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Chapter 1

INTRODUCTION

Essential tasks of Computer Aided Design are:
1) designing objects like parts of machines, car bodies, ... and
2) displaying designed or basic objects like spheres, cylinders, tori, ...

1.1 Methods for DISPLAYING objects

The aim of the displaying process is to generate a plane image of a 3 dimensional object. There are
essentially two methods for the projection of objects onto a plane:
I) Parallel projection.
Parallel projection projects points of objects like curves or surfaces onto a plane by parallel rays. If
the rays are orthogonal to the image plane the method is called orthographic projection. Other cases
are called skew parallel projections. In case of a horizontal image plane one gets a bird’s eye-view.

Figure 1.1: Orthogonal parallel projection and bird’s eye-view of a cube

II) Central projection.
One gets a more realistic image, using projection rays which contain a common point Z, the centre
or eye-point)
The advantage of a central projection is the existence of several additional parameters (coordinates
of the centre and the distance to the image plane). The disadvantage: A central projection is no
linear mapping and needs more CPU-time for processing.
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8 CHAPTER 1. INTRODUCTION

Figure 1.2: Central projection of a cube

Figure 1.3: Parallel projection of a row of houses

Figure 1.4: Central projection of a row of houses

The advantage of the parallel projection is its linearity and the invariance of proportions of line
segments..

1.2 On the contents

Chapter 2: Tools defines the minimal needs which should be provided by the graphic system actually
used. The data structure is introduced and its application demonstrated at a simple example
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(ngon). The language for programming is PASCAL. But all procedures can be translated easily (by
hand or automatically) into another language (for example “p2c” translates Pascal code to C-code
automatically). Besides these system dependent procedures Chapter 1 contains a lot of procedures
solving basic problems of Analytical Geometry.
The PASCAL code of the procedures is available on
http://www.mathematik.tu-darmstadt.de/~ehartmann
(see section on software below.)
Chapter 3 provides the routines for the orthographic and central projection.
Chapter 4 and Chapter 5 introduces basic results from Differential Geometry of curves and surfaces.
Chapter 6 and Chapter 7 gives methods for displaying parametric and implicit surfaces.
Chapter 8 deals with the intersection of curves and surfaces.
Chapter 9 describes the representation of conics and quadrics like ellipsoid and cylinder.
Chapter 10 introduces some special surfaces of practical use (surfaces of revolution, ruled surfaces,
Coons patches, embankment surfaces, and canal surfaces).
Chapter 11 shows how to construct Gn–continuous transition surfaces (blending surfaces).
Chapter 12, Chapter 13 and Chapter 14 provide some material on Bézier curves and surfaces and
B–spline curves.
The appendix explains some techniques and statements of projective planes necessary for rational
Bézier curves.

1.3 Software for displaying curves and surfaces

Installation of the system on a LINUX-PC:

1. download of cdg0egv.tgz from

http://www.mathematik.tu-darmstadt.de/~ehartmann

2. tar xvfz cdg0egv.tgz generates the volume cdg0egv including subvolumes examples, include,
tools, units.
FREE-PASCAL compiler has to be installed and gv is needed.

3. Go to subvolume example and run make. (The necessary units, the tool pldv and the example
ngon will be generated.)

4. Compiling a program, for example tori h.p: make tori h
Run of the program: just type tori h.
Continuing after drawing: QUIT gv .
Instant terminating after drawing: CTRL C .

5. pldv applied to a PLD-file (for example: ngon.pld, see graph on(..) in Section 2.1.4)
a) shows the picture on the screen: pldv ngon.pld -a
b) generates a Postscript-file: pldv ngon.pld -a -pps
b) generates an EPS-file: pldv ngon.pld -a -peps
(All options of pldv are to be seen by just typing pldv.)

6. The informations on a) point coordinates and b) points in a face necessary for the hiddenline
algorithm can be stored in an OFF-file by the procedure write nangles to offfile con-
tained in parsurf h off.p and used as input for the free software GEOMVIEW available at
http://geomview.org.

Remark:
pldv in its original version was written by Andreas Görg.
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1.4 On literature

Recommended Books on:

• Differential Geometry:

– do Carmo,P.M. (1976): Differential Geometry of Curves and Surfaces, Prentice-Hall, Inc.
Englewood Cliffs, New Jersey.

– Lipschutz,M.M. (1969): Theory and Problems of Differential Geometry, Schaum’s Out-
line Series, McGraw-Hill, New York.

• Computer Aided Geometric Design:

– Farin,G. (1990): Curves and Surfaces for Computer-Aided Geometric Design, A Practical
Guide, Academic Press

– Hoschek, J., Lasser,D. (1989): Fundamentals of Computer Aided Geometric Design AK
Peters.

Remark:
Some text and figures of this lecture notes are taken from

• Hartmann,E. (1998): A Marching Method for the Triangulation of Surfaces. The Visual
Computer 14, 95–108.

• Hartmann,E. (1998): The Normalform of a Planar Curve and its Application to Curve Design.
in Mathematical Methods for Curves and Surfaces II, M. Daehlen, T. Lyche, L. Schumaker
eds., Vanderbild Univ. Press, Nashville.

• Hartmann,E. (1999): On the curvature of curves and surfaces defined by normalforms. Comp.
Aided Geom. Des. 16, 355–376.

• Hartmann,E. (2000): Numerical Parameterization of Curves and Surfaces. Comp. Aided
Geom. Des. 17, 251–266.

• Hartmann,E. (2001): Implicit Gn–blending of vertices. Comp. Aided Geom. Des. 18, 267–
285.

• Hartmann,E. (2001): Gn–continuous connections between normal ringed surfaces. Comp.
Aided Geom. Des. 18, 751–770.

• Hartmann,E.. (2001): Parametric Gn-blending curves and surfaces. The Visual Computer
17, 1–13.

• Hartmann,E. (2001): The normalform of a space curve and its application to surface design.
The Visual Computer 17, 445–456.



Chapter 2

TOOLS

Essential tools for solving CAD problems are basic operations for vectors (sum, scalar product, ...)
and routines for simple tasks like the intersection of a line and a circle. Before introducing such
basic procedures we discuss the minimal demand on the graphics system.

2.1 Structure of a CAD-program

First of all we define the global constants, types and variables used in any program. Essential are
the types vt2d,vt3d,vts2d,vts3d which define vectors and arrays of vectors.

2.1.1 Global constants: The file ”geoconst.pas”

The file ”geoconst.pas” contains the constant array size which will be used in 2.1.2, the reals
π, 2π, π

2 and eps1, ... , eps8 used for error bounds . The constants black,... described colors.

array_size= 1000; {...20000 for hiddenline-alg.}

pi= 3.14159265358; pi2= 6.2831853; pih= 1.5707963;

eps1=0.1; eps2=0.01; eps3=0.001; eps4=0.0001;

eps5=0.00001; eps6=0.000001; eps7=0.0000001; eps8=0.00000001;

default=-1; black=0; blue=1; green=2; cyan=3; red=4; magenta=5; brown=6;

lightgray=7; darkgray=8; lightblue=9; lightgreen=10; lightcyan=11;

lightred=12; lightmagenta=13; yellow=14; white=15;

2.1.2 Globale types: The file ”geotype.pas”

r_array = array[0..array_size] of real;

i_array = array[0..array_size] of integer;

b_array = array[0..array_size] of boolean;

vt2d = record x,y: real; end;

vt3d = record x,y,z: real; end;

vts2d = array[0..array_size] of vt2d;

vts3d = array[0..array_size] of vt3d;

matrix3d= array[1..3,1..3] of real;

2.1.3 Globale variables: The file ”geovar.pas”

null2d:vt2d; null3d:vt3d; {Nullvectors}

{**for area_2d and curve2d:}

origin2d:vt2d;

11
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{**for parallel and central projection:}

u_angle,v_angle, {projection angles}

rad_u,rad_v, {rad(u), rad(v)}

sin_u,cos_u,sin_v,cos_v:real; {sin(u),cos(u), ...}

e1vt,e2vt,n0vt:vt3d; {base vectors and}

{normal vector of the image plane}

{**for Central-Projection:}

mainpt, {mainpoint}

centre:vt3d; {centre}

distance:real; {distance mainpoint - centre}

2.1.4 Capability of the graphics software

In order to ease the transportation of the system to another one all procedures for drawing rely
on the following 9 machine dependent procedures. For a LINUX-PC the realization is contained in
package cdg0egv (see Introduction).

1. graph on(ipl), ipl:integer, starts the grafics-software and sets the vectors null2d, null3d
to default;
ipl = 0 : Display on screen, only,
ipl 6= 0 : any application of draw area(...) (see below) generates a file name.pld that
contains all drawing devices of the actual drawing, including color and line width.
pldv name.pld shows the drawing stored in name.pld on the screen. pldv name.pld -pps
generates a POSTSCRIPT–file which can be printed.
pldv name.pld -peps generates an ENCAPSULATED POSTSCRIPT–file which can be in-
cluded into a TEX–file.

2. draw area(width,height,x0,y0,scalefactor) clears the screen and defines a drawing area
provided with an orthogonal coordinate system.
origin2d = (x0,y0) is a global variable.
All length are assumed to be in mm (reals !)
1 mm should be 1 mm on the screen and on the paper, if scalefactor=1.
scalefactor= s scales the drawing by factor s.

x0

y0

width

height

Figure 2.1: Origin of the coordinate system for the drawing area
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3. draw end closes a drawing. If there is need for an additional drawing draw area has to be
applied again

4. graph off closes the graphic software definitely.

DRAWING DEVICES:

5. pointc2d(x,y,style), x,y:real; style:integer,
marks the point(x,y) by o if style = 0, + if style = 1 , ... .
For style = 10 oder 50 oder 100 the marks are smaller circles (scaled)
point2d(p,style), p:vt2d; style:integer,
like pointc2d using the type vt2d for the point.

6. linec2d(x1,y1,x2,y2,style), x1,y1,x2,y2:real; style:integer,
draws the line segment (x1, y1)(x2, y2) as:
———— , if style = 0, −−−−−, if style = 1, − · − · −, if style = 2, ..........
The following devices are defined by linec2d.

(a) line2d(p1,p2,style), p1,p2:vt2d; style:integer,
as linec2d using type vt2d for the bounding points.

(b) arrowc2d(x1,y1,x2,y2,style), x1,y1,x2,y2:real; style:integer
draws an arrow from (x1, y1) to (y2, y2).

(c) arrow2d(p1,p2,style), p1,p2:vt2d; style:integer
draws an arrow from p1 to p2.

(d) curve2d(p,n1,n2,style), p:vts2d; style:integer,
draws a polyline with vertices pn1, ...,pn2.

All length and coordinates must be given in mm !

7. new color(color), color: integer,
sets a new color. For example: color = red. color = default is equivalent to black.

8. new linewidth(factor), factor: real,
changes the line width. factor=1 means normal line width.

STRUCTURE of a program:

After putting all global constants, types, variables and procedures into a unit geograph a program
is of the following simple form:

program name;

uses geograph;

const ...

type ...

var ...:vts2d;

...:integer;

...:real;

...

{$i procs.pas} {additional procedures}

{*******************}

begin {main program}

graph_on(...);

...

{drawing:}
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draw_area(...);

...

...

draw_end;

....

graph_off;

end.

2.2 Functions on IR, operations with vectors

Now we provide PASCAL-functions and procedures for some often used real functions and opera-
tions. Because of the simplicity of these functions and procedures we give only heads. The complete
source is contained in the file proc ag.pas (see volume include).

2.2.1 Functions on IR

1. r → sign(a) (−1, if a < 0, else +1)
function sign(a:real):integer;

2. a, b→ max{a, b} (maximum of a,b)
a, b→ min{a, b} (minimum of a,b)
function max(a,b:real):real; function min(a,b:real):real;

2.2.2 Operations with vectors

1. x, y → v = (x, y),
x, y, z → v = (x, y, z)
procedure put2d(x,y:real; var v:vt2d);
procedure put3d(x,y,z:real; var v:vt3d);
v = (x, y, z)→ x, y, z
procedure get3d(v:vt3d; var x,y,z:real);

2. r,v→ rv (scaling)
procedure scale2d(r:real; v:vt2d; var vs:vt2d);
procedure scale3d(r:real; v:vt3d; var vs:vt3d);
r1, r2, (x, y)→ (r1x, r2y) bzw.
r1, r2, r3, (x, y, z)→ (r1x, r2y, r3z) (scaling single coordinates)
procedure scaleco2d(r1,r2:real; v:vt2d; var vs:vt2d);
procedure scaleco3d(r1,r2,r3:real; v:vt3d; var vs:vt3d);

3. v1,v2 → v = v1 + v2 (sum of two vectors)
procedure sum2d(v1,v2:vt2d; var vs:vt2d);
procedure sum3d(v1,v2:vt3d; var vs:vt3d);
v1,v2 → v = v2 − v2 (difference of two vectors)
procedure diff2d(v1,v2:vt2d; var vd:vt2d);
procedure diff3d(v1,v2:vt3d; var vd:vt3d);

4. r1,v1, r2,v2 → v = r1v1 + r2v2 (linear combination of vectors)
procedure lcomb2vt2d(r1:real; v1:vt2d; r2:real; v2:vt2d; var vlc:vt2d);
procedure lcomb2vt3d(r1:real; v1:vt3d; r2:real; v2:vt3d; var vlc:vt3d);
and analogously linear combinations of 3 and 4 vectors:
lcomb3vt2d(r1,v1, r2,v2, r3,v3, vlc);
lcomb3vt3d(r1,v1, r2,v2, r3,v3, vlc);
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lcomb4vt2d(r1,v1, r2,v2, r3,v3, r4,v4, vlc);
lcomb4vt3d(r1,v1, r2,v2, r3,v3, r4,v4, vlc);

5. v = (x, y)→ |x|+ |y| bzw. v = (x, y, z)→ |x|+ |y|+ |z|
function abs2d(v:vt2d):real; function abs3d(v:vt3d):real;

6. v = (x, y)→ ‖v‖ =
√

x2 + y2 bzw.

v = (x, y, z)→ ‖v‖ =
√

x2 + y2 + z2

function length2d(v:vt2d):real; function length3d(v:vt3d):real;

7. v→ v/‖v‖
procedure normalize2d(var v:vt2d); procedure normalize3d(var v:vt3d);

8. p,q→ ‖p− q‖ p,q→ ‖p− q‖2
function distance2d(p,q:vt2d):real;
function distance3d(p,q:vt3d):real;
function distance2d square(p,q:vt2d):real;
function distance3d square(p,q:vt3d):real;

9. v1,v2 → v1 · v2 (scalar product)
function scalarp2d(v1,v2:vt2d):real;
function scalarp3d(v1,v2:vt3d):real;

10. v1,v2 → v1 × v2 (vector product)
procedure vectorp(v1,v2:vt3d; var vp:vt3d);

11. v1,v2,v3 → |v1v2v3|
(v1 · (v2 × v3), 3x3-determinant)
function determ3d(v1,v2,v3:vt3d):real;

12. cos ϕ, sinϕ,p = (x, y)→ pr = (x cos ϕ− y sinϕ, x sinϕ + y cos ϕ)
(rotation around the origin, angle:ϕ)
procedure rotor2d(cos rota,sin rota:real; p:vt2d; var pr:vt2d);

13. cos ϕ, sinϕ,p0,p→ pr

(rotation around point p0, angle:ϕ)
rotp02d(cos rota,sin rota,p0,p, pr);

14. cos ϕ, sinϕ,p→ pr

(rotation around x-axis, y-axis, z-axis respect. )
procedure rotorx(cos rota,sin rota,p, pr);
procedure rotory(cos rota,sin rota,p, pr);
procedure rotorz(cos rota,sin rota,p, pr);

15. cos ϕ, sinϕ,p0,p→ pr

(rotation around an axis through p0 parallel to a coordinate axis in IR3)
procedure rotp0x(cos rota,sin rota,p0,p, pr);
procedure rotp0y(cos rota,sin rota,p0,p, pr);
procedure rotp0z(cos rota,sin rota,p0,p, pr);

16. Change of numbers and vectors resp.:
a↔ b bzw. v1 ↔ v2

procedure change1d(var a,b:real);
procedure change2d(var v1,v2:vt2d);
procedure change3d(var v1,v2:vt3d);
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Example 2.1 The following program draws a regular n-gon and (on demand) all possible edges.
The points of the ngon are on a circle with midpoint (0, 0) and radius r. The coordinates of the points
are xi = r cos(i∆ϕ), yi = r sin(i∆ϕ) mit ∆ϕ = 2π/n, i = 0, ..n− 1.
(For the program: Point Pi+1 is generated by rotating Pi).

Figure 2.2: n-gon with all possible edges (Example 2.1)

{***********************}

{*** regular n-gon ***}

{***********************}

program ngon;

uses geograph;

var p : vts2d;

n,icon,i,j,iand: integer;

r,dw,cdw,sdw: real;

{*******************}

begin {main program}

graph_on(0);

repeat

writeln(’*** n-gon ***’);

writeln(’n ? radius r of the corresponding circle ?’); readln(n,r);

writeln(’Connect any pair of points ? (yes=1)’); readln(icon);

{coordinates of the points:}

put2d(r,0, p[0]); dw:= pi2/n; cdw:= cos(dw); sdw:= sin(dw);

for i:= 0 to n-1 do rotor2d(cdw,sdw,p[i], p[i+1]);

draw_area(2*r+20,2*r+20,r+10,r+10,1);

{drawing:} new_color(yellow);

if icon=1 then

for i:= 0 to n-1 do

for j:= i+1 to n do

line2d(p[i],p[j],0)

else

curve2d(p,0,n,0);

draw_end;

writeln(’Additional drawing? (yes:1, no:0)’); readln(iand);

until iand=0;

graph_off;

end.
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Problem 2.1 Write a program that generates the following pictures.

Figure 2.3: To problem 2.1

2.3 Routines to Analytic Geometry

2.3.1 Polarangle and quadratic equation

a) For the change of rectangular coordinates of IR2 in polar coordinates we use polar angle which
determines the polarangle of point (x,y):
function polar angle(x,y:real):real;

b) Real solutions of a quadratic equation ax2 + bx + c = 0:
(The solutions are ordered by size. ns is the number of real solutions)
procedure equation degree2(a,b,c:real; var x1,x2:real; var ns:integer);

The sources of these and the following procedures are contained in file proc ag.pas.

2.3.2 Intersection line–line, circle–line, circle–circle

a) Intersection line–line :
Procedure is line line uses CRAMERs rule.

procedure is_line_line(a1,b1,c1, a2,b2,c2:real; var xs,ys:real; var nis:integer);

{IS-point (xs,ys) (nis=1) of the lines a1*x+b1*y=c1, a2*x+b2*y=c2.

If the lines are parallel: nis<>1.}

b) Intersection circle–line:
circle : (x− xm)2 + (y − ym)2 = r2, r > 0.
line : ax + by = c, (a, b) 6= (0, 0)
With substitution ξ = x− xm, η = y − ym we get
aξ + bη = c′ with c′ = c− axm − bym and
ξ2 + η2 = r2.
If r2(a2 + b2)− c′

2
> 0 we get the solutions

ξ1/2 = (ac′ ± b
√

r2(a2 + b2)− c′2/(a2 + b2) , η1/2 = (bc′ ∓ a
√

r2(a2 + b2)− c′2/(a2 + b2)
and hence
x1/2 = xm + ξ1/2, y1/2 = ym + η1/2.
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procedure is_circle_line(xm,ym,r, a,b,c:real; var x1,y1,x2,y2:real; var nis:integer);

{Intersection circle-line: sqr(x-xm)+sqr(y-ym)=r*r, a*x+b*y=c,

IS-points: (x1,y1),(x2,y2). x1<=x2, nis: number of intersection points.}

Intersection of the unitcircle (x2 + y2 = 1) with a line:

procedure is_unitcircle_line(a,b,c:real; var x1,y1,x2,y2:real; var nis:integer);

In both procedures we have x1 ≤ x2.

c) Intersection circle–circle :
1. circle : (x− x1)2 + (y − y1)2 = r2

1, r1 > 0,
2. circle : (x− x2)2 + (y − y2)2 = r2

2, r2 > 0, (x1, y1) 6= (x2, y2).
This system is equivalent to:
(x− x1)2 + (y − y1)2 = r2

1, ax + by = c with
a = 2(x2 − x1), b = 2(y2 − y1) and c = r2

2 − x2
1 − y2

1 − r2
2 + x2

2 + y2
2 .

That means: The intersection points of the circles and the intersection points of the first circle and
the line ax + by = c are the same.

procedure is_circle_circle(xm1,ym1,r1,xm2,ym2,r2:real; var x1,y1,x2,y2:real; var nis:integer);

{Intersection circle--circle. x1<=x2. nis: number of intersection points.}

2.3.3 Equation of a plane

Given: 3 points Pi : pi, i = 1, 2, 3.
Sought: equation n · x = d, that means the normal vector n and d.
Solution: n = (p2 − p1)× (p3 − p1) and d = n · p1.
plane equ determines n and d. The boolean variable error is set true, in case of n ≈ 0.

procedure plane_equ(p1,p2,p3:vt3d; var nv:vt3d; var d:real; var error:boolean);

{Determines the equation nv*x=d of the plane containing p1,p2,p3.

error=true: no plane.}

2.3.4 Intersection line–plane

Given: line x(t) = p + tr, plane n · x = d.
Sought: Intersection point pis.
Solution: pis = p− ((n · p− d)/n · r)r.
is line plane determines the intersection point, if it exists.

procedure is_line_plane(p,rv,nv:vt3d; d:real; var pis:vt3d; var nis:integer);

{Intersection line-plane. Line: point p, direction r. plane: nv*x = d .

nis=0: no IS-point ,nis=1: IS--point exists, nis=2: line in plane.}

2.3.5 Intersection of three planes

Given: Three planes εi : ni · x = di, i = 1, 2, 3, n1,n2,n3 linear independent.
Sought: Intersection point pis : ε1 ∩ ε2 ∩ ε3.
From pis = ξ(n2 × n3) + η(n3 × n1) + ζ(n1 × n2)
we get
pis = (d1(n2 × n3) + d2(n3 × n1) + d3(n1 × n2))/n1 · (n2 × n3).
(If the normals are not linearly independent, there exists an intersection line or two planes are
parallel.)
is 3 planes determines the intersection. error= true, if the intersection consists not of exactly
one point.

procedure is_3_planes(nv1:vt3d; d1:real; nv2:vt3d; d2:real; nv3:vt3d; d3:real;

var pis:vt3d; var error:boolean);

{Intersection of the planes nv1*x=d1, nv2*x=d2, nv3*x=d3.

error= true if not exactly ONE intersection point.}
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2.3.6 Intersection of two planes

Given: two planes εi : ni · x = di, i = 1, 2, n1,n2 linear independent.
Sought: ε1 ∩ ε2 : x = p + tr.
The direction of the intersection line is r = n1 × n2. We get a point P : p of the intersection line
by intersecting ε1, ε2 with the plane ε3 : x = s1n1 + s2n2.

P : p =
d1n2

2 − d2(n1 · n2)
n1

2n2
2 − (n1 · n2)2

n1 +
d2n1

2 − d1(n1 · n2)
n1

2n2
2 − (n1 · n2)2

n2

is plane plane determines the direction r and a point of the intersection line. error=true, if the
planes are parallel.

procedure is_plane_plane(nv1:vt3d; d1:real; nv2:vt3d; d2:real;

var p,rv:vt3d; var error:boolean);

{Intersection of the planes nv1*x=d1, nv2*x=d2. IS--line: x = p + t*rv .

error= true: Intersection is no line.}

2.3.7 ξ-η–coordinates of a point in a plane

Given: plane ε : x = p0 + ξv1 + ηv2 and point P: p in ε .
Sought: ξ, η such that p = p0 + ξv1 + ηv2.
By scalar multiplication of p by v1,v2 we get the linear system:
(p− p0) · v1 = ξv1

2 + ηv1 · v2, (p− p0) · v2 = ξv1 · v2 + ηv2
2,

ptco plane3d determines ξ, η using CRAMERs rule. error=true, if the determinant of the linear
system is ≈ 0. (If P is not in ε and ξ, η is the solution of the linear system above, point P’:
p′ = p0 + ξv1 + ηv2 is the footpoint of the perpendicular line from P to plane ε.)

procedure ptco_plane3d(p0,v1,v2,p:vt3d; var xi,eta:real; var error:boolean);

{v1,v2 linear independent, p-p0,v1,v2 are linear dependent.

We get xi,eta such that p = p0 + xi*v1 + eta*v2.}

2.3.8 Coordinates with respect of a new 3D-coordinate system

Given: new origin B0 : b0, new basis b1,b2,b3 and point P: p .
Sought: ξ, η, ζ such that p = b0 + ξb1 + ηb2 + ζb3.
From CRAMERs rule we get:

ξ = det(p− b0,b2,b3)/ det(b1,b2,b3)
η = det(b1,p− b0,b3)/ det(b1,b2,b3)
ζ = det(b1,b2,p− b0)/ det(b1,b2,b3)

procedure newcoordinates3d(p,b0,b1,b2,b3: vt3d; var pnew: vt3d);

{Determines the coordinates of p with respect of basis b1,b2,b3 and origin b0.}

2.4 Numeric: GAUSS-elimination, NEWTON-iteration

For solving a larger system of linear equations Ax = b one uses an appropriate version of
GAUSS-elimination. A description of the method and a suitable PASCAL-code is contained in
Meyberg,Vachenauer: Höhere Mathematik 1, Springer-Verlag, 1999,.

For solving a system of non linear equations one usually apply the NEWTON-iteration. Here
a short description of the method:
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Given: Function F : D → IRn, D ⊆ IRn, and a starting point x0 for the iteration.
Wanted: A point x∗ in the vicinity of x0 with F(x∗) = 0.

The algorithm:
For ν = 0, 1, 2, . . .

(1) solve the linear system
F′(xν)dν = −F(xν) , where F′ := ( ∂Fi

∂xk
) and F = (F1, F2, . . . , Fn), x = (x1, x2, . . . , xn).

(2) xν+1 = xν + dν

(3) If ‖xν+1 − xν‖ is small enough (or another termination) we set x∗ = xν+1.
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PARALLEL/CENTRAL–
PROJECTION

For displaying a 3–dimensional object one uses usually either
a) orthographic projection (parallel rays orthogonal to the image plane) or
b) central projection (rays which have a point, the centre, in common).

3.1 Orthographic Projection

3.1.1 The projection formulae

In order to describe the orthographic projection of a point onto the image plane ε0 we introduce
a suitable orthogonal coordinate system (O;x, y, z) such that the origin is contained in ε0. (A
translation of ε0 has no effect on the image but on the coordinates.) ε0 and the orthographic
projection are defined uniquely by the normal vector n0 of ε0. We choose n0 such that |n0| = 1 and
its direction points in the opposite direction of the projection rays (n0 points to the ”sun”). For the
description of n0 we use the angles u, v which are sphere coordinates (u is ”geographic longitude”
and v ”geographic latitude”):

n0 = (cos u cos v, sinu cos v, sin v), 0 ≤ u ≤ 2π, −π/2 ≤ v ≤ π/2.

0

v

ux y

e

n
P’

P

z
e2

1

Figure 3.1: Parallel projection of a point P
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An image of a point will be described by coordinates corresponding to a rectangular coordinate
system (O;xe, ye) of the plane ε0 The origins of the image plane and the object space coincide and
in case of |v| < π/2 the ye–axis is the image of the z-axis. Hence the xe–axis is contained in the
intersection line of ε0 and the x-y-plane. The vectors

e1 = (− sinu, cos u, 0), e2 = (− cos u sin v,− sinu sin v, cos v)
are an orthonormal basis in ε0 and {e1, e2,n0} is an orthonormal basis of object space IR3.
The coordinates x′, y′ of the image of a point P : p = (x, y, z) are

x′ = e1 · p = −x sinu + y cos u

y′ = e2 · p = −(x cos u + y sinu) sin v + z cos v.

Hence an orthographic projection is a linear mapping.

