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Abstract. Bases of lines provide useful presentations of finite height modular lattices,
acyclic ones being related to amenable properties in equational and representation theory.
It is shown that some (equivalently: any) base of L is acyclic if and only if L has exactly
2d(L) − s(L) join irreducibles; moreover, that this is the minimal possible number for any
L. Here d(L) denotes the height and s(L) the number of maximal congruences of L. We
elaborate the proof outlined in [5], parts of which also had been reworked by Wild [13].

1. Introduction

That finite height modular lattices can be understood in terms of some geome-
try, was well known to principal contributors to the theory, just to mention Baer,
Dilworth, and Jónsson: The set of points is the set J(L) of join irreducibles and
lines l correspond to (certain) joins l, the line-tops, of two points. Kurinnoi [11] and
Benson and Conway [1] showed that indeed this geometry determines the lattice
up to isomorphism - in [1] a line l is a maximal at least 3-element set of points any

two of which have the same join l. If Λ is some set of lines, then one may consider
the “partially ordered partial linear space” (J(L),≤, Λ) and its subspaces, i.e. order
ideals X of J(L) such that l ⊆ X for all l ∈ Λ with |X∩l| ≥ 2. These form a closure
system on J(L), whence a lattice L(J(L),≤, Λ). The above mentioned results now
read: L is isomorphic to L(J(L),≤, Λ) (via a 7→ {p ∈ J(L) | p ≤ a} if Λ is the set
of all lines. An axiomatic characterization of these geometries was given in [4].

In their proof that any 2-distributive L admits a representation in the subspace
lattice of some vector space, Jónsson and Nation [10] studied for a given coatom
u the geometry induced on the set J ′′ of points p 6≤ u. In particular they showed
that for lines l1, l2 with a common point in J ′′ either the line-tops l1 and l2 are
comparable or that a failure of dual 2-distributivity occurs which then yields an
irreducible height 3 interval and projectivity within [0, u] for points below u incident
with l1 resp. l2. This result became crucial for the generalization of the geometric
description to spatial lattices [6] and for applications [5, 7].

Acyclic lattices were introduced by Marcel Wild in his thesis [12]: he showed
that any index preserving isomorphism between two acyclic lattices of subspaces of
some vector space may be induced by a linear isomorphism - a property of good
use in the classification of orthogonal geometries in infinite dimensions. Also, much
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of the general theory appears the first time in [12]. The most important change of
view is that, as far as the isomorphism onto the lattice of subspaces is concerned,
the set of all lines may be replaced by certain much smaller subsets, the bases Λ
of lines, where for any line-top a there is exactly one l ∈ Λ with l = a. The join
relations given by a base of lines together with the order on points provide a (rather
small) presentation of L as a join-semilattice - cf. (3) below. The price is absence
of an axiomatic description.

Pairwise distinct l1, . . . , lm, m ≥ 3, form a cycle if li ∩ lj 6= ∅ if and only if
j − i ≡ ±1 mod m. A set Λ of lines is acyclic if it consists of 3-element lines and is
cycle free (in [13], cycle free Λ are called ‘acyclic’). L is acyclic if it admits some
acyclic base of lines.

These investigations have been continued in [5], focussing on equational and
representation theory. A sample of combinatorial results is the following where d(L)
is the height, s(L) the number of maximal congruence relations, j(L) = |J(L)|, and
i(L) the number of line-tops i.e. i(L) = |Λ| where Λ is any base of lines of L.

Theorem 1. Given a modular lattice L of finite height and a base Λ of lines the

following hold.

(i) Λ is cycle free and finite iff i(L) ≤ d(L) − s(L) iff i(L) = d(L) − s(L).
(ii) Λ is acyclic and finite iff j(L) ≤ 2d(L) − s(L) iff j(L) = 2d(L) − s(L).

Corollary 2. i(L) ≥ d(L) − s(L) and j(L) ≥ 2d(L) − s(L) in any finite modular

lattice.

Corollary 3. If some base of lines is finite and cycle free resp. acyclic, then so

are all.

Corollary 4. L is acyclic if and only if so is its dual.

Corollary 5. If L admits a finite cycle free base of lines, then L is 2-distributive.

