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Appendix D. Theory of Lattice Representability Proofs.

In the following, we develop the results needed to prove the completeness

theorem for (L,R)-derivability (see 2.2 and 2.4).

D1. Definition and Properties. Let R be a ring, M an R-module, and L a
lattice. An MH-system is a subset U of MXL such that U[v] (that is,

{y € L: {v,y) € U}) is either empty or is a dual ideal of L (possibly equal
to L) for each v in M, and U*[x] (that is, {u e M: (u,x) € U}) is in Su(M)
for each x in L. A triple (v,x,y) in MXLxL is called a defect for U if
(v,xVy) is in U but there exists no u in M such that (u,x) and {(v-u,y) are
in U. For any subset X of MxL, let J4(X) denote the intersection of all
MH-systems which contain X and are contained in MxL.

Dla. There is a one-one correspondence between MH-systems U on MXL and
meet homomorphisms \:L——Su(M). (Define N\ from U by A(x) = U?[x] for x in
L; define U from \ by U = {{v,x) € MxL: v € \(x)} for the reciprocal
operation.)

Dib. Suppose U and M\ correspond as above. Then N\ is a lattice homomorphism
iff U has no defects. Also, N\ is one-one iff for each pair x < y in L,
there exists v in M such that {v,y) is in U but {(v,x) is not. In particular,
A is one-one if for each x in L there exists v, in M such that U[Vx] is the
principal dual ideal {y: y 2 x} of L.

Dic. The intersection of a set of MH-systems on MXL is again an MH-system,
and MxL is itself an MH-system. So, for each X ¢ MxL, J4(X) is the
smallest MH-system containing X. We say J4(X) is generated by X. So, S is a
closure operator. That is, X c 3(X), $(S(X)) = 3(X) and Y ¢ X implies that
B(Y) c 3(X), for subsets X and Y of MxL., Furthermore, S is algebraic:
whenever (u,x) is in $(X), there is a finite Y ¢ X such that (u,x) € S(Y).

(We can verify that
U {3(Y): Y is a finite subset of X}

is an MH-system between X and J4(X), and so is equal to J4(X).)



D2. Definitions and Properties. Let R be a ring and L a lattice. Let R{A)
be the free R-module on a set of generators A of cardinality «, where « is
infinite and is not smaller than the cardinality of R or of L, that is, a =
|A| = X0-+|R|-+|L|. Suppose that A consists of pairwise distinct elements
a for each x in L and a_ for each ordinal number v, v < a. Since E =
R‘*) xL xL has cardinality at most «, we choose a well-ordering (E,<) of E

such that each element of E has fewer than a predecessors. For v < a, define:

A = A-—{a#: vsp<al
If v is in the submodule of R(*’ generated by A , say that v has support on
A . (Every element of R4) has support on A for some sufficiently large v.)

Define transfinite sequences X (v < a) and Y, (v < a) of subsets of RUA) x L

as follows:

>
H

0 {(ax,x): x € L},

XU = X0 u U“<VY“ for 0 < v £ a, and

Y, = {(av,xv),(vv-—av,yv)} if v < a, where (vv,xv,yv) is the
smallest element of (E,<) which is a defect for J(XV)
and such that v has support on A , or

Y =@ if there is no such element of E.

v
The limit MH-system 3(X_ ) is called an (L,R)-standard MH-system, and the
\:L—Su(R{A)) corresponding to it as in Dla is called an (L,R)-standard
homomorphism.

D2a. Any (L,R)-standard MH-system U has no defects. (A defect {v,x,y) for
U = é(Xh) would be a defect for é(Xv) for some v < a by Dlec, and we can
choose v sufficiently large so that v has support on A . Now, each step of
the transfinite induction repairs the smallest suitable defect of E under <,
but none repairs {v,x,y). So, there is a one-one function from

{u: v < p < a} into the set of predecessors of (v,x,y) in E, contradicting
the set cardinalities.) By D1b, an (L,R)-standard homomorphism is a lattice

homomorphism.



D3. Definitions. Let R be a ring and L a lattice. As in 2.2, let B contain
distinct variables b_ for each x in L and b, for each i 2 1. An R-linear
map £:R(B)__R(A) i5 called an insertion if f(bx) = a, for x in L, f(bi) is
in {av: v < a} for i 2 1, and f is one-one. A finite subset J of R{A) xL is
said to be (L,R)-coverable via an insertion f and an (L,R)-sequence w =

(wl,...,wn) if:
J c {(f(ui),xi): i < n},

where w, = (ui,xi) for i £ n.

D4. Proposition. Suppose R is a ring, L is a lattice, and J and K are
finite subsets of R‘A) xL such that J c $(K). If K is (L,R)-coverable, then
so is J.