3.1.2 Procedures for orthographic projection

The reals sinu, cos u, sin v, cos v and the normal vector n0 of the image plane will be determined by
procedure init parallel projection right after the input of the angles u, v and stored in global
variables. The following procedures are necessary for an orthographic projection and are contained
in file proc pp.pas (see volume include).

procedure init_parallel_projection;

begin

writeln(’*** PARALLEL-PROJECTION ***’);

writeln;

writeln(’Projection angles u, v ? (in degree)’);

readln(u_angle,v_angle);

rad_u:= u_angle*pi/180; rad_v:= v_angle*pi/180;

sin_u:= sin(rad_u) ; cos_u:= cos(rad_u) ;

sin_v:= sin(rad_v) ; cos_v:= cos(rad_v) ;

{normal vector of the image plane:}

n0vt.x:= cos_u*cos_v; n0vt.y:= sin_u*cos_v; n0vt.z:= sin_v;

end; { init_parallel_projection }

{**************}

procedure pp_vt3d_vt2d(p:vt3d; var pp:vt2d);

{Determines the image of a point}

{*************}

procedure pp_point(p:vt3d; style:integer);

{Projects a point and marks the image with respect to style}

{*************}

procedure pp_line(p1,p2:vt3d ; style:integer);

{Projects the line segment p1,p2 with respect to style}

{*************}

procedure pp_arrow(p1,p2:vt3d; style:integer);

{Projects an arrow}

{*************}

procedure pp_axes(al:real);

{Projects the coordinate axes, al: length of an axis}

{*************}

procedure pp_vts3d_vts2d(var p:vts3d; n1,n2:integer; var pp:vts2d);

{Determines the array pp of projections of an array p of points.}

{*************}

procedure pp_curve(var p:vts3d; n1,n2,style:integer);

{Projects the 3d-ngon p[n1]...p[n2]}

{*************}
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3.2 Central projection

One gets a more realistic picture by using central projection, i.e. the projection rays meet in a point
Z, the centre or eyepoint. I.g. central projection does not respect proportions and the images of
parallel lines meet in a point (see fig 3.2).

Figure 3.2: central projection of a house

We will see that many procedures written for orthographic projection can be changed easily to
central projection.

3.2.1 The projection formulae

Let ε be a plane and Z : z a point not contained in ε. Function Φ which maps a point P : p onto
the intersection point P ′ of line ZP with plane ε (if it exists) is called central projection from
Z onto ε.

Z is called centre or eyepoint of central projection Φ (see fig. 3.3). The footpoint H : h of the
perpendicular through Z onto the image plane ε0 is called mainpoint of Φ. With the normal vector

n0 := (cos u cos v, sinu cos v, sin v), u ∈ [0, 2π], v ∈ [−π/2, π/2],

we get the equation of plane ε0 as: (x− h) · n0 = 0. For centre Z : z and mainpoint H we get the
relation z = z + δn0 with δ > 0. The distance δ between Z and plane ε0 is called distance of Φ.
All points of IR3 which have no image (with respect of Φ) are contained in the vanishing plane εv

parallel to ε0 that contains centre Z.
The central projection Φ is uniquely determined by the angles u, v, the mainpoint H and the distance

0

0

: vanishing plane

ε v

vε

H Z
n

δ

0

H
Z

:
:
:

δ

image plane

centre
mainpoint
distance

ε 

ε  

P

P’

:

Figure 3.3: mainpoint, distance and vanishing plane
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Z

H

x

y

z

n

e

e

1

02

P
P’

image plane

Figure 3.4: central projection of a point

δ. A point P : p not contained in the vanishing plane εv will be mapped onto P ′ := ZP ∩ ε0:

P ′ : p′ = z +
(h− z) · n0

(p− z) · n0
(p− z) = h + δn0 +

δ

δ − (p− h) · n0
(p− h− δn0)

Because of P ′ ∈ ε0 we have additionally (p′ − h) · n0 = 0.

The coordinate system in image plane ε0 is chosen such that H coincides with the origin and
(analogously to the orthographic projection)

e1 := (− sinu, cos u, 0), e2 := (− cos u sin v,− sinu sin v, cos v)

are the base vectors. {e1, e2,n0} is a ON–base of IR3 (see fig. 3.4).
There are reals x′, y′ (the coordinates of P ′ with respect to base {e1, e2}) such that
p′ = h + x′e1 + y′e2.
From the two representations of p′ above and the orthogonality of {e1, e2,n0} we get

x′ =
e1 · (p− h)

1− (p− h) · n0/δ
y′ =

e2 · (p− h)
1− (p− h) · n0/δ

(In case of h = 0 and δ →∞ we get the formulae for the orthographic projection !)

Mathematically the projection is defined on IR3 \ εv but in praxis applied only on points in front of
the vanishing plane εv. (A point P : p is in front of εv if (p− h) · n0 < δ.)

3.2.2 Procedures for central projection

The essential procedures used for central projection are listed below. One should keep in mind that
mainpt, centre, n0vt and distance are global variables (see geovar.pas). The central projection
of a point is performed in two steps:

(1) Coordinate transformation into system (H; e1, e2,n0) with origin H and base {e1, e2,n0}.

p = (x, y, z)→ p̄ = (x̄, ȳ, z̄) with x̄ = (p− h) · e1, ȳ = (p− h) · e2, z̄ = (p− h) · n0,

(2) Central projection within the system (H; e1, e2,n0) onto x̄− ȳ–plane:

p̄ = (x̄, ȳ, z̄)→ (
x̄

1− z̄/δ
,

ȳ

1− z̄/δ
)
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procedure init_centralparallel_projection(ind : integer);

begin

if ind=1 then begin

writeln(’*** CENTRAL-projection ***’);

writeln(’mainpoint ?’); readln(mainpt.x,mainpt.y,mainpt.z);

writeln(’distance ?’); readln(distance); end

else begin

writeln(’*** PARALLEL-projection ***’);

mainpt:= null3d; distance:= 1000000000; end;

writeln(’Angles u, v ? (in degree)’); readln(u_angle,v_angle);

rad_u:= u_angle*pi/180; rad_v:= v_angle*pi/180;

sin_u:= sin(rad_u); cos_u:= cos(rad_u);

sin_v:= sin(rad_v); cos_v:= cos(rad_v);

{base e1,e2 and normal n0 of image plane:}

e1vt.x:= -sin_u; e1vt.y:= cos_u; e1vt.z:= 0;

e2vt.x:= -cos_u*sin_v; e2vt.y:=-sin_u*sin_v; e2vt.z:= cos_v;

n0vt.x:= cos_u*cos_v; n0vt.y:= sin_u*cos_v; n0vt.z:= sin_v;

{centre:}

lcomb2vt3d(1,mainpt, distance,n0vt, centre);

end; { init_central_parallel_projection }

{**************}

procedure transf_to_e1e2n0_base(p : vt3d; var pm : vt3d);

{Determines the coordinates with respect to the system with the mainpoint as

origin and base e1,e2,n0.}

{***************}

procedure cp_vt3d_vt2d(p: vt3d; var pp : vt2d);

{central projection (coordinates) of a point}

var xe,ye,ze,cc : real; pm : vt3d;

begin

diff3d(p,mainpt, pm);

xe:= scalarp3d(pm,e1vt); {coordinates of p with respect of system:}

ye:= scalarp3d(pm,e2vt); {mainpoint,e1,e2,n0}

ze = scalarp3d(pm,n0vt);

cc:= 1-ze/distance;

if cc>eps6 then begin pp.x:= xe/cc; pp.y:= ye/cc; end {projection}

else

writeln(’point not in front of the vanishing plane !!!’);

end; {cp_vt3d_vt2d}

The following procedures can be taken literally from parallel projection. We just replace pp by
cp . They are contained in file proc cp.pas (see volume include).

procedure cp_point(p: vt3d; style: integer);

{projects and marks a point}

{**************}

procedure cp_line(p1,p2 : vt3d ; style : integer);

{projects the line segment p1 p2}

{**************}

procedure cp_arrow(p1,p2 : vt3d; style : integer);

{projects an arrow}

{**************}

procedure cp_axes(al : real);

{projects the coordinate axes}

{**************}

procedure cp_vts3d_vts2d(p: vts3d; n1,n2 : integer; var pp : vts2d);

{determines the projection of the array of points: p[i] , i= n1...n2.}

{*************}
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procedure cp_curve(p: vts3d; n1,n2,style : integer);

{projects a 3D-ngon}

{*************}

Examples:

u=0  ,  v=0 u=50  ,  v=0

u=50  ,  v=0 u=45  ,  v=30

H

H

H
H

Figure 3.5: Central projections of a house



Chapter 4

CURVES

4.1 Planar Curves

4.1.1 Definition and Representations of Planar Curves

Definition 4.1 A planar curve Γ is the image of a real interval I by a locally injective C0 function
x into IR2:

Γ := {x(t)| t ∈ I}.

Definition 4.2 A regular planar curve Γ is the image of a real interval I by a C1 function x into
IR2:

Γ := {x(t)| t ∈ I} and ẋ(t) 6= 0 for t ∈ I.

ẋ(t) is a tangent vector at curve point x(t).
x is a regular parametric representation of Γ. The representation is of class Cn if x(t) is Cn.

Example 4.1 x(t) = (t, t2)>, t ∈ [0, 1] (arc of the unit parabola y = x2). The parametric repre-
sentation is regular.

The parametric representation of a regular curve is not unique ! The parabola arc above for instance
can be represented by
b) x(t) = (t2, t4)>, t ∈ [0, 1], c) x(t) = ( 2t

1+t , (· · · )
2)>, t ∈ [0, 1], too.

Representation b) is not regular (because of ẋ(0) = (0, 0)>), c) is regular.

Definition 4.3 A regular implicit plane curve is a non empty subset Γ ⊂ IR2 of the form

f : IR2 ⊃ D → IR, Γ : {x ∈ D|f(x) = 0}, ∇f(x) 6= 0 for x ∈ Γ,

where f is a C1–function. For a curve point x vector ∇f(x) is a normal vector.
f(x) = 0 is a regular implicit representation of Γ. The representation is of class Cn if f is Cn.

Example 4.2 Γ : {x ∈ IR2|f(x) := x2 + y2 − 1 = 0} (unit circle).

Obviously, the implicit representation of a curve is not unique, too. For instance
b) f(x) :=

√
x2 + y2 − 1 = 0, c) f(x) := (x2 + y2 − 1)2 =0

represent the unit circle implicitly, too. Representation b) is regular, c) is not regular.

27
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Definition 4.4 The representation of a curve is called explicit if one of the coordinates x, y is a
function of the remaining coordinate.

Example 4.3 y = x2, x ∈ [0, 1] is an explicit representation of an arc of the unit parabola.

The following (theoretical) results show that the representations can be changed locally. The proofs
rely on the implicit function theorem.

Lemma 4.1 Let Γ be a curve with a regular Cn-continuous implicit (parametric) representation
and x0 a point of Γ. Then there exists locally a Cn-continuous explicit representation of Γ at x0.
Hence there exists locally a regular parametric (implicit) representation, which is Cn–continuous,
too.

Proof: a) Let be f(x, y) = 0 with ∇f(x0) 6= 0 a regular implicit representation of curve Γ.
Without loss of generality we assume fy(x0) 6= 0. The implicit function theorem guarantees in
a vicinity of x0 the existence of a Cn–continuous function y(x) such that f(x, y(x)) = 0 and
y′(x) = −fx(x, y)/fy(x, y), .... Hence y = y(x) is locally an explicit Cn–representation.
b) Let be x(t) = (x(t), y(t))> a regular parameterization of Γ with x(t0) = x0. With out loss of
generality we assume ẋ(t0) 6= 0. Hence equation x− x(t) = 0 can be solved in a vicinity of t0 for t.
With solution t(x) we get the explicit representation y = y(t(x)), which is Cn–continuous, too.
From an explicit representation one derives easily both a parametric and an implicit representation.
For example: From y = y(x) we get the parametric representation (x, y(x))> and the implicit rep-
resentation y − y(x) = 0. 2

4.1.2 Arc length and curvature of a planar curve

Definition 4.5 Let Γ : x = x(t), t ∈ [a, b], be a regular curve. s(t) :=
∫ t

a

√
ẋ2 + ẏ2dt is the arc

length of the arc between the points x(a) and x(t). Because of ṡ(t) =
√

ẋ2 + ẏ2 > 0 function s(t)
is strictly monotone increasing and the equation s− s(t) = 0 can be solved for t (theoretically) and
s used for a standard representation, the arc length representation: x = x(s) := x(t(s)) with its
characteristic property ‖dx

ds ‖ = 1.
In order to indicate the usage of the arc length as parameter one denotes the derivatives by a prime:
x′ = dx

ds .

Definition 4.6 Let x(s) be the arc length parameterization of a regular C2-continuous curve. An
essential property is x′ · x′′ = 0, which is a direct consequence of x′ · x′ = 1.
The curvature vector x′′ describes the change of the unit tangent vector t := x′ with respect to the
arc length and is perpendicular to the tangent vector. If n(t) is any unit normal vector, one gets
the oriented curvature k = x′′ · n.
(For example n(t) := (−ẏ(t), ẋ(t))>/‖ · · · ‖. The usage of x′′/‖x′′‖ as unit normal is possible if the
curvature is not 0.)
A point with k = 0 is called inflection point.

Lemma 4.2 For the change of the unit normal we get: n′ = −kx′.

Proof: Let be n := (−y′, x′)> the unit normal (parameterized by the arc length). Hence n′ =
(−y′′, x′′)> is a tangent vector and n′ · x′ = −x′y′′ + y′x′′ = −x′′ · n = −k.
The choice n := (y′,−x′)> yields the same result. 2
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Remark:
When dealing with normalforms (see Section 4.1.4.2) one should remember the statement of the
last lemma.

Lemma 4.3 a) Let Γ : x = x(t) = (x(t), y(t))>, t ∈ [a, b], be a regular (parametric) C2–continuous
curve with unit normal n(t). The curvature vector x′′ and the curvature k at point x(t) are:

x′′ =
ẍẋ2 − (ẋ · ẍ)ẋ

‖ẋ‖4
=

ẍ · n
‖ẋ‖2

n, k =
ẍ · n
‖ẋ‖2

=
det(ẋ, ẍ)
‖ẋ‖3

, for n =
(−ẏ, ẋ)>

‖ẋ‖
.

b) Let Γ : y = f(x), x ∈ [a, b], be a regular (explicit) C2–continuous curve. The curvature vector
x′′and the curvature k at point (x, f(x)) are:

x′′ =
f ′′(x)

(1 + f ′(x)2)3/2

(−f ′(x), 1)>√
1 + f ′(x)2

, k(x) =
f ′′(x)

(1 + f ′(x)2)3/2
.

c) Let Γ : f(x, y) = 0, (x, y) ∈ D ⊂ IR2 be a regular (implicit) C2–continuous curve. The curvature
vector x′′ and the curvature k at point (x, y) are:

x′′ =
−fxxf2

y + 2fxfyfxy − fyyf2
x

(f2
x + f2

y )3/2

∇f

‖∇f‖
, k =

−fxxf2
y + 2fxfyfxy − fyyf2

x

(f2
x + f2

y )3/2
.

Proof: a) Differentiating x′ = ẋ
‖ẋ‖ for the arc length s we get

dx′

ds
=

dx′

dt

1
ds/dt

=
ẍ
‖ẋ‖2

− (ẋ · ẍ)ẋ
‖ẋ‖4

=
ẍ · n
‖ẋ‖2

n,

which is result a).
b) Applying a) to the parametric curve x(t) := (t, f(t))> we get result b).
c) Because the representation of the implicit curve is regular f(x, y) = 0 can be solved locally for
x or y. Without loss of generality we assume: fy(x0, y0) 6= 0, (x0, y0) ∈ Γ. The implicit func-
tion theorem guarantees the existence of a function y(x) such that in a vicinity of x0 the equation
f(x, y(x)) = 0 holds. Differentiating implicitly yields: y′(x) = −fx(x, y(x))/fy(x, y(x)). Analo-
gously we get y′′ = −(fxxf2

y − 2fxyfxfy + fyyf2
x)/f3

y . Using result b) yields result c). 2

Example 4.4 a) For the unit parabola y = f(x) = x2 we get:

x′′ =
(−2x, 1)√
1 + 4x2

2
(1 + 4x2)3/2

, k(x) =
2

(1 + 4x2)3/2
.

b) For an arbitrary circle f(x) = (x− xm)2 − r2 = 0 we get:
∇f(x) = 2(x− xm), ‖∇f(x)‖ = 2r, fxx = fyy = 2, fxy = 0, and x′′ = xm − x, k = 1/r.

Definition 4.7 Let Γ be a regular C2–curve and x0 ∈ Γ not an inflection point.

a)The circle cx0 : (x − x0 −
x′′(x0)

(x′′(x0))2
)2 − 1

(x′′(x0))2
= 0 is called osculating circle, its midpoint

centre of curvature at x0.
b)The parabola px0 : x = x0 + sx′(x0) + s2

2 x′′(x0) is called the osculating parabola at point x0.

cx0 and px0 are tangent to Γ in x0 (i.e. Γ, cx0 and px0 have point x0 and the tangent at this point
in common) and have at x0 the same curvature vector as Γ.
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4.1.3 Offset Curves

Definition 4.8 Let Γ : x = x(t) = (x(t), y(t))>, t ∈ [a, b], be a regular (parametric) C2–continuous

curve, n(t) =
(ẏ(t),−ẋ(t))>√

ẋ(t)2 + ẏ(t)2
(unit normal) and fixed d ∈ IR.

Then Γd : x = x(t) + dn(t) is called offset curve of Γ with distance d.

The offset curve Γd depends only on curve Γ as a point set in IR2 and distance d.

Lemma 4.4 Let Γ : x = x0(t) = (x(t), y(t))>, t ∈ [a, b], be a regular Cn–continuous curve, n ≥ 3,
with unit normal n0(t), the oriented curvature k0(t) = x′′ · n at point x(t) (x′: unit tangent vector,
x′′: curvature vector) and d ∈ IR such that 1−dk0(t) > 0 then the offset curve Γd : x = x0(t)+dn0(t)

(s. definition above) is regular of class Cn−1, and the curvature is kd(t) =
k0(t)

1− dk0(t)
.

Proof: Without loss of generality we assume Γ0 is parameterized by arc length. From Lemma 4.2
we get n′0(s) = −k0(s)x′0(s). Differentiating the parametric representation Γd : x = x0(s) + dn0(s)
of the offset curve yields
ẋ = x′0(s) + dn′0(s) = (1− dk0(s))x′0(s) and ẍ = −dk′0(s)x

′
0(s) + (1− dk0(s))x′′0(s).

The unit normal vector of the offset curve agrees with n0. Hence the curvature of offset curve Γd is
ẍ · n0

‖ẋ‖2
=

(1− dk0)x′0 · n0

(1− dk0)2
=

k0

1− dk0
which proves the statement of the lemma. 2

4.1.4 The normalform of a planar curve

4.1.4.1 Definition of the normalform

In order to get a normalized implicit representation (comparable with the normalized arc length
parametric representation) we extend the idea of the HESSE–normalform for lines to curves.

Definition 4.9 The implicit representation h(x) = n · x − d = 0, ‖n‖ = 1 of a line g in IR2 is
called HESSE normalform of line g.
(h(x) describes the oriented distance of point x to the line g.)

Definition 4.10 An implicit representation h(x) = 0 of a curve Γ in IR2 with ‖∇h‖ = 1 in a
vicinity of Γ is called normalform of curve Γ. (We regard h = 0 and −h = 0 as the same normal-
forms.)
h is called normalform function or, because of its geometric meaning, oriented distance function.

Example 4.5 h(x, y) :=
√

x2 + y2 − r = 0 is the normalform of the circle x2 + y2 = r2.

If the given curve is smooth enough, then its normalform always exists (theoretically).

Theorem 4.1 For any Cn-continuous, n ≥ 2, planar curve Γ there exists in a vicinity V of Γ
the oriented distance function h and h is of class Cn, too. Hence Γ has an implicit representation
h(x) = 0 such that ‖∇h‖ = 1 on V .
On V function h has the properties: 1) h(x + δ∇h(x)) = h(x) + δ, 2) ∇h(x + δ∇h(x)) = ∇h(x).



4.1. PLANAR CURVES 31

Proof: Let the Cn–curve Γ, n ≥ 2, be parameterized by the arc length s:
x = x0(s) = (x(s), y(s))>, s ∈ [a, b] , with unit normal n0(s) := (−y′(s), x′(s))>, curvature k0(s)
and
Γd : x = x0(s) + dn0(s) its offset curve with (oriented) distance d.
The vector equation F (s, d, x, y) := x0(s)+dn0(s)−x=0 can be solved for s and d if det(Fs, Fd) 6= 0.
With n′0(s) = −k0(s)x′0(s) (see Lemma 4.2) we get
det(Fs, Fd) = det(x′0 + dn′0,n0) = det((1− dk0)x′0,n0) = (1− dk0) 6= 0
in a vicinity V : −v ≤ d ≤ v, v > 0 of curve Γ.
Due to the implicit function theorem there exist functions s(x, y) and d(x, y) such that the following
equation is fulfilled in the vicinity V of curve Γ:
x0(s(x, y)) + d(x, y)n0(s(x, y)) = x. Differentiating this equation for x, y yields
∇s x′>0 +∇d n>0 + d ∇s n′>0 =

(
1 0
0 1

)
(recognize:

(
a1
a2

)(
b1
b2

)>
=

(
a1b1 a2b1
a1b2 a2b2

)
).

Multiplying this matrix equation by n0 and respecting x′>0 n0 = n′>0 n0 = 0, n>0 n0 = 1 we get
∇d = n0. Hence function d(x, y) is of class Cn, too.
In order to distinguish function d(x, y) and distance parameter d we set h(x, y) := d(x, y).
For points x with the same foot point x0 have the same gradient ∇h(x). Hence we get the essential
properties of the distnace function h:
1) h(x + δ∇h(x)) = h(x) + δ, 2) ∇h(x + δ∇h(x)) = ∇h(x). 2

The proof of the uniqueness of the normalform function h is omitted.

Properties 1),2) of the last theorem show that h and ∇h can be evaluated numerically at point x
by determining the foot point x0 and its unit normal n0 of point x on curve Γ:
h(x) = (x− x0) · n0, ∇h(x) = n0.

4.1.4.2 On the first and second derivatives of the distance function

Let be Γ a C2–continuous planar curve with normalform h = 0 and x = c(s) its arc length
parameterization with unit normal n(s) = ∇h(c(s)). Hence h(c(s)) = 0. Differentiating this
equation yields

(1) ∇h · c′ = 0, (2) c′>Hhc′ +∇h · c′′ = 0.

From the second equation we get the following result:
The curvature of curve Γ is:

k = ∇h · c′′ = −c′>Hhc′.

• Differentiating (∇h)2 = 1 yields Hh∇h = 0.
Hence one eigenvalue of the Hessian matrix Hh is λ1 = 0 with eigenvector ∇h. There exists
a second eigenvalue λ2 = κ with the tangent vector t := (−hy, hx)> as eigenvector and
t>Hht = κ. Hence κ is the negative curvature of curve Γ:

−k = κ = t>Hht = h2
yhxx − 2hxhyhxy + h2

xhyy.

• The characteristic polynomial of Hh is λ2 − (hxx + hyy)λ and

det(Hh) = 0, κ = hxx + hyy and H2
h = κHh.

• The Hessian matrix Hh of the normalform function h at a curve point can be expressed by the
gradient ∇h (unit normal) and the curvature k (The three coefficients of Hh are the solution
of the linear system Hh∇h = 0, t>Hht = −k):

Hh = −k

(
h2

y −hxhy

−hxhy h2
x

)
= −k(I −∇h∇h>),

with 2× 2 unit matrix I. ∇h> is the transpose of the column vector ∇h.
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4.1.4.3 Normalform of an implicit curve

Let Γ : f(x, y) = 0 be a regular implicit curve with continuous second derivatives of function f and
h its normalform function.
For a curve point we get

1. h = 0,

2. ∇h =
∇f

‖∇f‖
,

3. −k =
f2

y fxx − 2fxfyfxy + f2
xfyy

(f2
x + f2

y )3/2
, (see Lemma 4.3),

Hh = −k

(
h2

y −hxhy

−hxhy h2
x

)
= f2

y fxx−2fxfyfxy+f2
xfyy

‖∇f‖5

(
f2

y −fxfy

−fxfy f2
x

)
.

For a point x in the vicinity of the curve with foot point x0 ∈ Γ we get:

1. ∇h(x) = ∇h(x0),

2. h(x) = (x− x0) · ∇h(x0)

3. Hh(x) =
−k(x0)

1− h(x)k(x0)

(
h2

y(x0) −hx(x0)hy(x0)
−hx(x0)hy(x0) h2

x(x0)

)
=

Hh(x0)
1− h(x)k(x0)

.

4.1.4.4 Normalform of a parametric curve

Let Γ : x = x(t) = (x(t), y(t))> be a regular parametric curve with continuous second derivatives
and h its normalform function.
For a curve point x(t) = (x(t), y(t))> we get

h(x) = 0, ∇h(x) =
(−ẏ, ẋ)>

‖ẋ‖
and from k = (ẍ · ∇h)/‖ẋ‖2 = −ẍẏ+ÿẋ

‖|ẋ‖3 we get

Hh(x) =
ẍẏ − ÿẋ

‖ẋ‖5

(
ẋ2 ẋẏ
ẋẏ ẏ2

)
.

For a point in the vicinity of curve Γ: apply the analogous part of an implicit curve (see above).

4.2 Displaying Parametric Curves in IR2

For displaying a parametric curve we move through the parameter interval by not necessary equidis-
tant steps, calculate a sequence of points and draw the polygon by procedure curve2d.

Example 4.6 a) ellipse: (a cos t, b sin t)>, 0 ≤ t ≤ 2π
b) cycloids: c(t) = (x(t), y(t))>, 0 ≤ t ≤ 2π with

x(t) = (a + b) cos t− λa cos((a + b)t/a)
y(t) = (a + b) sin t− λa sin((a + b)t/a) b > 0, a + b > 0, λ > 0.

(see Fig. 4.1.)
In general parameter t is not the arc length and the distances of neighboured points may vary in
a wide range. This behaviour can be omitted if function c(t) is differentiable and one chooses the
step length dependent of the “velocity” ċ(t). In order to get distances ≈ s we consider the Taylor
expansion for c(t)

c(ti+1) ≈ c(ti) + ċ(ti)∆ti, ∆ti+1 = ti+1 − ti.
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Figure 4.1: cycloids

Hence we get ‖c(ti+1)− c(ti)‖ ≈ s, if ∆ti = s/‖ċ(ti)‖ and ‖ċ(ti)‖ 6= 0.

This velocity dependent step length produces a uniformly distributed sequence of points.

We get a curvature dependent distribution of the points from the following considerations:
We demand that amount |α| of the angle between the tangent vectors ċ(ti), ċ(ti+1) of two neigh-
boring points should be nearly constant. From

ċ(ti+1) ≈ ċ(ti) + c̈(ti)∆ti, ∆ti+1 = ti+1 − ti, and |det(ċ(ti+1), ċ(ti))
ċ(ti+1) · ċ(ti)

| = | tanα| ≈ |α|

for a ”small” angle α we get

|α| ≈ | det(ċ(ti), c̈(ti)) ∆ti
ċ(ti)2 + ċ(ti) · c̈(ti)∆ti

| ≈ |det(ċ(ti), c̈(ti)
ċ(ti)2

∆ti| = ‖k(ti)ċ(ti)∆ti‖

Hence we choose

|∆ti| = max(min(
|α0/k(ti)|
‖ċ(ti)‖

,
smax

‖ċ(ti)‖
),

smin

‖ċ(ti)‖
) , ‖ċ(ti)‖ 6= 0,

where α0 is the desired approximate angle between two neighboring tangent vectors (if k(ti) is large
enough) and smax an upper boundary for the step size (if k(ti) is too small) smin a lower boundary
for the step size(if k(ti) is too large).

4.3 Displaying implicit curves

4.3.1 Marching algorithm

The calculation of a sequence of points of an implicit curve is not trivial. A rather simple method
is the following one:
The marching method starts with a point in the vicinity of the curve and calculates a sequence
of points of the same arc. The algorithm is fast and rather robust. Essentially there are two sub-
problems to be solved:
(1) Find a curve point when a starting point in the vicinity of the curve is given.
(2) Generate a sequence of curve points.

Solution of subproblem (1): procedure curvepoint

(CP1) Choose a starting point Q0 : q0 = (x0, y0) in the vicinity of the curve,
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a) ∆ ti = const. b) ‖c(ti+1)− c(ti)‖ ≈ const. c) angle ≈ const.

Figure 4.2: point distribution on curve c(t) = (t, t2)

(CP2) repeat qj+1 = qj − f(qj)
∇f(qj)2

∇f(qj) (Newton step for f(qj + t∇f(qj).)
until ‖qj+1 − qj‖ small enough.
curve point = qj+1.

Q
0

P
i

P

Q

f(x)=0

f(x)=f(q )
0

1

i+1

Figure 4.3: marching method for an implicit curve

Performance of the marching method:

C1) Choose a starting point Q0 : q0 = (x0, y0) and a step length s (approximate distance of
neighboured points).

C2) First curve point P1 : p1 = curvepoint(q0).