Observe that Corollary 2 and Corollary 3 follow from the Theorem, immediately,
and Corollary 4 referring to Dilworth’s Theorem that j(L) is also the number of
meet irreducibles. A direct proof of the second part of Corollary 2 has been given
by Wild [13].

The purpose of the present note is to give a unified proof referring to the in-
troductory section 2 of [5], only, together with some elementary combinatorics and
well known facts about modular lattices - to be presented in sections 2-5. The proof
of Theorem 1, to be given in section 6, follows the basic ideas of [5, Sect.5-6]: To
match the minimality of d(L) − s(L) resp. 2d(L) − s(L) with a structural charac-
terization, taking advantage of Dilworth’s Theorem, the Jónsson-Nation analysis,
and Huhn’s characterization of 2-distributivity.

Thanks are due to to Anvar Nurakunov and to an anonymous referee for some
hints.

2. Modular lattice geometry

We follow Crawley and Dilworth [2] for general concepts of lattice theory but
write a+b for joins and ab for meets. We write x ≺ y if x is a lower cover of y. Join
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irreducibles will be denoted by p, q, r, . . . (with unique p∗ ≺ p) and are also called
points. We write p ≈ q if and only if p/p∗ is projective to q/q∗. We call a map φ
from J(L) into a complete join semilattice M a Λ-morphism, if φr ≤ φp + φq for
any pairwise distinct p, q, r ∈ l ∈ Λ. The following are basic for the geometric view
on modular lattices of finite height.

(1) For any a, b ∈ L and r ∈ J(L) with r ≤ a + b, r 6≤ a, and r 6≤ b, there are
p ≤ a and q ≤ b in J(L) such that p, q, r are collinear.

(2) For any incomparable p, q ∈ J(L), one has a sublattice of L satisfying the
relations of Fig.1; also d([p∗ + q∗, p + q]L) = 2. For any line l, there is l

such that l = p∗ + q∗ for all p, q ∈ l, p 6= q. Moreover, [l, l] has as least 3
atoms, p ≈ q for all p, q ∈ l, p 6= q, and x ≻ l for any x ≺ l. Also, choosing
for each x ≺ l a point px ≤ x, px 6≤ l, one obtains a line g such that g = l.

(3) If Λ is a base of lines for L and φ : J(L) → M a Λ-morphism, then
σa =

∑
{φp | p ∈ J(L), p ≤ a} defines a join homomorphism σ : L → M .

For a line-top a we write a∗ =
∏
{x | x ≺ a}, i.e. a∗ = l if l is a line with a = l.

Also, for p ∈ J(L), we write p ∈ a if a∗ ≺ p + a∗, i.e. if p ∈ l for some line l with

l = a.

Proof. (1) is the dual of Corollary 2 in Edmondson [3] - which deals even with the
more general setting of ideal lattices of modular lattices. It can also be derived,
iterating the procedure given by [4, Thm.4.2] (cf. [5, Lemma 2.1]). The first claim
in (2) is immediate by modularity, the rest by [5, Corollary 2.3]. The proof of (3)
follows the lines of the proof of [5, Thm.2.5] as remarked in the comment to [6,
Thm.6.1]. For convenience, it is carried out, here. Clearly, σ is order preserving
and, in view of (1), it suffices to show that r ≤ p + q implies σr ≤ σp + σq for any
p, q, r ∈ J(L). This is done by order induction on the sum of the ranks of p+q, p+r,
and q + r. Again by (1), we may assume that p, q, r are collinear. Since Λ is a base,
in view of (2) there are l ∈ Λ and p′, q′, r′ ∈ l such that p + l = p′ + l, q + l = q′ + l,
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and r + l = r′ + l. By definition of Λ-morphism, one has σr′ ≤ σp′ + σq′. Applying
the inductive hypothesis to p + q ≥ p′, p + q ≥ q′, and p + r′ ≥ r, one obtains
σp′ ≤ σp + σq, σq′ ≤ σp + σq, and σr ≤ σp + σr′ ≤ σp + σp′ + σq′ ≤ σp + σq. �

3. Cycle free sets of lines

Pairwise distinct lines l1, . . . , lm form a path if, for any i 6= j, one has li ∩ lj 6= ∅
if and only if |i − j| = 1. A set Λ of lines is connected if, for any l, g ∈ Λ, there is a
path from l to g. Define P (Λ) = {p | p ∈ l ∈ Λ}.