(A)

Proof: Assume the hypotheses, so for some insertion f:R(B)_R and

some (L,R)-sequence w = (wi,...,wn), with w, = (ui,xi) for i € n:

K ¢ {(f(ui),xi): i < n}.
We will call an (L,R)-sequence w' of n or more terms an n-restricted extension
of w if its first n terms are the same as the corresponding terms of w and
there are no uses of rule 2.2e in forming w' except those used in forming w.
(Equivalently, each variable bj with j 2 n has coefficient 0 in every R-module
term of w'.)

Let H be the set of reachable pairs of R(A) xL; (v,y) is reachable if
{{v,y)} is (L,R)-coverable via f and some n-restricted extension of w. A
finite set of reachable pairs is (L,R)-coverable, by splicing together
finitely many n-restricted extensions of w. Two n-restricted extensions
w' and Q“ of w can be spliced by concatenating first the terms of w' and
then the terms of w' with the first n omitted; the result is again an
n-restricted extension of w.)

Now, H can be showed to be an MH-system as follows: Given v in R(A), H{v]
contains x Ay if it contains x and y by rule 2.2b. If z 2y inL and y €

H[v], then z € H[v] by 2.3. So, H[v] is empty or is a dual ideal of L



(possibly equal to L). For x in L, H*[x] contains a_ by 2.2a. For u, v in
H*[x] and r in R, ru € 1 [x] by rule 2.2c and u+v € H? [x] by rule 2.2d.
So, H¥[x] e Su(R‘*)).

Now K ¢ H by the construction of w, so J c 3(K) ¢ H because H is an

MH-system. So, J is (L,R)-coverable. =

D5. Proposition. Suppose R is a ring, L is a lattice, and J is a finite
subset of an (L,R)-standard MH-system J(Xu). Then J is (L,R)-coverable.

Proof: Assuming the hypotheses, we prove by transfinite induction:
(G,) If J ¢ &(X ), then J is (L,R)Y-coverable.

Suppose J ¢ 3(X;), so J ¢ 3(J,) for some finite J, c X; by Dilc. But J,
is (L,R)-coverable by any insertion map and an appropriate (L,R)-sequence
consisting of instances of axiom scheme 2.2a. Then G, follows by D4.

Assume 0 < v < a and G“ holds for all p < v. If v is a limit ordinal,
then G holds by Dlc. Suppose v is a successor ordinal, say v = p+1. Now
J c 8(Z) for some finite subset Z of X by Dlc. If Y“ is empty, then Z is
(L,R)Y-coverable by G#, hence so is J. So, assume Y“ contains (a“,x) and
(v-—a“,y) where v has support on A“ and (v,xVy) is in i(X“). So, by G“:

Z' = (Z-—Y“)tJ{(v,x\/y)} is (L,R)-coverable,
via some insertion f and (L,R)-sequence w = (wl,...,wn). Now extend w to w’
by rule 2.2e applied to a term (uj,xj) such that f(uj) = v and X; = XVy, so
w,, =(b ,x)andw ,= (uj——bn,y). Define an insertion map g:R‘®)—R(4’
by g(bx) = a_, g(bn) =a,, and g(bi) = f(bi) for i # n, 1 2 1, except that
g(bk) = f(bn) if there exists k # n such that f(bk) =a,. We observe that
g(u) = f(u) if {(f(u),x) is in Z' since then u has support on A“, which
doesn’'t contain a,- Then Z is (L,R)-coverable, and so J is also, by D4.

This completes the transfinite induction, and G_ is the desired result. =

We can now prove an extension of Theorem 2.4, verifying that our logic of

(L,R)-derivability is complete.

D6. Completeness Theorem. Suppose R is a ring and L is a lattice. For x,y



in L, the following are equivalent:

D6a. (bx,y) is (L,R)-derivable.

D6b. If h:L—Su(M) is a lattice homomorphism for some R-module M, then

h(x) < h(y).

Déc. If X:L——aSu(R(A)) is an (L,R)-standard homomorphism, then A(x) = \(y).
Proof: We have proved D6a = D6b (see 2.4), and D6b = D6c follows by D?a.

Assume D6c, and let U be the (L,R)-standard MH-system corresponding to \.

