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ApsTracT. Goodear], Mewal, and Moeas 'i' lsave slown that
free regular vings with windt ave veskdually artindan. We extend this
result to the case without weit awd wee it to decive that free rege
lar vings as well as free complemented [sectiomally complemented)
Avguesian lattioes ave vesldually finite, Here, guask iversion for
rings axl complementation [sectional complomentation, respecs
tively | for lattices arve conslderad a8 fundamental operations
the appropriate siguatuwe, It follows that the equational tlheory
of each of tle classes lested above §s decldable. Tle approach &
v mo called exEtemos varleties fn ving o lattles slgmature. Those
ame ¢lasses elosed wsler operators H, 5 and Powithin the class of
all regular rings or the class of all sectiomsally complemented mod-
ular lattiees, We show tlat any existence variety in the conside red
classes s gemerated by its avtindan or fodte ledght members.

Lhedicated to the memory of fl’eruiy-er Hulehinson

. INTRODUCTIOMN

Dealing with {von Newmann ) regular rings (sectionally eomplemented

mrcdular lattices), morve precise information is obtained, if the concept
of & variety 15 modified to that of an existence variety: that is, such a
class which is closed under homomorphic images, divect prodocts, and
sulstruetures which are regular rings (sectionally complemented modd-
ular lattices, mespectively) themselves, Existence varieties have been
studied in the context of regnlar semigroups, see Hall [?7] and Kadourek
and M. Szendrei [7].

For regular rings, the most prominent result on existence varieties
stabes that free regular rings are residually artinian, see Goodearl,
Menal, and Moneasi [?7]. The key fact is that a regular algebra of
countable dimension over a commutative held Fis within the exis

tenee varlety generated by matrix algebras ™" w < w. This had
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been shown in Tyukavkin [?] for s-regular algebras and is the basis for
the study of (existence ) varieties of s-regolar rings, of. Micol [7].

Based on the close relationship between regular rings and their (sec-
tionally complemented Arguesian) lattices of principal right ideals and
the shove mentioned result of Goodearl, Menal, and Moneasi, we shall
prove that any existence variety of regular algebras over a given commu-
tative ring is generated by its artinian members, and that any existence
variety of (sectionally) complemented modular lattices is generated by
its finite height members. Sinee free objects in these existence varieties
arve subdirect products of generators, it follows that they are residually
artinian, of finite height, respectively.

Considering the existence variety of all regular rings (with unit}, or
of (sectionally ) complemented Arguesian lattioss, the matrix rings ower
finite prime felds and their lattices of right ideals, respectisely, alveady
provide sets of generators.  Henoe, free objects, with quasi-inverse,
or with (sectional) complementation as a fundamental operation, are
residually finite amd have a solvable word problem. In contrast, the
word problem for finite presentations in the ving (or lattice) signature
is unsolvable for existence varieties admitting no boumnd on the height
of subulirect irreducibles (see Hutehinson [7]).

The lattice results can be derived form the ring results via ecoor-
dinatization. The more direct access. used here, is based on Frink's
embedding of a complemented modular lattice into the sulspace lat-
tee of a projective space, see Frink [7], and Jdnsson’s fine analysis of
that embedding, see Jdnson [T, 7.

We also analyse atomic complemented modular lattices, the Frink
extension in particular, in terns of existence varieties amnd deal with
the class of sublattioes of complemented modular lattices. It is an
open problem whether that class is a variety. We can show that it is,
at least, elosed under formation of ideal labtices,

The authors thank Fred Wehrung For constroetive eriticism of the
first version of the present paper amd also for encouragement to diseuss
the subject thoroughly, The authors are deeply obliged to an anony-
mons releres for a perfect and prompt report giving rise to nurner-
ous improvements, many of them quite substantial. In particular, the
present proof of Theorem 16 and the extension to regular A-algebras
are based on his suggestions,

2. SE-L'TI{:INP;LL‘:' COMPLEMENTED MODULAR LATTICES

Joins and meets in lattioes are written as a + 0 and ab, respectively.
Ifa be L, L has o least element 0, and ab = 0, then we write o @b
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instead of a4 b In a lattice with least element 0 and greatest element
1, the element b is & complement of a, ifa @ b= 1. Elements a and b
ave perspeclive (a~ b in symbol), if they have a common eomplement
within the interwal [0, a 4 4]

A complemented moduler lattice (CML, for short ) is a modular lattice
Lowith 0 amd 1 considerad s constant operations, where any element
admits & complement. A moduolar lattice L with least element 0 consid-
eredd as A constant operation is secfionally complemented (SCML, for
short ), iF for any w € L, the interval [l o is & complemented lattioe.
CHwviously, any ideal of an SCML is an SCML. Any CML £ can be
cotsidered an SCML, sinee for any a € L and for any « € L such that
a < w, ubis a complement of a in [, o], whenever b is a complement
of a in L.

For a lattice L, we denote its ideal lattice by Id L. Also, let he L
denote the feight of L, so that ht L equals the supremum of the set
{|C] = 1| € is a chain in L}, whenever it is finite; bt L = ac, whenever
the latter supremum is infinite. For a moduolar lattice L owith least
element 0, let Ly, denote the sublattice of all elements of finite height
in L.

An element a of a lattice L is newfrel iF for any x, ¢ € L, the
sublattice of L generated by a, o, and g is distributive.  An ideal [
of a lattice L i3 newfral, if it i3 a neatral element in the ideal lattice
Id L. IF Lois an SCAIL, then this is equivalent to J being closed under
perspectivity, see Birkhoff [7, Chapter V, Theorem 3.2]. Moreover, the
TR

it fre L|xzd0), 8dcConl
establishes an isomoarphism between the congruence lattice Con Loand
the lattice of neutral ideals of L. The followingstatement is the content
of Lemna 1.5 and Lemma 2.2 in Jdusson [7].

Proposition 1. Led L be o SCML and let o € L. Then the following
halds:

I:'l} The newfral idel yf:n.f:r’u!ﬂf Ery 0 consisds r::lf adl ﬁ!’.l.‘HE' LTI E:IIIIr

elements wlich are perspeclive o some elemends from |a;
(i) ff L dis simple and T € ld L, then I is 2 simple SCML.

