite) semigroups. The problem and its finite variant are known to be unsolvable
according to the classical result of Markov (1947) and Post (1947), respectively to Gurevich (1966).
-

Proof of the Corvollary. The set of emvd-implications falsified in some finite database is recursively

enumerable. So its complement cannot be recursively enumerable, in particular not via an axioma-
tization. Also, implication and finite implication cannot coincide in view of Theorem 10, O
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9. Discussion. We have carefully avoided to mention lattiees so far. OF course, the system of all
equivalence relations on a set forms a lattice (with respect to M and V) and so0 does the system of
all congruences of an abelian group. Alse, our coordinatization result arose in the context of von
Neumann's (1960} coordinatization of complemented modular lattioss and interpreting semigroups
into modular lattices via frames is the basic idea of Lipshitz (1974).

Yet, it has to be pointed out that in the present interpretation we do not refer to lattices of
equivalence relations nor to abstract lattices which would require a global modularity assumption
hardly to be satisfied by structures derived from databases where the only restriction allowed is a
finite set of [d’s and emvd's.

In contrast, we relied on local modularity which can be finitely encoded. For a base set with the 15
equivalence relations given by a frame and the products to be formed from it, this vielded the abelian
group A and its endomorphism monoid End{A). Then, for each element of End{A) we wanted to
gpeak about, we threw in another 30 and for each pair of them another 12 eguivalence relations
and one more for the conclusion. Thus, Onitely many equivalence relations and atomic statements
about them sufficed to deal with the subwords involved in a single finite semigroup presentation and
identity to be tested.

Our result carries over Lo representable relation algebras having at least meet, product, and
inversion among their operations and the identity relation as a constant. For a vector space 1 let
RV denote the relation algebra generated by the system of all congruences of V. For a class R of
algebras let Ry denote the class of its finite members.

Corollary 34 Lel R o class of representable relation algebras conlaining B[V for some infinite
dimnensional veclor space resp. finile R{V)'s of arbitrarily lorge dimension. Then the quasivariely
generated by B and Ry, resp., containg a finitely presented algebra with unsolvable word problem. In
both case, the universal Horn theories of R and Ry are recursively inseparable,

For relation algebras in the sense of Tarski in this situation even the equational theory is unde-
cidable - this is a recent result of Andréka, Givant, and Németi (1993).

Proof. That g is an equivalence relation can be expressed by the statements prid =id, p~' = p,
and po p= p. Given a semigroup presentation, again consider the system of equivalences consisting
of a permuting frame and a graph congruence for each semigroup generator - which can be specified
by finitely many relations in terms of the relation algebra operations. Then the sublattice generated
in the partition lattice s in fact contained in the congruence lattice of the associated abelian group,
in particular joins are products. So, one can translate semigroup words via lattice words into relation
algebra words. Finally, recall that the results of Markov, Post, and Gurevich actually provide a fixed
antecedent such that the corresponding universal Horn sentences are undecidable. Concerning insep-
arability, let 3,06, Yo, and 2, denote the sets of universal Horn sentences valid in all cancellative
semigroups with zero, all groups with zero, and all finite semigroups, respectively. Gurevich and
Lewis (1984) have shown that Liggen And the complement ETEI,F are recursively inseparable. Then so
are Yoy and CEp .. obwviously. But, groups with zero {conceived as semigroups) can be interpreted
into relation algebras, too, having with each penerator also its inverse - using Lemma 26 to establish
invertibility.

Lattices are in the background in another respect, too. Namely, partition lattices have been intro-
duced by Cosmadalis, Kanellakis, and Spyratos (1986) in the study of database dependencies. In
particular, they created the concept of a partition dependency (pd) given by an identity involving
meet and join (in the terminology of presentations one would speak of a lattice relation): the pd
holds for a list of attributes if and only the identity is satisfied for the corresponding list of equiv-
alence relations. Then, the implication as well as the finite implication problem for pd’s reduce to
the uniform word problem for lattices (sinece the quasivariety of all lattices is generated by (finite)
partition lattices). For the latter, an efficient solution is already in Skolem (1920). Unfortunately,
even myvd's cannot be expressed as a conjunction of pd's [(Cosmadakis et al., Theorem 5).

O the other hand, Sagiv, Delobel, Parker, and Fagin (1981) translated fd's and mvd’s into propo-
sitional logic but showed that this would not work for emvd's. Day [1993) replaced the propositional
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formulas by a conjunction of lattice identities and proved that this works well for fd's and mvd's
with respect to any equationally defined class of lattices (reducing to the propositional case when
considering distributive lattices). Yet, for emvd's this translation has not yet sucoeeded - in any case,
according to Day, modularity would be a necessary requirement.

What we used here are only rudiments of the above approaches, also to be found in Rauszer
(1987). In particular, we beware the general join in partition lattices. However, the work of these
authors was an incentive for the present paper.
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