C3) curve point Pi+1 : pi+1:
pi+1 = curvepoint(pi + s ti), with unit tangent ti = (−fy(pi), fx(pi))>/‖ · · · ‖ at point Pi .

C4) Repeat 3) until the desired number of points is reached or Pi+1 ≈ P0 (closed curve).

Remark:
The marching method is rather robust and can even be used for tracing curves with singular points
(i.e. points with ∇f = 0). But one should take care of the direction of the unit tangent when
passing a singular point (see procedure implicit curvepts in program cassini.p).
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Example 4.7 a) circle: x2 + y2 − r2 = 0, hyperbola: xy − 1 = 0
b) Cassini–curves: (x2 + y2)2 − 2c2(x2 − y2)− (a4 − c4) = 0, a > 0, c > 0.
For a = c we get lemniscates.

a = 1.1, c = 1 a = c = 1

a = 1, c = 1.05

Figure 4.4: Cassini–curves

For a curvature dependent distribution of the points we take the second order Taylor expansion at
point pk of the arc length parametric representation c(s) and get a curvature dependent starting
point for curve point Pi+1:

q0 = pi + sc′(0) +
s2

2
c′′(0),

with unit tangent vector c′(0) and curvature vector c′′(0) at point Pi. Step length s should be
chosen such that:

s = max(min(|α0/ki|, smax), smin) ,

where α0 is the desired approximate angle between two neighboring tangent vectors (if ki is large
enough) and smax an upper boundary for the step size (if ki is too small) smin a lower boundary
for the step size (if ki is too large).

4.3.2 Raster algorithm

Idea of the algorithm:
We rasterize the domain where we suppose curve points. For any grid point we estimate its distance
to the curve and, if the point is “close” to the curve, determine a curve point applying procedure
curvepoint of the previous subsection. The displayed collection of generated curve points give an
impression of the shape of the implicit curve and it looks like a curve if the raster is narrow enough.

Performance:
Given: implicit curve Γ : f(x, y) = 0.
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Figure 4.5: curvature dependent generation of points on an implicit curve, α0 = 0.2

1) Choose an x–intervall [xmin, xmax], a y-intervall [ymin, ymax] and the numbers nx, ny for their
subdivision with distances dx = (xmax − xmin)/nx , dy = (ymax − ymin)/ny respectively.
dmax = max(dx, dy) is the maximal raster distance.

2) For any raster point (xi, yk) we calculate f(xi, yk) and ∇f(xi, yk).
In case of ∇f(xi, yk) = (0, 0), we ignore this (singular) grid point.
otherwise we estimate the distance of grid point (xi, yk) to the curve by

δik := |f(xi, yk)|/‖∇f(xi, yk)‖, distance of 1. order.

surface z=f(x,y)

x-y-plane

distance of 1. ordersteepest tangent

Figure 4.6: Distance of 1. order of a point to the implicit curve

3) For a point (xi, yk) with δik < γdmax, γ > 0.5 we apply procedure curvepoint and get a
curve point in the vicinity.

Remark:
The algorithm can be accelerated if one does not estimate the distance of any grid point but allows
distance dependent jumps. One should secure that the jumps are not too large. Otherwise there
may occur gaps.

Example 4.8 f(x, y) = 0.004+0.11x−0.177y−0.174x2+0.224xy−0.303y2−0.168x3+0.327x2y−
0.087xy2 − 0.013y3 + 0.235x4 − 0.667x3y + 0.745x2y2 − 0.029xy3 + 0.072y4

(aus TAU’94).

Example 4.9 a) f(x, y) = (8x4 − 4x2y2 + y4)y2 − (x2 + y2)4,
b) f(x, y) = (3x2 − y2)2y2 − (x2 + y2)4.

Remark:
The raster algorithm may be used for determining intersection points of implicit curves, too. For
given curves f1(x, y) = 0, f2(x, y) = 0, one applies the raster algorithm to the implicit “curve”
f(x, y) := f1(x, y)2 + f2(x, y)2 = 0.
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Figure 4.7: Raster algorithmus, left: nx = ny = 20, right: nx = ny = 200

Figure 4.8: To example 4.9. nx = ny = 500.

Example 4.10 f1(x, y) = (3x2 − y2)2y2 − (x2 + y2)4, f2(x, y) = (x− 0.5)2 + y2 − 1 = 0

4.4 Intersection of two planar curves

Determining intersection points of two curves usually means solving a system of non linear equations,
which can be done using a Newton–iteration for suitable starting points.
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Figure 4.9: To example 4.10

4.4.1 Intersection of a parametric curve and an implicit curve

Given: curves Γ1 : x = c(t), a ≤ t ≤ b and Γ2 : f(x) = 0, x ∈ D ⊆ IR2.
Wanted: Intersection points Γ1 ∩ Γ2.

The algorithm:

(1) Determining a starting point:
Choose a subdivision t1, t2, . . . of the intersvall [a, b] (eventually equidistant).
Look for changes of the sign of f(xi) for points xi := c(ti) ∈ Γ1, i = 1, 2, . . .. Is there a
change near s0 := ti, use s0 as starting parameter for the following Newton–iteration.

(2) Determine a solution t∗ of F (t) := f(c(t)) applying the Newton–iteration to case n = 1
with starting parameter t := s0 from (1). Point x∗ := c(t∗) is an intersection point

(3) Apply (2) to all observed changes of the sign.

Problem 4.1 Determine the intersection points of the curves
Γ1 : x = c(t) := (t, t3)>, 0 ≤ t ≤ 3,
Γ2 : f(x, y) := (x− 1)2 + (y − 1)2 − 10 = 0

4.4.2 Intersection of two implicit curves

Given: Γ1 : f(x) = 0 and Γ2 : g(x) = 0, x ∈ D ⊆ IR2.
Wanted: Intersection points Γ1 ∩ Γ2.
The algorithm:

(1) Determining a starting point:
Determining points p1,p2, ... on one component of Γ1 using the marching algorithm with ≈
equal steplength. Look for changes of the sign of g(pi) for i = 1, 2, . . .. Is there a change near
point x0 := pi use x0 as starting point for the following Newton–iteration.
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Figure 4.10: Left: to problem 4.1, right: to problem 4.2

(2) Determine a solution x∗ of vector equation F(x) := (f(x), g(x))> = (0, 0)> applying a
Newton–iteration to n = 2 and starting point x0 from (1). Point x∗ is an intersection
point of the given curves.

(3) Apply (2) to all changes of the sign of g(pi), i = 1, 2, . . ..

Problem 4.2 Determine the intersection points of the curves
Γ1 : f(x, y) := x4 + y4 − 1 = 0 and
Γ2 : g(x, y) := (x− 0.5)2 + (y − 0.5)2 − 1 = 0.

4.4.3 Intersection of two parametric curves

Given: curves Γ1 : x = c1(s), s ∈ [a, b], and Γ2 : x = c2(t), t ∈ [c, d].
Wanted: Intersection points Γ1 ∩ Γ2.

The algorithm:

(1) Determining start parameters:
Choose subdivisions of the intervalls [a, b], [c, d] (eventually equidistant) and calculate the
corresponding polygons P1, P2, ... ∈ Γ1 and Q1, Q2, ... ∈ Γ2. Look for pairs Pi, Qk of points
with minimal distance. si, tk will be used as starting parametrs for the following Newton–
iteration.

(2) Determine for start parameters from (1) a solution of the vector equation F(s, t) := c1(s) −
c2(t) = (0, 0)> applying a Newton–Iteration. (A single step of the iteration can be considerd
geometrically as the intersection of two tangents.)

(3) Apply (2) to all Startparameters from (1).

4.5 Foot points on planar curves

4.5.1 Foot point on a parametric curve, curve inversion

Given: curve Γ : x = c(t), t ∈ [a, b], point P : p.
Wanted: Intersection point L of the line l through point P perpendicular to curve Γ. If L is unique
we call L the foot point of P on curve Γ.
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We assume that c(t) is C2 and foot point L is unique.

If Γ is a line x = q + tr: L : l = q + (p−q)·r
r2 r.

In general we seek a point c(t) on Γ with: f(t) := (c(t)− p) · ċ(t) = 0.

The algorithm:

(1) Determining a starting parameter:
Generate a nearly equidistant polygon Q1, Q2, ... and look for a point L0 := Qi with minimal
distance to P . Let t0 be its parameter, i.e. L0 : c(t0).

(2) Apply a Newton–iteration to equation f(t) := (c(t) − p) · ċ(t) = 0 with starting parameter
from (1).
f ′(t) = (ċ(t))2 + (c(t)− p) · c̈(t).
(Second derivatives are used !) Or: Determine foot points on tangents succesively (only 1.
derivatives are necessary.)

(2’) Let be Li the i-th approximation of the foot point and ti its corresponding parameter. x =
c(ti) + ∆tċ(ti) is the tangent line at point Li (linear approximation of c(t) !). Determine
the foot point of P on the tangent line. For the foot point on the tangent line we get
∆t = (p−c(ti))ċ(ti)/ċ(ti)2. Hence the improved parameter is ti+1 = ti+∆t and Li+1 : c(ti+1).

(3’) Repeat (2’) until ‖c(ti+1)− c(ti)‖ is small enough. (Or another termination.)

= c(t     )
i+1

L

P

L

i

i+1

Figure 4.11: Step (2’) of the foot point algorithm

Remark: The foot point algorithm can be used for determining the unknown parameter t0 of a
curve point P0 : p0 ∈ Γ : c(t) This task is called curve inversion.

4.5.2 Foot point on an implicit curve

Given: curve Γ : f(x) = 0,x ∈ D ⊆ IR2 and point P : p. f ∈ C2 , ∇f 6= 0.
Wanted: Foot point L of point P on curve Γ.

The algorithm:

(1) Applying procedure curvepoint (see section 4.3.1) we get a first approximation L0 : x0 for
the foot point.
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(2) The foot point is the solution of the system

(x− p) · (fy(x),−fx(x)) = 0, f(x) = 0.

(Where (fy(x), −fx(x)) is a tangent vector at curve point x.) This system will be solved by
a Newton–iteration with starting point x0 from (1).
(Second derivatives are needed !)
Or: Determine foot points on tangents successively (first derivatives are used only).

(2’) Repeat ti+1 = p− (p− xi) · ∇f(xi)
∇f(xi)2

∇f(xi)> (foot point on tangent line),

xi+1 = curvepoint(ti+1).
until ‖xi+1 − xi‖ is ”small” enough.
L = xi+1.

Remark:
While using the simple first order foot point algorithms there may occur problems considering
convergence. Improved and rather stable first order algorithms are contained in the next subsection.

4.5.3 Stable first order foot point algorithms

For applying the normalform and its first two derivatives it is essential to have stable algorithms
for determining foot points on curves. Here we give algorithms for parametric and implicit curves
which use first order derivatives only. The heart of the algorithms is the combination of calculating
foot points on tangents and approximate foot points on tangent parabolas. The curvature of the
curves is respected indirectly by the tangent parabolas.

4.5.3.1 Foot point algorithm for parametric curves

Let Γ : x(t) = c(t) be a smooth planar curve, p a point in the vicinity of Γ and t0 the parameter of
a starting point for the foot point algorithm:

repeat
pi = c(ti)
∆t = (p−pi)·ċ(ti)

ċ(ti)2
qi = pi + ∆tċ(ti) (foot point on tangent)

pi+1 = c(ti + ∆t), f1 := qi − pi, f2 := pi+1 − qi,
if ‖qi−pi‖ > ε then (one Newton step for the foot point on the tangent parabola x = pi+αf1+α2f2)
a0 := (p− pi) · f1, a1 := 2f2 · (p− pi)− f2

1 , a2 := −3f1 · f2, a3 := −2f2
2

α := 1− a0 + a1 + a2 + a3

a1 + 2a2 + 3a3
if 0 < α < αmax then (prevent extreme cases)
ti+1 = ti + α∆t, pi+1 = c(ti+1)
until ‖pi − pi+1‖ < ε.
foot point f = pi+1.

Suitable values for the boundaries are ε = 10−6 and αmax = 20.

4.5.3.2 Foot point algorithm for implicit curves

Let Γ : f(x) = 0 be a smooth planar implicit curve. We use procedure curvepoint of subsection
4.3.1
Let p be a point in the vicinity of curve Γ. The following algorithm determines the foot point of p
on Γ:
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(FP0) p0 = curvepoint(p)

(FP1) repeat
qi = p− (p−pi)·∇f(pi)

∇f(pi)2
∇f(pi) (foot point on tangent line),

pi+1 = curvepoint(qi), f1 := qi − pi, f2 := pi+1 − qi,
if ‖qi − pi‖ > ε then (one Newton step for the foot point on the tangent parabola x =
pi + αf1 + α2f2)
a0 := (p− pi) · f1, a1 := 2f2 · (p− pi)− f2

1 , a2 := −3f1 · f2, a3 := −2f2
2

α := 1− a0 + a1 + a2 + a3

a1 + 2a2 + 3a3
if 0 < α < αmax then (prevent extreme cases)
qi = pi + αf1 + α2f2, pi+1 = curvepoint(qi)
until ‖pi − pi+1‖ < ε.
foot point f = pi+1.

4.6 Bézier–curves

Bézier–curves play an important role in CAD. This section provides just an introduction. More
material can be found in Chapter 12 and 13 and in books like FARIN: Curves and Surfaces for
CAGD and HOSCHEK & LASSER: Fundamentals of computer aided geometric design.

Numerical simple planar curves are the following ones: x(t) = (x(t), y(t))>, t1 ≤ t ≤ t2, where x(t)
and y(t) are polynomes. For x(t) := a0 +a1t+a2t

2 + · · ·+antn and y(t) := b0 +b1t+b2t+ · · ·+bntn,
we get

x(t) = (a0, b0)> + (a1, b1)>t + · · ·+ (an, bn)>tn.

= a0 + a1t + · · ·+ antn

with vectors ai := (ai, bi)>.
I.g. there is no simple correlation between the points Ai : ai and the shape of the curve.
This disadvantage can be omitted by representing the polynomes x(t), y(t) in Bernstein–base
{Bn

0 (t), Bn
1 (t), · · · , Bn

n(t)}:

Bn
i (t) :=

(
n

i

)
ti(1− t)n−i, 0 ≤ i ≤ n

(instead of the monom base {1, t, t2, · · · , tn}).
Now n > 0 is fixed and the vectors b0,b1, · · · ,bn are the vertices of a polygon.
x(t) := b0B

n
0 (t) + b1B

n
1 (t) + · · · + bnBn

n(t), 0 ≤ t ≤ 1, is a Bézier–curve of (maximal) degree
n. The polygon b0, · · · ,bn is the control polygon of the Bézier–curve.

Properties of the Bernstein–polynomes:

(1) Bn
0 (t) + Bn

1 (t) + · · ·+ Bn
n(t) = 1,

(2) Bn
0 (0) = 1, Bn

i (0) = 0 for i > 0, Bn
n(1) = 1, Bn

i (1) = 0 for i < n.

(3) Any Bernstein–polynom Bn
i has exactly one maximum: at t = i/n. This is the reason for the

essential property:
A slight change of point bi effects the shape of the curve in the vicinity of x(i/n) only.
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B4
0

B4
1 B4

2 B4
3

B4
4

0 1

1

t

Figure 4.12: Bernstein–polynoms B4
i

Properties of a Bézier–curve:

(1) b0 is the first point, bn is the last point,

(2) b1−b0 is a tangent vector at the first point, b0 = x(0), bn−bn−1 is a tangent vector at the
last point bn = x(1).

(3) The polygon represents b0,b1, · · · ,bn approximately the shape of the curve.

The evaluation of the polynoms x(t), y(t) can be done in a HORNER–like scheme (see FARIN:
Curves and Surfaces, procedure hornbez):

function bezier_comp(degree: integer; coeff : r_array; t: real) : real;

{determines one component of a Bezier-curve (see FARIN)}

var i,n_choose_i : integer; fact,t1,aux : real;

begin

t1:= 1-t; fact:=1; n_choose_i:= 1;

aux:= coeff[0]*t1;

for i:= 1 to degree-1 do

begin

fact:= fact*t;

n_choose_i:= n_choose_i*(degree-i+1) div i;

aux:= (aux + fact*n_choose_i*coeff[i])*t1;

end;

aux:= aux + fact*t*coeff[degree] ;

bezier_comp:= aux;

end; bezier_comp

{*************}

Remark:
The procedure bezier comp can be applied to a Bézier–curve (x(t), y(t), z(t))> in IR3, too.

4.7 Applications of the normalform

The normalform and their first two derivatives of a C2–curve can be evaluated by using the foot
point algorithms of section 4.5. Hence nearly any curve can be treated as an implicit one if necessary.
This is an essential advantage for blending curves and for displaying bisector curves or offset curves
of implicit curves.
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Figure 4.13: Bézier-curves and their control-polygons

4.7.1 Offset curves of implicit curves

Offset curves of a (planar) curve are just level curves of its normalform function h = c and can be
traced by the marching algorithm for implicit curves (see section 4.3.1).

Example 4.11 Figure 4.14 shows the implicit curve f(x) = x4 + y4 − 1 = 0 (fat) and some offset
curves. Recognize: some of the offset curves inside of f(x, y) = 0 have singularities.

Figure 4.14: Offset curves of the implicit curve f(x) = x4 + y4 − 1 = 0
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4.7.2 Bisector curves

The bisector curves or Voronoi curves of two curves Γ1,Γ2 consis of the points, which have the same
distances to both the curves Γ1 und Γ2.

Let be Γ1, Γ2 two regular C2 implicit or parametric curves and h1 = 0, h2 = 0 their normalforms.
Then the equations

h1(x)− h2(x) = 0, h1(x) + h2(x) = 0

are implicit representations of the bisectors of Γ1 and Γ2. Hence bisectors can be traced by the
marching algorithm for implicit curves.

Example 4.12 Abb. 4.15 shows bisectors of two Bézier curves.

The normalform of a point p is just h(x) = ‖x− p‖ = 0. Hence the bisectors involving a point can
be treated in the same way.

Example 4.13 Figure 4.16 shows bisectors of

a) the ellipse x2 + y2

4 = 1 and point (−0.5, 1)

b) the curve x4 + y4 = 1 and point (−0.4, 0.6).

offset curves

bisector 1

bisector 2

Figure 4.15: bisectors of two Bézier curves (fat)
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Figure 4.16: Bisectors of a point and a) an ellipse b) curve of 4-th degree

4.7.3 Numerical Parameterization of Curves

The length of a curve or any curve integral is defined for parametric curves, only. In order to deter-
mine such quantities for implicit curves we introduce a numeric parametrization of an implicit curve.

Let f(x, y) = 0 be a regular implicit curve with normalform h(x, y) = 0 and Γ : x = c(t), t ∈ [a, b] a
parametric curve in the vicinity of curve f = 0. (For the application below Γ is chosen as a Bézier
curve which is a rough approximation of an arc of f = 0.) Both curves are supposed to be of class
C2. Then the parametric curve

Γ0 : x = c0(t) := c(t)− h(c(t))∇h(c(t)), t ∈ [a, b]

is an arc of the given curve f = 0, because of h(c − h(c)∇h(c)) = h(c) − h(c) = 0 (see basic
properties of the normalform function h above).
Differentiating yields ċ0 = ċ− (∇h∇h>)ċ− hHhċ = (I − hHh)(I −∇h∇h>)ċ,
where x> assigns the transpose of the column vector x, I the 2× 2 unit matrix and Hh the Hessian
matrix of h. In the equation above h,∇h and Hh are evaluated at point c(t).
Vector (I −∇h∇h>)ċ is a tangent vector of the curve h = h(c(t)) = const (offset curve of h = 0)
and can be expressed by (ċ · r)r with r := (−hy, hx). Hence
Hh(c)(I −∇h(c)∇h(c)>)ċ = Hh(c)(ċ · r)r = κ(c)(ċ · r)r.
Because ∇h(c) = ∇h(c0) and κ(c) = κ(c0)

1+h(c)κ(c0)
(see Lemma 4.4, Theorem 4.1) we get

ċ0 =
(ċ · r(c0))r(c0)
1 + h(c)κ(c0)

,

c, ċ and c0 evaluated for parameter t.
c0(t) is the foot point of c(t) on curve h = 0 and h(c) the oriented distance ∇h(c0) · (c − c0) of
point c(t) to curve h = 0.
Figure 4.17 gives a geometric interpretation of the formula for the derivative ċ0.

4.8 Space Curves

The definition of a space curve is analogously to the definition of a planar curve. An implicit
representation as zero set of one equation is possible in rare cases. For example: x2 + y2 = 0
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h(  )

.
γ

γ 0
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x1 x 2

γ 0

κ01/

.

curvature midpoint

γ

γ

auxiliary curve

Figure 4.17: The derivative ċ0 of the parameterized curve

describes the z-axis. Curves as the solution of two equations can be considered as the intersection
curves of two implicit surfaces, which will be discussed later.

Definition 4.11 A space curve Γ is the image of a real interval I by a locally injective C0 function
x into IR3:

Γ := {x(t)| t ∈ I}.

Definition 4.12 A regular space curve Γ is the image of a real interval I by a C1 function x into
IR3:

Γ := {x(t)| t ∈ I} and ẋ(t) 6= 0 for t ∈ I.

ẋ(t) is a tangent vector at curve point x(t).
x is a regular parametric representation of Γ. The representation is of class Cn if x(t) is Cn.

Example 4.14 x(t) = (cos(t), sin(t), t)>, t ∈ [0, 1] (arc of a helix). The parametric representation
is regular.

For a regular space curve there exists (theoretically) always an arc length representation analogously
to the planar case, too: The characteristic property is ‖dx

ds ‖ = 1.
If x(t) is C2 we have the essential property: x′ · x′′ = 0.
The curvature vector x′′ describes the change of the unit tangent vector t := x′ with respect of the
arc length. Its amount is called curvature k and if k 6= 0 its unit direction denoted by n and called
principal normal:

x′′ = kn, ‖n‖ = 1, t · n = 0.

A point with k = 0 is called inflection point.

Definition 4.13 For a non inflection point x(s) of a C3 curve we define:
b(s) := t(s)×n(s) is called binormal, plane with equation (x−x(s)) ·b(s) = 0 its osculating plane.
(The osculating plane at a curve point contains the second order Taylor expansion of the curve.)
A measure for the change of the osculating plane is the torsion τ . We observe:
b ⊥ b′ = (t× n)′ = t′ × n + t× n′ = t× n′ ⊥ t (t′ and n are parallel !)
and define τ by b′ = −τn.
The orthonormal frame {t,n,b} is called Frenet frame.
From t′ = kn, b′ = −τn and n′ = (b× t)′ = b′ × t + b× t′ = −τn× t + kb× n = −kt + τb we
get the Frenet formulae:

t′ = kn, n′ = −kt + τb, b′ = −τn.
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Hence in case of τ = 0 for all curve points the curve is planar.

In practice curves are not given by their arc length parameterization. How to compute curvature,
torsion,... in general is the content of the following lemma.

Lemma 4.5 Let Γ : x = x(t) t ∈ [a, b] be a C3–continuous regular space curve. For points where
ẋ(t), ẍ(t) are linearly independent the following formulae are valid:

t =
ẋ(t)
‖ẋ(t)‖

, b =
ẋ(t)× ẍ(t)
‖ẋ(t)× ẍ(t)‖

, n = b× t, k =
‖ẋ(t)× ẍ(t)‖
‖ẋ(t)‖3

, τ =
(ẋ(t)× ẍ(t)) · ˙̈x(t)
‖ẋ(t)× ẍ(t)‖2

.

Proof: Analogously to the plane case we get for the curvature vector x′′ = ẍẋ2−(ẋ·ẍ)ẋ
‖ẋ‖4 . Applying

formula: a× (b× c) = b(a · c)− c(a · b) yields
x′′ = ẋ×(ẍ×ẋ)

‖ẋ‖4 and k = ‖x′′‖ = ‖ẋ‖‖ẍ×ẋ‖
‖ẋ‖4 = ‖ẍ×ẋ‖

‖ẋ‖3 ( ẋ ⊥ (ẍ× ẋ) !).

Hence n = x′′

k = ẋ
‖ẋ‖ ×

ẍ×ẋ
‖ẍ×ẋ‖ and b = ẋ×ẍ

‖ẋ×ẍ‖ .

From b′ = ḃ/‖ẋ‖ we get b′ = (ẋ× ˙̈x)(ẋ×ẍ)2−(ẋ×ẍ)((ẋ×ẍ)·(ẋ× ˙̈x))
‖ẋ‖‖ẋ×ẍ‖3 and

−τ = b′ · n = b′ · ( ẋ
‖ẋ‖ ×

ẍ×ẋ
‖ẍ×ẋ‖ ) = ẋ× ˙̈x

‖ẋ‖‖ẍ×ẋ‖ · (
ẋ
‖ẋ‖ ×

ẍ×ẋ
‖ẍ×ẋ‖ ) = (ẋ× ˙̈x)·(ẋ×(ẍ×ẋ))

‖ẍ×ẋ‖2‖ẋ‖2 .

Applying the identity: (a× b) · (c× d) = (a · c)(b · d)− (b · c)(a · d) yields: −τ = − (ẋ×ẍ)· ˙̈x
‖ẋ×ẍ‖2 . 2

For displaying a space curve we use the methods and formulae for equally and curvature dependent
distribution of points developed for planar curves.

The normalform of a space curve will be introduced later (see Section 5.9).



Chapter 5

SURFACES

5.1 Definition and Representations of Surfaces

Definition 5.1 A surface Φ is the image of a rectangle D := [a, b, ] × [c, d] ⊂ IR2 by a locally
injective C0 function x into IR3:

Φ := {x(u, v)| (u, v) ∈ D}.

For (u0, v0) ∈ D curves x = x(u0, v) and x = x(u, v0) are the parameter curves at point x(u0, v0).

Definition 5.2 A regular surface Φ is the image of a rectangle D := [a, b, ]× [c, d] ⊂ IR2 by a locally
injective C1 function x into IR3:

Φ := {x(u, v)| (u, v) ∈ D}, xu × xv 6= 0.

xu, xv are the tangent vectors of the parameter curves and xu×xv is a normal vector (orthogonal
to the tangent plane).

Example 5.1 x(u, v) = (u, v, u2 + v2)>, (u, v) ∈ D := [0, 1] × [0, 1] (patch of the paraboloid
z = x2 + y2). The parametric representation is regular.

Definition 5.3 A regular implicit surface is a non empty subset Φ ⊂ IR3 of the form

f : IR2 ⊃ D → IR, Φ : {x ∈ D|f(x) = 0}, ∇f(x) 6= 0 for x ∈ Φ,

where f is a C1–function. For a surface point x vector ∇f(x) is a normal vector.
f(x) = 0 is a regular implicit representation of Φ. The representation is of class Cn if f is Cn.

Example 5.2 Φ : {x ∈ IR3|f(x) := x2 + y2 + z2 − 1 = 0} (unit sphere).

Obviously, the parametric/implicit representation of a surface is not unique.

Definition 5.4 The representation of a surface is called explicit if one of the coordinates x, y, z is
a function of the remaining coordinates.

The following (theoretical) results show that the representations can be changed locally. The proofs
rely on the implicit function theorem.

Lemma 5.1 a) Let Φ be a regular Cn-continuous parametric (implicit) surface and x0 a point of
Φ. Then there exists a local Cn-continuous implicit (parametric) representation of Φ at point x0

which is regular, too.
b) For any surface with a regular parametric or regular implicit representation there exists for any
point x0 locally an explicit representation which is Cn if the given representation is Cn.
From an explicit representation one derives easily both a parametric and an implicit representation.
(For example: From z = Z(x, y) we get the parametric representation (x, y, Z(x, y)) and the implicit
representation Z(x, y)− z = 0.)

49
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5.2 The First and Second Fundamental Forms of a Surface

5.2.1 The first fundamental form, arc length

Definition 5.5 Let Φ : x = x(u, v), u, v ∈ D ⊂ IR2 be a regular surface and u = u(t), v = v(t), t ∈
[t1, t2] a regular curve in D. Hence Γ : x = c(t) := x(u(t), v(t)), t ∈ [t1, t2] is a regular curve on
the surface. For the arc length of curve Γ we get:

s(t) :=
∫ t

t1

√
ċ2dt =

∫ t

t1

√
Eu̇2 + 2Fu̇v̇ + Gv̇2dt,

where
E(u, v) := x2

u, F (u, v) := xu · xv, G(u, v) := x2
v

are the coefficients of the first fundamental form and ds
dt =

√
Eu̇2 + 2Fu̇v̇ + Gv̇2 6= 0. Hence E,F,G

are the coefficients of a strongly positive definite quadratic form: I(ξ, η) := Eξ2 + 2Fξη + Gη2.

Remark:
The answer of any question about distances on a surface needs the 1.fundamental form.