Proposition 2. Lef L be a subdirecily drrefucible SCML and et T &
Id L le nonzero newfial. Then the fﬂ“ﬂtﬂtﬂy feolid s

(i} L O-embeds info 1d1;

(i) Let I be the minimal newtral ideal. If T < o, fen L= [
s g simple CMEL Ifht L = o, then [ is o dmple SCML of
infinite feight;
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(i) Ang J e ldL is & subdirectly irreducible SCML with minimel
neafral ideal I OVF, where I € 1d L is minimal newtral

Proof. (1) Let o L= [d L, 2 v 2, be the canonical embedding,
Sinee I iz a neutral element in Id L, Id L s a subdivect prodoct of
wolld L) and ¢ (Id L), where () = £ 00 and () = T+ J for any
JEId Lo As Lis subdivectly irreducible, there is ¢ < 2 such that ¢ 06
is an embedding. Suppose that ¢ = 1. For any a € I, gefa) = s
the zero element of @ (Id L) = [1, Id L], As 2 045 is an embedding, it
follows that f = {0}, a contradiction. Therefore, ¢ = 0 and L embeds
into the interval [0, f] of Id L which is 1d 1.

(i} Suppose that [ has finite height. Then § = [u for a neutral
element « & L. Consider the set J = {2 & L | wr = 0}, Since « is
neutral, Jf is anideal of L. To prove that this ideal is neotral, let o € J
and x ~ y. Then yu ~ z for somwe = < 2. Neotrality of J implies that
z €1, whenee = < wx = 0. Therefore, yu = O and y € J.

O the other hamd, F 00 = [0}, Sinee L is subdirectly irveducible,
this vields J = [0}. Now, comsider any o >« in L. I 2 isa complement
of w in [0, a], then wx = 0, whenoe 2 € J = {0}, Thus, 2 =0, a = =,
and w is the greatest element of L.

(iil}) Clearly, £ nJis & neutral ideal in J. Let 00 # a € J and let
Le InJ By minimality of £, b belongs to the neutral ideal generated
by a in L. By Proposition T2}, b=3 b where for all i < n, there
ig x < oa such that b ~ x. Sinee a € J € Id L, we conclude that
€ S, whenee g < by 4 2 € J for all ¢ < w. This means that b is in
the neutral ideal generated by a in J. O

Let 7 < w be a positive integer, let a = {o, | 02 i< n} amd ¢ =
feg | 0= i j < n i # j) be sequences of elements of a SCML L such
that e, ; = e for all i, j < n. We say that the pair {a.c) is an n-frame,
if the following conditions are satisfed:

(i) ay- E:H a = J,:llu, L ,t_-tr a, for all § < w;
(i) o +ay =a +eyand ae =[]0, a for all distinet 4, § < w;
(iii) ey = (e + e )a + ay), for all distinet 4§, p < n.
An n-frame {a.¢) is an n-frame at 0, if [['y a;, = 0. This frame is
spanning in L, i it is at 0 and 37700, = 1. For a right B-module
My, let LiMg) denote the lattice of right submoduoles of M. The
canonical spanning r-frame in LIME) is given by

= -[l:IEI,,...,,In-]} = J.fi-ltu |1'J = {J for '““'J ;é.ﬂ}
'El.,.l = {l:ltln----:-j-:n-]} = J.I‘-fﬁ |.'1:_|| = ey, A&y = 0 bor all f ;é":h.ll}
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Corollary 3. A suldirectly irreducible SCML of height af least v con-
faing an n-freme af {1

Proof. For any « in the minimal neutral ideal of L with htue = wn,
Jinsson [7, Theovem 1.7] applies to vield a “large partial n-frame” in
[, &), the {a, e) part of which forms an w-frame at 0. O

3. REGULAR ALGEBRAS

Let A be a commutative ring which is assoclative and with unit.
An associative A-algebra B (with or without unit} is (von Newmann )
regiddar, if for any o € R, there is b € i such that o = aba, IT A is
the ring of integers, then we get a dfinition of a regular ring. See von
Neumann [?], Goodearl [?], and Skornyakovy [?] for basic results about
egular rings. In particular, according to [¥, Lemima 2], for any a € R,
there is an idempotent ¢ € f such a = ea = ae. Thus, if B is a regular
A-algebra, then any ideal is also a A-subalgebra. Moreover, ife £ Ris
an idempotent, then efe is a regular A-subalgebra of i with unit e,

For any regular ving A, let L{ R} denote the set of principal (right}
ideals of B It is well-known that for any a € R, there is an idempotent
e & A such that aff = eff (Ha = Re, respectively). Ordersd by
inelusion, IR is an SCML sublattice of the lattioe of all right ideals
of . Indead, for any two idempotents ¢, f € R,

R+ fR=(e+g)R. eRNfR=(f - fg)R.

where g s an idempotent such that @R = (f — f )7 and gy is an
idermpotent such that Ry = RB{f - ef). Moreowr, e © 17 for
iempotents e, f € B i and only if fe = e, and then (f =2 f1H is a
complement of e in [0, fR].

If B is regular and has a unit 1, then £ & LiR) and LR is a
CML. In this case, (1 = ¢}/ is obviously a complement of &R for any
idermpotent ¢ € R, Moreover, B is artinian iF and only L ) is of finite
height (and thus has a unit). The analogous results hold For left ideals.

Proposition 4. Any reqular A-algebra B s the directed union of its
subalgehras of the formeRe, e = e* € R, In particular, R embeads into
an ultraproduct of those. and so i a regular A-algebra with unil.

Proof. We adapt the prool of Lemnma 2 in Foehs and Halperin [?].
Given ag, ay € B, there is an idempotent f € B such that o € fR for
all i < 2; in particular, o, = fa, for all § < 20 On the other hand, there
is an idempotent g € i such that By = Blag —agf) + fBla; = a, ) In
particular, g = rglag = ag S} + (e, = o f) for suitable v, & /¢ < 2.
Straight forward caleulation shows that gf = 0. Put e = [+ g — fu.
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Then & = ¢, e, = efa, = fa, =a, and ae = af + (o, —a flg =
af 4o —af =a sinee o, —a, f € Ry, O

The following statement is due to Jdnsson [7, proof of Lemima 8.2]
and Wehrung [7, Theorem 4.3], respectively.