Now (ax,x) €eX,cU, soa €\x)s=s A(y), and so (ax,y) € U, using DRa. By

D&, there is an insertion map £:R(BI_R(A) ang (L,R)-sequence (wl,...,wn),
w, = (ui,xi) for i £ n, such that (ax,y) = (f(uk),xk) for some k € n. Since
f is an insertion, u_=b . So, (bx,y) is (L,R)-derivable via (wi,...,wk). »

By D6, the kernel congruence 8 = {{x,y): N(x) = N(y)} of L associated
with any (L,R)-standard homomorphism X:L——eSu(R(A)) is the unique smallest
congruence such that L/eR is representable by an R-module, with {x,y) in 0q
iff both (bx,y) and (by,x) are (L,R)-derivable. In fact, there is a functor
from the category £ of all lattices and TL—homomorphisms into the
subcategory £(R) which maps each L into L/GR. This functor, which is a left
adjoint to the inclusion functor from £(R) into £, is called a reflection by
some authors and a coreflection by others.

To illustrate our specialized logic, we demonstrate a particular result
of the form R F ¥ implies £(R) F I', using a less formal approach than that
of 2.9. Our proof adapts that of Czedli and Hutchinson [RE], which uses

series-parallel graphs by the method of Czedli [2G].

D7. Example. For the set of variables Y = {yl,yz,ys,y4}, define the lattice

polynomials:

2., = (Y, VY)A (Y, Vy,), 254 = (¥, VY ) Ay, V),

N
n

1a = VYA, V) W = (y vy, ) Az, Vzy,), and
Wo = (¥ vy ) Az, Vzy,).

Let ' denote the formula



(Yy,,¥,:¥3:94)(P; 4, * P, S Q)
where p, = y, A(y,Vw, ), q =y VyzVW,,
P, = z,, and q, =y, V(y, Ay, Vw,)).
We first observe that £(S) F T fails if there is an S-module N which is
(additively) a free Z(4)-module. For M = N®Ne®N, it is convenient to
denote certain submodules of M by bracketed triples [91’92’93]' where
variables occurring in the expressions e ,e,,e, may be assigned arbitrary

elements of N. For example, [u,0,u+2v] denotes

{{a,b,c) € M: u,v in N such that a = u, b = 0, ¢ = u+2vj}.
Let v, = {uw,0,0], Y, = [0,u,0], Vg = [0,0,u] and Vg = [u,u,u] in Su(sM).
Computation shows that z , = [u,u,0], 2,4 = [u,0,u], 2, = [0,u,u], w, =
[2u,u,u] and w, = [u,2u,u]. Furthermore, we have:

p, = {{0,v,0): v e Nand2v= 0},
q, = [u,2v,w], P, = [w,u,0] and q, = [u,0,0]\/pi. Since N is additively a
direct sum of cyclic groups of order four, we have p, = [0,2u,0], so P, S 4q,
but p, = gq,. Therefore, I' fails in Su(SM).

Now let ¥ denote the system of ring equations formula

(3t)(4=0& 2t =0&t?-2=0),
and suppose R F ¥. That is, R is a ring with characteristic dividing four
which contains an element t such that 2t = 0 and t? = 2. (If R has
characteristic four, then it contains an eight element subring isomorphic to
Z(4)[t]1/K, where K is the ideal generated by {2t,t2-—2}. These eight
elements may be denoted by 0,1,2,3,t,t+1,t+2,t+3. If R has characteristic
two or is trivial, then R F ¥ by taking t = 0.) Any R-module is a

Z(4)-module, but a nontrivial free Z(4)-module can never be given an

R-module structure. (If there was such an RM, then Ker £ = Im f for f

2-1, =1,+1,. Choosing v in M with 2v # 0, we would have f(tv) = 2tv

1l
(]

so 2u = f(u) = tv for some u in M. But then 2v = t%v = t2u = 0, a

contradiction.)



To prove that R F ¥ implies £(R) F ', we assume that L € £(R) and
h:P(Y,7, )—L is a 7, ~homomorphism satisfying h(pi) c h(ql). Let z =
h(pz) = h(zlz), so that our objective is to show that (bz, h(qz)) is
(L,R)-derivable, hence h(p,) = h(g,) by 2.5.

The (L,R)-sequence below is not the shortest possible, since we use 2.3
frequently for convenience, even when it leads to unnecessary terms. We
begin:

1. (bz, h(ziz)) by 2.2a.
5. (b_, h(y,) Vh(y,)) by 2.3 for 1 (terms 2-4 omitted).
9. (bz, h(ya)\/h(y4)) by 2.3 for 1 (terms 6-8 omitted).

10. (by, h(y,)) by 2.2e for 5.

9,
11. (bz-—bg, h(yz)) by 2.2e continued.

12. (bii’ h(y3)) by 2.2e for 9.

13. (b_~b,,, h(y,)) by 2.2e continued.

14, (thz-ftbg, h(yz)) by 2.2¢c for 11, since t = -t.
20. (bs'_b11’ h(yi)'vh(ys)) by 2.3 for 10 and 12.