5.2.2 The second fundamental form, curvature

Let Φ : x = x(u, v), u, v ∈ D ⊂ IR2 be a regular surface and Γ : x = c(s) := x(u(s), v(s)), s ∈ [s1, s2]
a regular curve on surface Φ parameterized by its arc length s. Hence
c′ = xuu′ + xvv′ is the unit tangent vector and
c′′ = xuu′′ + xvv′′ + xuuu′

2 + 2xuvu′v′ + xvvv′
2 its curvature vector.

c′′ is orthogonal to the tangent vector c′ and can be split into its normal and tangential component
(with respect of surface Φ):
c′′ = knn + kgm where n = xu×xv

‖xu×xv‖ is the surface unit normal and m := c′ × n (tangential to
the surface). kn is called normal curvature and kg geodesic curvature of the surface curve Γ.

For measuring the curvature of the surface at a surface point x(u, v) one considers the intersection
curves of the surface with the planes orthogonal to the surface at point x(u, v). For such normal
sections curvature vector c′′ is parallel to the surface normal, i.e. kg = 0. For its curvature we get
k = kn = c′′ · n = Lu′

2 + 2Mu′v′ + Nv′
2 where

L(u, v) := n · xuu, M(u, v) := n · xuv, N(u, v) := n · xvv.

L, M, N are called the coefficients of the second fundamental form.
L, M,N can be considered as the coefficients of a quadratic form: II(ξ, η) := Lξ2 + 2Mξη + Nη2.
For an arbitrary parameterization we get from u′ = du

dt
dt
ds , v′ = dv

dt
dt
ds , ds

dt =
√

Eu̇2 + 2Fu̇v̇ + Gv̇2

the formula for the normal curvature of the surface in tangential direction c′ = xudu + xvdv:

kn =
Ldu2 + 2Mdudv + Ndv2

Edu2 + 2Fdudv + Gdv2
=

II(du, dv)
I(du, dv)

.

A point with constant normal curvature is called an umbilic point or a flat point if kn = 0.
If the normal curvature is not constant (at a point) there exist a maximum and a minimum.
For determining these extrem curvatures and the tangential direction of the corresponding normal
section we differentiate function (subscript “n” is omitted) k(ξ, η) := II(ξ, η)/I(ξ, η) and we get
from
kξ = 2 (Lξ+Mη)I−(Eξ+Fη)II

I2 = 2 (Lξ+Mη)−(Eξ+Fη)k
I = 0,
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kη = 2 (Mξ+Nη)I−(Fξ+Gη)II
I2 = 2 (Mξ+Nη)−(Fξ+Gη)k

I = 0,
the linear system

(L− kE)ξ + (M − kF )η = 0
(M − kF )ξ + (N − kG)η = 0

which has non trivial solutions if its determinant is 0. This yields the quadratic equation for k:

k2 − EN − 2FM + GL

EG− F 2
k +

LN −M2

EG− F 2
= 0.

From the theorem of VIETA we get the main curvatures:

k1/2 = H ±
√

H2 −K

where
H := 1

2
EN−2FM+GL

EG−F 2 = k1+k2
2 is the mean curvature and

K := LN−M2

EG−F 2 = k1k2 the Gaussian curvature at the surface point of consideration.
The tangential direction of the normal section with main curvature ki is ti := ξixu + ηixv, with
(ξi, ηi) a non trivial solution of

(L− kiE)ξ + (M − kiF )η = 0
(M − kiF )ξ + (N − kiG)η = 0

In case of k1 6= k2 the vectors t1, t2 define the main or principle directions.
In order to prove that t1, t2 are perpendicular, we assume (without loss of generality) F = xu·xv =
0. Hence in case of M 6= 0 we get from (ξ1, η1) = (−M,L − k1E), (ξ2, η2) = (−M,L − k2E), the
equation t1 ·t2 = ξ1ξ2E+η1η2G = · · · = 0 using k1k2 = (LN−M2)/EG, k1+k2 = (EN +GL)/EG.
In case of M = 0 we have k1 = L/E, k2 = N/G and (ξ1, η1) = (1, 0), (ξ2, η2) = (0, 1) which yields
t1 · t2 = 0.

For theoretical considerations occasionally we assume (without loss of generality) that xu,xv are
parallel to the principal directions: We assume xu = t1, xv = t2 . In this case the parameterlines
are called lines of curvature. Essential advantages of such a parametrization are:
F = 0 (because principal directions are mutually orthogonal) and
M = 0, k1 = L/E, k2 = N/G, because (1, 0), (0, 1) are solutions of the linear systems above
containing k1 and k2 respectively.

Definition 5.6 The surface points can be classified with respect of their Gaussian curvature:
1) If K > 0, the point is called elliptical (all normalcurvatures are not 0 and have the same sign),
2) if K < 0, the point is called hyperbolical (there are positiv and negativ normal curvatures),
3) If K = 0, the point is called parabolic (one main curvature is 0).

Example 5.3 Any point of
1) an ellipsoid or a paraboloid is elliptical , 2) a hyperboloid of one sheet is hyperbolic,
3) a cylinder or a cone is parabolic. (see Figure 5.1)

For derivatives of offset surfaces (see Section 5.3) the derivatives of the surface unit normal n are
necessary:
From n2 = 1 we know n · nu = 0 and n · nv = 0. Hence nu,nv are linear combinations of the
tangent vectors xu,xv. Differentiating the equations n · xu = 0, n · xv = 0 yields

L = n · xuu = −nu · xu, M = n · xuv = −nu · xv = −nv · xu, N = n · xvv = −nv · xv.
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a) b) c)

Figure 5.1: a) ellipsoid, b) hyperboloid of one sheet, c) cylinder, cone

These equations allow to determine the components of nu,nv with respect of the vectors xu,xv:

nu =
MF − LG

EG− F 2
xu +

LF −ME

EG− F 2
xv, nv =

NF −MG

EG− F 2
xu +

MF −NE

EG− F 2
xv.

(Weingarten equations).
In case of a curvature line parametrization we have: nu = −L

E xu = −k1xu, nv = −N
G xv =

−k2xv.

5.3 Offset surfaces

Definition 5.7 Let Φ0 : x = x0(u, v) be a regular C2–surface and n0(u, v) the unit normal and
d ∈ IR fixed. Then surface Φd : x = x0(u, v) + dn0(u, v) is called offset surface with distance d.
The offset surface Φd depends only on the surface Φ0 as a point set in IR3 and distance d.

Analogously to the curve case we get

Lemma 5.2 Let Φ0 : x = x0(u, v) be a regular Cn–surface, n ≥ 2, k0,1(u, v), k0,2(u, v) the main
curvatures and d ∈ IR such that (1−dk0,1(u, v))(1−dk0,2(u, v)) > 0 then the offset surface Φd : x =
xd := x0(u, v) + dn0(u, v) is a regular Cn−1 surface, nd(u, v) = n0(u, v) and the main curvatures
are

kd,1 =
k0,1

1− dk0,1
, kd,2 =

k0,2

1− dk0,2
.

Proof: Let be x0(u, v) a curvature line parameterization. Hence: n0,u = −k1x0,u, n0,v = −k2x0,v

and xdu × xdv = (x0,u + dn0,u)× (x0,v + dn0,v) = (1− dk0,1)(1− dk0,2)x0u × x0v.
For (1− dk0,1(u, v))(1− dk0,2(u, v)) > 0 the offset surface Φd is regular and of class Cn−1.
Obviously, a normal plane εn of Φ0 at point x0(u, v) is a normal plane of Φd and the intersection
Φd ∩ εn is an offset curve of Φ0 ∩ εn. Hence for corresponding normal curvatures we get kdn =

k0n

1−dk0n
(see Lemma 4.4). Because the stationary points of kdn(ξ, η) and k0n(ξ, η) agree, we get

kd,1 = k0,1
1−dk0,1

, kd,2 = k0,2
1−dk0,2

and td,1 = t0,1, td,2 = t0,2 (directions of main curvatures). 2

5.4 Normalform of a surface

5.4.1 Definition of the normalform

Definition 5.8 The implicit representation h(x) = n · x − d = 0, ‖n‖ = 1 of a plane ε in IR3 is
called HESSE normalform of plane ε.
(h(x) describes the oriented distance of point x to the plane ε.)
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Definition 5.9 An implicit representation h(x) = 0 of a surface Φ with ‖∇h‖ = 1 in a vicinity of
Φ is called normalform of surface Φ. (We regard h = 0 and −h = 0 as the same normalforms.)
h is called normalform function or, because of its geometric meaning, oriented distance function.

Example 5.4 h(x, y, z) :=
√

x2 + y2 + z2−r = 0 is the normalform of the sphere x2+y2+z2 = r2.

If the given surface is smooth enough, then its normalform always exists (theoretically).

Theorem 5.1 For any Cn-continuous, n ≥ 2, surface Φ there exists in a vicinity V of Φ the
oriented distance function h and h is of class Cn, too. Hence Φ has an implicit representation
h(x) = 0 such that ‖∇h‖ = 1 on V .
On V function h has the properties: 1) h(x + δ∇h(x)) = h(x) + δ, 2) ∇h(x + δ∇h(x)) = ∇h(x).

Proof: Let Φ : x = x(u, v) be a curvature line parametrization such that: xu = t1, xv = t2. Hence
at any surface point we have nu = −k1xu, nv = −k2xv.
The equation F (x, u, v, d) := x(u, v) + dn(u, v)− x = 0 is solvable for u, v, d if det(Fu, Fv, Fd) 6= 0.
From

Fu = xu + dnu = (1− dk1)xu, Fv = xv + dnv = (1− dk2)xv, Fd = n

we get det(Fu, Fv, Fd) = (1− dk1)(1− dk2) det(xu,xv,n) 6= 0 in a vicinity V : −v ≤ d ≤ v, v > 0 of
surface Φ.
Due to the implicit function theorem there exist functions u(x, y, z), v(x, y, z) and d(x, y, z) such
that the following equation is fulfilled in the vicinity V of surface Φ:
x(u(x, y, z), v(x, y, z))+ d(x, y, z)n(u(x, y, z), v(x, y, z)) = x. Differentiating this equation for x, y, z
yields ∇ux>u +∇vx>v +∇dn>+d∇un>u +d∇vn>v = 3×3 unit matrix (see curve case!) Multiplying
this matrix equation by n and respecting x>u n = x>v n = n>u n = n>v n = 0, n>n = 1 we get ∇d = n.
Hence function d(x, y, z) is of class Cn, too.
In order to distinguish function d(x, y, z) and distance parameter d we set h(x, y, z) := d(x, y, z).
Points x with the same foot point x0 have the same gradient ∇h(x). Hence we get the essential
properties of the distance function h:
1) h(x + δ∇h(x)) = h(x) + δ, 2) ∇h(x + δ∇h(x)) = ∇h(x). 2

The proof of the uniqueness of the normalform function h is omitted.

Properties 1),2) of the last theorem show that h and ∇h can be evaluated numerically at point x
by determining the foot point x0 and its unit normal n0 of point x on surface Φ:
h(x) = (x− x0) · n0, ∇h(x) = n0.

5.4.2 On the first and second derivatives of the normalform of a surface

Let be Φ a C2–continuous surface with normalform h = 0 and Γ : x = c(s) a C2–continuous curve
on Φ with arc length parameter s. Hence h(c(s)) = 0. Differentiating this equation yields

(1) ∇h · c′ = 0, (2) c′>Hhc′ +∇h · c′′ = 0.

From the second equation we get the following results:

• The normal curvature of surface curve Γ is: kn = ∇h · c′′ = −c′>Hhc′.
kn depends only on the surface and the tangential direction of Γ at the point of consideration.

• In case of a normal section we get k = kn = ∇h ·c′′ = −c′>Hhc′. Hence the normal curvature
of surface Φ for tangential direction v, ‖v‖ = 1, is kn = −v>Hhv.
In following considerations for simplicity we deal with the negative normal curvature κ :=
−kn = v>Hhv.
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• Differentiating (∇h)2 = 1 yields Hh∇h = 0.
The eigenvalues of the Hessian matrix Hh are
λ1 = 0 with eigenvector ∇h,
λ2 = κ1, λ3 = κ2 with eigenvectors v1 ⊥ v2, ‖vi‖ = 1.
From v>i Hhvi = κi we get: ki := −κi is the normal curvature in direction vi. The normal
curvature in an arbitrary direction v(ϕ) = cos(ϕ)v1 + sin(ϕ)v2, 0 ≤ ϕ < π, is
kn(ϕ) = −v(ϕ)>Hhv(ϕ) = k1 cos(ϕ)2 + k2 sin(ϕ)2 = k1 + (k2 − k1) sin(ϕ)2.
In case of k1 = k2 the normal curvature is constant (umbilic case).
In case of k1 6= k2 the extreme values of kn(ϕ), hence k1 = −κ1 and k2 = −κ2 are the main
curvatures. The corresponding main directions are the eigen directions v1,v2 respectively.
The formula kn(ϕ) = k1 cos(ϕ)2 + k2 sin(ϕ)2 is called Euler formula.

• The characteristic polynomial of Hh is −λ3 + (κ1 + κ2)λ2 − κ1κ2λ with
mean curvature
H = k1+k2

2 = − 1
2 (κ1 + κ2) = − 1

2 (hxx + hyy + hzz) and
Gaussian curvature

K = k1k2 = κ1κ2 =
∣∣∣∣ hxx hxy

hyx hyy

∣∣∣∣ +
∣∣∣∣ hxx hxz

hzx hzz

∣∣∣∣ +
∣∣∣∣ hyy hyz

hzy hzz

∣∣∣∣ .

The minimal polynomial is
the characteristic polynomial if κ1 6= κ2 (non umbilic case) and λ2 − κλ if κ := κ1 = κ2

(umbilic case).
(Prove it after diagonalizing Hh !)

• Let Φ0 be a C2–continuous surface with main curvatures k1, k2 at x ∈ Φ0. The distance
parameter d ∈ IR is chosen in an intervall [−d0, d0], d0 > 0, such that for any d we have
1− dk1(x) > 0, 1− dk2(x) > 0. Hence h is C2-continuous at point xd := x + d∇h(x). From
equation h(xd) = h(x)+d (see Theorem 5.1) we recognize that the level surface h = d is just
the offset surface Φd of Φ0 for distance d. Equation ∇h(xd) = ∇h(x) shows that the tangent
plane at point xd and at its foot point x agree. Differentiating equation ∇h(xd) = ∇h(x)
yields

Hh(xd)(I + dHh(x)) = Hh(x).

Multiplying this matrix equation by vector vi (unit vector in a main direction) we get

Hh(xd)vi = − ki(x)
1− dki(x)

vi.

Hence the main directions at point xd of the offset surface agree with the main directions at
the corresponding foot point on Φ0 and the main curvatures are

ki(xd) =
ki(x)

1− dki(x)
, i = 1, 2.

• In case of a local coordinate system such that point p is the origin 0 and ∇h(0) = (0, 0, 1)>.
Hence the x-y-plane is the tangent plane at pointp = 0 and for the Hessian we get the
simplification (because of Hh∇h = 0)

Hh(0) =

 hxx hxy 0
hyx hyy 0
0 0 0

 .

For this specialization we get the following results

– hxx, hyy are the normal curvatures in direction (1, 0, 0)>, (0, 1, 0)> respectively.
From −2H = hxx + hyy we get the general statement: The mean curvature H is the
arithmetic mean of the normal curvatures of any two orthogonal (tangent) directions.
The Gaussian curvature is K = hxxhyy − h2

xy.
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– Hh is determined uniquely by the normal curvatures of any three (tangential) directions
(see 3–Tangent–Theorem below).

– From the Taylor expansion of h at point 0:

h(x, y, z) = z +
1
2
(hxxx2 + hyyy2 + 2hxyxy) + · · ·

we get the osculating paraboloid

z = −1
2
(hxxx2 + 2hxyxy + hyyy2)

and the Dupin indicatrix of the surface at point 0:

hxxx2 + 2hxyxy + hyyy2 = ±1.

5.4.3 Cn–contact, Gn–contact

A Cn–continuous curve/surface considered as a set of points can be described by several para-
metric representations. Essentials of a representation are its derivatives which allow to determine
geometrical attributes of the curve/surface like tangent line/plane, curvature,... Such geometrical
attributes are independent of the representation accidentally chosen. So it is necessary to distin-
guish between the continuity of representations (Cn–continuity) and the continuity of geometrical
attributes (Gn–continuity):

Definition 5.10 1. Two regular Cn–continuous parametric curves Γ1 : x = X1(t),Γ2 : x =
X2(t) (surfaces Φ1 : x = X1(s, t),Φ2 : x = X2(s, t)) have Cn–contact at a common point x0

if the (partial) derivatives of X1 and X2 at point x0 up to the n-th order are the same.

2. Two regular Cn–continuous implicit curves Γ1 : f1(x) = 0,Γ2 : f2(x) = 0 (surfaces Φ1 :
f1(x) = 0,Φ2 : f2(x) = 0) have Cn–contact at a common point x0 if the partial derivatives of
f1 and f2 at point x0 up to the n-th order are the same.

3. Two with respect to the same coordinate explicitly represented plane curves (surfaces) have
Cn–contact at a common point if the corresponding functions are Cn–continuous at this point.

Definition 5.11 Two regular parametric or implicit plane curves Γ1,Γ2 (surfaces Φ1,Φ2) with a
common point x0 have Gn–contact at x0 if they have local explicit representations for one coordinate
∈ {x, y} (∈ {x, y, z}) with Cn–contact at point x0.

Remark:
In former literature Gn–contact is called contact of order n.

From Lemma 4.1 and Lemma 5.1 we get the following, more useful, characterisation of the Gn–
continuity.

Theorem 5.2 1. Two regular Cn–continuous parametric plane curves Γ1,Γ2 (surfaces Φ1,Φ2)
have Gn–contact at a common point x0 if and only if they have Cn–contact at point x0 with
respect to some local parametric representations of the two curves (surfaces).

2. Two regular Cn–continuous implicit plane curves Γ1,Γ2 (surfaces Φ1,Φ2) have Gn–contact at
a common point x0 if and only if they have Cn–contact at point x0 with respect to some local
implicit representations of the two curves (surfaces).
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5.4.4 G2–continuity theorems

There are several theorems on the G2-continuity (i.e. continuity of the normal curvatures) of two
surface patches. We will give simple proofs of such theorems using the idea of the normal form.

Theorem 5.3 3–Tangent–Theorem
Two G2–continuous surfaces Φ1,Φ2 with a common point p and a common tangent plane at p are
G2–continuous at point p if they have equal normal curvatures along three directions.

Proof: We assume, without loss of generality, that p = 0 and furthermore the three directions are
v1 = (1, 0, 0),v2 = (cos ϕ2, sinϕ2, 0),v3 = (cos ϕ3, sinϕ3, 0) with corresponding common normal
curvatures κ1, κ2, κ3. From κi = viHhv>i we get
hxx = κ1,
hxx cos2 ϕ2 + hyy sin2 ϕ2 + 2hxy cos ϕ2 sinϕ2 = κ2,
hxx cos2 ϕ3 + hyy sin2 ϕ3 + 2hxy cos ϕ3 sinϕ3 = κ3.
The determinant of this linear system for hxx, hyy, hxy is not 0 if 0 < ϕ2 < ϕ3 < π. Hence the
Hessian for both the surfaces is uniquely determined and the surfaces join G2-continuously at the
common point p. 2

The essential part of the proof of the Linkage Curve Theorem is the following Lemma.

Lemma 5.3 Let Φ1,Φ2 be two G2-continuous surfaces with common point 0, common tangent plane
z = 0 and common tangent planes along the common smooth curve Γ : x(t) = (t, b(t), c(t))>, t ∈
[0, t0] with x(0) = 0 and ẋ(0) = (1, 0, 0)>. Then we get for the Hessian matrices Hh1 ,Hh2 of the
normalform functions h1, h2 of the surfaces Φ1,Φ2

h1,xx(0) = h2,xx(0), h1,xy(0) = h2,xy(0).

Proof: For a point (t, b(t), c(t)) on curve Γ we have

∇h1(t, b(t), c(t)) = ∇h2(t, b(t), c(t)).

Differentiating this equation yields

Hh1(t, b(t), c(t)) (1, ḃ(t), ċ(t))> = Hh2(t, b(t), c(t)) (1, ḃ(t), ċ(t))>.

For t = 0 we get h1,xx(0) = h2,xx(0), h1,xy(0) = h2,xy(0) (Remember the simple Form of the
Hessian matrix and ḃ(0) = 0 at point 0 !). 2

Remark:
Because hxx is the normal curvature in x–direction we get from h1,xx(0) = h2,xx(0) that the normal
curvatures of the surfaces at point 0 in direction of Γ are the same and hence their Dupin indica-
trices intersect at a point of the tangent of curve Γ.

Obviously we get for the Hessian matrices of the surfaces Φ1,Φ2 in the Lemma above the stronger
result Hh1(0) = Hh2(0) if we choose additionally a suitable geometric restriction which yields
h1,yy(0) = h2,yy(0). For example one of the following conditions

• The equality of the mean curvatures:
−2H(0) = h1,xx(0) + h1,yy(0) = h2,xx(0) + h2,yy(0).

• The equality of the Gaussian curvatures:
K(0) = h1,xx(0)h1,yy(0)− h1,xy(0)2 = h2,xx(0)h2,yy(0)− h2,xy(0)2

if the normal curvature h1,xx(0) in direction (1, 0, 0) does not vanish.
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• The equality of the normal curvature in a direction v = (a, 1, 0)>, a ∈ IR, transversal to curve
Γ at point 0:

κa =
a2h1,xx + h1,yy + 2ah1,xy

1 + a2
=

a2h2,xx + h2,yy + 2ah2,xy

1 + a2
.

These considerations prove the following theorem

Theorem 5.4 Linkage Curve Theorem:
Let Φ1 and Φ2 be two G2-continuous surfaces which are tangent plane continuous along a smooth
linkage curve Γ.
Φ1 and Φ2 are G2–continuous along their linkage curve Γ if one of the following conditions is
fulfilled:

• Φ1 and Φ2 have the same mean curvature along Γ
(Mean Curvature Criterion)

• Φ1 and Φ2 have the same Gaussian curvature and non vanishing normal curvature in Γ–
direction along Γ
(Gaussian Curvature Criterion)

• There exists a transversal vector field (not necessarily continuous) along Γ, such that the
normal curvatures of Φ1 and Φ2 in directions of the vector field are the same.
(Vector Field Criterion)

5.4.5 The curvature of an intersection curve

Let be ΦA,ΦB two intersecting C2–continuous surfaces and hA = 0, hB = 0 their normalforms. The
intersection curve Γ is represented by the arc length parameterization x = c(s). Hence ‖∇hA‖ =
1, ‖∇hB‖ = 1 and ‖c′‖ = 1, c′ · c′′ = 0. Differentiating the following equations

hA(c(s)) = 0, hB(c(s)) = 0

yields
∇hA · c′ = 0, ∇hB · c′ = 0

and
∇hA · c′′ + c′>HhA

c′ = 0, ∇hB · c′′ + c′>HhB
c′ = 0.

Because c′ is orthogonal to ∇hA and ∇hB and ‖c′‖ = 1 we can choose the parameterization of Γ
such that

c′ =
∇hA ×∇hB

‖∇hA ×∇hB‖
.

c′′ is a linear combination of ∇hA and ∇hB . Because the calculation becomes simpler we use a
different base of the normal plane:

c′′ = α(∇hA × c′) + β(∇hB × c′) = (α∇hA + β∇hB)× c′.

Using kA := −c′>HhA
c′, kB := −c′>HhB

c′ (normal curvature on surface ΦA and ΦB , respectively,
in direction c′) we get from the equations ∇hA · c′′ = kA, ∇hB · c′′ = kB the result:

c′′ =
kA∇hB − kB∇hA

‖∇hA ×∇hB‖
× c′.

This formula can be written independently of the representations of the intersecting surfaces:
Let be ΦA,ΦB two intersecting C2–continuous surfaces with unit normals nA,nB ,
‖nA × nB‖ 6= 0, and normal curvatures kA, kB in direction nA × nB at a point of the intersection
curve Γ than



58 CHAPTER 5. SURFACES

• c′ :=
nA × nB

‖nA × nB‖
is the tangent unit vector and

• c′′ :=
(kAnB − kBnA)× (nA × nB)

(nA × nB)2
is the curvature vector and from the orthogonality of kAnB − kBnA and nA × nB we get

k = ‖c′′‖ =

√
k2

A + k2
B − 2kAkB cos ϕ

sinϕ

the curvature, where ϕ is the angle between the surface normals and kA and kB the normal
curvatures of surfaces ΦA and ΦB in direction c′.

5.5 Normalform of an implicit surface

Let f(x) = 0 be a regular implicit C2–surface and h = 0 its normalform.
For a surface point x we get:

1. h = 0 ,

2. unit normal: ∇h =
∇f

‖∇f‖
,

3. Hessian matrix: Hh = (I −∇h∇h>)
Hf

‖∇f‖
,

with 3× 3 unit matrix I and matrix ∇h∇h> = (hx, hy, hz)>(hx, hy, hz).
(For proof: differentiate ∇f

‖∇f‖ .)

4. Normal curvature for unit tangent direction v is kn = −v>Hfv
‖∇f‖

.

5. Main curvatures, main directions, mean and Gaussian curvature:
Let be e1, e2 two orthonormal vectors which are perpendicular to ∇f . A main direction can
be written as ξe1 + ηe2 and must be an eigenvector of Hh. Hence an eigenvalue κ of Hh and
its eigendirection have to fulfil the following linear system:

(
e>1 Hfe1

‖∇f‖
− κ) ξ +

e>1 Hfe2

‖∇f‖
η = 0

e>1 Hfe2

‖∇f‖
ξ + (

e>2 Hfe2

‖∇f‖
− κ) η = 0.

Hence, from matrix  e>1 Hfe1
‖∇f‖

e>1 Hfe2
‖∇f‖

e>1 Hfe2
‖∇f‖

e>2 Hfe2
‖∇f‖


we get a) the main curvatures (negative eigenvalues) b) the main directions (eigendirections)
c) the mean curvature (half of negative trace) and d) the Gaussian curvature (determinant).

For a point x in the vicinity of the surface with foot point x0 ∈ Γ we get:

1. ∇h(x) = ∇h(x0),

2. h(x) = (x− x0) · ∇h(x0)



5.6. NORMALFORM OF A PARAMETRIC SURFACE 59

3. Hessian matrix Hh:
The 6 coefficients of the matrix Hh are solutions of the 6 linear equations:

1)–3) Hh∇h = 0 and 4)–6) v>i Hhvi = −ki/(1− hki), i = 1, 2, 3,,

where v1,v2,v3 are 3 linear independent unit tangent vectors at the foot point x0 and k1, k2, k3

the corresponding normal curvatures (see above).

5.6 Normalform of a parametric surface

Let x = x(u, v) be a regular parametric C2–surface and h = 0 its normalform.

For a surface point x(u, v) we get:

1. h = 0 ,

2. ∇h =
xu × xv

‖xu × xv‖
,

3. Hessian matrix Hh:
The 6 coefficients of the (symmetric) matrix Hh are solutions of the 6 linear equations:

1)–3) Hh∇h = 0 and 4) x>u Hhxu = −L, 5) x>u Hhxv = −M , 6) x>v Hhxv = −N .

Equations 4)–6) result from the normal curvatures for directions xu, xu + xv and xv.

4. Main curvatures, main directions, mean and Gaussian curvature:
A main direction can be written as ξxu + ηxv and must be an eigenvector of Hh. Hence an
eigenvalue κ of Hh and its eigendirection have to fulfill the equation

Hh(ξxu + ηxv) = κ(ξxu + ηxv)

Multiplying by xu and xv yields the linear system:

ξ(x>u Hhxu − κ xu
2) + η(x>u Hhxv − κ xu · xv) = 0

ξ(x>u Hhxv − κ xu · xv) + η(x>v Hhxv − κ xv
2) = 0.

With x>u Hhxu = −L, x>u Hhxv = −M , x>v Hhxv = −N and E = x2
u, F = xu ·xv, G = x2

v

we get

ξ(L + κE) + η(M + κF ) = 0
ξ(M + κF ) + η(N + κG) = 0.

(See Section 5.2.2.)

For a point x in the vicinity of the surface with foot point x(u, v) on the surface we get:

1. ∇h =
xu × xv

‖xu × xv‖
,

2. h = (x− x(u, v)) · ∇h ,

3. Hessian matrix Hh:
The 6 coefficients of the matrix Hh are solutions of the 6 linear equations:

1)–3) Hh∇h = 0 and 4)–6) v>i Hhvi = −ki/(1− hki), i = 1, 2, 3,,

with normal curvatures
k1 := L/M, k2 := (L + 2M + N)/(E + 2F + G), k3 := N/G
and unit tangent vectors:
v1 := xu/‖ · · · ‖, v2 := (xu + xv)/‖ · · · ‖, v3 := xv/‖ · · · ‖, respectively.
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5.7 Foot point on a parametric surface, surface inversion

Given: Φ : x = S(s, t) a regular surface, P : p a point and
L0, s0, t0 0-th approximation of the foot point L and its parameters.