Proposition 5. Lei f be a reqular ring. Then the following kolds:

(i} Liefe) = [0.efl] C L{R} for any idempotent ¢ & R;
(i) The map

g d={JeLR)|JC I}, TeldhR,

establidhes an isomorphisn between the lattice W B of tivo-sided
ideals of the reqular ring B and the laitice of newbral ideals of
the lattice L{R).

Corollary 6. For & repular algebra R, the lattice LIR) is subdirecily
irvaducible if and only if R is. In thai case, eRe is subdivectly irreducible
fﬂ:r“ {ani fde'mpﬂiﬂd e e HandeRe is Si:mpff, t:,lr-E is i the minimal ideal
af B.

FProof. This follows with Proposition 77 amd Proposition 7. O

Proposition 7. Any subdivectly irreducible A-elgebra is, natorally, an
F-algebra, where F s the quotient field of A meodulo some prime ideal.
Sueh F is unigue up o isomorphisn.

FProof. For algebras with unit, the statement was verified within the
proof of [T, Proposition 1.5]. Following the idea there, we observe that
for any idempotent ¢ € K, the center Z(efle) of the algebra efe is a
field, of. [7, Corollary 1.15]. Given an idmpotent e € R, we define the
hommomorphisim
or A= eRe, o Ave Ae,
whose image is contained in Z{efe). Also, for any idempotent [ € ¢ fe
we define
vy: Z(eRe) — Z(fRS). vy:are faf

which is an embedding since £(e fe) is a field. Now, @y fA) = flef =
Afef = Af = gyl A). whenoe ker g, = kergy. From Proposition 27 it
frllowws that all o have the same kernel P which is a prime ideal, sinee
the mage is contained in a feld. Again in view of Proposition 77, the
action of A on f has kernel P oand indoes anaction of the gquatient
field F' = A /P as obsersed in the proof of [7, Propositionl 5] if A is
invertible module P oand a € efe, we define (A + P)"la = A%, where
A7 s the inverse of Ae in Z(effe). This definition is correct, sinee
A = A for any f € eRe. Also, F is isomorphic to the subfield
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of Z(eRe) generated by the image of ¢, whenee it is unique up to
isctmorphism. O

4. EXBTENCE VARIETIES OF REGULAR RINGS aND SCMLs

Let K be a class of algebraic structures of the same finite similarity
tvpe o, Then H{XZ), S}, PIKC), POK), amd P K} denote the elass
of structures isomnorphic to homomorphic images, substructures, direct
products, subdirect products, and ultraproducts of stroctures from K,
pespectively. Let also V) denote the variety generated by K; due to
Birkhoff's theorem, V() = HSP{X].

In the ciase of lattices, & = {4, 0}; in the case of rings, « is just the
ring signature. In the case of an A-algebra R, the elements of A are
cotsidersd as unary operations on /. Additional operations of interest
ave the constant 1 for top element in lattioes and for unit in algebras,
as well as an involution operation for algebras. Let ¥ consist either of
the axions defining regular A-algebras or of those defining SCMLs. In
particular, we include the fllowing axiom o

Yedy wyx =2 (for rings and algebras);
YWieWyds (zyz = 0oy + 2 = x)  (for lattices).

CMLs are considerad as SCMLs with 1.
Observe that the model class Mod s closed under H and P. Define
the fol low ing operators:

S4(K) = Mod £NS(K).  P,a(k) = Mad £ nP,(K)

A class K is an existence variely, shortly 3-vardiely, if it is closed under
H. P, amd Sz In particular, K s closed under Py oand elementary
sulstructures, whenoe it s an axiomatizable class, Due to the above
olservations and the definition of an existence variety, Mod £ is an
Fvariety.

For rings and A-algebras, let % = aU{'}, where ' is a unary operation
svinbol stamding for the quasi-inverse operation. For lattices, let o =
a4}, where ' is a binary operation syvinbol standing for sectional
complementation. Then the above axiom o translates into identity o

Vo xx'zr =x (for rings and algebras);

Wty (ayl(chy) = 0cloy + (o) = 2} (for lattices).
IF {4, ) € Maod B, then (A, 27) is a companion of (A, ), if (A %) |=
a; this concept i3 due to Thorall Skolem. Then for any class K C

Maod £, the companion T} of K consists of all companions {4, %),
where (A, o) € K. The following lemma is straightforward to prove.
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Lemma B, For any K C Maod £, the following statements hold:
STIK) =T5z(K), PTIK)C TRIK)., HT(K) C TH{K).

In particular, if K is an Fvardety, then T} is a variety in the
extended signature. In this case, for any set X, by Frpe, (X)) we denote
an algebraie structure freely generated in T} by X and eall it T-
freely generated in K by X So Far, we have just reviewed what can be
said about existence varieties relative to axioms which are quantified
conjuncts of identities in general. It is in the following lemma that we
have to deal with our particular cases of regular rings, algebras and
SCMLs.

Lemma 9, For any K © Maod 2, #he following koldss THIK) = HT(X),
S3HK) € H53(K), T5HIK) CHSTIK), T53P(X) = SPT(X).

Proof. Let A € K and let : A — 8 be a surjective homomorphism.
Let 8° be a companion of B in T{K). We prove that there exists a
companion A* of A in TIK) such that 0 A® — 87 is a homomorphism.