(4) Given sets Λi (0 ≤ i ≤ n) of lines such that P (Λi) ∩ P (Λj) = ∅ for all
0 < i < j and such that for any i > 0, there is exactly one li ∈ Λ0 with
li ∩ P (Λi) 6= ∅; moreover, if Λ0 and all Λi ∪ {li} are cycle free, then so is⋃n

i=0
Λi.

(5) If Λ is a cycle free set of lines with l ≤ u for all l ∈ Λ and if l is a line with
l 6≤ u, then Λ ∪ {l} is cycle free.

Proof. Assume that, under the hyptheses of (4), there were a cycle g1, . . . , gm of
lines. Wihout loss of generality, g1, . . . , gk ∈ Λ0 and gk+1 ∈ Λ1. Choose k ≤ h ≤ m
maximal with gh ∈ Λ1. Then gh ∩ P (Λi) 6= ∅ for some i 6= 1, since we have a cycle;
but only i = 0 is allowed. By the uniqueness required, gh = gk = li and it follows
gj ∈ Λ0 for j > k. Thus, there would be a cycle in Λ0 ∪ {li}, a contradiction.

Now, assume that l, g1, . . . , gk were a cycle with gj ∈ Λ. If k > 2 then g1∩gk = ∅
whence |l ∩ [0, u]| ≥ 2 and l ≤ u, a contradiction. If k = 2, then there are pi 6= q

(i = 1, 2) such that {q} = g1 ∩ g2 and {pi} = l ∩ gi. Thus p1 = p2 (since l 6≤ u),
whence g1 = g2, again a contradiction. �

Now, consider a finite, cycle free, and connected set Λ of lines.

(6) There is l ∈ Λ such that |l ∩ P (Λ \ {l})| = 1.
(7) |P (Λ)| = (

∑
l∈Λ

|l|) − |Λ| + 1.
(8) For any division ring F such that |F |+1 ≥ |l| for all l ∈ Λ, there is a vector

space V of dimV = |Λ|+ 1 and an injective Λ-morphism φ from P (Λ) into
the subspace lattice L(V ) of V , such that dimφp = 1 for all p ∈ P (Λ) and
V =

∑
{φp | p ∈ P (Λ)}.

(9) |Λ| ≤ d(L) − 1 if Λ is a base of lines of L.

(8) and (9) originate from Wild [12], there discussed within the setting of matroids,
to wit, the linear matroid induced on P (Λ). Also, it was shown that, in the situation
of (9), there is actually an embedding of L into L(V ) cf. [5, Thm.6.3].

Proof. In (6), if there were no such l, then starting with any l, finiteness would
yield a cycle. (7) is shown by induction on |Λ|: Choose l according to (6) and apply
the inductive hypothesis to Λ′ = Λ \ {l}. The same kind of induction is applied
to (8): given φ′ : P (Λ′) → V ′ let V = V ′ ⊕ Fv1, ε : l → F \ {0} injective, and
φ′p0 = Fv0 where {p0} = l ∩ P (Λ′). Extend φ′ to φ with φp = F (v0 + ε(p)v1) for
p ∈ l. To prove (9), construct V , φ, and σ : L → L(V ) according to (8) and (3).
Then V =

∑
{σp | p ∈ J(L)} = σ1 and, given a maximal chain 0 = a0 ≺ a1 ≺
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. . . ≺ ad = 1 of L, it follows dimσai+1 ≤ 1 + dimσai for all i (since ai+1 = ai + pi

for some pi ∈ J(L)), whence dimV = dimσ1 ≤ d = d(L). �

4. Subdirect decomposition

n = s(L) means that L admits a irredundant subdirect decomposition into sub-
directly irreducible (whence simple) L1, . . . , Ln. Recall that

