On the size of Boolean combinations of subgroups of finite abelian groups

Christian Herrmann

September 7, 2003

Abstract

The sizes of Boolean combinations of subgroups G_i of a finite abelian group depends only on the Boolean expression, the 0-1-sublattice generated by the G_i , and the size of minimal subquotients from this sublattice. Moreover, they increase, monotonically, with those sizes.

Sizes of definable subsets are valuable model-theoretic invariants. For modules, in view of quantifier elimination (cf [4]), such subsets are Boolean combinations of submodules. Following a suggestion of I.Herzog, we show that, in the finite case, these sizes depend only on the isomorphism type of the sublattice generated by these submodules and, in a monotonic way, the sizes of minimal subquotients from this lattice.

To provide a framework where this can be made precise, let L be a modular lattice of finite length and P(L) its set of prime quotients, i.e. of pairs a > b such that a > x > b for no x. An egde valuation ν is a map from P(L) into the natural numbers such that $\nu(a/b) = \nu(c/d)$ whenever c = a + d and b = ad - we write a + b and ab for join and meet in lattices. A representation of (L, ν) is a lattice homomorphism ϕ of L into the subgroup lattice of some finite abelian group such that $\phi(0_L) = 0$ and such that the cardinality of the quotient subgroup $\phi(a)/\phi(b)$ is $\nu(a/b)$ for every prime quotient a/b. Let N_L be the set of all ν such that (L, ν) has a representation. Observe that the condition on edge valuations is necessary for representability. Nothing is said about existence of representations - and not much is known.

By a Boolean expression over a set S we understand a term $\beta = \beta(a_1, ..., a_n)$ built from elements of S, the binary operation symbols \land , \lor , the unary operation symbol \neg , and the constants 0, 1. Given a map $\phi : S \rightarrow \mathcal{P}(G)$ we get a subset $\phi(\beta)$ of G by interpretation in the power set algebra $\mathcal{P}(G)$.

Theorem 1 For every Boolean expression β over a finite length modular lattice L there is an order preserving function $f_{\beta,L}$ from N_L (with pointwise order) to the natural numbers such that

$$f_{\beta,L}(\nu) = |\phi(\beta)|$$
 for every $\nu \in N_L$ and representation ϕ of (L, ν)

Proposition 2 Given a subset $S \subseteq L$ there is a function $f_{S,L}$ from N_L into the natural numbers such that for every representation ϕ of (L, ν)

$$|\phi(1_L) \setminus \bigcup_{s \in S} \phi(s)| = f_{S,L}(\nu).$$

Proof. Let ϕ be any representation and $G = \phi(1_L) = \phi(\emptyset)$. Inclusionexclusion yields

$$|\phi(1_L) \setminus \bigcup \phi(S)| = \sum_{X \subset S} (-1)^{|X|} |\bigcap \phi(X)| = \sum_{X \subset S} (-1)^{|X|} |\phi(\prod X)|,$$

where the $\prod X$ are meets in L. But, for an element a of L and maximal chain $a = a_0 \succ a_1 \ldots \succ a_n = 0$ in [0, a] we have

$$|\phi(a)| = \prod_{i=1}^{n} |\phi(a_{i-1})/\phi(a_i)| = \prod_{i=1}^{n} \nu(a_{i-1}/a_i).$$

Fixing a maximal chain C of L, the Jordan-Hölder Theorem tells that the $\nu(a/b)$ with $a/b \in P(C)$ represent all values of ν . In this sense, $f_{S,L}$ is a polynomial in those $\nu(a/b)$ with each monomial of degree at most the length of L.

Lemma 3 Let L be a direct product of lattices L_i , $i \in I$, with projection maps π_i . Then there is a 1-1-correspondence $\nu \leftrightarrow (\nu_i \mid i \in I)$ between edge valuations of L and of the L_i given by $\nu(a/b) = \nu_i(\pi_i a/\pi_i b)$ where i is the unique index with $\pi_i a > \pi_i b$. Moreover

$$f_{S,L}(\nu) = \prod_{i \in I} f_{S_i,L_i}(\nu_i)$$
 where $S_i = \pi_i(S)$.