For regular algebras, the proof of this statement essentially goes as
in [?, Lemma 1.4]. Indesd, in the case of regular algebras, the two-sided
ibeal [ = ker o is regular. Let o & A and let b = z(a)’. There is y € A
such that #(y ) = b Then a—aya & 1. Sinee I is vregular, there s w € 1
such that (a—aga)ela — aga) = a —aga. It follows From the latter that
LR = OO = DA oo aya = a. Taklng Xo= ey = e
goway + oy, we gel ara = aws — guaya — ayaea  agouan b oagn = a
and x =y = v — way — you+ gavay € I, whenee (2} = b So, we may
put o' = xin A",

We prove now the staterent for SCMLs, Let [ = ker 2. Givena < u
in A and a mmplement bt fofat Tin [l u+ F] C AT we must
find a complement o' of a in [0, «] € A such that o’ 4§ = b+ . After
veplacing b by e, we may assume that b <« Sinee a+-b4+f = w41 and
a+b < u. thereise € [ such that a+b+ e = . Let o' be a complement
uful:b+c} in[0,b+e. Thena+a' =a+albt e+ a' =a+bte=u
and aa' = alb 4+ cla’ = 0, whenee o' is & complement of a in [, u].
Movewwer, sinee b+ e+ 1 = b+ I, we get using neutrality of I that
ab+ )+ =(a+NEh+e+ I ={a+ Nb+ )= 1. This implies
o+ T=atalbt+el+ I =btet+ =041, s desired.

This proves that TH{K} © HT(K) The reverse inclusion 1 follows
from Lemma 77, Henee, TH{K) = HT(X).

T prove the second inclusion, suppose that O € S3(8), where A and
7 are as above, IFC* € T(C), then by Lenuma 77, there is B* € T(2)
such that O € 5(8*). The statement we have proved abowe Tmplies
that there is A" € T(A) such that 8% € H{ A"}, Hence £ £ SHT(4) C
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HST( A} = HTSz(A) = THSz(A), whenee © & HS3(A). This shows
that S:H{K) © H54(K).

To prove the next inclusion, we note thet by the above amd by
Lemima 7%, TS3H(K) © THS3(K) = HTS:(K) = HST(K).

To prowe the last statement, we note that by Lemma 77, SPT(K) C
STPK} = TS3PIX). For the rewerse inclusion, let A € TS3P(X)} and
let Az be its g-reduct. Then Ay € 5zP(K). This mweans that A, = £
and there iz g set T oand there are B2 K. i € I, such that As embeds
into [[ o B Let m denote the comresponding embedding and let
denote the ith projection From [] ., Bonto B, i € 1. For any i € 1,
the homomorphism 7 om: A, = mon(Ad,) gives rise, in a natural way,
by a homomorphism g A — 7 e m(A;)* Sinee 71, o w1l A} € 5(8,)
and 7 o 7( A, | I, we conclude that 7, o m{A,) € 53(8,), whenee
mon(d. " € TS3(B) C T53(K) = ST(X). Moreower, the map p: A4 —

iMoo m( AL, prass (pla) | ¢ € I) is a o*embedding, whenee
A SPETIK} = SPT(K). Therefore, TS3P(K) C SPTIX). (|

Proposition 10. Lef & C Maod &,

(i} The elass V3(K) = HS3P(K) is the smallest 3-variety coniain-
ing K, and TV3(K) = VT(X).

(i) The a-reduct of ang T-free algebraic structure in V3(K) belongs
fo P} — the corresponding subdirect decomposifion giving
rise fo one in TV3(K), foo.

(iil}) Any subdivectly irreducible sdrueture from V3 (K) belongs to the
elass HSaPL(KC).

(v} Any J-variely is generaled by s finidely generalal subdivectly
irreducible members.

FProof. (1) By Lemma 77, the class HS:2P{K) is closed under S3. Since
HS:P K} is obviouwsly elosed under H and P, it forns an Jovariety,
the smallest one containig K. Furthermore, by Lemma 77, TV3(K) =
THSP(K) = HTS.PIKE) = HSPTK ) = VT,

(i} Sinee any free algebraie structure in the variety generated by
T} belongs to P, TIK]), its a-reduct belangs to P K.

fiii) Let A & H(A) be subdirectly irreducible, where 8 & S3P(K).
Both SCMLs and regular rings are congruence distributive.  Henee
Jénsson’s Lemma implies the existence of O € 5P, (K} such that A &
H") and & H{R). The last relation implies that & € 5P, (K).

(iv) Let K be an d-variety, let K% denote the class of its finitely
generated subdirectly irreducible members, and let TiK)%, denote the
class of finitley generated subdirectly irreducible members of the vari-
ety TIK). Then the class of a-reducts of structures from TIK)S, is a
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subclass of Kgp. Given A € K. let A* be acompanion of Ain T{K). Ac-
cording to Mal'eev [7], 4* embeds into an oltraproduct 8% of finitely
generated substructures of A%, All these belong to SP{T{X)%,) by
Birkhoff's Theorem. Therefore, A & EPuEP{T[E]"_‘g’;}- When passing
to a-reducts, we get A € 5aPuSaP(5,) © Vaikig, ). O

Proposition 11. The following stetements kold:

(i} Ang SCML L embeds into & CML which is the wltraproduct of
indervals [0, w], o« € L;
I:'l'l} J'JI" Loigsa CML and w € L, then [ﬂ? u] = HE;IZL};
(i) If R is a regular A-algebra with wnil and & = ¢ & R, fhen
efte & HS( ).
Consepuently, if K C Mwd £ is a elass of CMELs and L is o OML such
that L€ V3(K) in the sense of SCMLs, then L € V3(K) also in the
senge of CMLe The same datemend holds, if we consider regular rings
witle unil mstead of CMLs.

Proof. The statement (i) is obvious. To prove (i}, let © be a comple-
meent of w in L. Then O = [0, «] U o, 1] is & complemented sublattice
of L,and i C — [0, u), @ x e wx, is a homomorphism from O onto
[0, ], that is, [0, «] € HS53(L).

(iil) efe + (1 — )R] — &) is a regular subalgebra of B with unit
having e Ae as a homomorphic image. O

5. FREE REGULAR ALGEBRAS

For the case of algebras with unit, the following is the main result
of Goodearl, Menal, amd Moneasi [7, Theorem 2.5].

Theorem 12, For any commudaiive ring A, the -variely of regular
A-algebras (with or withow! unil) is generated by the A-algebras P
ro< w, where Fomanges over guotiend fields of A modulo prime ideals.
In particular, free rapular A-algebras are residually arlinian.

