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Abstract
The sizes of Boolean combinations of subgroups ) of a finite
abelian group depends only on the Boolean expression, the (-1-sublattice
generated by the oy, and the sizge of minimal subguotients from this
sublattice. Moreover, they increase, monotonically, with those sizes.

Sizes of definable subsets are valuable model-theoretic invariants. For
modules, in view of quantifier elimination (cf [4]), such subsets are Boolean
combinations of submaodules. Following a suggestion of LHerzog, we show
that, in the finite case, these sizes depend only on the isomorphism type of
the sublattice generated by these submodules and, in a monotonic way, the
sizes of minimal subguotients from this lattice.

To provide a framework where this can be made precise, let L be a mod-
ular lattice of finite length and P{L) its set of prime quotients, Le. of pairs
a > bsuch that a > x > b for no . An egde valualion 1 is a map from P{L)
inta the natural numbers such Lhat u{ﬂ.}"il] = ul:r.'l.lrd} whenever ¢ = a4 o and
b = ad - we write a + b and ab for join and meet in lattices. A representation
of (L, ) is a lattice homomorphism ¢ of L into the subgroup lattice of some
finite abelian group such that $(0r) = 0 and such that the cardinality of the
quotient subgroup ¢la)/$(b) 8 v(a/b) for every prime quotient afb. Let N
be the set of all & such that (L, ») has a representation. Observe that the
condition on edge valuations is necessary for representability. Nothing is said
about existence of representations - and not much is known.

By a Boolean expression over a set 5 we understand a term 2 = Blay, ... a,)
built from elements of 5. the binary operation symbels A, v, the unary op-
eration symbol -, and the constants 0, 1. Given a map ¢ : 5 — P[] we get
a subset ¢{5) of G by interpretation in the power set algebra P{G).
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Theorem 1 For every Boolean expression ? over a finite length modulor
lattice L there s an order preserving function fzp from Ny (with pointwise
order) to the natural numbers such that

farlv) = |o(F)  for every v € N and representation ¢ of (L, i)

Proposition 2 Givert g subsel 5 C L there is a funelion ISIL Sfrom Ny into

the natural numbers such that for cvery representalion ¢ of (L, v)

l6(1e)y | @ls)] = feplv).

aEs

Proofl. Let ¢ be any representation and 0 = @{1;) = (@), Ineclusion-
exclusion vields

(1) \Ue(S) = X (-1)™MNe(X) = 3 (-)Ms(IT X)),

XCg XiC&

where the [TX are meets in L. But, for an element a of L and maximal chain
a =gy ... = ay = 0 in [0, a] we have

6(a) :f[mm )/ la) ={f[m:u, Ja).

Fixing a maximal chain C of L, the Jordan-Hélder Theorem tells that the
vla/b) with afb € P(C) represent all values of v In this sense, fop is a
polynomial in those v(a/b) with each monomial of degree at most the length
of L.

Lemma 3 Let L be a direct product of lallices Ly i © I, wilth projeclion
maps 7. Then there is a 1-1-correspondence v & (p |i € T) between edge
valuations of L and of the Ly given by wlafb) = wima/mh) where § is the
unigue inder with ma > mb. Moreover

fS,L[I"} = Hfsu.r_i[l-',} where 8 = m,(S).
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Proof. With the central elements z; = (0,...,1;,...,0} we can view the
direct decomposition internally: Ly = [0, 5], 5 = z 5. In a representation

we have
bla) = B lza)
= F
whience
o(1) [ e(8) = %[ﬁ{z’} WL @50

Lemma 4 [fSC M= [z 1] and if z =g = a = ... = a, = 0 is any
mazimal chain in [0, z] then

forlv) = fonalw|M) - T] vlar-1/ar).

Proof. Of course, any edge valuation can be restricted 1o any interval sub-
lattice. Inclusion-exclusion and the representation ¢x) = #(x)/@{z) of M
in G fg(x) provide us with

{1\ #(5)] = ;EZ.-;{ DM e(x) = ¢*[f]|'ﬁ§s{ D (X 8(2)])-
Lemma 5 Let M = [0, m] a lower section of L and 5 an order ideal of L.
Then

Forle) = for(v) + fras(v|M) where U =50 M, T=5nM.