Proof. With the central elements $z_i = (0, ..., 1_i, ..., 0)$ we can view the direct decomposition internally: $L_i = [0, z_i], S_i = z_i \cdot S$. In a representation we have

$$\phi(a) = \bigoplus_{i \in I} \phi(z_i a)$$

whence

$$\phi(1_L) \setminus \bigcup \phi(S) = \bigoplus_{i \in I} (\phi(z_i) \setminus \bigcup \phi(S_i)).$$

Lemma 4 If $S \subseteq M = [z, 1_L]$ and if $z = a_0 \succ a_1 \succ ... \succ a_n = 0$ is any maximal chain in [0, z] then

$$f_{S,L}(\nu) = f_{S,M}(\nu|M) \cdot \prod_{i=1}^{n} \nu(a_{i-1}/a_i).$$

Proof. Of course, any edge valuation can be restricted to any interval sublattice. Inclusion-exclusion and the representation $\phi'(x) = \phi(x)/\phi(z)$ of Min $G/\phi(x)$ provide us with

$$|\phi(1_L)\backslash\bigcup\phi(S)|=\sum_{X\subset S}(-1)^{|X|}\bigcap|\phi(X)|=|\phi(z)|(\sum_{X\subset S}(-1)^{|X|}\bigcap|\phi(X)/\phi(z)|).$$

Lemma 5 Let M = [0, m] a lower section of L and S an order ideal of L. Then

$$f_{S,L}(\nu) = f_{U,L}(\nu) + f_{T,M}(\nu|M)$$
 where $U = S \cup M$, $T = S \cap M$.

Proof. Observe that $\phi|M$ is a representation of $(M, \nu|M)$ with $m = 1_M$ and that

$$\bigcup \phi(T) = \phi(m) \cap \bigcup \phi(S), \quad \bigcup \phi(U) = \phi(m) \cup \bigcup \phi(S)$$
$$\phi(1) \setminus \bigcup \phi(S) = (\phi(1) \setminus \bigcup \phi(U)) \uplus (\phi(m) \setminus \bigcup \phi(T).$$

Lemma 6 Let L be the subspace lattice of an irreducible n-1-dimensional projective geometry of order q (i.e. with q+1 points on each line). Then $\nu(a/b) = c_{\nu}$ is constant. If (L, ν) is non-trivially representable, then $c_{\nu} \geq q$. Moreover,

$$f_{S,L}(\nu) = \left\{ \begin{array}{ll} 0 & \text{if } q^{n-1} \geq c_{\nu} \\ \prod_{s=0}^{n-1} (c_{\nu} - q^s) & \text{else} \end{array} \right. \quad S = \{m \in L \mid m \text{ maximal}\}.$$

Proof. Edge valuations have to be constant: for $a/b \in P(L)$ there is a point p with a = b + p, ap = 0; and any two points have a common complement. The cases n = 1, 2 are obvious. Applying the case n = 2 to a line we get $c_{\nu} \geq q$ in case of nontrivial representability. Now, let $n \geq 3$, ϕ a nontrivial representation and $G = \phi(1_L)$. In particular, ϕ is an embedding. The Arguesian identity of Jónsson [3] holds in the subgroup lattice of G whence in G. It follows that that G is desarguean, i.e. the subspace lattice of some G-dimensional G-dimensional G-vector space G-vector space G-vector space G-vector space G-vector space G-vector space G-for an elementary proof see [2]. Hence G-vector space G-vector space G-vector space it suffices to find any G-and representation G-vector product G-vector space it suffices to find any G-and representation G-vector product G-vector space it suffices to find any G-and representation G-vector product G-vector space it suffices to find any G-and representation G-vector product G-vector space it suffices to find any G-and representation G-vector space it suffices to find any G-and representation G-vector space it suffices to find any G-and representation G-vector space it suffices to find any G-and representation G-vector space it suffices to find any G-and representation G-vector space it suffices to find any G-and representation G-vector space it is sufficed by the tensor product

$$G = GF(c_{\nu}) \otimes_{GF(q)} V$$
, $\phi(U) = GF(c_{\nu}) \otimes_{GF(q)} U$ for $U \in L(V)$.