26. (by-b,,, h(y,) Vh(y,)) by 2.3 using 11 and 13.
_27. <b9'_b11’ h(zia)) by 2.2b for 20 and 26.

28. (b9-+bz-—b11, h(yl)\/h(y4)) by 2.2d for 10 and 13.

29. (bz-+b9-b h(zlz)\/h(zia)) by 2.2d for 1 and 27.

11°

30. (bz-+bg-b h(wl)) by 2.2b for 28 and 29.

11’
36.. {tb_+tbg, h(y,) Vh(w,)) by 2.3 for 12 and 30.
37. (tbz-+tbg, h(yz)/\(h(ya)\/h(wi))) by 2.2b for 14 and 36.
By hypothesis,
h(y,) A (h(yy) Vh(w,)) = h(p,) = h(q,) = h(y,) Vh(y;) Vh(w,),

so we continue:

41. (tb, +tby, h(yi)\/h(yg)\/h(wz)) by 2.3 for 37.



42, (b41, h(yi)) by 2.2e for 41.
43. (tb_+tby-b,,, h(y,) vVh(w,)) by 2.2e continued.
44. (b,,, h(y,)) by 2.2e for 43.

45 (tbz-+tbg~—b41-b h(w2)) by 2.2e continued.

43’

49. (tb_ +tb  -b, -b,,, h(y,) Vh(y,)) by 2.3 for 45.
53. (tbz-+tb9-b41 —b43, h(ziz)‘Vh(Zi4)) by 2.3 for 45.
54. (b53, h(yz)) by 2.2e for 49.

55. (tbz-ktbg-—b L JRNED JA h(y4)) by 2.2e continued.

41~ P43

56. (b h(z12)) by 2.2e for 53.

55’

57. (tbz-+tb9-—b41-b43-b55, h(zi4)) by 2.2e continued.

61. (b, h(y,) Vh(y,)) by 2.3 for 56.
65. (b.,, h(y,) vh(y,)) by 2.3 for 56.
66. (b65’ h(yi)) by 2.2e for 61.

87. (b, ~bg,, h(y,)) by 2.2e continued.
688. (by., h(y,)) by 2.2e for 85.

69. (by, ~bg., h(y4)) by 2.2e continued.

73. (tb_+tby-b,, ~b,, ~b,,, h(y,) Vh(y,)) by 2.3 for 57.

1

77. (tb_+tby-b,, ~b,, ~b,,, h(y,) Vh(y,)) by 2.3 for 57.

1

78. (b77, h(yl)) by 2.2e for 73.

79. (tbz-+tbg-—b41-—b43-—b55-b77, h(y4)) by 2.2e continued.

80. (b,,, h(y,)) by 2.2e for 77.

81. (tbz-ktbg-—b41-—b43-—b55-—b79, h(y3)) by 2.2e continued.

At this point, we have completed the process of polynomial decomposition
(using 2.3 twice for each meet and 2.2e for each join). It remains to
derive (b_, h(q,)) by applying 2.2b, 2.2d and 2.3 a number of times, which

is done as follows:

87. (b,, -b,, h(y,) Vh(y,)) by 2.3 using 78 and 80.



93.

94. (b.”-—b7

(byq

b,q4, h(y,) vVh(y,)) by 2.3 using 79 and 81.

g» h(z,,)) by 2.2b using 87 and 93.

104. (2b_+2by +tb,  +tb,, +tb,, h(y,) vh(y,)) by 2.3 using

110.

(bgg

42, 44, 78 and 81, since t? = 2 and t = -t.

bgs ~b,,, h(y,)) by 2.3 using 55 and 79.

120. (Rb_+Rby +tb., +tb, ., +tb,,, h(y,) Vh(y,)) by 2.3 using

121.

131.

135.

136.

137.

143.

144.

145.

(2bz + 2b9 +tb, + tb,., +tb

(2bz +2b

11, 54, 80 and 110, since 2 = -2.

79 49> B(z,4)) by 2.2b using 104 and 120.

11 h(zia)\/h(zls)) by 2.3 using 27, 56, 94 and 121.

(®b_+2b,,, h(y,) vh(y,)) by 2.3 using 13.

(2bz-+2b11, h(wl)) by 2.2b using 131 and 135.

(—bz-+b9-+b11, h(wl)) by 2.2d using 30 and 136, since 3 = -1.
(b, -by, h(y,) vh(w,)) by 2.3 using 12 and 137.

(bz by, h(yz)/\(h(ys)\/h(wi))) by 2.2b using 11 and 143.

(b, h(yi)\/(h(yz)/\(h(ya)v h(wi)))) by 2.2d using 10 and 144.

z

This completes the proof that (bz, h(qz)) is (L,R)-derivable.
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