TU Darmstadt

Refereed Publications

Lock.png you need access to the journal
2017 (19) C. Erath and R. Schorr.
Comparison of adaptive non-symmetric and three-field FVM-BEM coupling, Lock.png
Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems, Springer Proceedings in Mathematics & Statistics, Volume 200, 337-345, 2017.
DOI: 10.1007/978-3-319-57394-6_36
2017 (18) C. Erath and D. Praetorius.
Céa-type quasi-optimality and convergence rates for (adaptive) vertex-centered FVM, Lock.png
Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects, Springer Proceedings in Mathematics & Statistics, Volume 199, 215-223, 2017.
DOI: 10.1007/978-3-319-57397-7_14
2017 (17) C. Erath and R. Schorr.
An adaptive non-symmetric finite volume and boundary element coupling method for a fluid mechanics interface problem, Lock.png
SIAM J. Sci. Comput. 39(3): A741-A760, 2017.
DOI: 10.1137/16M1076721
2017 (16) C. Erath, G. Of, and F.-J. Sayas.
A non-symmetric coupling of the finite volume method and the boundary element method, Lock.png
Numer. Math. 135(3): 895-922, 2017.
DOI: 10.1007/s00211-016-0820-3
2016 (15) C. Erath and D. Praetorius.
Adaptive vertex-centered finite volume methods with convergence rates, Lock.png
SIAM J. Numer. Anal. 54(4): 2228-2255, 2016.
DOI: 10.1137/15M1036701
2016 (14) C. Erath, M. A. Taylor, and R. D. Nair.
Two conservative multi-tracer efficient semi-Lagrangian schemes for multiple processor systems integrated in a spectral element (climate) dynamical core,
Commun. Appl. and Ind. Math., special issue on New trends in semi-Lagrangian methods, 7(3): 71-95, 2016.
DOI: 10.1515/caim-2016-0023
2015 (13) C. Erath.
A nonconforming a posteriori estimator for the coupling of cell-centered finite volume and boundary element methods, Lock.png
Numer. Math. 131(3): 425-451, 2015.
DOI: 10.1007/s00211-014-0694-1
2014 (12) C. Erath.
Comparison of two Couplings of the Finite Volume Method and the Boundary Element Method, Lock.png
Finite Volumes for Complex Applications VII - Methods and Theoretical Aspects, Springer Proceedings in Mathematics & Statistics, Volume 77, 255-263, 2014.
DOI: 10.1007/978-3-319-05684-5_24
2014 (11) C. Erath and R. D. Nair.
A conservative multi-tracer transport scheme for spectral-element spherical grids, Lock.png
J. Comput. Phys. 256: 118-134, 2014.
DOI: 10.1016/j.jcp.2013.08.050
2013 (10) C. Erath.
A posteriori error estimates and adaptive mesh refinement for the coupling of the finite volume method and the boundary element method, Lock.png
SIAM J. Numer. Anal. 51(3): 1777-1804, 2013.
DOI: 10.1137/110854771
2013 (9) C. Erath.
A new conservative numerical scheme for flow problems on unstructured grids and unbounded domains, Lock.png
J. Comput. Phys. 245: 476-492, 2013.
DOI: 10.1016/j.jcp.2013.03.055
2013 (8) C. Erath, P. H. Lauritzen, and H. M. Tufo.
On mass-conservation in high-order high-resolution rigorous remapping schemes on the sphere, Lock.png
Mon. Weather Rev. 141(6): 2128-2133, 2013.
DOI: 10.1175/MWR-D-13-00002.1
2012 (7) C. Erath, S. A. Funken, P. Goldenits, and D. Praetorius.
Simple error estimations for Galerkin BEM for some hypersingular integral equation in 2D, Lock.png
Appl. Anal. 92(6): 1194-1216, 2013.
DOI: 10.1080/00036811.2012.661045
2012 (6) C. Erath, P. H. Lauritzen, J. H. Garcia, H. M. Tufo.
Integrating a scalable and efficient semi-Lagrangian multi-tracer transport scheme in HOMME, Lock.png
Procedia Computer Science (ERA A-ranked) 9: 994-1003, 2012.
DOI: 10.1016/j.procs.2012.04.106
2012 (5) C. Erath.
Coupling of the finite volume element method and the boundary element method: an a priori convergence result, Lock.png
SIAM J. Numer. Anal. 50(2): 574-594, 2012.
DOI: 10.1137/110833944
2011 (4) P. H. Lauritzen, C. Erath, and R. Mittal.
On simplifying 'incremental remap'-based transport schemes, Lock.png
J. Comput. Phys., 230(22): 7957-7963, 2011.
DOI: 10.1016/j.jcp.2011.06.030
2009 (3) C. Erath, S. Ferraz-Leite, S. A. Funken, and D. Praetorius.
Energy norm based a posteriori error estimation for boundary element methods in two dimensions, Lock.png
Appl. Numer. Math., 59(11): 2713-2734, 2009.
DOI: 10.1016/j.apnum.2008.12.024
2008 (2) C. Erath, S. A. Funken, and D. Praetorius.
Adaptive Cell-Centered Finite Volume Method,
Finite Volumes for Complex Applications V, Wiley (ISBN: 978-1-84821-035-6) , 359-366, 2008.
2008 (1) C. Erath and D. Praetorius.
A posteriori error estimate and adaptive mesh refinement for the cell-centered finite volume method for elliptic boundary value problems, Lock.png
SIAM J. Numer. Anal., 47(1): 109-135, 2008.
DOI: 10.1137/070702126

Proceedings (publications for marketing)

10/2016 C. Erath, G. Of, and F.-J. Sayas.
A non symmetric FVM-BEM coupling method,
PAMM, 16(1): 743-744, 2016. 18th annual meeting GAMM.
DOI: 10.1002/pamm.201610360

Theses

04/2010 C. Erath.
Coupling of the Finite Volume Method and the Boundary Element Method - Theory, Analysis, and Numerics, PhD Thesis,
University of Ulm, Germany, 2010.
DOI: 10.18725/OPARU-1794
09/2005 C. Erath.
Adaptive Finite Volumen Methode, Diploma Thesis in German,
Vienna University of Technology, Austria, 2005.