(10) d(L) =
∑n

i=1
d(Li)

and that projectivity is an equivalence relation on prime quotients (which implies
that the congruence lattice is 2n-element Boolean). Thus, ≈ is an equivalence
relation on J(L), the classes (components) Qi of which are in 1-1-correspondence
with the minimal congruences θi of L resp. the Li

∼= L/θ′i (θ′i, the complement of
θi). A detailed analysis of subdirect products has been given in Wille [14]: The
canonical projections πi : L → Li (with kernel θ′i) have lower and upper adjoints
σi, γi : Li → L (providing the smallest resp. greatest preimage) which are join resp.
meet embeddings. For convenience, we identify Li with σi(Li), whence x ∈ Li if
and only if πix = x. The following is in essence contained in Zusatz 2.3 and section
6 of [14].

(11) J(L) is the disjoint union of the J(Li) and J(Li) = {p ∈ J(L) | p/p∗ ∈ θi}.
(12) Li = {a ∈ L | a/x ∈ θi for all x ≺ a} and Li ∩ Lj = ∅ for i 6= j.

Proof. For convenience, we give a proof. Consider p ∈ J(L). There is unique i such
that p/p∗ ∈ θi. Then πip∗ is the smallest element of the θ′i-class of p∗ and, for any
x ∈ Li with x < p, one has x ≤ p∗, whence x = πix ≤ πip∗. Thus, πip∗ is the
unique lower cover of p in Li.

Conversely, consider p ∈ J(Li) with unique lower cover y in the lattice Li and
x = γiy, so x 6≥ p. Now, let z ≺ p. Then πiz ≤ πiy = y, whence z ≤ γiπiz ≤ γiy =
x and z ≤ px. Thus, px is the unique lower cover p∗ of p in L. Moreover, p/p∗ 6∈ θ′i,
whence p/p∗ ∈ θi.

Now, if a ∈ Li \ J(Li) and x ≺ a, then πix is a lower cover of a in Li and there
is p ∈ J(Li) with p + x = a. Then px = p∗ and p/px ∈ θi, whence a/x ∈ θi.
Conversely, assume a/x ∈ θi for all x ≺ a. If one had πia < a, then πia ≤ x for
some x ≺ a and a/x ∈ θi ∩ θ′i, a contradiction. Thus, a = πia and a ∈ Li. �

Relating the congruence structure to the geometry, with Λi = {l ∈ Λ | l ∩ Qi 6= ∅}
one has

(13) With any base Λ of lines, one may associate an equivalence relation ∼Λ

on J(L): the transitive closure of the relation given by pairs p, q such that
p, q ∈ l for some l ∈ Λ. Then p ≈ q if and only if p ∼Λ q.

(14) Any base Λ of lines of L is the disjoint union of the Λi and P (Λi) = Qi.
Moreover, the Λi are the maximal connected subsets of Λ.

(15) a is a line-top of L if and only if it is a line-top of some (unique) Li.
(16) Λ is a base of lines for L if and only if the Λi are bases of lines for the Li.
(17) Λ is cycle free resp. acyclic if and only if so are all Λi.
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Proof. (13) is [5, Prop.2.6]. (14) follows, immediately, and (15) with (11-12). Again,
(16) and (17) are immediate consequences. �

5. The Jónsson-Nation analysis

Recall that a lattice L is 2-distributive if for all u, x, y, z ∈ L

u(x + y + z) = u(x + y) + u(x + z) + u(y + z).

(18) A modular lattice L of finite height is 2-distributive if and only if it does
not contain an interval sublattice which is an irreducible projective plane.
In particular, L is 2-distributive if and only is so is its dual.

This was shown by András Huhn [9]. In their proof [10] of the vector space represen-
tation for 2-distributive L, Bjarni Jónsson and J.B. Nation considered a designated
coatom u and analyzed the structure of join irreducibles relatively to u. Define

J = J(L), L′ = [0, u], J ′ = J(L′), J ′′ = J \ J ′

The first observation is that

(19) u + x = 1 and ux ≺ x for any x 6≤ u.
(20) The points p ∈ J ′′ are exactly the minimal elements of L \ L′ and, in

particular, pairwise incomparable. Moreover, p∗ = up for all p ∈ J ′′ and
px ≤ u if p 6≤ x.