Proof. Due to Proposition 77, every J-variety of regolar A-algebras is
generated by its members with unit. To thase, [7, Theorem 2.5] applies
b vield the desired coneclusion. The claim about free objects follows
with Proposition 77, O

Corollary 13. Lef B le a regular F -algebn over o commulative field
FoThen R e V3(F"™ | ng £ n<w) for al ng < w.

The crucial step in the proof of the Thearem is the instance of the
Corollary where i has countable dimension ower F, see [7, Proposition
2.2] and [7]. For countable &, the Theorem can be derived from this
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using Proposition ?2(iv). The general case would require to consider
Z-sorted J-varieties. Actually, the proof of [7, Theorem 2.4] is based
on a 2-sorted approch,

Let P consist of all primes and 0 and let F, denote the prime field
Lipd for p e PY{0}: we also put Fy = Q@ if p = 0. Let R denote the
Fvariety of all regular rings (with or without unit)

Corollary 14. For any ng < w, R = V3(E,"™ |ng £ n < w, peE
B0} In perticular, free regular vings (with or withow! wni) are
residually finide, and the equational fheory of reqular rings with quas-
imverdon, consgderal as a fundemental operation, is decidable.

Proof. Taking A = Z and applying Theorem T, one sess that any
vegular ring (with or without unit) belongs to V3(F,"™ | ng = n <
w, p € F). Moveover, """ embeds into the ultraproduct of F,""",
pe PO}, over a nov-prineipal ultrafilter on P4 {0}, Indesd, such an
ultraproduct is an algebra over & field of characteristic 0 and contains
the set of (1« nlmatrix units. Thus, the first statement Follows.

Due to J. C. O MeRinsey [?], residual Aniteness implies decidability
of the equational theory. O

Corollary 15. Lei F be a field. The J-variety of reqular F-algebras is
generated by ils members of the form P n < w. If F is recursive,
then the equational theory of reguler F-algebras with guasi-inversion
is devidable. If F i finile, fhen free reqular F-algebras are residually

Jinite.

Proof. The first elaim is immediate by Corallary 770 11 F is recur-
sive, then the theary of regular F-algebras is re;.umvelv o pornuat -
able. On the other hand, in this case, the set of all equations falsified
i some FU (with s guasi-ine rs'u‘.m} is recursively enumerable, sinee
any equation is egquivalent to a universal sentence in the signature of
F-algebras. O

fi. ARTINIAN GENERATORS OF -VARIETIES

Theorem 16. Led B be a subdirectly irreducible non-aviinian regular
A-algebra. Then there evisfe a field Fosuch that V3(R) = Vg Fo |
g %< w) for all ng < w.

Proof. By Propesition 7?7, B is an F-algebra for a quotient field £
of A. By Corollary 77, B € V3 (F"™ | ng = n < w). Further, by
Corollary 772, the lattice LI} is subdivectly irreducible and of infinite
height. By Corollary 72, L{R) hes an n-frame at 0 for any 0 < w2 < w.
Fixing 0} < n < w, there is an idempotent ¢ € f such that the lattice
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Lie R} contains a spanning r-frame. By Propasition ?2(1), Lie e} =
LieR). Putting § = efe, we conclude that LS} containg a spanning
r-frame. We prove that F™" & 505, which implies £ € 530 1)
Inddeoed, sinee LIS) contains a spanning n-fame, there are nonzero
right ideals 5, i < n, in L{S} which are independent and pairwise
perspective (thus, isomorphic) such that 5 = &5, 5. Now

End(Ss) = End(€) $.) = (End(S))"",
Lozt
el [?, Corollary 2.20]. Associating with every A € F the left multipli-
cation x w— Az, one obtainsg an embedding of F into End(S,). Thus,
et embeds into End( Sg) 2= 5. O

Corollary 17. Any J-variely K of requler A -algebras (with or with-
ol wnil) is generated by ils artinian members. The T-freely generated
algebras in K are subditect produets of artinian members in T(K),

Proof. By Theorem 77, K is generated by its artinlan members. The
claim about free objects follows by Proposition 220}, O

Corollary 18, If ¥ iz a subdirectly irreducible reqular A-algebre and
{ is the mininal idexl of B, then B € V3. More precisely, i€
VileRe | e =e 7).

Proof. By Proposition T201i}, [0, ] s a minimal neatral ideal in LUAY.
By Proposition T7(ii), either § = for L{{}is a simple SCML of infinite
height. In the latter case, applying Theorem 77 to I, we get that
Frem e Vo forall 0 < no< w. Again by Theovem 27, B eVl O

7. PROUECTIVE SPACES AND FRINK'S EMBEDDING

For what follows, we also refer to [T, 7,7, 7]

An afomn in a lattioe L owith zero 0 is an element p = 0 such that
p = = 0 haods for no 2 € L. By Fr, we denote the set of all atons in
L. We say that L is afomic, if for any a >0, there is p € Py such that
p= a. We say that L is wpper continuous, if for any upward divected
set X C Losuch that 3 X existsand foranya € Loy X =% [a x|
e X}

A projeclive space is defined by a set P ool points together with a
distinguished set A of J-element sulsets of P eallad collinear fripleds,
such that the friangle ariom holds:

if {p.sq) gty € A and {pq.r} A,
then there is o undque v © P such that {pa v}, {5, 0t} € A,
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QC FPisa smbspace of P i p, g € Q and {pg.r} € A mply v £ Q.
The set of all subspaces of P forms an atomic upper continnons CAL
under inelusion, which we denote by L{P).

We say that P is dreducilble, if for anv p, g € P p # g, there is v € P
such that {p g, v} € A Each projective space is (unigquely) represented
asa disjoint union of its reducible sulspaces, so called components 1F
{BCP|iel}isapartitiobn of P into irredicible components, then
the maps X s X0 F provide a divect decomposition of LiP); that is,
LiP) = [Les LiF). We call the Li A} the components of L{F). Then
LiF} is subdirectly irveducible if and only if P is irreducible.