Wanted: Foot point L : l of the perpendicular line from P onto Φ.

Vector p− l is orthogonal to the tangent plane at point L. Hence the parameters of L are solutions
of the following system:

f(s, t) := (S(s, t)− p) · Ss(s, t) = 0, g(s, t) := (S(s, t)− p) · St(s, t) = 0

which can be solved
either by a Newton–iteration for the starting parameters s0, t0 and function F := (f, g) with

F′ =
(

S2
s Ss · St

Ss · St S2
t

)
+

(
Sss · (S− p) Sst · (S− p)
Sts · (S− p) Stt · (S− p)

)
or by

repeated foot point determination on tangent planes:

Let Li, si, ti be the i-th approximation for L.
The linear approximation (tangent plane) of S(s, t) at Li is

εi : x(∆s,∆t) = S(si, ti) + ∆sSs(si, ti) + ∆tSt(si, ti)

We determine ∆s and ∆t such that p − x(∆s,∆t) is orthogonal to εi. With the abbreviations
es := Ss(si, ti), et := St(si, ti) we have to solve the following linear system for ∆s and ∆t

(p− S(si, ti)) · es = ∆se2
s + ∆tes · et

(p− S(si, ti)) · et = ∆ses · et + ∆te2
t .

The improved parameters/point: si+1 = si + ∆s, ti+1 = ti + ∆t, Li+1 = S(si+1, ti+1). Repeat
this procedure until the distance of Li+1 and Li is small “enough”. Foot point: L = Li+1.

∆s se ∆te t

es

te

L
k

k+1L+

P

Figure 5.2: Foot point on a tangent plane

Remark:
The foot point algorithm can be used for surface inversion which means to find for a point P0 : p0

on a surface x = S(s, t) parameters s0, t0 such that p0 = S(s0, t0). (s0, t0 may not be unique.)
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5.8 Stable first order foot point algorithms for surfaces

5.8.1 Foot point algorithm for parametric surfaces

Analogously to the stable foot point algorithm for parametric planar curves (see Section 4.5.3.1)
that respects the curvature without using second derivatives we give the surface version:

Let Φ : x = S(s, t) a regular surface, p a point in the vicinity of Φ and s0, t0 the parameter of a
starting point for the foot point algorithm:

repeat
pi = S(si, ti), es := Ss(si, ti), et := St(si, ti)

Solve the linear system for ∆s and ∆t:
(p− S(si, ti)) · es = ∆s e2

s + ∆t es · et

(p− S(si, ti)) · et = ∆s es · et + ∆t e2
t .

qi = pi + ∆s Ss(si, ti) + ∆t St(si, ti) (foot point on tangent plane)
pi+1 = S(si + ∆s, ti + ∆t), f1 := qi − pi, f2 := pi+1 − qi,
if ‖qi−pi‖ > ε then (one Newton step for the foot point on the tangent parabola x = pi+αf1+α2f2)
a0 := (p− pi) · f1, a1 := 2f2 · (p− pi)− f2

1 , a2 := −3f1 · f2, a3 := −2f2
2

α := 1− a0 + a1 + a2 + a3

a1 + 2a2 + 3a3
if 0 < α < αmax then (prevent extreme cases)
si+1 = ti + α∆s, ti+1 = ti + α∆t, pi+1 = S(si+1, ti+1)
until ‖pi − pi+1‖ < ε.
foot point f = pi+1.
(Suitable choices for the boundaries: ε = 10−6 and αmax = 20.

5.8.2 Foot point algorithm for implicit surfaces

The foot point algorithm for implicit surfaces agrees literally with the version for planar implicit
curves (see Section 4.5.2). One has just to replace the words curve and tangent line by surface and
tangent plane:

Procedure surfacepoint:

(SP1) Choose a starting point Q0 : q0 = (x0, y0) in the vicinity of the surface,

(SP2) repeat qi+1 = qi − f(qi)
∇f(qi)2

∇f(qi) (Newton step for f(qi + t∇f(qi).)
until ‖qi+1 − qi‖ small enough.
surfacepoint= qi+1.

Let p be a point in the vicinity of an implicit surface Φ : f(x) = 0. The following algorithm
determines the foot point of p on Φ:

(FP0) p0 = surfacepoint(p)

(FP1) repeat
qi = p− (p−pi)·∇f(pi)

∇f(pi)2
∇f(pi) (foot point on tangent plane),

pi+1 = surfacepoint(qi), f1 := qi − pi, f2 := pi+1 − qi,
if ‖qi − pi‖ > ε then (one Newton step for the foot point on the tangent parabola
x = pi + αf1 + α2f2)
a0 := (p− pi) · f1, a1 := 2f2 · (p− pi)− f2

1 , a2 := −3f1 · f2, a3 := −2f2
2

α := 1− a0 + a1 + a2 + a3

a1 + 2a2 + 3a3
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if 0 < α < αmax then (prevent extreme cases)
qi = pi + αf1 + α2f2, pi+1 = surfacepoint(qi)
until ‖pi − pi+1‖ < ε.
foot point f = pi+1.

5.9 The normalform of a space curve

5.9.1 Definition of the normalform

Definition 5.12 Let g : x = p0 + sr, ‖r‖ = 1, be a line in IR3 and P : p = (x, y, z)> a point. The
distance of point P to line g is

h(p) =
√

(p− p0)2 − ((p− p0) · r)2.

We call equation h(p) = 0 the normal form of the space line g.

Example 5.5 h(x, y, z) =
√

x2 + y2 = 0 is the normalform of the z-axis. The level surfaces
h = const are cylinders.

Let Γ : x = c(s), s ∈ [s1, s2] be a Cn–continuous, n ≥ 2, space curve parameterized by the arc
length s (i.e. ‖c′‖ = 1) and e1(s), e2(s) two orthogonal unit vectors in the normal plane at point
c(s) such that the determinant |c′, e1, e2| = 1, i.e. e1 is a solution of the equation c′ · x = 0 and
e2 = c′ × e1. With unit vector e(s, t) := e1(s) cos t + e(s) sin t we define the family of pipe surfaces
with directrix curve Γ:

x = S(s, t, d) := c(s) + de(s, t), d > 0, t ∈ [0, 2π)

From the definition of vector e(s, t) we get the following properties:

es · e = et · e = 0, et × e = c′.

For d = const function S describes the pipe surface with directrix curve Γ and radius d.
The vector equation (x, y, z)> = c(s)+de(s, t) can be solved for s, t, d if the determinant |Ss,St,Sd|
is not 0. Evaluation of the determinant yields:

|Ss,St,Sd| = |c′ + des, det, e| = d|c′, et, e|+ d2|es, et, e| = dc′ · (et × e) + d2es · (et × e)
= d(1 + dc′ · es).

Hence in a vicinity of curve Γ there exists a d0 > 0 such that equation (x, y, z)> = c(s) + de(s, t)
can be solved for s, t, d with 0 < d ≤ d0. The solutions are functions of x, y, z: s = s(x, y, z), t =
t(x, y, z), d = h(x, y, z). Equation h(x, y, z) = 0 is an implicit representation of space curve Γ.
Differentiating equation

c(s(x)) + h(x)e(s(x), t(x)) = x

yields:
∇s c′> +∇h e> + h∇s e>s + h∇t e>t = 3× 3 unit matrix

Multiplying these equations by vector e we get from e>s e = e>t e = c′>e = 0 the result

∇h = e =
S− c
‖S− c‖

.

Hence equation h = 0 is an implicit representation of curve Γ with ‖∇h‖ = 1 and in a vicinity of Γ
but not on Γ the positive function h is of class Cn, n ≥ 2, too. (h is not differentiable on Γ!)
The equation h = 0 is called the normalform of Γ and h the normalform function or (as of its
geometrical meaning) the distance function of Γ.
The considerations above prove of the following Theorem:
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Theorem 5.5 For any Cn-continuous, n ≥ 2, space curve Γ there exists in a vicinity V of Γ a
normalform of class Cn, i.e. an implicit representation h(x, y, z) = 0 such that ‖∇h‖ = 1 on V \Γ.
(h is not differentiable on Γ.)

Example 5.6 The normalform of the circle x2 + y2 = r2, z = 0 (as space curve !) is

h(x, y, z) =
√

z2 + (
√

x2 + y2 − r)2 = 0.

The level surface h = c, 0 < c < r is the torus with equation

(x2 + y2 + z2 + r2 − c2)2 − 4r2(x2 + y2) = 0.

A consequence of the Theorem 5.5 is

Theorem 5.6 A pipe surface with Cn-continuous directrix, n ≥ 2, is of class Cn, too.

Remark:
A differentiable implicit representation can be achieved by using h2 instead of h:

h2 = (S− c)2, ∇h2 = 2(S− c).

The disadvantage ∇h2 = 0 on curve Γ remains.

5.9.2 Foot point algorithm and evaluation of the normalform of a space
curve

Usually the normalform function is not known explicitly. So the evaluation of h(p) and ∇h(p) is
done numerically by determining the foot point c(tp) of point p on curve Γ.

The foot point algorithm:

Let Γ : x(t) = c(t) be a smooth curve, p a point in the vicinity of Γ and t0 the parameter of a
starting point for the foot point algorithm:
repeat
pi = c(ti)
∆s = (p−pi)·ċ(ti)

ċ(ti)2
qi = pi + ∆tċ(ti) (foot point on tangent)

pi+1 = c(ti + ∆t), f1 := qi − pi, f2 := pi+1 − qi,
if ‖qi − pi‖ > ε then

(one Newton step for the foot point on the tangent parabola x = pi + αf1 + α2f2)
a0 := (p− pi) · f1, a1 := 2f2 · (p− pi)− f2

1 , a2 := −3f1 · f2, a3 := −2f2
2

α := 1− a0 + a1 + a2 + a3

a1 + 2a2 + 3a3
if 0 < α < αmax then (prevent extreme cases) ti+1 = ti + α∆t, pi+1 = c(ti+1)
until ‖pi − pi+1‖ < ε.
foot point c(tP) := pi+1, tP := ti+1.
(Suitable choices: ε = 10−6 and αmax = 20.)

The evaluation of h and ∇h:

h(p) = ‖p− c(tp)‖, (c(tp)is the foot point of p on the curve)

∇h(p) =
p− c(tp)
‖ · · · ‖

, if p is not on curve Γ.
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5.9.3 Determining foot points on an intersection curve

Because for any C2–continuous surface there exists a normal form it suffice to give a foot point
algorithm for implicitly defined surfaces.

We start with two implicit surfaces Φ1 : f1(x) = 0, Φ2 : f2(x) = 0 and assume that they are
regular and sufficiently differentiable for the operations described below. An essential step of the
foot point algorithm is the following procedure curvepoint which determines for a point p in the
”neighborhood” of the curve a point p0 on the intersection curve.

Procedure curvepoint:

(C0) Let be f1(x) = 0, f2(x) = 0 two intersecting implicit surfaces and p a point.

(C1) q0 := p,
repeat qk+1 = qk + ∆k, where
∆k = αk∇f1(qk) + βk∇f2(qk) and ∆k · ∇fj(qk) = −fj(qk), j = 1, 2.
(Newton step for gj(α, β) := fj(qk + α∇f1(qk) + β∇f2(qk)), j = 1, 2.)
until ‖qk+1 − qk‖ is ”sufficiently” small.
Curve point: p0 = qk+1.

Procedure footpoint:

(F0) Let be f1(x) = 0, f2(x) = 0 two intersecting implicit surfaces and p a point.

(F1) c0 = curvepoint(p)

(F2) repeat ri := ∇f1(ci)×∇f2(ci) (tangent direction),

ti+1 = ci +
(p− ci) · ri

r2
i

ri (foot point on tangent),

ci+1 = curvepoint(ti+1).
until ‖ci+1 − ci‖ is ”sufficiently” small.
Foot point: p0 = ci+1.

Remark: In case of problems considering convergence of the foot point algorithm one should im-
prove it by a ”parabola step” (see Section 5.9.2).

5.10 Applications of normalforms

5.10.1 Approximation of a set of intersecting surfaces

Given

1. the implicit surface (x− 2)4 + y4 − r4
1 = 0, r1 = 2,

2. the parametric surface patch
x = (10v − 5, 10u− 5, 6(u− u2 + v − v2)), 0 ≤ u ≤ 1, 0 ≤ v ≤ 0.8,

3. the parametric surface patch
x = (6(u− u2 + v − v2)− 5, 10u− 5, 10v − 5), 0 ≤ u ≤ 1, 0.5 ≤ v ≤ 1.

Let be h1(x) = 0, h2(x) = 0, h3(x) = 0 the normalforms of the surfaces. The implicit surface
f(x) := h1(x)h2(x)h3(x) = c > 0 is a smooth approximation of the set of the three given surfaces.
Figure 5.3b) shows the triangulation of f(x) = c for c = 0.2.
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a) b)

Figure 5.3: Smooth approximation of a set of surfaces

5.10.2 Approximation of intersecting pipe surfaces

The level surfaces h = const of a normalform function h of a space curve is a pipe surface. Hence
it is an easy task to approximate two (or more) intersecting pipe surfaces h1 = c1, h2 = c2. The
implicit surfaces

f := (h1 − c1)(h2 − c2) = c, c > 0

are, for c small enough, smooth approximations of the two pipe surfaces.

Figure 5.4: Approximation of two intersecting pipe surfaces

5.10.3 Numerical parametrization of implicit surfaces

Let f(x) = 0 be an implicit regular (i.e. ∇f 6= 0) surface with normalform h(x) = 0 and Φ : x =
S(u, v), (u, v) ∈ D ⊂ IR2 a parametric surface in the vicinity of surface f = 0. (For the application
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below Φ is chosen as a tensor product Bézier surface which is a rough approximation of a patch of
f = 0.) Both surfaces are supposed to be differentiable enough. Then the parametric surface

Φ0 : x = S0(u, v) := S(u, v)−h(S(u, v))∇h(S(u, v)), (u, v) ∈ D

is a patch of the given surface f = 0, because of
h(S− h(S)∇h(S)) = h(S)− h(S) = 0
(see basic properties of the normalform function h in Theorem 5.1 ).
Differentiating yields:

ST
0,u = (I −∇hT∇h− hHh)ST

u ,

ST
0,v = (I −∇hT∇h− hHh)ST

v .

Function h,∇h and Hh are evaluated at point S(u, v).

The algorithm for the numerical parameterization of an implicit surface f(x) = 0:

1. Choose a tensor product Bézier or B-spline surface Φ : x = S(u, v), (u, v) ∈ [0, 1]× [0, 1] which
is a rough approximation of the surface patch Φ0 to be parameterized.

2. Point S0(u, v) is the foot point of point S(u, v) on surface f = 0. (For an appropriate
algorithm see Section 5.8.)

Remark:
a)Because of the result on normalforms in Theorem 5.1 the introduced parameterization of a surface
is of class Cn−1 if the auxiliary parametric surface and the given surface are Cn–continuous.
b) If there is no demand for continuity (for example for texture mapping, one may use the more
simple procedure surfacepoint out of Section 5.8.2 instead of the foot point procedure. Usually
one recognizes no evident differences.

Example 5.7 Figure 5.5a) shows the auxiliary Bézier surface used for a numerical parameteriza-
tion of a patch of the implicit surface f = 0 with
f(x, y, z) = (1− µ)(x2 + z2 − 1)(y2 + z2 − 1)− µ((r2 − x2 − y2 − z2)(c− z2))3

for µ = 0.002, r = 3, c = 1.1 which is a G2–blending surface of the cylinders x2 + z2 = 1 and
y2 + z2 = 1. Figure 5.5b) shows the Bézier surface and the parameterized implicit surface patch.

a) b)

Figure 5.5: a) Bézier surface patch used for parameterization of an implicit surface b) Bézier surface
patch and the parameterized implicit surface patch



Chapter 6

HIDDENLINE–ALGORITHM
FOR NON CONVEX
POLYHEDRONS, DISPLAYING
PARAMETERIZED SURFACES

6.1 The Hiddenline-Algorithm

Preconditions:

Given: a) Line segments (edges) {e1, e2, e3, . . .}
b) planar, convex n−gons (faces) {f1, f2, f3, . . .}

If one of the faces is not convex one divides it into several convex parts. The necessary additional
edges will be ignored during the displaying process. The edges to be tested for visibility need not
belong to a face of the given n−gons (For example the edges of the door and windows, see Example
5.3.).
The algorithm will work correctly for planar faces. But, usually there arise no problems if the faces
are “nearly” planar only (normal case for displaying parametric surfaces).
Idea of the algorithm:

(1) If the faces are oriented the invisible faces and edges are detected by the fast normal–test and
ignored.

(2) For “obvious cases” the simple windows–test omits the expensive hiddenline–test (3)–(5).

(3) It is tested if the projections of an edge and a face may have points in common.

(4) If test (3) is positive an investigation using a test point in IR3 decides whether the edge is
(partly) behind a face.

(5) If the edge is partly hidden by a face the visible segments are determined and stored.

(6) After testing an edge against all faces the still visible segments will be drawn.

The realization of this idea needs the following procedures:

a) is line convex polygon: determines the intersection between a line segment and a convex
polygon.

67
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b) intmint: determines the difference [a, b]\[c, d] of two real intervals.

c) cp vts3d vts2d spez: is a slight extension of procedure cp vts3d vts2d. An additional pa-
rameter (pdist: r array) contains the distances of the points from the image plane (z−coordinates
of the points in system (H; e1, e2,n0)) .

procedure is_line_convex_polygon(p1,p2 : vt2d; p_pol : vts2d_pol; np : integer;

var t1,t2 : real; var ind : integer);

{determines parameters t1,t2 of the line segment p1,p2 intersecting with the

convex Polygon p_pol[0],...p_pol[np].

ind=0, 2 : segment within or not,

ind=1: other cases. vts2d_pol: array[0..npfmax] of vt2d. }

{***********}

procedure intmint(a,b,c,d: real; var e1,f1,e2,f2: real; var ind: integer);

{Determines the difference of intervals [a,b] \ [c,d].

ind=0: empty, ind=1: 1 interval, ind=2: 2 intervals}

{***********}

procedure cp_vts3d_vts2d_spez(var p: vts3d; n1,n2 : integer; var pp : vts2d;

var pdist : r_array);

{central projection of an array of points.

pdist[i] : distance of pointp[i] from image plane.}

{***********}

On the data structure:
For any face (polygon) the following informations are stored in record face dat:

1) npf, nef: number of points and edges (of a face).
2) fp[1], . . . fp[npf]: First, second,. . . point of a face,

fe[1], . . . fe[nef]: First, second, . . . edge of a face.
(In case of oriented faces the points have to be oriented anti clockwise seen from “outside”.)

3) box: contains minimal and maximal x−values and y−values of the image points of a face.
box.zmax: maximal distance of the points from the image plane.

4) The normal vector nv and the real d of the equation nv · x = d of the plane containing the
face.

5) discentre: distance of the centre from the plane containing the face.
6) vis: vis=true or vis=false if the oriented face is visible or not.

For any edge we use record edge dat:
1) ep1,ep2: First and second point of the edge.
2) color,linew: Color and linewidth of the edge. Used only if parameter newstyles=true (see

procedure cp lines before convex faces).
3) vis: vis=true or vis=false if the edge belongs to a visible face or not.

All records face dat and edge dat are items of the array face and edge respectively.
(For details: see units/hiddenl.p and include/proc zpo.pas.)

For any point we store the coordinates in array p (type: vts3d).

The hiddenline–algorithm is contained in the following procedure cp lines before convex faces.

Explanations on cp lines before convex faces (oriented faces,is permitted,newstyles):
oriented faces=true: The faces are oriented. The fast normal-test will be applied.
is permitted=true: The edges may intersect the faces. (slow !)
newstyles=true: Color and linewidth as defined in record edge[i].
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(0) The main program has to provide:

a) np, nf, ne : number of points, faces, edges resp.,

b) the coordinates of the points Pi : pi, i = 1, . . . , np,

c) for any edge: first and last points ep1,ep2,

d) for any face:
npf,nef : number of points and edges,
fp[1], . . . fp[npf] : points of the face, fe[1], . . . fe[npf] : edges of the face, the
equation nvx = d of the corresponding plane.

(1) there will be

a) determined the coordinates of the image points and their distance from the centre,

b) determined the distance discentre) of the centre from the corresponding plane, stored
the box (xmin, xmax, ymin, ymax) of the window and
the maximal distance (box.zmax) of the points (of the face) to the image plane.

b’) performed the normal test for oriented faces.
If the face is visible their edges are visible, too

Figure 6.1: Window of a polygon

(2) testing edge ei against face fj if both are visible (vis=true):

a) For the edge ei the box xemin, xemax, yemin, yemax of the window and the minimal
distance zemin from the image plane is determined.

b) Is the edge an edge of face fj ? (yes: → next face.)

c) In case of box.zmax > zemin and if edge widow and face window are overlapping: In-
tersection of the images of the edge and the face (convex polygon)

Figure 6.2: Windows test
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d) If in image plane the edge is partly contained in the polygon:

d1) if is permitted=false:
Test using test point pt whether (in space) the edge is in front of the plane of the
face or not.

Pt1

Pt2

Pt

Figure 6.3: Case d1) and d2) resp.

d2) if is permitted=true:
Using test points pt1,pt2 the segment of the edge that is in front of the face is
determined.

e) if the edge is hidden partly:
The parameter intervals [par1(l),par2(l)] of the visible segments are determined and
stored.

(3) after testing edge ei against all faces the visible segments are drawn.

procedure cp_lines_before_convex_faces(oriented_faces,is_permitted,newstyles : boolean);

{projects and draws segments of an edge in front of planar n-gons.

oriented_faces=true: faces are oriented,

is_permitted=true: edges may intersect the faces.

The main program has to provide:

np, ne, nf: number of points, edges, faces,

p[1],...,p[np] : points,

face[i].fp[k] (face[i].fe[k]): k-th point (k-th edge) of i-th face,

face[i].npf (face[i].nef): number of points (edges) of th i-th face,

edge[i].ep1 (edge[i].ep2): first (last) point of i-th edge,

face[i].nv,face[i].d: coefficients of the equation of the i-th face.}

{*************}

Example 6.1 a) Polyhedron on a torus (oriented faces)
b) Polyhedron on a torus segment (not oriented faces)

Figure 6.4: Torus (orient. faces) and torus segment (not orient. faces)
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6.2 Auxiliary procedures for the hiddenline algorithm

In order to reduce preliminary work for the user of the hiddenline algorithm we give 4 auxiliary
procedures. The first one is an aid in case of a general polyhedron, the second, third and fourth
eases the application in case of parametric surfaces of certain topologies.

6.2.1 The procedure aux polyhedron

The main program must provide:

(1) np,nf (number of points and faces resp.),

(2) the points Pi : pi, i = 1, . . . , np of the faces and edges,

(3) for each face: npf (number of points),
fp[1],...,fp[npf] (indices of the points defining the face polygon).

The procedure aux polyhedron generates the indices of the edges and determines

(1) ne (number of edges),

(2) for each edge: ep1, ep2 (indices of first and last points),

(3) for each face: nef, fe[1],...,fe[nef] (number of edges and indices of edges contained in
the face).

procedure aux_polyhedron;

{np, ne, nf : number of points, edges and faces resp.

face[i].npf : number of points (edges) of the i-th face

edge[k].ep1, ep2 : first and last point the k-th edge

face[i].fp[k] : k-th point of i-th face (positively oriented !!!)

face[i].fe[k] : k-th edge of i-th face

! This procedure determines from given nf,face[i].fp and face[i].npf:

ne, face[i].nef, face[i].fe[k], edge[i].ep1 and edge[i].ep2 !.}

Example 6.2 houses (see Figure 6.5)
(One should recognize that

a) the roof faces are not oriented and
b) edges, which are not edges bounding a face (window,door), must not lie in a face but a little

“in front”. Here the set of edges consists of the set of edges bounding faces and additional
edges indicating the windows and doors.)

Example 6.3 a) 3 beams b) kiosk (see Figure 6.6)

6.2.2 The procedures aux quadrangle, aux cylinder, aux torus and dis-
playing a parametrized surface

For displaying a parametrized surface Φ : x = S(u, v), u ∈ [a, b], v ∈ [c, d], one chooses a net of
rectangles in the parameter plane (u− v−plane) and displays its image in IR3 (see Figure 6.7).
Usually the rectangles of such a net are not planar. But if the rectangles are small enough they will
be “nearly planar” and one can apply the introduced hiddenline algorithm for displaying the net.
(In case of the torus the rectangles are planar.) The algorithm aux polyhedron of section 6.2 may
be applied to the torus example, too. But, as of its special structure (all faces are rectangles !) we
use an auxiliary procedure which is more simple to handle.
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Figure 6.5: houses

Figure 6.6: 3 beams, kiosk

x
y

z

u

v

S

parameter plane surface in IR3

Figure 6.7: a net in parameter plane and its image on the surface
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The following procedures should be applied to parametric surface patches which are rectangular in
parameter plane and which bear the topology of either an rectangle or a cylinder or a torus. From
n1, n2 (number of divisions in u– and v–direction) the auxiliary procedures generate the numbering
of the faces and edges and the following datas:

(1) for each face: fp[1],..., fp[npf] (indices of the points of the polygon),
fe[1],..., fe[nef] (indices of the edges of the polygon),

(2) for each edge: ep1, ep2 (indices of the bounding points);

(3) np, ne, nf : numbers of the points, edges and faces,

(4) the equations nix− di = 0 of the planes containing the faces

n1n2

n121 1

2n1n1+1

n1n2

21
n1

n1

n1n2

21 1

21 1

“quadrangle” “cylinder” “torus”

Figure 6.8: net types

The n1 · n2 points P1, P2, . . . must be generated in the following way:

In case of “quadrangle”: ∆u = (b− a)/(n1 − 1) and ∆v = (c− d)/(n2 − 1).
In case of “cylinder”: ∆u = (b− a)/n1 and ∆v = (c− d)/(n2 − 1).
In case of “torus”: ∆u = (b− a)/n1 and ∆v = (c− d)/n2.

Pj : pj = S(a + (i− 1) ·∆u, c + (k − 1) ·∆v),

j = (k − 1) · n1 + i, 1 ≤ i ≤ n1 1 ≤ k ≤ n2.

In order to display a collection of surface patches we use the integers np0, ne0, nf0 to describe
the numbers of points, edges and faces already stored. For the first patch we set np0=ne0=nf0=0.

procedure aux_quadrangle(n1,n2,np0,ne0,nf0: integer);

{****}

procedure aux_cylinder(n1,n2,np0,ne0,nf0: integer);

{****}

procedure aux_torus(n1,n2,np0,ne0,nf0: integer);

The main program has to provide:

a) n1,n2,

b) The points Pj : pj (for numbering: see above and Figure 6.8),

c) npf,nef, number of points and edges of a face: npf=4, nef=4. (When considering intersec-
tions of faces (see Section 6.3.2) these numbers may raise.)
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Figure 6.9: Two tori

Example 6.4 Two tori (see sample program tori h.p and Figure 6.9)

Example 6.5 Pipe knot (see Figure 6.10)
The directrix of a pipe knot lies on a torus and has (in the present case) the following parametric
representation:

x = c(u) := (h cos(u), h sin(u), r2 sin(cu)),

with h = r1 + r2 cos(cu), c = 1.5 and 0 ≤ u ≤ 4π.
(r1 is the “big” radius, r2 the “small” radius of the torus.) Each point of the directrix is the
midpoint of a circle contained in the normal plane of the current directrix point. The normal plane
corresponding to c(u) will be described by the following base vectors:

e1(u) := ċ(u)× ez/‖ . . . ‖, e2(u) := e1 × ċ(u)/‖ċ(u)‖,

where ez := (0, 0, 1) is.
Hence

x = S(u, v) := c(u) + e1(u)r3 cos v + e2(u)r3 sin v, 0 ≤ r3 ≤ r2,

is a parametric representation of the pipe knot. r3 is radius of the pipe.

Example 6.6 Moebius strip (NOT of type “quadrangle”, see Figure 6.11)
(The boundary curves lie on a torus !)

6.3 Intersection of faces bounded by planar polygons in IR3,
intersection of two polyhedrons

6.3.1 Intersection of faces bounded by planar polygons in IR3

Given: Two planar convex polygons P11, P12, . . . , P1m, P21, P22, . . . , P2n in IR3.
The polygons are not contained in a common plane.