(21) x = ux + p where p ∈ J ′′ and p ≤ x 6≤ u, in particular p + q = p + u(p + q)
for all p, q ∈ J ′′.

Proof. (19) follows from modularity, immediately. If p ∈ J ′′ then up ≺ p whence
p minimal in L \ L′. Conversely, the minimal elements of L \ L′ have to be join
irreducible since L′ is closed under joins. Thus, (20) holds. (21) follows from
(19). �

Further on, Jónsson and Nation considered p, q, r ∈ J ′′ such that p + q and p + r
are incomparable; they derived, by modularity,

(22) (p + q)(p + r)(q + r) = q(p + r) + r(p + q) ≤ uq + ur,

and observed a failure of the dual 2-distributive law for the substitution u, p +
q, p + r, q + r. According to Huhn [8], with v = up + uq + ur this leads to a
spanning dual 3-diamond u(p+ q + r), p+ q + v, p+ r + v, q + r + v in the interval
[v, p+q+r] and to an irreducible projective plane. This is captured in the following
(cf. Fig.2, where x̃ = x + up).

(23) For p, q, r ∈ J ′′ with p + q and p + r incomparable, one has an irreducible
projective plane [v, p + q + r] with coatoms v + p + q and v + p + r, where
v = up + uq + ur.

Proof. Assume p+q and p+r incomparable. By (19-21) and modularity, u(p+q+r),
p + q + v, p + r + v, and q + r + v are lower covers of p + q + r whence [v, p + q + r]
has height at most 3. We have to show that these coatoms are also in general
position, i.e. that any 3 of them behave as coatoms of an 8-element boolean 0-
1-sublattice of [v, p + q + r]. Indeed, with the relations between u, p, q, r given
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Figure 2
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by (19-22) and with modularity, one has u(p + q + r) + (p + q + v)(p + r + v) =
(p+ q + v)[u+p+(q + v))(p+ r + v)] = p+ q + r, p+ q + v +(p+ r + v)(q + r+ v) =
p+q+v+r+(p+v)(q+r+v) = p+q+r, (p+q+v)(p+r+v)(q+r+v) = (q+v)(p+
r+v)+(r+v)(p+q+v) = v+q(p+r+v)+r(p+q+v) = v+q(p+r)+r(p+q) = v,
and u(p+ q + r)(p+ q + v)(p+ r + v) = u(p+ v + q(p+ r)) = up+ v +uq(p+ r) = v
while the remaining relations follow, similarly. Also, v < p+q+r. Thus, [v, p+q+r]
is an irreducible projective plane (cf. [6, Thm.3.5] and [7, Lemma 2]). See Fig.2
where q̃ = q + p∗ = q + a∗ and r̃ = r + p∗ = r + b∗. �

We continue studying the inductive approach via d(L) with a fixed coatom u.
We write p ∈ a ∩ X if p ∈ a and p ∈ X . Let T denote the set of line-tops a 6≤ u.

(24) a ∈ T if and only if there are p 6= q in J ′′ with a = p + q. Moreover, for
any p ∈ a ∩ J ′′ there is q ∈ a ∩ J ′′ with p + q = a; also |l ∩ J ′| = {r} where
r ∈ l with r + a∗ = ua for any line l with l = a.

(25) If a < b in T , then [a∗, a] ∪ [b∗, b] is a sublattice of L and p ∈ b for any
p ∈ a ∩ J ′′ (cf. Fig.3).

(26) If a, b ∈ T are incomparable and p ∈ a, p ∈ b for some p ∈ J ′′, then there
are s ∈ a ∩ J ′ and t ∈ b ∩ J ′ such that s ≈ t in L′.