For a modular lattice M with (), Py is a projective space, where a
triplet {p g, v} is collinear if and only if pd g =p+r =g+ +. I
M iz a CML of finite height, then M = LiPy ). If M is atomic, then
j.'-:Ir_lf'ut = Ll: -P.'I-I' }jut-

Let 2 be a division ring. For any (right} vector space Vi over D,
wie denote the lattice of all vector sulspaces of Vi by LiVg). Then
M = Li{Vp} iz a subdirectly irredocible CML which also satisfies the
Arguesian identity, see Jonson [¥]. Moveswr, LiPy) = M. Con-
versely, if P is irreducible and Wt LiP) = w = 4 (or v 2 3 and LIP)
is Arguesian), then Li P} = LiVy) for some division ring I and some
vector space Vg over I such that dim Vg = .

According to Sachs [?], for any lattice L, its ideal lattice Id L, as well
asits filter lattice Fil L {ordered by inverse inclusion ), belongs to V(L)
The following result is well known, of, Fremse [7].

Lemma 19, Let o L — N le a lattice homomorphism and lel N
he an wpper continuows laftice. Then ¢ eviends fo a homomorphism
F: WL — N by setting F(I) = supe(f).

The ollowing result is contained in Frink [?] implicitly, of. Herrmann
and Raodddy [7].

Lemma 20, fef L obe an SOML, e M be a modular laffice, and lef
g: L= M be a (-preserving homomorphism. Then

¢la) = {p € Pae | p < e(a)}
dfﬁnr:s a (l-preseriimg ladtice ﬁt::m.t:l:r:m:r‘pnr:fs:m f:r'ﬂrn. L oindo LIIPM}. Maore-
over, o i an embedding provided that for any o > 0 in L, here is
p e Py with p < 2(a).
Thus by Lemma 77, for any SCML L, the canonical embedding,

ar+ Ta, of L into the fler lattice Fil L {ordered by reverse inelusion)
defines the embedding

et L= L{Fq)., aw [FePy|as FY.
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Putting Fr L = L{Pp ), we call the pair {Fr L, g, ) the Frink ectension
af L.
Theorem 21. Let L be an SCML Then the following haolds:

(i) Fr Le V(L)

(i) £ &€ SaFrL) and pp: L — FrL s the corresponding O-laitice

embedding:
(i) M & HSz(L) for any finite height mmponent M of Fr L.

Proof. Maost of this is due to Jdsson [7]. By Lemma 77, Fr(L} &
HIdFil L), whenee Fr L& VL), amd (i) holds. By Lemma 772, L
embeds into Fr{ L), whenee (i} holds.

As to (i), suppose now that M = L{{J} is a Anite height component
of Fr L. Reealling that the elements of ( are glven as maximal filters
of L, let F =[]} € FilL and let v € F. OF course, § = mopiu).
where 7 is the projection of Fr L onto M. For each lower cover (' of
€ in M, there is a € [N Q such that a < w. As 7peplal = G,
o gp, maps the interval [0, «] of L onto M. Since [0, o] € S3( L) for
any u € L, owe get that M & HS3( L) O

Corollary 22. Fuvery subdirectly irreducible SCML L with ht L = 4
is Arquesian. For any subdirectly irveducible Arguesian SCMEL L with
ht L = 3. fhere are & division ring I} and & veclor space Vi over D
such that L€ 53(L{Vp)) and L{Ve) € V(L)

Proof. Sinee L is subdirectly irreducible, it embeds into some sompo-
nent M oof Fr L by Lemma 7. In particular, ht M = ht L. Thus, if
ht L = 4, then M = LV} for some vector space Vn over a division
ring £, whenee both M and L are Arguesian, Further, if L is Argue
sian and ht L = 3, then the same holds for M and, again, M = L{Vg).
The vest follows From Theovem T7(i-(ii) . O

B Frases v SOMLs

Lemma 23. Frames af () are projective configurations within the class
af SCM Ls.

Proof. Let L and M be SCML, let f: L — M be a hanomorphisim of
SCMLs, and let {ae) be an n-frame at 0 in M. Since n-frames are
projective configurations within the class of modular lattioes, thereis an
n-frame {u,v) in M such that {f(u). fiv)) = {a.c). Let w =] .
let o' = 51wy, and let w be a complement of « in the interval [0, o],
Then the pair {r.8). where v, = wu, and 5 ;= we ) foc all i § < n.is
an n-frame at 0 in L, and { f(s), fir)) = {a,c). O



EXISTENCE VARIETIES OF REGULAR RINGS 15

We cite several results on Frames in subspace lattices, which are due
o Herrmann and Hohn, see [7] and [7].

Proposition 24. [?] Lel D be a divison ving with prime sobfield P
et Vi be @ vector space over I, and el v 2 3. Then every n-frame in
the lattice (Vg ) generates o (-sublaftice isomorphic to L{PE).

Ep P andn < w weput Fy = (Fy)p . We say that a modular
lattice L has charecteridic p, if all pruper F-frames in L generate a
sublattice isomaorphic to LlfFj} This property can be expressed by one
ibentity, i p # 0, and by lnﬁnit.el}r many identities, if p = 0, see [7].
Therefore, Corollary 77 implies

Corollary 25. Fuery subdirecily irreducible Arguesian SCML L owith
htf 2= 3 has a m.l.t'q-te.efy determined ehareferistic i} .flllr L e EIZLII'LD}}
then p is the charaelerisic of .

Proposition 26. [?] Let ¥V be o laitice varviety generalad by SCMELs
and ledn = 3. If L € ¥V is generaled by an n-frame and if githern = 4
or L Anpuesion, then either L= H.DEI LIZF:;} for some finide [ C P or
{LILF;‘} | pe I} SHIL) for some infinie I C P

Proposition 27, [7] Let I be o dividon ring with prime sobfield P,
led Vi be an infinife dimendonal veclor space over I, and led Vi be
the induced P-veclor space. Then for any g < w,

{L{Fp)| n < w) CS3(LVo)) C Sa(L(Ve));
V(L{V5)) = VIL(PY) | ng < n < w).