Sought: The intersection (line segment) of the faces bounded by the polygons.

Idea of the algorithm:
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Figure 6.10: pipe knot (type: “torus”)

Figure 6.11: Moebius strip, sliced Moebius strip

(1) Determine the intersection line of the planes containing the polygons.

(2) The intersection of this line with each (convex) polygon consists of two line sections.

(3) The intersection of these two line sections is the common line section of the faces.

The algorithm (procedure is n1gon n2gon3d):

(0) For each polygon procedure box3d of pts determines the corresponding bounding box.

(1) If the bounding boxes have a non empty intersection, then the equations n1x− d1 = 0,n2x−
d2 = 0 of the planes containing the polygons are determined by plane equ. is plane plane
returns a point and a direction vector of the intersection line gs.

(2) For intersecting the line gs with the first polygon we introduce the following coordinate system:
P11 is the origin and the points P12, P1m are the unit points of the coordinate axes (see Figure
6.12).

Because the points of the polygons are not contained exactly in a plane we determine the
coordinates of their foot points Q1i using procedure ptco plane3d (see file proc ag.pas). The
origin and unit points are: Q11 = (0, 0), Q12 = (1, 0) and Q1m = (0, 1). After determining
the foot points of two points of line gs procedure is line convex polygon calculates the
parameters t1, t2 of the common line section. Analogously one gets the parameters s1, s2 for
the second polygon.

(3) From is interv interv we get the common interval [s, t] := [t1, t2] ∩ [s1, s2] and the line
segment common to both the faces bounded by the polygons.
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P11
P12

P1m

P
11

P
12

P1m
g s

=(0,0) =(1,0)

(0,1)=

Figure 6.12: to (2) of the algorithm

procedure is_interv_interv(var a,b,c,d,aa,bb : real; var inters: boolean);

{determine the intersection of the intervals [a,b] and [c,d] .}

{************}

procedure box3d_of_pts(var p : vts3d_pol; np: integer; var box : box3d_dat);

var a,b : real; i: integer;

{determines the bounding box.}

{************}

function is_two_boxes3d(var box1,box2 : box3d_dat) : boolean;

{intersection of two boxes.}

{*************}

procedure is_line_conv_pol_in_plane3d(var pl,rl: vt3d; var pp : vts3d_pol;

npp : integer;

var t1,t2 : real; var inters : boolean);

{intersection of a convex polygon and a line contained in a common plane.}

{*************}

6.3.2 Intersection of two polyhedrons

Given: Two intersecting polyhedrons Π1,Π2.
Sought: Their intersection.

Idea:
We use the data structure of the hiddenline algorithm is lines before convex faces (see Section
6.1) This causes some simplifications.

The algorithm:

(1) Determine the bounding boxes using boxes of faces

(2) Because the equations of the planes are already determined by the auxiliary procedures (see
Section 6.2) we use the more appropriate procedure is face face for determining the common
line section of two faces.

(3) The common line section of the i-th and the k-th face will be appended to

• array edge,

• arrays face[i] and face[k]

as an additional edge.
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The heads of procedures boxes of faces, is face face and their application in the main program
are as follows (see sample program parsurf h.p):

procedure boxes_of_faces;

{determines the bounding boxes.}

{************}

procedure is_face_face(i,k: integer; var ps1,ps2 : vt3d;

var intersection: boolean);

{determines the intersection of two (convex) faces.}

{**************}

...............................

{Intersection of two surfaces: (s. parsurf_h.p)}

boxes_of_faces;

for i:= 1 to nf1 do { 1. loop }

begin

for k:= nf1+1 to nf do { 2. loop }

begin

is_face_face(i,k, ps1,ps2,inters);

if inters then

begin

p[np+1]:= ps1; p[np+2]:= ps2;

with edge[ne+1] do

begin ep1:= np+1; ep2:= np+2; vis:= true; end;

np:= np+2; ne:= ne+1;

with face[i] do begin fe[nef+1]:= ne; nef:= nef+1; end;

with face[k] do begin fe[nef+1]:= ne; nef:= nef+1; end;

end; { if }

end; { for k }

end; { for i }

..................................

Figure 6.13: Intersection of polyhedrons

Remark:
Selfintersections of polyhedrons cause some problems when intersecting neighbouring faces. So, one
should detect neighbouring faces first and intersect non neighboured faces only (see Figure 6.14b):
x(u, v) = ((−40 + 80u) cos(v) , (−40 + 80u) sin(v) , 40− 40u + 50

2π v)>, 0 ≤ u ≤ 1, 0 ≤ v ≤ 3π).
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a) b)

Figure 6.14: a) intersecting surfaces b) selfintersecting surface

The procedures of this section are contained in file include/proc zpo.pas and are available via
unit hiddenl (see sample programs tori h.p, parsurf h.p and Figure 6.14).

6.4 Intersection of a line segment and a planar polygonal
patch, intersection of a polygon and a polyhedron

6.4.1 Intersection of a line segment and a planar polygonal patch

Given: Line segment P1P2 and a planar polygonal patch Q1, Q2, . . . , Qn im IR3.
The plane containing the polygon contains not the line segment.

Wanted: The intersection point of the line segment and the patch bounded by the polygon.

The algorithm:

(1) Determining bounding boxes for the line segment and the polygon. Test for intersection of
the boxes.

(2) If the boxes intersect, the equation nx − d = 0 of the plane ε containing the polygon is
determined by procedure plane equ. The signs of n · p1−d,n · p2−d, where Pi : pi, indicate
if the line segment intersects the plane ε.

(3) If the line intersects the plane, the intersection point Ps is determined and using procedure
is line conv pol in plane3d the intersection of the line Ps, Q1 (contained in ε) and the
polygon is investigated. If there are two intersection points and Ps is separating them, point
Ps is contained in the polygonal patch and the wanted intersection point is Ps.
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Figure 6.15: To (3) of the algorithm is line ngon3d

procedure is_line_ngon3d(p1,p2: vt3d; var pp: vts3d_pol; npp: integer;

var ps: vt3d; var intersection: boolean);

{Determines the intersection of a line segment and a planar convex n-gon in space.

The line segment must not be contained in the plane of the polygon.}

label 5;

var d,t1,t2,xemin,xemax,yemin,yemax,zemin,zemax,dp1,dp2,ts : real;

j : integer; box : box3d_dat; nv,rv,rs : vt3d; inters : boolean;

begin

intersection:= false;

xemax:= max(p1.x,p2.x); yemax:= max(p1.y,p2.y); zemax:= max(p1.z,p2.z);

xemin:= min(p1.x,p2.x); yemin:= min(p1.y,p2.y); zemin:= min(p1.z,p2.z);

box3d_of_pts(pp,npp, box);

if (xemax<=box.xmin) or (xemin>=box.xmax) or

(yemax<=box.ymin) or (yemin>=box.ymax) or

(zemax<=box.zmin) or (zemin>=box.zmax)

then goto 5; {edge not hidden by j-th face}

plane_equ(pp[1],pp[2],pp[3] , nv,d,error);

dp1:= scalarp3d(p1,nv) - d;

dp2:= scalarp3d(p2,nv) - d;

if dp1*dp2<=0 then

begin

ts:= dp1/(dp1-dp2); diff3d(p2,p1, rv);

lcomb2vt3d(1,p1,ts,rv, ps); diff3d(ps,pp[1], rs);

is_line_conv_pol_in_plane3d(ps,rs,pp,npp, t1,t2,inters);

if inters and (t1*t2<=0) then intersection:= true;

end; {if}

5: end; { is_line_ngon3d }

6.4.2 Intersection points of a polygon and a polyhedron

Given: Polygon with edges e1, e2, . . . , en, polyhedron with convex faces f1, f2, . . . , fm.
Wanted: Intersection points of the polygon and the polyhedron.
Solution: Apply procedure is line ngon3d to any pair ei, fj , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Example 6.7 Intersection of a polygon on a circle and a polyhedron on a torus.
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Figure 6.16: Intersection polygon–polyhedron



Chapter 7

TRIANGULATION OF
IMPLICIT SURFACES

Determining single points of an implicit surface is not trivial. The generation of a net of polygons
on an implicit surface (for displaying, finite element methods) is a challenge. Polygonization algo-
rithms for implicit surfaces are available in literature. For example: Algower & Gnutzmann (1991,
Computer Aided Geom. Des. 8), Schmidt (1993, The Visual Comp. 10) and Hartmann (1998,
The Visual Comp. 14). All these methods except the latter one divide the space into suitable
polyhedrons (cubes, tetrahedrons) and determine the section of the given implicit surface with the
edges of these polyhedrons.
The method introduced by the author is a marching method which means to build successively a
mesh of triangles by starting with a point or a prescribed polygon. The triangulation is terminated
by several bounding polygons (on the given surface) or a global bounding box. The method was
established for implicit surfaces. But using the idea of the normalform of a surface the triangulation
is applicable to any surface for which foot points (i.e. points of minimal distance to the surface) can
be determined.

Remark:
The following triangulation algorithm appeared in The Visual Computer 14 (1998), pp 95–108,
copyright by Springer-Verlag. The original publication is available on
http://link.springer.de/link/service/journals/00371/tocs/8014003.htm

7.1 The triangulation algorithm (marching method)

The formulation of the triangulation algorithm uses no special representation of the surface to be
triangulated. The operations depending on the representation are hidden in the used procedure
surfacepoint which is defined below.

The next subsection gives first a survey and basic ideas of the algorithm. Afterwards the procedure
surfacepoint and the data structure used is introduced, and the steps of the algorithm explained
in detail.

7.1.1 The idea of the algorithm

S0 Choose a point s in the neighborhood of the the surface. Determine the corresponding surface
point p1. Surround p1 with a regular hexagon q2, ...,q7 in the tangent plane. With procedure
surfacepoint determine the points p2, ...,p7 corresponding to the starting points q2, ...,q7.

81
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The triangles of the surface hexagon are the first 6 triangles of the triangulation (Fig. 7.1,
Fig. 7.3).
We call the ordered array p2, ...,p7 of points the first actual front polygon Π0. If the triangu-
lation should be limited (not necessary for closed surfaces) by closed surface curves Γ1,Γ2, ...
(c.f. examples below) we determine bounding front polygons Π1,Π2, ... on these curves.
For special surfaces (cylinder, torus,...) it might be convenient to start with a prescribed
actual front polygon first (c.f. section 3).

Π0

Π1

Π2
starting hexagon

minimal front angle

bounding polygons

actual front polygon

front angles

Figure 7.1: Basic notions for the triangulation algorithm

S1 For every point of the actual front polygon Π0 we determine the angle of the area still to be
triangulated. We call these angles front angles (Fig. 7.1).
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Figure 7.2: Dividing (left) and uniting (right) the actual front polygon

S2 Check if any point pi of the actual front polygon is ”near”

– a point of Π0 which is different from pi and its neighbors or

– a point of any other front Polygon Πk, k > 0.
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In the first case: Divide the actual front polygon Π0 into a smaller one and an additional front
polygon. (see Fig. 7.2, 7.8a,b)
In the second case: If pi is near a point of the front polygon Πm then unite the polygons
Π0, Πm to a new and larger actual front polygon. Delete Πm. (see Fig. 7.2, Fig. 7.8d,e)

S3 Determine a front point pm of the actual front polygon Π0 with minimal front angle. Surround
pm by triangles with angles ≈ 60◦. Delete pm from the polygon Π0 and insert the new points
into the actual front polygon Π0.

S4 Repeat steps S1,S2,S3 until the actual front polygon Π0 consists of only three points which
generate a new triangle. If there is still a further (non empty) front polygon left, it becomes
the new actual front polygon Π0 and repeat steps S1,S2,S3. If there is no further front polygon
then the triangulation is finished.
If the surface is not bounded the triangulation should be limited by bounding polygons on
the surface or a global bounding box (c.f. section Examples).

7.1.2 The procedure surfacepoint

An essential step of the triangulation algorithm is to determine a surface point p that is ”near” a
given point q in the vicinity of a surface. q − p need not be exactly perpendicular to the surface.
Because nearly all surfaces can be numerically implicitized we give a solution for implicit surfaces.

We start with an implicitly given surface Φ : f(x) = 0 for which the gradient ∇f exists and is not
zero for any point of consideration and a point q in the neighborhood of the surface.
The following procedure surfacepoint calculates a surface point p, a normal and two tangent
vectors at p.

1. (a) u0 = q

(b) repeat uk+1 := uk −
f(uk)
∇f(uk)2

∇f(uk)

(Newton-step for the function gk(t) := f(uk + t∇f(uk)) )
until ‖uk+1 − uk‖ is ”sufficiently” small.
Surface point p = uk+1.

2. The surface normal at surface point p is n := ∇f(p)/‖...‖.

3. For tangent vectors we choose
t1 := (ny,−nx, 0)/‖...‖ if nx > 0.5 or ny > 0.5
else t1 := (−nz, 0, nx)/‖...‖
and t2 := n× t1 where (nx, ny, nz) := n.

7.1.3 The data structure

For the construction of the triangles we need a step length δt > 0 which is approximately the length
of the edges.
The points of the triangulation will get current numbers. For any point pi we keep the following
informations:

• the coordinates,

• the surface normal n and tangent vectors t1, t2 such that n, t1, t2 are orthonormal,

• the actual front angle if pi is an actual front point,
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• the boolean variable angle changed with angle changed=true if the actual front angle was
changed and has to be recalculated,
the boolean variable border point. It is set true if point pi is on the border of the triangu-
lation and should be ignored for further considerations (recalculation of front angle, distance
check (S2)).

The triangles will be numbered consecutively. For any triangle we store the numbers of the vertices.

The front polygons Π0,Π1, ... are represented by the integer arrays of their point numbers.

7.1.4 Step S0

Let be s a starting point in the vicinity of the surface. The procedure surfacepoint determines
the first point p1 of the triangulation and the orthonormal system n1, t11, t12. The following six
points p2, ...,p7 are the results of procedure surfacepoint applied to

qi+2 := p1 + δt cos(iπ/3)t11 + δt sin(iπ/3)t12, i := 0, ..., 5,

which are points of a regular hexagon in the tangent plane at p1.
We get the first 6 triangles (Fig. 7.3a):
(p1,p2,p3), (p1,p3,p4), (p1,p4,p5), (p1,p5,p6), (p1,p6,p7), (p1,p7,p2).

7.1.5 Step S1

If a point p0i of the actual front polygon Π0 = (p01,p02, ...,p0N0) has just been inserted or if a
neighbor of p0i is a new point then it is necessary to recalculate the actual front angle ω at point
p0i. Let
v1 := p0,i−1 if i > 1 or v1 := p0N0 if i = 1,
v2 := p0,i+1 if i < N0 or v2 := p01 if i = N0 and
(ξ1, η1, ζ1) the coordinates of v1, (ξ2, η2, ζ2) the coordinates of v2 in the local orthonormal system
n, t1, t2 at point p0i,
ω1 :=polar angle of (ξ1, η1), ω2 :=polar angle of (ξ2, η2). Then the front angle at point p0i is
ω = ω2 − ω1 if ω2 ≥ ω1 else ω = ω2 − ω1 + 2π. (Fig. 7.3b)

7.1.6 Step S2

In order to prevent new triangles from overlapping existing triangles we check

• the distances of pairs of points of the actual front polygon Π0. If there are points p0i,p0j , i <
j, which are neither neighbors nor neighbors of neighbors and ‖p0i − p0j‖ < δt then the
actual front polygon is split into the new actual front polygon (p01, ...,p0i,p0j , ...,p0N0) with
N0 − (j − i − 1) points and a further front polygon (p0i, ....,p0j) with j − i + 1 points (Fig.
7.2). p0i and p0j must not be involved in later distance checks.

• the distance of the points of the actual front polygon Π0 to points of all further front polygons
Πk, k > 0. If there are points p0i ∈ Π0 and pmj ∈ Πm with ‖p0i − pmj‖ < δt then the
polygons
Π0 = (p01, ...,p0N0) and Πm = (pm1, ...,pmNm)
are united to the new actual front polygon

Π0 = (p01, ...,p0i,pmj , ...pmNm
,pm1, ...,pmj ,p0i, ...,p0N0)

with N0 + Nm + 2 points (Fig. 7.2). The points p0i and pmj appear twice ! So before any
further action is taken one should determine the front angles of these points when they first



7.1. THE TRIANGULATION ALGORITHM (MARCHING METHOD) 85

p
6

p
3

q0

p
7

q
6

q
7

q
3p

2

p
1 q

4 p
5

p
3

q
5

p
4

q
2

p
6

n

p
3

p
4

p
7

p
5

p
1

p
6

p
2

q1

8
p

q
3

q
2

p
10

p
9

p
5

p
4

p
7

p
2

q
4

circle arc in tangent plane

a)

b)

c)

actual front polygon

circle in tangent plane

front angle 5

actual front polygon

n

n

Figure 7.3: The first steps of the algorithm

appear in the polygon Π0 and complete (surround with triangles, see Step S3) first that point
with the smallest angle then the second (Fig. 7.8e)). After this operation the first appearance
of these two points is deleted from the actual front polygon. The points p0i and pmj must
not be involved in later distance checks.

Remarks:
a) For ”simple” surfaces the distance check can be omitted.
b) Before applying the distance check one should complete points with front angles smaller than
(about) 75◦.
c) The rare case of ”bad” near points p0i,pmj which are connected by an already triangulated area
(Fig. 7.4) can be detected by calculating the angle ω at point p0i described in Step 1 using pmj

instead of v2. p0i,pmj are ”bad” near points if ω is greater than the front angle at point p0i.
d) An essential acceleration of the distance check can be achieved by using bounding boxes of the
front polygons.

7.1.7 Step S3

Let be p0m a point of the actual front polygon Π0 with minimal front angle ω. Complete the
triangulation at point p0m in the following way:
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Figure 7.4: Bad near points and their detection

1. Determine the neighbors v1,v2 of p0m (c.f. Step S1).

2. Determine the number nt of triangles to be generated:
Let nt := trunc(3ω/π) + 1, ∆ω := ω/nt

Correction of ∆ω for extreme cases:
if ∆ω < 0.8 and nt > 1 then nt → nt − 1 and ∆ω = ω/nt (Fig. 7.5a),
if nt = 1 and ∆ω > 0.8 and ‖v1 − v2‖ > 1.25δt then nt = 2 and ∆ω → ∆ω/2 (Fig. 7.5b),
if ω < 3 and (‖v1 − p0m‖ ≤ 0.5δt or ‖v2 − p0m‖ ≤ 0.5δt) then nt = 1 (Fig. 7.5c).

v2
v1

p 0m

v2
v1

p 0m

v1

v2

p 0m

v1

v2

p 0m

p 0m

v1
v2

p 0m

v1
v2

a b c

Figure 7.5: Corrections for extreme cases

3. Generate the triangles:
If nt = 1 then we get one new triangle: (v1,v2,p0m)
else let be q0,qnt

the orthogonal projection of v1,v2 into the tangentplane at point p0m

and let qi be the result from a rotation of p0m + δt(q0 − p0m)/‖q0 − p0m‖ by the angle i∆ω
around the normal at surface point p0m for i = 1, ..., nt − 1. (If a global bounding box is
valid the chord p0mqi is truncated and the variable border point of the corresponding new
surface point set true. Boarder points will not be considered any more.) Applying procedure
surfacepoint on qi we get the new points pN+i, i = 1, .., nt−1, where N is the total number
of already existing points, and nt new triangles (see Fig. 7.3b,c):
(v1,pN+1,p0m), (pN+1,pN+2,p0m), ..., (pN+nt−1,v2,p0m).
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4. Renew the actual front polygon:
Delete point p0m and if nt > 1 insert at its position the new points pN+1, ...,pN+nt−1.
All boolean variables angle changed at points v1,v2,pN+1, ...,pN+nt−1 are set true to ensure
recalculation of their front angles.

7.2 Examples

7.2.1 Sphere

Triangulation of the sphere x2 +y2 +z2−4 = 0 with starting point (1,1,1) and step length δt = 0.3.
Figure 7.6 shows the first four actual front polygons and the situation after the generation of 101
and 1531 triangles. The total triangulation of the sphere involves 1544 triangles.

starting hexagon

a b c

d e
minimal front angle

f g

still a hole final triangulation

Figure 7.6: Triangulation of a sphere
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7.2.2 Cylinder

Triangulation of the cylinder x2 + y2 − 1 = 0,

1. with starting point (1, 0, 0) and δt = 0.2 before and after the first splitting of the actual front
polygon. The cylinder is bounded by a bounding box (Fig. 7.7a,b,c).

2. with points on the top circle as the starting actual front polygon and points on the basic circle
as a bounding front polygon (Fig. 7.7d).

actual front polygon

actual front polygon

front polygon 

first actual front polygon

of actual front polygon
before and after first division

bounded by bounding box
final triangulation

bounding front polygon

a

b

c d
Π

Π

Π

Π Π

Π
0

0

1

1

0

0

Figure 7.7: Triangulation of a cylinder

7.2.3 Torus

Triangulation of the torus

(x2 + y2 + z2 + r2 − a2)2 − 4r2(x2 + y2) = 0, r = 1, a = 0.35

with δt = 0.1.
Figure 7.8 shows the triangulation with starting point (1, 0, 0.5)
before and after the first dividing of the front polygon Π0 (Fig. 7.8a,b) and
before and after uniting front polygon Π0 with front polygon Π1 that was generated by the first
dividing (Fig. 7.8c,d) and the complete triangulation.

7.2.4 Set of two intersecting surfaces

Figure 7.9 shows a triangulation of the two intersecting surfaces x4+y4+z4 = 16 and x2+(z−1.1)2 =
1. A polygon on the intersection curve is used for the first actual front polygons of both the surfaces.
The cylinder is truncated by a bounding box.
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Figure 7.8: Triangulation of a torus

7.2.5 G2-continuous blending of three cylinders

The implicit surface

(1− µ)(x2 + y2 − 1)(x2 + z2 − 1)(y2 + z2 − 1)− µ(9− x2 − y2 − z2)3 = 0

is a G2-continuous (i.e. curvature continuous) blending surface of the three cylinders x2 + y2 − 1 =
0, x2 + z2 − 1 = 0, y2 + z2 − 1 = 0. The parameter µ chosen for Fig. 7.10 is 0.0003.
The triangulation starts with starting point (1, 1, 1) near the surface (see Step 0 of the algorithm).
It is limited by 6 bounding polygons Π1, ...,Π6 on the curves of contact (circles) with the cylinders
using step length δt = π/20 and consisting of 8062 triangles.
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Figure 7.9: Triangulation of a set of two intersecting surfaces

Figure 7.10: Triangulation of a blending surface of three intersecting cylinders

Remark:
The triangulation algorithm contained in triang proc.p uses variable cuttype which allows the
following options:
a) cuttype=0: bounding surface is a box,
b) cuttype=1: bounding surface is a cylinder,
c) cuttype=2: bounding surface is a sphere.
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7.3 Sample program: trisample.p

File trisample.p contains the PASCAL code of a program that

1. triangulates

(a) a cylinder using a starthexagon,

(b) a cylinder using a startpolygon on the circle at the top and a further polygon at the
bottom circle as a bounding polygon,

(c) the surface x4 + y4 + z4 = 16 (quartic sphere) and a torus using starthexagons,

2. transfers the data of each triangulation into datas for the hiddenline algorithm of Chapter 6
and displays the set of surfaces.

The procedures for the triangulation are contained in (included) file triang proc.p. For the con-
venience of the reader the necessary data structure and procedures for vectors are as comment
included. They are (as in all sample programs) provided by unit geograph. As an exercise the
reader should replace the given examples by own ones respecting the necessary data structure. Tri-
angulations of surfaces may be combined with other polyhedrons originating from parametrically
defined surfaces (see third cylinder in trisample.p, Figure 7.11).

Figure 7.11: Triangulation and display of implicit surfaces
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7.4 Ray tracing of triangulated surfaces with POVRAY

It is an easy task to generate a ray trancing picture of a triangulated surface. Example triblend pov.p
contains a tool for writing the necessary informations of the triangles (point coordinates and normal
vectors) into a pp-file (triblend.pp) which will be included while processing file triblend.pov by
the POVRAY-device

povray +L/usr/lib/povray31/include +Itriblend.pov +Otriblend.tga +W600 +H400 +FT

Output is file triblend.tga which may be displayed by program xv (available for LINUX).



Chapter 8

INTERSECTIONS:
CURVE – SURFACE,
SURFACE – SURFACE

8.1 Intersection Curve – Surface

8.1.1 IS parametric curve – implicit surface

Given: regular curve Γ : x = c(t), t ∈ [a, b], regular surface Φ : f(x) = 0, x ∈ D ⊂ IR3.
Wanted: Intersection points Γ ∩ Φ.

The algorithm:

(1) Determining start parameters:
Calculate a (nearly) equidistant polygon on Γ (see Section 4.2). For these points determine
f(x) and locate neighbored pairs of points where the sign of f changes. The corresponding
parameters will be used as starting parameters for the following Newton–iteration.

(2) For any start parameter t0 (from (1)): Solve equation F (t) := f(c(t)) = 0 by a Newton–
iteration. Any solution t∗ gives an intersection point x∗ := c(t∗) ∈ Γ ∩ Φ.

(3) Apply (2) on all start parameters from (1).

8.1.2 IS implicit curve – implicit surface

In this case the curve is defined as the intersection curve of two implicit surfaces.

Given: regular curve Γ : f1(x) = 0, f2(x) = 0, x ∈ D12 ⊂ IR3,
regular surface Φ : f(x) = 0, x ∈ D ⊂ IR3.

Wanted: intersection points Γ ∩ Φ.

The algorithm:

(1) Determining start points:
Calculate a (nearly) equidistant polygon on Γ (see Section 8.2.1). For these points determine
f(x) and locate neighbored pairs of points where the sign of f changes. One of each pair of
points will be used as starting points for the following Newton–iteration.

93
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(2) For any starting pointx0 (from (1)): Solve the non linear system F(x) := (f1(x), f2(x), f(x)) =
0. F′ is the matrix F′ = (∇f1,∇f2,∇f) by a Newton–iteration. Any solution x∗ is an
intersection point ∈ Γ ∩ Φ.

(3) Apply (2) on all starting points from (1).

8.1.3 IS implicit curve – parametric surface

Given: regular curve Γ : f1(x) = 0, f2(x) = 0, x ∈ D12 ⊂ IR3,
regular surface Φ : x = S(u, v), (u, v) ∈ D ⊂ IR2.

Wanted: intersection points Γ ∩ Φ.

The algorithm:

(1) Intersection of surfaces f1(x) = 0 and x = S(u, v). The intersection curve is implicitly given
in parameter plane: F1(u, v) := f1(S(u, v)) = 0.

(2) Intersection of surfaces f2(x) = 0 and x = S(u, v). The intersection curve is implicitly given
in parameter plane: F2(u, v) := f2(S(u, v)) = 0.

(3) The coordinates of the intersection points of the implicit curves F1(u, v) = 0 and F2(u, v) = 0
(see 4.4.2) are the parameters of intersection points ∈ Γ ∩ Φ.

8.1.4 IS parametric curve – parametric surface

Given: regular curve Γ : x = c(t), t ∈ [a, b], regular surface Φ : x = S(u, v), (u, v) ∈ D ⊂
IR2.
Wanted: intersection points Γ ∩ Φ.

The Algorithm:

(1) Determining starting points:

(1.1) calculate a (nearly) equidistant polygon on Γ (see 4.2).

(1.2) Triangulate the surface.

(1.3) Use the algorithm from 6.4.2 to determine pairs σi,∆j consisting of a line segment σi of
the polygon and a triangle ∆j of the surface polyhedron

(2) For any pair σi,∆j from (1) choose the parameter of one of the end points of σi as starting
parameter t0, the parameter of one of the points of the triangle ∆j as starting parameters
u0, v0 and solve the non linear system F(t, u, v) := c(t)−S(u, v), F(t, u, v) = 0 by a Newton–
iteration. (see 2.4). A solution (t∗, u∗, v∗) consists of the parameters of an intersection point
between curve Γ and surface Φ.
The necessary matrix is F′ = (ċ,Su,Sv).

(3) Apply (2) on all pairs determined in (1).

8.2 Intersection surface – surface

8.2.1 IS of two implicit surfaces

The following marching algorithm is based on BA,HO,LY,HO’88.
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Given: regular implicit surfaces Φ1 : f1(x) = 0, Φ2 : f2(x) = 0 which intersect transversally, i.e.
∇f1 ×∇f2 6= 0 on the intersection curve.

Wanted: polygon on the intersection curve.

The algorithm:
The heart of the algorithm is procedure curvepoint which determines for a starting point Q0 : q0

in the ”neighborhood” of the intersection curve a point P : p on the intersection curve.