Proof. Observe that ¢| M is a representation of (M, »| M) with m = 1y and

Lhat
U4(T) = glm) 1 J6(S). () = b(m) u|J#(S)
o1\ Je(S) = (1) \Us(U)) & (e(m) \ U $(T).

Lemma 6 Lei L be the subspace lattice of an irreducible n — 1-dimensional
projective geomelry of order ¢ (fe. with g + 1 poinls on each line). Then

wlafh) = e, is constant. If (L, 1) is non-trivially representable, then o, = g.
Morepver,

_ o ifg" ' > e _ :
Tselv) = { n-lie, — %)  else 5 = {m € L|m marimual}.



Proof. Edge valuations have to be constant: for af/b € P{L) there is a point
pwith a = b+ p, ap = 0; and any two points have a common complement.
The cases n = 1,2 are obvious. Applying the case n = 2 to a line we get
oy = 4 in case of nontrivial representability. Now, let n > 3, ¢ a non-
trivial representation and 7 = ¢{1;). In particular, ¢ is an embedding. The
Arpuesian identity of Jénsson [3] holds in the subgroup lattice of G whenee
in L. It follows that that L is desarguean, ie. the subspace lattice of some
n-dimensional GF{g)-vector space V', wlog V = GF[g)". Using e.g. the
canonical coordinate system, we have points p of L such that the set ¢o(p) is a
GF(g)-vector space - for an elementary proof see [2]. Hence ¢, = ¢" for some
r. Now, by Proposition 2 it suffices to find any & and representation ¢ of
|:L,I-":| and £ eompiate JI":;IL for that. Such is provided by the tensor product

G = GFee) @arig V., #(U) = GFles) @arg U1 for U7 £ L{V).

Then & 2= GF (e, )", cancnically, and the $(L7) are just those subspaces of
which can be defined by equations with coeflicients from GF{g). Hence the
elements of 7 not contained in any &(L7), U7 € L(V) maximal, are just the
ni-tuples of elements of GF(e) linearly independent over GF{g). The number
of these is counted by the above formula.

Lemma 7 FEach fqr is an order preserving funclion - even stricly increasing
except for zero values.

Proof. Of course,
fsr=flsr where | S={recL|dsc 5: x < s}

is the order ideal generated by S in L. We proceed by order induction on
the lexicographic combination of the length of L and the corank of | 5 in
the [distributive) lattice of order ideals of L (i.e. the length of a maximal
chain of order ideals of L containing | S) . If 1z € 5 then fsr = 0. So let
1; @ 5. If | 5 i8 not maximal, then there ig an element m < 1p of L such
that m ¢ 5 and we can use induction and Lemma 5. Otherwise, we may
assume that S consists just of the maximal elements of L. It follows, that
M = [z, 1]with z =[] 5 is complemented ([1] p.88). In view of Lemma 4 we
are left to deal with the case where L itsell is complemented. But then L
is isomorphic to a direet product of irreducible projective geometries (ef [1]
p.93). So by Lemma 4 we may assume that L is already such and we are
done by Lemma 6.



Observe that the algorithm for computing fg p() is polynomial in the
size of L and the values of v

Proof of the Theorem. We may assume that J is in disjunctive normal form

g=\ At

e B dml

where B is a set of maps ¢ : {1,...,n} = {1, -1} and a' = a, a™' = —a.
Fut

e = [[{ai [2(i) =1}, S = {ue - oy | (i) = 1}
and let L, be the sublattice [0, u,] of L. Then, ¢{p af"") = fo, 1. (v|L,) and
Bl ) I}'JI{TI,F} = for £ £ 1 whence ¢(7) = fﬂ,;__[u}l with

Sfor(v) =% fs . (v|Le)

e B

a8 required.
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