Lemma 28, Let L be an SCML, let v 2 4, and et P be a prime field.
IFLIPEy e VL), then LIPE) € 53P (L)

Proof. By msumption, LEPE) € HSP{L). Since L{FL) is a SCML, it
suffices to show that LIPE} € SPL(L). If P is finite, then scoording
b Fresse [2], the lattice L{PE) is a projective modular Lattice, whenee
LiFg) € SP(L). Sinee L{PE) is simple, the inclusion L{ PR} € SP(L)}
inplies that LiPR) & S(L), and we are done.

Suppose that P is infinite, so that LT} € HSP(L). Then there
is M € SP(L) such that L{Q5) € H{M ). By Lemma 77, there is an
n-frame ¢ at 0 in M mapped onto the canonical n-frame of LI}
Taking the sublattice M' of M generated by & instead of M, we may
assume that & is a spanning r-frame in M. By Proposition ¥ 77 eu.her

L(0) is a direct factor of M, or there is an infinite set [ C P ufpnm&.
such that L{Fy) € H{M) for all p € I. In the first ease, L0) €
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S5{M) C SP(L). Since L{Q3) is simple, we get immediately LT3} €
5(L}, whenee LIT) € 5;[[3

In the second case, LIF)) € H{M) for any p € £. By the first case,
one gets LIFY L € 5(L), for any prime p € I, Therefore,

LiQyh € SPu(L(Fy) | p € I) C SP.S(L) C SPu(L).
So, L{PE) € SPLL) in any case. O

Corollary 29. Let L be o subdirectly irreducible Arpuesian SCML and
lef ht L = 3. There are a prime field P, unique wp o isomorphism,
and a veclor space Ve over P osuch that L € S3(L{Ve)}. Ifht L = =c,
then LiPEY € 53(L) for all v < w and V(L{Vp)) = V(L).

Proaf. By Covollary 77 and Proposition 7%, L € S3(L(Ve)) € S3(L{Ve})
for some Vi with prime subfield P of I which has the same charae-
teristic s L. Suppose that bt L = sc. By Corollary 77, for any n 2 3,
there i3 a nontrivial e-frame in Lo Since L embeds into LiVe), by
Proposition 77 we get that L has a O-sublattice isomarphic to L PR
the latter contains L PP} as a (ksublattice, for all m £ n. Applving
Proposition 77 with I = P we get V(L{Vp}} = V(L) O

0. FINITE HEIGHT GENERATORS FOR F-vaRIETIES OF SOMLS

The main result of this section can also be derived from Theorem 77
and Lemma 77, This would mean using coordinatization theory: hence,
we rather give a more divect proof.

Lemma 30. Let B, 5, R, i € I be regular algebrus. Then [, LR >
Li[Les B.). Moseover, L(S) € H(L(R)) whenever § € H(R), and
L(5} € S(L{R)) whenever 5 € S(R).

FProof. By the olservation at the beginning of Section 3, eR + fR
and R N fR can be defined as subsets of B by existentially quan-
tified conjunctions of identities with parameters e, f. Those sentences
arve preserved under products and surjective homomaorphisnes which ac-
counts For the first two elaims (the second one also Follows from Propo-
sition T}

Now, let 5 be a regular subalgebra of B For all £ & L(S}, put
Iy = TR, Then (e8] = eR for any idempotent £, and ¢ is a join-
homomorphism.  Let idempotents e, f, g € 5 be such that Sy =
S(f = ef). Then Ry, = BSg = RE(f = ef) = B f = ef). Therefore,
(SN fSR = (f = fg)SR = (f = fg)R = eRN fR = eSRN f5R,
whenoe ¢ is also a meet-homomorphism. Finally, ¢ is one-to-one, sinee
eS C f5if and ooly if fe = e, which is equivalent to SR = i C
SR= fSR. Thus, L{S} € S(L{R)}). O
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From Corollary 77 and Lemma 772, we get immediately the following

E-urul.l&ry a1. J'JI’F iu o eornsnidadipe ﬁeﬁf and R is a :r'“eyturur F-ufyeiﬂ“u,
then for all vy < w,

L{R) € HS:P{L(F2) | ng < < w).

Theorem 32. Led L be o subdirectly irveducible SCML (CML) of infi-
nite height. Then there i o prime field P, unique up to isomorphism
II:rJ.u:rn.Efy, the prifne Std.rﬁefd E:IIIIr o, fl,Ir Le EIZLIIID}}}, suele that l,l’z:l:r‘ adl
T D !,

ValL) = Va[L{ P} | no 5 n = w)

Proof. By Corollary 77, L is Arguesian. By Corollary 77, there is a
unigue prime field P and there is a vector space Ve over P such that L &
Sa(LiVe)) and L{PE) £ S3( L) for all v < w. Sinee L{Ve) 2 L{End 15}
and End Vp is a regular P-algebra, L{End V) € V3(L{PR) | g = n <
w) by Corollary 77, Hence L € V3(L{PR) | ng £ n =< w). O

Corollary 33. Any J-variely of SCMLs (CMLs) is generaled by ifs
finite feight members.

Corollary 34. The 3-variely of Arguesian SCMLs (CMLs) 48 gener-
atad by lattices of the form LI:F::}, where i < w and p € P\f0} is a
finite prime field. In perficular, free Arguesion SCMLe (CMLs) are
residually finite.

Proof. It suffices to note that LiQG) belongs to S3PU(L{F]) | n <
w, p e By {0}). -

Corollary 35. The equational theory of Arpuesian SCMLe (CMLs)
with secfional L‘E:I:mpfﬂnenluﬁﬂn (s l,l’tmdu:r:w:rduf operalion is decid-

able. The same is true for a fived characleristic.

Proof. This follows from Corollary 77, In the case of characteristic ),
we observe that the set of sentences falsified in some L{Q5) is recur-
sively enumerable. We also may refer to [7].

Corollary 36. The ejuational heory of SCMLs (CMLs), where sec-
tional complementation is o fundemental operation (complementation
and unit 1 are fundemental operations, respectively), is decidable.

