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Chapter 0O
INTRODUCTION

Because of the parallel relation on the set of lines an affine plane is not a homoge-
neous geometric structure (some lines intersect, others not). This inhomogenity can be
omitted by extending the affine plane to its projective completion (Within a projective
plane any pair of lines intersect). For desarguesian planes the formal inhomogenity of
the projective completion can be abolished by using the 3d-model (1-dim subspaces are
points, 2-dim are lines).

Now we start from the real euclidean plane and merge the set of lines together with the
set, of circles to a set of blocks. This construction results in a rather inhomogeneous
incidence structure: two points determine one line and a whole pencil of circles. The
trick embedding this incidence structure into a homogeneous one is based on the fol-
lowing idea: Add to the point set the new point oo, which must lie on every line. Now
any block is determined by exactly 3 points. This new homogeneous geometry is called
classical inversive geometry or Moebius—plane.

IR?

Figure 1: 2d— and 3d-model of a Moebius—plane

The still existing inhomogenity of the description (lines, circles, new point) can be abol-
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8 CHAPTER 0. INTRODUCTION

ished by using a 3d-model. From a stereographic projection we learn: the classical
Moebius—plane is isomorphic to the geometry of plane sections (circles) on a sphere in
euclidean 3-space.

Analogously to the (axiomatic) projective plane one calls an incidence structure, which
exhibits essentially the same incidence properties, an (axiomatic) Moebius—plane (see
Chapter 3). Expectedly there are a lot of Moebius—planes which are different from the
classical one.

If we start again from IR? and take the curves with equations y = az?+ bz +c (parabolas
and lines) as blocks, the following homogenization is effective: Add to the curve y =
az? + br + ¢ the new point (co,a). Hence the set of points is (R U oco) x IR. This
geometry of parabolas is called classical Laguerre—plane.(Originally it was designed
as the geometry of the oriented lines and circles, see [BE'73]. Both geometries are
isomorphic.)
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Figure 2: 2d— and 3d-model of a Laguerre—plane

As for the Moebius—plane there exists a 3d-model: the geometry of the elliptic plane
sections on an orthogonal cylinder (in IR®), see Chapter 4. An abstraction leads (anal-
ogously to the Moebius—plane) to the axiomatic Laguerre—plane.

At least, if we start from R? and merge the lines y = ma +d, m # 0 with the hyperbolas
y = ;% +c¢,a # 0 in order to get the set of blocks the following idea homogenizes
the incidence structure: Add to any line the point (0o, 00) and to any hyperbola y =
—4 4+ c,a # 0 the two points (b,00), (00, c). Hence the point set is (R U oc)?. This
geometry of the hyperbolas is called the classical Minkowski—plane.

Analogously to the classical Moebius— and Laguerre-planes there exists a 3d-model:
The classical Minkowski-plane is isomorphic to the geometry of plane sections of a hy-



Figure 3: 2d— and 3d-model of a Minkowski—plane

perboloid of one sheet (non degenerated quadric of index 2) in 3-dimensional projective
space (see Chapter 5). Similar to the first two cases we get the (axiomatic) Minkowski—
plane.

Because of the essential role of the circle (considered as the non degenerate conic in a
projective plane) and the plane description of the original models the three types of
geometries are subsumed to plane circle geometries.

The prominent classes of the plane circle geometries are built on (commutative) fields
with the aid of conics. Therefore a chapter on oval conics (Section 2.4) is included into
this lecture notes. In order to give support for the understanding of the 3d-models
there is added an appendix on quadrics (Chapter 6). The appendix on nearfields (7) is
necessary for the understanding of a wide class of Minkowski—planes.

The lecture notes on hand arose from lectures held at the Department of Mathematics
of Darmstadt University of Technology. Because the author’s field of interest changed
during the past years this lecture notes is not a report on cutting edge results. Its
intention is to introduce interesting readers into the subject of circle geometries.

Darmstadt, Oktober 2004