Proof. If p, q ∈ l ∩ J ′ and p 6= q then l = p + q ≤ u. If p 6= q in J ′′, then by (19)
and (2) v := p∗ + q∗ ≺ u(p + q), hence there is r ∈ J ′ with r + v = u(p + q). By
(1), there are p′ ≤ p and q′ ≤ q such that p′, q′, r are collinear; but then p′ = p and
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Figure 3
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q′ = q since, otherwise, r ≤ v. This proves (24). In (25), the prime quotient a/ua
transposes up to (a+b∗)/b∗ and the claim follows. In (26), by (24) we have a = p+q
and b = p + r for some q, r ∈ J ′′. By (23), [v, a + b] is an irreducible projective
plane with coatoms v + a and v + b, where v = a∗ + b∗ ≤ u. Since a∗ ≺ ua ≺ a and
b∗ ≺ ub ≺ b by (19) and (2), there are s, t ∈ J with s + a∗ = ua and t + b∗ = ub.
Then s + v and t + v are atoms of [v, u(p + q + r)] and have a common complement
x within this interval of an irreducible projective plane. Thus, s/s∗ and t/t∗ both
transpose up to u(p + q + r)/x whence s ≈ t in L′. �

A partially ordered set is a forest if all its principal filters are chains. We say
that F ⊆ T has the JN-property if there may be comparable a, b ∈ F , only, such
that p ∈ a and p ∈ b for some p ∈ J ′′.

(27) If L is 2-distributive, then T has the JN-property.
(28) If F ⊆ T has the JN-property, then F is a forest.
(29) Assume that the following condition holds for F ⊆ T :

(∗) If a, b ∈ F and s ≈ t in L′ for some s ∈ a∩J ′ and t ∈ b∩J ′, then a = b.
Then F has the JN-property and, if F is finite, |J ′′| ≥ |F | + 1.

(30) A set Λ of lines is cycle free provided that l 7→ l is an injective map from Λ
into some F ⊆ T with F enjoying the JN-property.

Proof. (27) is due to Jónsson and Nation [10] and follows from (18) and (23).
Assume that F ⊆ T enjoys the JN-property and c < a, b in F . By (25), there
is p ∈ J ′′ with p ∈ a and p ∈ b and, by the JN-property, it follows that a, b are
comparable. Thus, F is a forest.

Now, consider F satsifying (∗). In view of (26), F has the JN-property. Define
A(F ) = {x ∈ L | ua 6= x ≺ a ∈ F} and M(F ) as the set of minimal elements of
A(F ). We show by induction on |F | that |M(F )| ≥ |F | + 1. Indeed, choose a ∈ F
minimal and b its unique upper cover in F . By (25) and induction it follows

|M(F )| ≥ |M(F \ {a})| − 1 + 2 ≥ |F | − 1 + 1 − 1 + 2 = |F | + 1.
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For any x ∈ M(F ), there is unique ax ∈ F such that x ≺ ax and there is px ∈ J ′′

such that px + a∗ = x. Assume px = py. Due to the JN-property, a and b are
comparable, e.g. a ≤ b, whence also a∗ ≤ b∗ and x = px + a∗ ≤ py + b∗ = y. By
minimality, x = y showing that x 7→ px is injective. It follows |J ′′| ≥ |M(F )| ≥
|F | + 1.

In order to prove (30), we may assume that Λ is finite and use induction on |F |.
Considering a cycle l1, . . . , lm in Λ, we may assume that l1 is minimal in F . Let
l1∩ l2 = {p} and l1∩ lm = {q}, in particular, p 6= q and p, q 6≤ u in view of (24). By
the JN-property, we have l1 < l2 and l1 < lm. Since F is a forest by (28), we have

e.g. l2 < lm. Thus, omitting l1 and replacing lm by (lm \ {q})∪ {p} (which can be
done in view of (25)), we get a cycle with line-tops li ( i > 1) - which is impossible
by inductive hypothesis.

�

6. Proof of Theorem 1 and Corollary 5

Proof. Thm.1 is shown by order induction on d(L). We also include the statement
of Corollary 2 and the following

(31) If j(L) ≤ 2d(L) − s(L) then j(I) = 2d(I) − s(I) for all interval sublattices
I of L.