Procedure curvepoint:

(CP1) Choose a starting point Q0 : q0 in the vicinity of the curve,

(CP2) repeat qk+1 = qk + ∆k, where
∆k = αk∇f1(qk) + βk∇f2(qk) and ∆k · ∇fj(qk) = −fj(qk), j = 1, 2.
(Newton–step for gj(α, β) := fj(qk + α∇f1(qk) + β∇f2(qk) = 0, j = 1, 2.)
until ‖qk+1 − qk‖ small enough.
curvepoint = qk+1.

The marching algorithm:

(C1) Choose a starting point Q0 : q0 and a step length s (approximate distance of neighboured
points).

(C2) First curve point P1 : p1 = curvepoint(q0).

(C3) Curve point Pk+1 : pk+1 = curvepoint(pk + s tk),
with unit tangent tk = (∇f1(pk)×∇f2(pk))/‖ . . . ‖ at point Pk .

(C4) Repeat C3) until the desired number of points is reached or Pk+1 ≈ P0 (closed curve).

Problem 8.1 Determine the intersection curve of the following surfaces (see Figure 8.1)

f1(x, y, z) = x4 + y4 + z4 − 1 = 0
f2(x, y, z) = y2 + (z − z0)2 − z2

0 = 0 (cylinder)

Figure 8.1: To problem 8.1, z0 = 0.47 (left) and z0 = 0.6 (right)
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Remark:
The marching method is rather robust and can even be used for tracing curves with singular points
(i.e. points with ∇f1×∇f2 = 0, see Figure 8.2). But one should take care of the direction of the unit
tangent when passing a singular point (cf. procedure implicit curvepts in program cassini.p).

Figure 8.2: Intersection curve containing a singular point, z0 = 0.5

Remark:
Analogously to a parametric curve the determination of q0 can be done curvature dependent (cf.
Section 4.2). For the curvature vector of an intersection curve see Section 5.4.5.

8.2.2 IS of an implicit and a parametric surface

Let Φ1 : f(x) = 0 be a regular implicit surface and Φ2 : x = S(u, v) a regular parametric surface
The parameters of intersection points are solutions of the equation F (u, v) := f(S(u, v)) = 0, hence
points of an implicit curve in the parameter plane. This curve can be traced by the marching
algorithm for implicit curves (see Section 4.3.1).

Remark:
In order to get a nearly equally spaced polygon in IR3 (!) with distance δ, one should solve the
quadratic system

S2
u∆u2 + 2(Su · Sv)∆u∆v + S2

v∆v2 = δ2

(∇f · Su)∆u + (∇f · Sv)∆v = 0

and use (ui + ∆u, vi + ∆v) as a new starting point for the curvepoint procedure (see 4.3.1).
(From the second equation we find: the solution has the form ∆u = −α(∇f ·Sv), ∆v = α(∇f ·Su).
Inserting these expressions into the first equation yields two solutions for α. The right one can be
chosen with help of the marching direction.)

8.2.3 IS of two parametric surfaces

Intersecting two parametric surfaces is the most difficult case. One simple solution uses the normal-
forms h1 = 0 and h2 = 0 (see Section 5.4) of the given surfaces and applies the marching method
developed for tracing the intersection curve of two implicit surfaces. For the evaluation of hi and
∇hi we use the foot point algorithm for parametric surfaces (Section 5.8.1). For the necessary
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starting point: see the marching method below.

Given: regular surfaces Φ1 : x = S1(s, t), Φ2 : x = S2(u, v) which intersect transversally (i.e. the
normals at an intersection point are linearly independent).

Wanted: Polygon on the intersection curve.

The marching algorithm: (BA,KE’90)

(1) Determining of a starting point P0 and its parameters s0, t0, u0, v0:
Cover the surfaces by rectangular nets, determine bounding boxes for any rectangle and
discover intersecting bounding boxes of the two surfaces. By “divide and conquer” we get
possible pairs of starting points and their parameters. For any pair A0, B0 continue with step
(2.3).

(2) Pi+1, si+1, ti+1, ui+1, vi+1 from Pi, si, ti, ui, vi:

(2.1) 0-th approximation Q0 for Pi+1:
Determine the the unit normal vectors n1(sn, tn),n2(un, vn) and the unit tangent vector
of the intersection curve t := n1 × n2/‖ . . . ‖. Set Q0 = Pi + δt with step length δ.

(2.2) Determine the foot points A0 : a0, B0 : b0 for Q0 on the surfaces. (As starting point for
the foot point algorithm one chooses Pi and its parameters.)

A0

B0

Q0

P

t

i

Figure 8.3: The marching algorithm for parametric surfaces

(2.3) Qk+1, Ak+1, Bk+1 from Ak, Bk:
Let be ε1, ε2 the tangent planes at points Ak, Bk and ε3 the plane passing the midpoint
of the line segment AkBk with normal vector n3 := n1×n2 and Qk+1 the common point
of the 3 planes ε1, ε2, ε3:

Qk+1 : qk+1 =
(n1 · ak)(n2 × n3) + (n2 · bk)(n3 × n1) + (n3 · ak+bk

2 )(n1 × n2)
n1 · (n2 × n3)

Ak+1, Bk+1 are the foot points of Qk+1.

(2.4) If the distance |Ak+1Bk+1| is small enough, we set Pi+1 = Qk+1. The parameters of Pi+1

as point on both the surfaces we take the parameters of its foot points Ak+1 (1. surface)
and Bk+1 (2. surface).

Example 8.1 Figure 8.4 shows the intersection curve of the following two parametric surfaces:
S1(s, t) = (s, t, s2 + t2), S2(u, v) = (u, v, 2− u4 − v4).
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Figure 8.4: Intersection of two parametric surfaces

8.3 Contour lines of surfaces

Definition 8.1 Let Φ be a regular implicit or parametric surface, p a point ∈ Φ and n(p) the
surface normal of p.

• In case of parallel projection the negative projection vector is n0, the normal of the image
plane (see Section 3.1).
Point p is a contour point if n(p) · n0 = 0.

• In case of central projection the negative projection vector of point p is z−p, with eypoint
vector z (see Section 3.2).
Point p is a contour point if n(p) · (z− p) = 0.

The collection of contour points is called contour line.

8.3.1 Contour line of an implicit surface

Let Φ : f(x) = 0 be a regular implicit C2 surface. The contour line of surface Φ is the intersection
curve of Φ with the implicit surface g(x) = 0:

• in case of parallel projection: g(x) := ∇f(x) · n0 = 0,
where n0 is the negative projection vector. The necessary derivative of g is ∇g(x) = Hf (x)n0.

• in case of central projection: g(x) := ∇f(x) · (z− x) = 0,
where z is the eye point vector (centre of projection). The necessary derivative of g is ∇g(x) =
Hf (x)(z− x)−∇f(x).

and can be traced by the marching algorithm for the intersection curve of two implicit surfaces
(Section 8.2.1).

Example 8.2 f(x, y, z) = (1− x)(1 + x)(1− y)(1 + y)(1− z)(1 + z)− c = 0, c > 0.
Surface f(x, y, z) = 0 is for fixed c) a smooth approximation of the cube with vertices (±1,±1,±1).
(See Figure 8.5a).)

Problem 8.2 Establish a smooth approximation of an oktahedron and display it (See Figure 8.5b).)



8.3. CONTOUR LINES OF SURFACES 99

a) b)

Figure 8.5: Contour line of an approximation of a) a cube b) an octahedron

8.3.2 Contour line of a parametric surface

Let Φ : x = S(s, t) be a regular parametric C2 surface. The contour line of surface Φ consists of
points with parameters on the implicit curve g(s, t) = 0 in parameter plane:

• in case of parallel projection: g(s, t) := (Ss(s, t)× St(s, t)) · n0 = 0,
where n0 is the negative projection vector.

• in case of central projection: g(s, t) := (Ss(s, t)× St(s, t)) · (z− S(s, t)) = 0,
where z is the eye point vector (centre of projection).

and can be traced by the marching algorithm for planar implicit curves (Section 4.3.1).

Example 8.3 For S(s, t) = (s, t, 1 − s4 − t4) we get Ss(s, t) = (1, 0,−4s3),St(s, t) = (0, 1,−4t3)
and the normal is Ss(s, t) × St(s, t) = (4s3, 4t3, 1). Hence g(s, t) = 4s3n0x + 4t3n0y + n0z where
n0 = (n0x, n0y, n0z). (See 8.6),

s

t

a) b)

Figure 8.6: Contour line a) on the surface b) in the parameter plane

8.3.3 Contour line of a quadric surface

Definition 8.2 A non planar surface with an implicit representation Φ : f(x, y, z) = a11x
2 +

· · · a12xy + · · · = 0, where f is a polynom of degree 2, is called quadric.
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Lemma 8.1 The contour line of a quadric is in any case a planar curve (a plane section with the
surface). Hence the contour line is a conic.

Proof: a) In case of parallel projection the statement is obvious.
b) In case of central projection: Let be Φ : f(x, y, z) = a11x

2 + · · · a12xy + · · ·+ l(x, y, z) = 0, where
l(x,y,z) is the linear part of f . From ∇f(x, y, z) · x = (2a11x + a12y + a13z, · · · , · · · )> · (x, y, z)> =
2(a11x

2+a12xy+· · · ) = f(x, y, z)−l(x, y, z) and f(x) = 0 we get∇f(x)·(z−x) = ∇f(x)·z−l(x) = 0,
which is a linear equation. 2

Example 8.4 1. For the sphere x2 + y2 + z2 − 1 = 0 the contour curve is a circle

2. For an ellipsoid x2

a2 + y2

b2 + z2

c2 − 1 = 0 the contour curve is an ellipse.

3. For the hyperboloid of one sheet x2 + y2 − z2 − 1 = 0 the contour curve can be nearly any
conic.

(Figure 8.7)

a) b)

Figure 8.7: a) ellipsoid b) hyperboloid of one sheet

a) b)

Figure 8.8: central projection of a sphere, contour is a) a circle, b) an ellipse

Remark:
In case of centralprojection the conic may be empty. For example, if the centre z is in the inner
part of an ellipsoid.
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8.4 Hiddenline–algorithm for simple cases

Given: Regular oriented surface Φ and a polygon Π : p1,p2, ... on a curve Γ ⊂ Φ.
Wanted: Decision if point pi is invisible for i = 1, 2, ....
Afterwards: The polygon Π is projected and neighbored, still visible points connected by a line
segment.

8.4.1 Fast normal–test

Let Φ be a regular oriented surface, p a point ∈ Φ and n(p) a normal pointing “outside” at point
p. Then point p is invisible if:

• in case of parallel projection: n(p) · n0 < 0,
where n0 is the negative projection vector.

• in case of central projection: n(p) · (z− p) < 0,
where z is the eye point vector (centre of projection).

The fast normal–test is sufficient for convex surfaces or special situations of non convex surfaces.
For example: 1) ellipsoid 2) hyperboloid (non convex, but view not to steep) above (see Figure 8.7).
The normal test is not sufficient for example in case of a torus and low projection angle v (see
Figure 8.9).

a) b)

Figure 8.9: Normal test for torus: a) contour lines only b) parametric curves

8.4.2 Ray–test for implicit surfaces

An essential improvement of the simple normal–test is the ray–test:

Given: Regular implicit surface Φ : f(x) = 0 and a polygon Π : p1,p2, ... on a curve Γ ⊂ Φ.
Wanted: Decision if point pi is invisible for i = 1, 2, ....

Idea: We consider the negative projection ray for point pi and look for an intersection of the ray
with the surface. In case of an intersection: point pi is invisible.

Ray-test algorithm:

1. Choose a simple surface Ψ0 (sphere, plane, cube or combinations) as bounding surface and
a minimal step length δ.

2. Consider the ray (line) g : x = c(t) = pi + tr, t > 0, where in case of
parallel projection: r = n0 (normal of the image plane),
central projection: r = z− pi (z: eye point).
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3. Intersect g with the bounding surface Ψ0. The corresponding parameter is t0 and the sign of
f(c(t0)) is σ0.

4. Test if the sign σ of f(c(t)) is different from σ0 for
1. run: t = t0/2,
2. run: tk := kt0/4, k = 1, 2, 3
· · ·
n. run: tk = kt0/2n, k = 1, 2, ...2n − 1.
until σ 6= σ0 or ‖r‖t0/2n < δ.
(Already testet points are omitted in each run.)

5. In case of σ 6= σ0: point pi is invisible, else: pi is visible.

1
2

2

3

3

3

3

P

simple bounding surface

ray

Figure 8.10: Ray–test for a torus

Figure 8.11 shows an application of the ray–test to a torus. The bounding surface is a truncated
sphere.
The ray test can be applied to several surfaces, too. (See Figure 8.12.)

a) b)

Figure 8.11: Ray–test for a torus: a) contour lines only, b) parametric curves
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Figure 8.12: two tori, displayed with ray–test

Remark:
The ray–test for quadrics can be accelerated by determining the intersection points (quadratic
equation) exactly instead of the binary search for a change of the sign (see Figure 8.13.

Figure 8.13: quadrics, displayed with ray–test
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Chapter 9

CONICS AND QUADRICS

Definition 9.1 Let A be a regular n × n matrix and x0 ∈ IRn, n = 1, 2, 3, .. then the function
x→ x0 + Ax is called affine map.

Lemma 9.1 Any affine map preserves the parallel relation between lines.

Proof: The affine image of a line g : x = p+ tr is determined by the image P ′, Q′ of the two points
P : p, Q : p+r. From P ′ : p′ = x0 +Ap, Q′ : x0 +A(p+r) = p′+Ar we get g′ : x = x0 +Ap+ tAr.
Two lines gi : x = pi + tri are parallel if and only if there exists a λ ∈ IR such that r1 = λr2.
Without loss of generality we assume r1 = r2. Hence, the image of two parallel lines are parallel,
too. 2.

The x,y,z coordinates used in this chapter are always cartesian (refer to a orthonormal base).

9.1 Conics

9.1.1 Ellipse

Definition 9.2 C1 := {(x, y) ∈ IR2|x2 + y2 = 1} = {(cos t, sin t)|0 ≤ t ≤ 2π} is called unit circle.

Definition 9.3 Any affine image of the unit circle is called ellipse. Hence for any p0 ∈ IR2 and
linear independent vectors f1, f2 ∈ IR2 the point set

E = {p0 + f1 cos t + f2 sin t | 0 ≤ t ≤ 2π}.

is an ellipse and any ellipse can be represented in such a way.

Let be E an ellipse x = f1 cos t + f2 sin t. From f1 cos(t + π) + f2 sin(t + π) = −f1 cos t− f2 sin t we
get:

Lemma 9.2 An ellipse E : x = p0 + f1 cos t + f2 sin t is symmetric to point p0.
P0 : p0 is called midpoint of ellipse E and the line segment x(t)x(t + π) a diameter of E.

Definition 9.4 Two diameters X1X
′
1 and X2X

′
2 of an ellipse are called conjugated diameters, if

the tangents at X1, X
′
1 are parallel to X2X

′
2 and vice versa.

Lemma 9.3 Conjugated diameters are the images of two orthogonal diameters of K1 with respect
of the accompanying affine map. Hence f1 and f2 are the directions of two conjugated diameters.

Proof: Let be E an ellipse x = f1 cos t + f2 sin t. From ẋ(t) = −f1 sin t + f2 cos t = f1 cos(t + π
2 ) +

f2 sin(t + π
2 ) = x(t + π

2 ) = −x(t− π
2 ) we get the statement. 2
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a)

f1

f2

P0
1

y

1
x

E

1C

b)

f

f

2

1

0P

Figure 9.1: a) Ellipse as affine map of the unit circle b) Conjugated diameters of an ellipse

Lemma 9.4 Let E be an ellipse that is no circle. There exists exactly one orthogonal pair of
conjugated diameters, the main axis of E. The corresponding ellipse points are called the 4 vertices
of E.

Proof: Let be E the ellipse x = f1 cos t + f2 sin t. E is a circle if and only if f2
1 = f2

2 and f1 · f2=0.
Let be E no circle: x(t) and ẋ(t) are the directions of conjugated diameters. The equation x(t) ·
ẋ(t) = f1 · f2(cos2 t− sin2 t) + (f2

2 − f2
1 ) sin t cos t = f1 · f2 cos(2t) + (f22−f21 )

2 sin(2t) = 0. has exactly 4
solutions in [0, 2π):
In case of f2

1 = f2
2 : ±π

4 , π ± π
4 . Other cases: α := 1

2 arctan( 2f1·f2
f21−f22

), α± π
2 , α + π. 2

9.1.2 Hyperbola

Definition 9.5 H1 := {(x, y) ∈ IR2|x2 − y2 = 1} = {(± cosh t, sinh t)|t ∈ IR} is called unit
hyperbola. The lines y = ±x are called asymptotes of H1.

Definition 9.6 Any affine image of the unit hyperbola is called hyperbola. Hence for any p0 ∈ IR2

and linear independent vectors f1, f2 ∈ IR2 the point set

H = {p0 +±f1 cosh t + f2 sinh t | t ∈ IR}.

is a hyperbola and any hyperbola can be represented in such a way.

Lemma 9.5 A hyperbola H : x = p0 +±f1 cosh t + f2 sinh t is symmetric to point p0.
P0 : p0 is called midpoint of hyperbola H and the line segment x(t)x(t + π) a diameter of H.

Proof: The points p0 + f1 cosh t + f2 sinh t, p0 − f1 cosh(−t) + f2 sinh(−t) are points of H and p0

their midpoint. 2

Definition 9.7 Let be H : x = x(t) := p0 + ±f1 cosh t + f2 sinh t. A point x(t) is called vertex of
H if ẋ(t) · (x(t)− p0) = 0.

Lemma 9.6 Let be H : x = x(t) := p0 +±f1 cosh t + f2 sinh t. The tangent line at P1 : p0 + f1 is
parallel to f2 and P12 : p0 + f1 + f2 is on an asymptote. In case of f1⊥f2 the points p0 ± f1 are the
two vertices of the hyperbola.

Point P2 : p0 + f2 is not a point of the hyperbola H ! But is contained in the conjugated hyperbola

H ′ := {p0 + f1 sinh t± f2 cosh t | . . .}
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Figure 9.2: Hyperbola as affine map of the unit hyperbola

9.1.3 Parabola

Definition 9.8 P1 := {(x, y) ∈ IR2|y = x2} is called unit parabola Its vertex is (0, 0) and its axis
the y–axis.

Definition 9.9 Any affine image of the unit parabola is called parabola. Hence for any p0 ∈ IR2

and linear independent vectors f1, f2 ∈ IR2 the point set

P = {p0 + f1t + f2t2 | t ∈ IR}.

is a parabola and any parabola can be represented in such a way.

P

1

1

P
f

f

1

2

12

P

1
P

0

Figure 9.3: Parabola as affine map of the unit parabola

Definition 9.10 Let be P : x = x(t) := p0 + f1t + f2t2. A point x(t) is called vertex of P if
ẋ(t) · f2 = 0.
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P0 : p0 is a point of P , f1 tangent vector at point P0 and f2 direction of the parabola axis and
P12 : p0 + f1 + f2 an additional point of the parabola.
If f1, f2 are perpendicular, then P0 is the vertex of the parabola P .

9.1.4 Equation of a conic

Given: ellipse E : x = f1 cos t + f2 sin t
Wanted: Equation f(x, y) = 0 of E (implicit representation of E).

Solving the linear system

x = f1x cos t + f2x sin t (with x = (x, y), fi = (fix, fiy).)
y = f1y cos t + f2y sin t

for cos t and sin t yields from (cos t)2 + (sin t)2 − 1 = 0:

f(x, y) := (xf2y − yf2x)2 + (yf1x − xf1y)2 − (f1xf2y − f1yf2x)2 = 0.

This is the equation of the ellipse E.

Analogously one gets the equation of the hyperbola x = ±f1 cosh t + f2 sinh t from (cosh t)2 −
(sinh t)2 − 1 = 0 :

f(x, y) := (xf2y − yf2x)2 − (yf1x − xf1y)2 − (f1xf2y − f1yf2x)2 = 0,

Equation of the parabola x = f1t + f2t2 from t · t− t2 = 0 :

f(x, y) := (xf2y − yf2x)2 − (yf1x − xf1y)(f1xf2y − f1yf2x) = 0.

9.1.5 Conics in space

The description of the conics given in the previous sections by vectors p0, f1, f2 allows the simple
extension into IR3: Just choose the vectors p0, f1, f2 from IR3.

9.2 Quadrics: ellipsoid, cylinder

The definition of quadrics in IR3 can be done analogously to the definition of the conics. We give
just two examples: ellipsoid and cylinder.

9.2.1 Ellipsoid

Definition 9.11 S1 := {(x, y, z) ∈ IR3|x2 + y2 + z2 = 1} = {(cos β cos α, cos β sinα, sinβ) | 0 ≤
α ≤ 2π,−π/2 ≤ β ≤ π/2}, is called unit sphere.

Definition 9.12 Any affine image of the unit sphere is called ellipsoid. Hence for any p0 ∈ IR3

and linear independent vectors f1, f2, f3 ∈ IR3 the point set

E = {p0 + f1 cos β cos α + f2 cos β sinα + f3 sinβ | . . .}

is an ellipsoid and any ellipsoid can be represented in such a way.

The coordinates ξ, η, ζ of a point of E with respect of the coordinate system with origin P0: p0 and
base vectors {f1, f2, f3} fulfil the following equation

ξ2 + η2 + ζ2 = (cos β cos α)2 + (cos β sinα)2 + (sinβ)2 = . . . = 1,

i.e. E is the unit sphere with respect of the system (P0; f1, f2, f3).
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Figure 9.4: Ellipsoid as affine image of the unit sphere

Definition 9.13 Let be E an ellipsoid with accompanying affine map α. Hence, E = α(K1).
The images of three mutually perpendicular diameters of the unit sphere K1 are called conjugated
diameters of the ellipsoid E.

P0 : p0 is the midpoint of the ellipsoid E.
f1, f2, f3 conjugated half axes of E and
P1 : p0 + f1, P2 : p0 + f2, P3 : p0 + f3 conjugated points of E.
f1, f2, f3 are i.g. not perpendicular. But the following is true:

Lemma 9.7 The tangent plane at P1 is parallel f2, f3 , a.s.o..

Proof: straight forward calculation. 2

If f1, f2, f3 are mutually perpendicular then p0 ± f1,p0 ± f2,p0 ± f3 are the vertices of E.

The equation f(x, y, z) = 0 of the ellipsoid x = f1ξ + f2η + f3ζ, ξ2 + η2 + ζ2 = 1 yields from the
system

x = f1xξ + f2xη + f3xζ (with x := (x, y, z), fi = (fix, fiy, fiz))
y = f1yξ + f2yη + f3yζ
z = f1zξ + f2zη + f3zζ.

Solving for ξ, η and ζ one gets from ξ2 + η2 + ζ2 = 1 the equation

f(x, y, z) := det(x, f2, f3)2 + det(f1,x, f3)2 + det(f1, f2,x)2 − det(f1, f2, f3)2 = 0,

where det(v1,v2,v3) is the 3× 3-determinant with columns v1,v2,v3 ∈ IR3.

9.2.2 Cylinder

Definition 9.14 C1 := {(x, y, z) | x2 + y2 = 1} = {(cos ϕ, sinϕ, α) | 0 ≤ ϕ ≤ 2π, α ∈ IR}, is called
unit cylinder

Definition 9.15 Any affine image of the unit cylinder is called cylinder. Hence for any p0 ∈ IR3

and linear independent vectors f1, f2, f3 ∈ IR3 the point set

C = {p0 + f1 cos ϕ + f2 sinϕ + f3α | . . .}

is a cylinder and any cylinder can be represented in such a way.
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Figure 9.5: Cylinder as affine image of the unit cylinder

The coordinates ξ, η, ζ of a point of C with respect of the coordinate system with origin P0: p0 and
base vectors {f1, f2, f3} fulfill the following equation

ξ2 + η2 = cos ϕ2 + sinϕ2 = 1,

i.e. C is the unit cylinder with respect of the system (P0; f1, f2, f3).

E0 := {p0 + f1 cos ϕ + f2 sinϕ | . . .} is called base ellipse of C.
f3 the axis vector of C.
f1, f2, f3 are i.g. not perpendicular.
The equation f(x, y, z) = 0 of the cylinder C : x = f1 cos ϕ+ f2 sinϕ+ f3α follows from the system

x = f1x cos ϕ + f2x sinϕ + f3xα (with x := (x, y, z), fi := (fix, fiy, fiz))
y = f1y cos ϕ + f2y sinϕ + f3yα

z = f1z cos ϕ + f2z sinϕ + f3zα.

Solving for cos ϕ and sinϕ and using (cos ϕ)2 + (sinϕ)2 = 1 we get

f(x, y, z) := (det(x, f2, f3))2 + (det(f1,x, f3))2 − (det(f1, f2, f3))2 = 0.



Chapter 10

SURFACES OF REVOLUTION,
RULED SURFACES, COONS
PATCHES, CANAL SURFACES

This chapter deals with surfaces which are generated by moving a curve/surface in space. A surface
of revolution is generated by rotating a planar curve. Moving a line generates a ruled surface.
Moving spheres and cones yield canal surfaces and embankment surfaces, respectively. A Coons
patch is an interpolation of a curved quadrangle. For its generation ruled surfaces are used.

10.1 Surfaces of revolution

Definition 10.1 Let be

• Γ : (r(t), z(t))>, t ∈ [a, b] a parametric curve in r-z-plane with r > 0.
Surface Φ : x = (r(t) cos ϕ, r(t) sinϕ, z(t))>, t ∈ [a, b], ϕ ∈ [0, 2π] is called parametric surface
of revolution,

• Γ : f(r, z) = 0 an implicit curve in r-z-plane with r > 0.
Surface Φ : f(

√
x2 + y2, z) = 0 is called implicit surface of revolution,

Γ its profile curve, the z-axis its axis and a section with a plane containing the axis a meridian
curve.

Lemma 10.1 If the profile curve of a surface of revolution (parametric or implicit) is a regular
Cn–curve then the surface is regular of class Cn, too.

Proof: Parametric case: From xt = (r′(t) cos ϕ, r′(t) sinϕ, z′(t))>, xϕ = (−r(t) sinϕ, r(t) cos ϕ, 0)>

we get ‖xt × xϕ‖ = ‖(−rz′ cos ϕ,−rz′ sinϕ, rr′)>‖ = r
√

(r′)2 + (z′)2 6= 0.

Implicit case: From F (x, y, z) := f(
√

x2 + y2, z) = 0 we get
‖∇F‖ = ‖(frx/

√
x2 + y2, fry/

√
x2 + y2, fz)>‖ =

√
f2

r + f2
z 6= 0. 2

Example 10.1 Figure 10.1 shows surfaces of revolution with a) a Bézier curve b) the implicit curve
(r − 2.5)4 + z4 − 1 = 0 as profile curves.

Lemma 10.2 Let be Φ a regular C2 continuous surface of revolution (parametric or implicit). The
meridians and the circles which are sections of Φ with planes perpendicular to its axis are the lines
of curvature.

111
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a) b)

Figure 10.1: a) parametric b) implicit surface of revolution

Proof: The change of the unit normal while marching in tangent direction of a meridian is parallel
to this tangent direction. Hence, the tangent of a meridian is a eigen direction of the Hessian Hh of
the normalform function h (see Section 5.4). Any circle (intersection of Φ with a plane orthogonal
to the axis) intersects the meridian orthogonally. That means, they are the second family of lines
of curvatures. 2

10.2 Ruled surfaces

Definition 10.2 Let be Γ : x = c(t), t ∈ [a, b] a regular Cn, n ≥ 1 curve in IR3 and r(t), t ∈ [a, b]
nonzero vectors of class Cn. The surface Φ : x = x(s, t) := c(t) + sr(t), (s, t) ∈ [a, b] × [c, d] is
called ruled surface. Any line x = x(s, t = const) is called ruling and curve Γ the base curve of the
parameterization.

Simple examples of ruled surfaces are cylinders and cones. Figure 10.2 shows non trivial ruled
surfaces.

a) b)

Figure 10.2: Ruled surfaces

Obviously the following statement on the regularity is true:
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Lemma 10.3 The above representation of a ruled surface is regular and of class Cn, if (ċ+sṙ)×r 6=
0.

Ruled surfaces of important practical use are the developable ones.

Definition 10.3 A ruled surface is called developable if the tangent planes along any ruling are
the same.

Considering the curvature of a ruled surface we proof

Lemma 10.4 Let be Φ a regular ruled surface.

• At any point the Gauss–curvature K ≤ 0.

• If Φ is developable the Gauss–curvature is K = 0.