Proof. Tt suffices o provide a decision procedure for those of height at
most 3. This is done by giving an effective deseription of the finite
partial substructures containing 0 and 1, which is trivial for height 1.
For height 2, we just have a finite lattice M, where ) < n < w, with «
atomms aned & binary relation pon atoms, where aph, if b = o, If there is
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only one atom a, add & new atom b, and put o' = b, Y = a. Otherwise,
choose any atom a' # a, if aph for noe b,

In height 3, one has a partial projective plane, and aph for sone
pairs where a s a point and b a line or viee versa. Any such plane
has a Free completion to a (possibly degenerated) projective plane, see
Pickert [7]. If a is a point and aph for no b, then dhoose a line b, which
is not incident with a. and put o’ = b For lines, the procedure is
sitmilar. O

1. THE F-VvARIETY GENERATED BY AN aTOMIC SCML
Corollary 37. If L is an alomic SCML, ihen
Val L) =V3i[0, a] |a € L) = Va(L{FL)).

Proof. By Lemma 77, L € S3(L{ L)) and by Proposition 77, V3([0, ] |
w € Lp, ) © Va(L). Hence, it suffices to show that L{Pr) € Va([0, ] |
w & Lp,) Let M be a component of L{Pr). IF ht M < oc, then
M o= [0, uf for some v € Ly, = L(PL)p,. IFht M = oo, then, by
Corvollary T2, M = L{Vg) for a vector space Vp over a division ring
. By Theovem 77, V3(M) = V3(L{PE}) | n < w), where P is the
prime subfield of 0. Now, if ht[, «] = n, then [0, «] = LiDY), into
which LIPS} embeds by tensoring with £, Sincee LiP ) belongs to the
Fvariety generated by s components, we are done. O

Corallary 38. If L is a SOML, then Va(Fr L) = V(L)

Proof. By Theorem 2011}, L € S53(Fr L), whence V3(L}) C V3(Fr L)
Let M be a component of Fre L. IFht M < 2, then by Theovem T3(iii),
M e HS3(L) © WalL). IEht M = oo, then by Theorem 77 and Theo-
et T2(1), there is a prime feld P osuch that

Va(L(PE) |45 0= w)=Va(M} C V(FrL) C V(L)

By Lemma 77, LPR) € Va(L). Thus, M € V3(L) for all components
M of Fr L, whenee Fr L € V3(L) and V3(Fe L) € V5(L). O

11. AN EMBEDDING RESULT FOR IDEAL LATTIOES

Let O denote the class of ChLs, The class 5(C) is obviously a gua-
sivariety. It is still an open question whether S(C) is a variety, of. [7]
for a Miled approsch. Due to Sachs [7], foe any lattice L, the ideal
lattice Id L belongs to V(L) Therefore, it is of somse interest to know
whether the ideal lattice of a lattice which embeds into a (sectionally)
complemented modular Lattice, also does. In this section, we prove that
this is, idesd, the case. An analogous result for lattices of permuting
equivalence relations has been obtained by Nation [7].
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Consider a structure {4, ) of fnite signature o. Let 7 denote the
extension of o by elements of A as constants, that is,

F=allfe |ac A},

where o, & o, for all a € A Call & set 3(x) of formules of signature 7
(with Free variables in {2} safisfiable in A, if there i3 a in A such that
(A7) |= Pla) for all d{x) & Z(x) (under the natural interpretation of
the new constants). Call such aset E(r) of formulas finiely safisfiahle
in A iF any of its finite subsets is satisfiable in A, The structure (A, =) is
saturaded in cardinality w, iF any finitely satisfiable set 2z} of ormulas
of signature T, which contains less than & new constants, is satisfiable in
A Due to [?, Lenuna 5.1.4], for any structure (8, 7)) and any cardinal
s such that & = max{|a|, By} and Wy £ |8 £ 2% there exists a wt-

saturated elementary extension (A, 7) of {8 ), tha extension can be
chosen as an elementary substructure of an ultrapower of (8, a). In
particular, A € 53P,(H), in the case B s a (sectionally) complemented
lattice.

Theorem 39, For any SCML O, there is O € V3(C') such that ld L &
S(CY) for all L€ 5(C).

Proof. First of all, we may assume that O is iofinite, as for fnite O,
the conclusion is trivial. In view of Corollary 22, Fr & € V3((”). Let
r = O] and let €7 be o stsaturated elementary extension of Fr (.
As Fr s an atomic CML, O also is. Moreowver, O € V3(C). Sinee
C e Sa(Pr ), we get that € € S3(C7), that is, Va(C™) = Va((C'). Put
Q= Fo. and ¢ = L{Q). By Corollary T2, LiQ)) € Va(().

Now, I L € 5(C), then L € 53(C7). Let £ embed Linto &7 Che
Ay assume £ o be identical embedding, Let o0 L — L{Q2} be the em-
bedding given by Lemma 77, Then the map 7 Id L — L{Q)} defined
as in Lemma 77, is a lattice homomorphism, and it remains to show
that it is one-to-one. For ideals J @ I of L, we choose b € NS, Tt
suffices to show that there is an atom p € C° such that p € F(J) and
p & 7).

Consider the following set of formulas:

)= {Pz)ju{rgaluferdalac T}
where Wiz} is the formula =(z =0} & Wyly £ 2 — (y =0) v (2 =y}
CHwviously, for any lattioe K and any a € K, one has K = P ia) if and
only if a is an atom.
Then () is Anitely satisfable in O, Indesd, let oy, ..., a, in 1
Then a = a; 4+ ... +a, € f. Now, ab < b since b f 7. Let o e a
complement of abin [0, 8 © &7 Obviowsly, d = ). Since the lattice
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€ is atomic, there is an atom p € O such that p < J In particular,
p<boand p £ oo for any i £ n Sinee O is esaturated, the set
Yz} is satisfiable in 7, whenee there is an atom p € O such that
p<band p £ aforalla € f. This implies that p & @(b) € F(.) and
p & wla) for all a € F, whenee p @ | - ;ela) = E(f). Therefore, 7 is
an embedding. O

Corollary 40. [f L and O are SCMLs such that L (-embeds info 1d O
then L € V3 C). In particular, L & V3(l), whenever L is subdirecily
irveducible and I is the minimal newtral idel of L.
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