Then $G \cong GF(c_{\nu})^n$, canonically, and the $\phi(U)$ are just those subspaces of G which can be defined by equations with coefficients from GF(q). Hence the elements of G not contained in any $\phi(U)$, $U \in L(V)$ maximal, are just the n-tuples of elements of GF(c) linearly independent over GF(q). The number of these is counted by the above formula.

Lemma 7 Each $f_{S,L}$ is an order preserving function - even strictly increasing except for zero values.

Proof. Of course,

$$f_{S,L} = f_{\downarrow S,L}$$
 where $\downarrow S = \{x \in L \mid \exists s \in S : x \leq s\}$

is the order ideal generated by S in L. We proceed by order induction on the lexicographic combination of the length of L and the corank of $\downarrow S$ in the (distributive) lattice of order ideals of L (i.e. the length of a maximal chain of order ideals of L containing $\downarrow S$). If $1_L \in S$ then $f_{S,L} \equiv 0$. So let $1_L \not\in S$. If $\downarrow S$ is not maximal, then there is an element $m < 1_L$ of L such that $m \not\in \downarrow S$ and we can use induction and Lemma 5. Otherwise, we may assume that S consists just of the maximal elements of L. It follows, that M = [z, 1] with $z = \prod S$ is complemented ([1] p.88). In view of Lemma 4 we are left to deal with the case where L itself is complemented. But then L is isomorphic to a direct product of irreducible projective geometries (cf [1] p.93). So by Lemma 4 we may assume that L is already such and we are done by Lemma 6.

Observe that the algorithm for computing $f_{S,L}(\nu)$ is polynomial in the size of L and the values of ν .

Proof of the Theorem. We may assume that β is in disjunctive normal form

$$\beta = \bigvee_{\varepsilon \in E} \bigwedge_{i=1}^n a_i^{\varepsilon(i)}$$

where E is a set of maps $\varepsilon : \{1, ..., n\} \rightarrow \{1, -1\}$ and $a^1 = a$, $a^{-1} = \neg a$. Put

$$u_{\varepsilon} = \prod \{a_i \mid \varepsilon(i) = 1\}, \quad S_{\varepsilon} = \{u_{\varepsilon} \cdot a_i \mid \varepsilon(i) = -1\}$$

and let L_{ε} be the sublattice $[0, u_{\varepsilon}]$ of L. Then, $\phi(\bigwedge_i a_i^{\varepsilon(i)}) = f_{S_{\varepsilon}, L_{\varepsilon}}(\nu | L_{\varepsilon})$ and $\phi(u_{\varepsilon}) \cap \phi(u_{\eta}) = \emptyset$ for $\varepsilon \neq \eta$ whence $\phi(\beta) = f_{\beta, L}(\nu)$ with

$$f_{\beta,L}(\nu) = \sum_{\varepsilon \in E} f_{S_{\varepsilon},L_{\varepsilon}}(\nu|L_{\varepsilon})$$

as required.

References

- G.Birkhoff, Lattice Theory 3rd ed., AMS Coll. Publ. 25, Providence R.I. 1967
- [2] C.Herrmann, Frames of permuting equivalences, Acta Sci.Math. 51 (1987),93-101.
- [3] B.Jónsson, Modular lattices and Desargues' Theorem, Math.Scand. 2 (1961), 295-314
- [4] M.Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (1984), 149-213

Address

Christian Herrmann, FB Mathematik, Technische Universiät Darmstadt, D64289 Darmstadt, Germany