First, assume that L has an irredundant subdirect decomposition into factors
Li, (i = 1, . . . , n) with n = s(L) ≥ 2 and with Λi according to (14-16). Then
by (9), (10), (16), and (11)

|Λ| =

n∑

i=1

|Λi| ≥
n∑

i=1

(d(Li) − 1) = d(L) − n

j(L) =

n∑

i=1

j(Li) ≥
n∑

i=1

(2d(Li) − 1) = 2d(L) − n

in view of the inequalities for corresponding summands given by inductive hypothe-
sis. Now, |Λ| ≤ d(L)−n (resp. j(L) ≤ 2d(L)−n) if and only if the respective middle
inequality is an equality if and only |Λi| = d(Li)−1 for all i (resp. j(Li) = 2d(Li)−1
for all i). The latter is equivalent (by inductive hypothesis) to all Λi being cycle
free resp. acyclic and this, in turn by (17), to Λ having the same property.

Now, suppose that L is simple, i.e. s(L) = 1. The claim is obviously true for
d(L) = 1. So assume d(L) > 1 and Λ a finite base of lines. Consider any coatom u
and

J = J(L), L′ = [0, u], J ′ = J(L′), J ′′ = J \ J ′, Λ′ = {l ∈ Λ | l ≤ u}, Λ′′ = Λ \ Λ′

cf. Fig.4. Evidently, Λ′ is a base of lines of L′. Let Qi (i = 1, . . . , c) denote the
components of J ′, with base Λi ⊆ Λ′ of lines according to (16). By (14), the partial
linear space (J ′, Λ′) is the disjoint sum of the (Qi, Λi). Since L is simple, J has
a single connected component due to (13). Thus, for each i there is li ∈ Λ′′ with
li ∩ Qi 6= ∅ and, by (24), li ∩ Qj = ∅ for j 6= i. Choose such li for each i and let
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Figure 4
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Λ0 = {l1, . . . , lc}. Then |Λ0| = c and F = {l | l ∈ Λ0} satisfies condition (∗) in (29),
whence F enjoys the JN-property and

(32) |Λ′′| ≥ c and |J ′′| ≥ |F | + 1 = c + 1.

Also, by (30), Λ0 is cycle free. On the other hand, by inductive hypothesis one has

(33) |Λ′| ≥ d(L′) − c = d(L) − 1 − c and j(L′) ≥ 2d(L′) − c = 2d(L) − 2 − c

Consider L such that i(L) ≤ d(L) − 1. Then

d(L) − 1 ≥ |Λ| = |Λ′| + |Λ′′| ≥ |Λ′| + c ≥ d(L) − 1 − c + c = d(L) − 1

and equality holds, everywhere. In particular, |Λ′′| = c, whence Λ′′ = Λ0 is cycle
free. It follows, with (4) and (5), that Λ is cycle free.

Next, suppose that j(L) ≤ 2d(L) − 1. Firstly, it follows with (32) and (33)

j(L′) + c + 1 ≤ j(L) ≤ 2d(L) − 1 ≤ j(L′) + c + 1

whence

(34) j(L) = 2d(L) − 1 and j(L′) = 2d(L′) − c = 2d(L′) − s(L′).

This applies for all u ≺ 1 and L′ = [0, u]. By inductive hypothesis (31), we have
j(I) = 2d(I) − s(I) for all interval sublattices I = [0, b] of L. Since, by Dilworth’s
Theorem, j(L) is also the number of meet irreducibles, by duality and induction
we have j(I) = 2d(I) − s(I) for all interval sublattices I of L.

In particular, this excludes any I of height 2 with more than 3 atoms whence,
by (2), all lines are 3-element. Also, this excludes any I of height 3 which is an
irreducible projective plane (having at least 7 > 2 ·3−1 points). According to (18),
this implies that L is 2-distributive. Thus, in view of (27) and (30), Λ′′ is cycle free
and, again by, (4) and (5), Λ is acyclic.
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Conversely, if Λ is a finite and cycle free base of lines, then by (9) |Λ| ≤ d(L)− 1
and equality holds as just shown. If, in addition, Λ is acyclic, then by (7) j(L) ≤
3(d(L) − 1) − (d(L) − 1) + 1 = 2d(L) − 1 and, again, equality holds.

To prove Corollary 5, similarly to the use of (31), proceed by induction on the
claim: i(L) ≤ d(L) − 1 implies i(I) ≤ d(I) − 1 for all interval sublattices I of L.
This, of course, excludes I which are projective planes. Corollary 5 follows with
(18). �
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