Proof: Obviously, at any point the normal curvature in at least one direction is 0. From the Euler–
formula (see Section 5.4.2) kn(ϕ) = −κ1 + (κ1 − κ2) sin(ϕ)2 we recognize: The normal curvature
is either a) constant 0 or b) one of the main curvatures is 0 or c) k1 and k2 have opposite signs in
order to reach the value 0. In any case we get K ≤ 0.
If Φ is developable the normals along a ruling do not change. Hence one eigenvalue (negative main
curvature) of Hh is 0 and so K, too. 2

Lemma 10.5 Let be Φ : x = x(s, t) := c(t) + sr(t), a regular ruled surface. Φ is developable if
det(r, ċ, ṙ) = 0.

Proof: xs × xt = r × (ċ + sṙ) are parallel for fixed parameter t if the vectors r, ċ, ṙ are linearly
dependent, hence det(r, ċ, ṙ) = 0. 2

10.3 Developable connections between curves

Let be Γ1 : p(u) and Γ2 : q(u), u ∈ [a, b] A surface that interpolates both curves is the simple ruled
surface

Φ : x(u, v) := (1− v)p(u) + vq(u), (u, v) ∈ [a, b]× [0, 1].

Φ depends essentially on the parameterization of the given curves, because points with equal pa-
rameter u are connected by a line.

In praxis there often is need of developable connections between two curves. In this case we are
not allowed to connect points with the same parameter u because the surface should have the same
tangent planes along any ruling.
Let be Γ1 : p(u) and Γ2 : q(w) two regular curves which are not contained in a plane. In order to
get a developable surface that connects Γ1,Γ2 a point P : p(u) of Γ1 has to be connected to a point
Q(u) : q(w(u)) on Γ2 such that the tangent planes for surface points on the line PQ agree. This is
the case if the tangent vector ṗ(u) at P , the tangent vector q̇(w(u)) at Q(u) and the direction (of
the ruling) p(u)− q(w(u)) are linearly dependent, hence if

(DV) det(ṗ(u), q̇(w(u)),p(u)− q(w(u))) = 0.

The parametrization of the surface is

Φ : x(u, v) := (1− v)p(u) + vq(w(u)).

For any u equation (DV) has to be solved. One has to provide suitable starting parameters.

Developable polyhedral approximation:
The equation above is the key for the construction of a developable polyhedral approximation:

The algorithm:
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1. Generate a Polygon Π : p(u1),p(u2), ... on curve Γ1.

2. For any point p(ui) of Π: Determine a point q(wi) ∈ Γ2 with det(ṗ(ui), q̇(wi),p(ui)−q(wi)) =
0 by a Newton–iteration for a suitable starting parameter. “Suitable” means, that the surface
to be generated should be similar to a pipe to meet the technical demand.

.
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p i

q

(u  )
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Figure 10.3: Condition for “developable”

3. Developing the generated polyhedral surface:
Divide any quadrangle between two rulings into two triangles and develop the strip of trian-
gles. For developing a triangle P,Q,R let be P ,Q the developing of the points P,Q.

Pi

P
i+1

Qi+1Q i

P
_

Q
_

R
_

e
1

e 2
a

b

Figure 10.4: Developing a triangle

Determine
(1) the lengths of line segments PQ(= PQ), PR, QR.
(2) the unit vector e1 in direction PQ, e2 ⊥ e1.
(3) a, b are the coordinates of point R in system (P ; e1, e2). Hence, point (a, b) is one of the
two intersection points of the circles x2 + y2 = |PR|2, (x− |PQ|)2 + y2 = |RQ|2. Solving the
system yields:
a = |PQ|2+|RP |2−|RQ|2

2|PQ| , b = |RP |2 − a2.

(4) R = P + ae1 + be2 (developing of R).

Example 10.2 Figure 10.5 shows the development of a connection surface of two ellipses:
1. Ellipse in x-y-plane: (x−50)2

302 + y2

502 = 1, 2. Ellipse in y-z-plane: y2

202 + (z−50)2

402 = 1.
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Figure 10.5: Developing of a connection surface between two ellipses

10.4 Coons patches

Given: The boundaries of a curved quadrangular patch:
x = x(u, 0), x = x(u, 1), x = x(0, v), x = x(1, v), u, v ∈ [0, 1].

Wanted: A surface x = x(u, v) that interpolates the four curves.

Idea: consider the two ruled surfaces r1, r2 which interpolate x(u, 0),x(u, 1) and x(0, v),x(1, v)
respectively. Combine these surfaces together with a suitable correction rcd, in order to meet the
demand:
r1(u, v) := (1− v)x(u, 0) + vx(u, 1), r2(u, v) := (1− u)x(0, v) + ux(1, v),

r12 := (1− u, u)
(

x(0, 0) x(0, 1)
x(1, 0) x(1, 1)

) (
1− v

v

)
= (1− u)

(
(1− v)x(0, 0) + vx(0, 1)

)
+ u

(
(1− v)x(1, 0) + vx(1, 1)

)
The surface

Φ : x = r1(u, v) + r2(u, v)− r12(u, v)

is the solution of the problem, because
r1(0, v)+r2(0, v)−r12(0, v) = (1−v)x(0, 0)+vx(0, 1)+x(0, v)−

(
(1−v)x(0, 0)+vx(0, 1)

)
= x(0, v),

· · ·
(The surface x = r12(u, v) is a bilinear interpolation of the quadrangle x(0, 0),x(1, 0),x(0, 1),x(1, 1).)
Φ is called bilinear blended Coons patch (see Farin: Curves and Surfaces ...).
Figure 10.6 shows an example of a Coons patch together with the ruled surfaces needed for its
generation.

10.5 Canal surface, embankment surface

Canal surfaces and embankment surfaces rely on the same method of generation:
Given a one parameter family of regular implicit surfaces Φc : f(x, c) = 0, c ∈ [c1, c2]. The inter-
section curve of two neigbored surfaces Φc and Φc+∆c fulfills the two equations f(x, c) = 0 and
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a) b)

c) d)

e)

Figure 10.6: Generation of a Coons patch: a) boundary curves, b) Coons patch, c),d) ruled surfaces
r1 and r2 e) bilinear surface r12

f(x, c+∆c) = 0. We consider the limit for ∆c→ 0 and get fc(x, c) = lim∆→ 0
f(x,c)−f(x,c+∆c)

∆c = 0.
The last equation motivates the following definition.

Definition 10.4 Let be Φcf(x, c) = 0, c ∈ [c1, c2] a one parameter family of regular implicit C2–
surfaces. The surface which is defined the two equations

f(x, c) = 0, fc(x, c) = 0

is called envelope of the given family of surfaces.

The condition for the regularity of the envelope is

Lemma 10.6 Let be Φcf(x, c) = 0, c ∈ [c1, c2] a one parameter family of regular implicit Cn–
surfaces, n ≥ 2. The envelope of the family Φc is a regular Cn−1–surface if fcc(x, c) 6= 0.
The envelope has G1–contact to the surfaces Φc.

Proof: Because of fcc(x, c) 6= 0 the equation fc(x, c) = 0 can be solved locally for c. If c(x) is the
solution we get the (theoretical) implicit representation of the envelope: F (x) = f(x, c(x)) = 0.
Differentiating yields: ∇F (x) = ∇f(x, c(x)) − fc(x,c(x))

fcc(x,c(x))∇fc(x, c(x)). Hence, for points on the
envelope we have ∇F (x) = ∇f(x, c(x)) 6= 0. 2
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10.5.1 Canal surfaces

Definition 10.5 Let Γ : x = c(u) = (a(u), b(u), c(u))> be a regular space curve and r(t) a C1–
function with r > 0 and |ṙ| < ‖ċ‖. The envelope of the one parameter family of spheres

f(x;u) :=
(
x− c(u)

)2 − r(u)2 = 0

is called a canal surface and Γ its directrix.
In case of a constant radius function the envelope is called pipe surface.

In order to get a parametric representation we consider the envelope condition:

fu(x, u) := 2
((

x− c(u)
)
ċ(u)− r(u)ṙ(u)

)
= 0

which is for any parameter t the equation of a plane orthogonal to ċ(u). Hence, the envelope is the
collection of circles. This statement is the key for the following parametric representation:
The midpoint of the circle has distance d := rṙ

‖ċ‖ < r (see condition above) from the centre of the

sphere and radius
√

r2 − d2.

x = x(u, v) := c(u)− r(u)ṙ(u)
‖ċ(u)‖2

ċ(u) +
r(u)

√
‖ċ(u)‖2 − ṙ2

‖ċ(u)‖
(
e1(u) cos(v) + e2(u) sin(v)

)
,

with e1, e2 an orthonormal base orthogonal to tangent vector ċ, is a parametric representation of
the canal surface.
For ṙ = 0 we get the parametric representation of a pipe surface:

x = x(u, v) := c(u) + r
(
e1(u) cos(v) + e2(u) sin(v)

)
.

Figure 10.7 shows a canal surface with the helix (cos(u), sin(u), 0.25u), u ∈ [0, 4] as directrix and
r(u) := 0.2 + 0.8u/2π. The choice for e1, e2 is: e1 := (ḃ,−ȧ, 0)/‖ · · · ‖, e2 := (e1 × ċ)/‖ · · · ‖.

a) b)

Figure 10.7: Generation of a canal surface a) spheres b) envelope of the spheres



118 CHAPTER 10. SURFACES OF REVOLUTION, RULED SURFACES, ...

10.5.2 Embankment surfaces

Definition 10.6 Let Γ : x = c(u) = (a(u), b(u), c(u))> be a regular space curve and m ∈ IR,m > 0
with |mċ| <

√
ȧ2 + ḃ2. The envelope of the one parameter family of cones

f(x;u) := (x− a(u))2 + (y − b(u))2 −m2(z − c(u))2 = 0

is called an embankment surface and Γ its directrix.

In order to get a parametric representation we consider the envelope condition:

fu(x, u) := (x− a(u))ȧ(u) + (y − b(u))ḃ(u)−m2(z − c(u))ċ(u) = 0

which is the equation of a plane passing the vertex of the cone with parameter u. The condition
|mċ| <

√
ȧ2 + ḃ2 guarantees an intersection with the cone. (For proof: consider the intersection

within the plane z = c + 1.)
The envelope consists of two ruled surfaces which can be represented parametrically as follows:

x = x(u, v) := c(u) + vr1/2(u)

with r1(u) := (ξ1(u), η1(u), 1), r2(u) := (ξ2(u), η2(u), 1) and (ξ1, η1), (ξ2, η2) intersection points of
the circle ξ2 + η2 −m2 = 0 and the line ξȧ + ηḃ−m2ċ = 0.

Figure 10.8 curve Γ is the helix (cos(t), sin(t), 0.1u + 0.2)>, u ∈ [0, 4] and m = 1. For determining
the vectors r1, r2 the intersection with plane z = 0 was considered and v ∈ [0, 1].

a) b)

c)

Figure 10.8: Generation of an embankment surface a) cones b) c) envelope of the cones
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BLENDING CURVES AND
SURFACES

Smoothing edges and corners of objects defined by intersecting surfaces is a basic task in CAD. The
operation is called blending. A measure of the smoothness of the blending surface is the degree n
of the so called geometric continuity, Gn-continuity. G1-continuity means the tangent planes at the
curves of contact are the same. G2-continuity guarantees the continuity of the normal curvatures.
There are several methods for blending two surfaces. They depend essentially on the representations
of the surfaces to be blended.

11.1 Gn–blending

Definition 11.1 a) A regular Cn–continuous curve Γ which has Gn–contact (see Section 5.4.3)
to regular Cn–continuous curves Γ1,Γ2, ... at points p1 ∈ Γ1,p2 ∈ Γ2, ... respectively, is called a
Gn–blending curve of Γ1,Γ2, ... with contact points p1,p2, ....
b) A regular Cn–continuous surface Φ which has Gn–contact to regular Cn–continuous surfaces
Φ1,Φ2, ... at curves Γ1 ⊂ Φ1,Γ2 ⊂ Φ2, ... respectively, is called a Gn–blending surface of Φ1,Φ2, ...
with contact curves Γ1,Γ2, ....

11.2 Implicit Gn–blending curves and surfaces

For functional splines we need the following statement.

Lemma 11.1 Let α : IR→ IR be a Cn-function with α(i)(0) = 0 for i = 0, 1, ...n and f, g, v : IRk → IR
be Cn-functions.
Then Function F : IRk → IR with

F (x) := f(x)− α
(
g(x)

)
v(x)

and function f have at points x ∈ IRk with f(x) = g(x) = 0 the same partial derivatives up to the
n− th order.
Hence: If f = 0 and g = 0 are implicit plane curves (surfaces) then the curve (surface) F = 0 has
Cn-contact to f = 0 at intersection points f = 0, g = 0.

Proof: straight forward calculation.

The known implicit blending methods can be considered as generalizations of simple plane cases:

119
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• The parabola y− x2 = 0 is a G1-blending curve of the line y = 0 with the intersection point
of the coordinate axes, i.e. (0, 0), as contact point.
The generalization leads to the parabolic functional splines.

• The circle (x − 1)2 + (y − 1)2 − 1 = 0 is a G1-blending curve of the lines x = 0 and y = 0
(coordinate axes) with the intersection points
of line x = 0 with line y = 1, i.e. point (0, 1),
of line y = 0 with line x = 1, i.e. point (1, 0),
as points of contact.
The generalization leads to the elliptic functional splines.

11.2.1 Parabolic functional splines

Theorem 11.1 Let f = 0, f0 = 0 be two intersecting Cn–continuous regular implicit plane curves
(surfaces) and let the explicit plane curve d = α(c), the correlation curve, have Cn-contact to the
c–coordinate axis at (0, 0), i.e. α(k)(0) = 0 for k = 0, .., n.
Then the implicit blending curve (surface)

F := f − α(f0) = 0

has Cn–contact to f = 0 at points (curves) of contact f = 0, f0 = 0.
F is regular at points with ∇f ×∇f0 6= 0.
F = 0 is called parabolic functional spline, f = 0 the base curve (surface) and f0 = 0 the
transversal curve (surface).

Proof: obvious.

For blending two or more base curves (surfaces) one may choose f := f1f2 · · · fk and a suitable
transversal f0 (see examples below).

An extension of Theorem 11.1 is the following statement:

Theorem 11.2 Let f1 = 0, f10 = 0 and f2 = 0, f20 = 0 be two pairs of intersecting Cn–continuous
regular implicit plane curves (surfaces) and let the explicit plane curves d = α1(c) and d = α2(c), the
correlation curves, have Cn-contact to the c–coordinate axis at (0, 0), i.e. α

(k)
1 (0) = 0, α

(k)
2 (0) = 0

for k = 0, .., n.
Intersection point (curve) fi = 0, fi0 = 0 must not be contained in curves (surfaces) fk = 0 and
fk0 = 0 for i 6= k.
Then the implicit blending curve (surface)

F (x) := f1(x) α2

(
f20(x)

)
− f2(x) α1

(
f10(x)

)
= 0

has Gn–contact to fi = 0 at regular points (curves) of contact fi = 0, fi0 = 0, αk(fk0) 6= 0 for
i, k = 1, 2, i 6= k.
F = 0 is called symmetric parabolic functional spline, fi = 0, i = 1, 2, the base curves (sur-
faces) and fi0 = 0, i = 1, 2 the transversal curves (surfaces).

Proof: In the vicinity of regular intersection points (curves) f1 = 0, f10 = 0, α2(f20) 6= 0 equation
F = 0 is equivalent to F := f1 − α1(f10) f2

α2(f20)
= 0. From Lemma 11.1 we get the Gn–continuity.

Analogously one treats the second case. 2

Simple examples for explicit Cn–correlation curves are
d = µ

1−µcn+1, 0 < µ < 1, n ≥ 1 .
Hence the Gn–blending curves (surfaces)
a) of Theorem 11.1 can be expressed by
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F̃ := (1− µ)f − µfn+1
0 = 0, 0 < µ < 1, n ≥ 1

Varying µ effects a variation of the closeness of F̃ = 0 to the base curve (surface). Hence µ plays
the role of a thumbweight.
b) of Theorem 11.2 using α1(c) = (1− µ)cn+1, α2(c) = µcn+1 by

F̃ := (1− µ)f1 fn+1
20 − µf2 fn+1

10 = 0 0 < µ < 1, n ≥ 1.

Varying µ effects an asymmetric variation of the closeness of F̃ = 0 to the base curves (surfaces).
We call µ balance.

Example 11.1 (parabolic functional splines)

a) f(x, y, z) = 1− x2 − y2 − z2 = 0, (sphere),
f0(x, y, z) = z = 0 (plane).
The parabolic functional spline F := (1 − µ)f − µfn+1

0 = 0, has Gn–contact to the sphere
along the ”equator”.
Figure 11.1a) shows the functional spline for z ≥ 0 together with the lower part of the sphere
pasted at the equator. The parameters are n = 2, µ = 0.056.

b) f1(x, y, z) = r2 − x2 − z2 = 0 (cylinder), f2(x, y, z) = r2 − y2 − z2 = 0 (cylinder),
f0(x, y, z) = z = 0 (plane).
The parabolic functional spline F := (1−µ)f1f2−µfn+1

0 = 0, has Gn–contact to the cylinders.
Figure 11.1b) shows the functional spline for z ≥ 0.

c) fi = 0, i = 1, . . . , 4, f0 = 0 are planes. The parabolic functional spline F := (1−µ)f1f2f3f4−
µfn+1

0 = 0 has Gn–contact to the ”roof”.
(see Figure 11.1c), parameters: n = 2, µ = 0.5).

d) For f1(x, y, z) := x2 + y2 − 1 = 0, (cylinder), f2(x, y, z) := x2 + z2 − 1 = 0, (cylinder),
f3(x, y, z) := y2 + z2 − 1 = 0, (cylinder), f0(x, y, z) := 9− x2 − y2 − z2 = 0 (sphere).
the parabolic functional spline

(1− µ)f1f2f3 − µf3
0 = 0

has G2–contact to the 3 cylinders at the 3 circles fi = 0, f0 = 0, i = 1, 2, 3.
(see Figure 11.2, parameters: n = 2, µ = 0.0003).

Example 11.2 (symmetric parabolic functional splines)

a) f1(x, y, z) = 4− x2 − y2 = 0 (cylinder), f10(x, y, z) = z + 1 = 0 (plane)
f2(x, y, z) = x2 − y2 − 1 = 0 (cylinder), f20(x, y, z) = 1− z = 0 (plane).
The symmetric parabolic functional spline (1− µ)f1 fn+1

20 − µf2 fn+1
10 = 0 has Gn–contact to

the cylinders. (Figure 11.3, left, parameters n = 2, µ = 0.5.)

b) f1(x, y, z) = x2 + z2 − 1 = 0 (cylinder), f10(x, y, z) = (2x− y)(2x + y) = 0 (2 planes).
f2(x, y, z) = y2 + z2 − 1 = 0 (cylinder), f20(x, y, z) = (2y − x)(2y + x) = 0, (2 planes)
(Figure 11.3, right, parameters: n = 2, µ = 0.5.)
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a) b) c)

Figure 11.1: G2–blending of a a) sphere, b) two cylinders and c) 4 planes (parabol. funct. splines)

Figure 11.2: G2–blending of 3 cylinders (parabolic functional spline)

Figure 11.3: G2 symmetric parabolic functional splines
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The following example shows repeated application of parabolic functional splines.

Example 11.3 (blending “half cylinders”) Let be
f1(x, y, z) := r2

1 − y2 − z2 = 0 (cylinder),
f2(x, y, z) := r2

2 − x2 − z2 = 0 (cylinder),
f3(x, y, z) := r2

3 − x2 − y2 = 0 (cylinder),
F0(x, y, z) := r2

0 − x2 − y2 − z2 = 0 (sphere).
In the first step we generate ”Gn-closings” of the cylinders (see Figure 11.4 ):
F1(x, y, z) := (1− λ1)f1(x, y, z)− λ1(

√
r2
0 − r2

1 − x)n+1 = 0 , 0 < λ1 < 1,

F2(x, y, z) := (1− λ2)f2(x, y, z)− λ2(
√

r2
0 − r2

2 − y)n+1 = 0 , 0 < λ2 < 1,

F3(x, y, z) := (1− λ3)f3(x, y, z)− λ3(
√

r2
0 − r2

3 − z)n+1 = 0 , 0 < λ3 < 1,
The following parabolic functional spline:

F := −(1− µ)F1F2F3 − µFn+1
0 = 0

is a Gn–connection surface for the closings F1 = 0, F2 = 0 and F3 = 0 and hence for the cylinders
f1 = 0, f2 = 0 and f3 = 0.
The parameters for Figure 11.4 are: r1 = r2 = r3 = 0.45, r0 = 1, n = 2, λ1 = λ2 = λ3 = 0.2 and
µ = 0.01.

d)c)

a) b)

Figure 11.4: a) G2-closing of one cylinder b) G2-closings of the cylinders c) and d) G2-connection



124 CHAPTER 11. BLENDING CURVES AND SURFACES

11.2.2 Elliptic functional splines

Theorem 11.3 Let be c0, d0 ∈ IR with c0 > 0, d0 > 0 and f1 = c, f2 = d, 0 ≤ c ≤ c0, 0 ≤ d ≤ d0 be
two pencils of regular implicit surfaces and k(c, d) = 0 a regular implicit plane curve, the correlation
curve, that has Gn–contact to the c–axis at point (c0, 0) and to the d–axis at point (0, d0), i.e.

∂ik(c0, 0)
∂ci

= 0,
∂ik(0, d0)

∂di
= 0, i = 0, 1, .., n.

Then

F (x) := k(f1(x), f2(x)) = 0

has Gn–contact to the curve (surface)
f1 = 0 at the point (curve) of contact f1 = 0, f2 = d0 and to
f2 = 0 at the point (curve) of contact f1 = c0, f2 = 0 .
F = 0 is called elliptic functional spline and f1 = 0 and f2 = 0 the base curve (surface).

Proof: At point (c0, 0) there exists a local explicit representation d = α(c − c0) with α(i)(0) = 0
for i = 0, 1, ...n (cf. Lemma 2.1 c)). Hence equation F = k(f1, f2) = 0 is locally equivalent to
F := f2 − α(f1 − c0) = 0. From Lemma 3.2 we get: F = 0 is a locally regular implicit curve (sur-
face) which has Gn–contact to curve (surface) f2 = 0 at point (curve) f2 = 0, f1 = c0. Analogously
the Gn–contact between F = 0 and f1 = 0 at point (curve) f1 = 0, f2 = d0 is proved. 2

Examples for implicit Gn–correlation curves are

k(c, d) = (1− µ)
cd

c0d0
− µ

(
1− c

c0
− d

d0

)n+1

= 0, 0 < µ < 1, n ≥ 1.

(k(c, d) = 0 are parabolic functional spline curves !)
For n = 1 we get a pencil of conics which contains the ellipses (1− c

c0
)2 + (1− d

d0
)2 = 1.

Hoffmann and Hopcroft used this pencil of conics for their potential method.

Rockwood and Owen used the super ellipses

k(c, d) = 1−
(

1− c

c0

)n+1

−
(

1− d

d0

)n+1

= 0, n ≥ 1.

for blending surfaces.

Example 11.4 (elliptic functional splines)

a) f1(x, y, z) = x2 + z2 − 1.52 = 0 (cylinder)
f2(x, y, z) = y2 + z2 − 2.32 = 0 (cylinder).
The elliptic functional spline (1 − µ) f1f2

c0d0
− µ(1 − f1

c0
− f2

d0
)n+1 = 0 has Gn–contact to the

cylinders.
For Figure 5 (left) the parameters are: n = 2, µ = 0.2, c0 = 2.4, d0 = 6.

b) f1(x, y, z) = (x− 2)2 + y2 + z2 − 4 = 0 (sphere)
f2(x, y, z) = (x2 + y2 + z2 + 22 − 0.82)2 − 16(x2 + y2) = 0 (torus).
For Figure 5 (right) the parameters are: n = 2, µ = 0.2, c0 = 2, d0 = 8.
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0d

c 0

(1− µ) cd
c0d0
− µ(1− c

c0
− d

d0
)3 = 0, µ = 0.1, ..., 0.82

Figure 11.5: Parabolic functional splines as correlationcurves for elliptic functional splines

Figure 11.6: G2 elliptic functional spline

For displaying an elliptic functional spline we generate a net of quadrangles:

Step 1: Determine n1 points (c1, d1), ... of the correlation curve Γ.

Step 2: Calculate n2 points P11, P12... of the intersection curve f1 = c1, f2 = d1 using the tracing
algorithm for intersection curves (see Section 8.2.1).

Step 3: Determine point P2i to starting point P1i (of the first curve) on the (second) curve f1 =
c2, f2 = d2 by procedure surfacepoint of the tracing algorithm.

a.s.o.

Enhanced elliptic functional splines:

Blending two surfaces f1 = 0 and f2 = 0 by elliptic functional splines yields solutions with curves
of contact that are intersection curves f1 = 0, f2 = d0 and f1 = c0, f2 = 0. Hence the pencils f1 = c
and f2 = d have essential influence on the curves of contact. If one decides to have the intersection
curves f1 = 0, f22 = 0 and f11 = 0, f2 = 0 as curves of contact for some additional surfaces f11 = 0
and f22 = 0, one should use the following pencils of surfaces

(1− c)f1 + cf11 = 0, 0 ≤ c ≤ 1, (1− d)f2 + df22 = 0, 0 ≤ d ≤ 1.
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Example 11.5 (enhanced elliptic functional splines)

a) f1(x, y, z) = x2 + z2 − r2 = 0, r = 2 (cylinder)
f2(x, y, z) = y2 + z2 − r2 = 0 (cylinder).
The cylinders are embedded into the following pencils of cylinders:
(1− c)f1 + cf11 = 0 which are the levelsets of f̃1 := f1

f1−f11
= c

(1− d)f2 + df22 = 0 which are levelsets of f̃2 = f2
f2−f22

= d.

With f11(x, y, z) = x2

(2r)2 + z2

r2 − 1 = 0, f22(x, y, z) = y2

(2r)2 + z2

r2 − 1 = 0

the elliptic functional spline (1 − µ) f̃1f̃2
c0d0
− µ(1 − f̃1

c0
− f̃2

d0
)n+1 = 0 has Gn–contact to the

cylinders.
For Figure 11.7a) the parameters are: n = 2, µ = 0.2, c0 = 1, d0 = 1.

b) f1(x, y, z) = (x− 2)2 + y2 + z2 − 4 = 0 (sphere)
f11(x, y, z) = y − tan(75o)x = 0 (plane)
f̃1(x, y, z) = (1− c)f1 + cf11 = 0,
f2(x, y, z) = (x2 + y2 + z2 + 22 − 0.82)2 − 16(x2 + y2) = 0 (torus),
f̃2(x, y, z) = f2.
For Figure 11.7b) the parameters are: n = 2, µ = 0.2, c0 = 1, d0 = 10.

a) b)

Figure 11.7: Enhanced G2 elliptic functional splines

Remark:
Using symmetric parabolic functional splines for blending two intersecting cylinders (see example
above) we get a balance as design parameter. Elliptic functional splines provide the more interesting
design parameter µ which is a thumbweight.

Remark:
An elliptic functional spline surface can be considered as the collection of the intersection curves
f1 = c, f2 = d for points (c, d) of its correlation curve k(c, d) = 0, 0 ≤ c ≤ c0, 0 ≤ d ≤ d0. This for-
mulation allows a simple generalization to pairs of parametric or implicit surfaces with parametric
or implicit correlation curves.

Remark:
All implicit blending methods can be applied to parametric curves and surfaces too, if one uses the
normalform introduced in Section 5.4.
Figure 11.8a) shows elliptic functional spline blending surfaces between two Bézier patches and
between one Bézier patch and an implicit surface (cylinder).
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Figure 11.8b) shows enhanced elliptic functional splines. Three curves of contact are plane sections
the fourth is the intersection of one Bézier patch with a quartic cylinder.

a) b)

Figure 11.8: G2 elliptic functional splines between a Bézier patch and a cylinder/Bézier patch (right:
enhanced)

11.3 Parametric Gn–blending curves and surfaces

11.3.1 Gn–blending of parametric curves

A simple G0–blending method for curves which suggests itself works as follows:
Let Γ1 : x = c1(t), t ∈ [0, 1] and Γ2 : x = c2(t), t ∈ [0, 1] be two Cn–continuous planar or spatial
curves, then Γ : x = (1− t)c1(t) + tc2(t), t ∈ [0, 1] is a G0–blending curve of Γ1 and Γ2 with c1(0)
and c2(1) as points of contact. In order to smooth the contact of Γ to the curves Γ1,Γ2 we generalize
this simple blending method by replacing the linear function t by a suitable function f(t).

Theorem 11.4 Let Γ1 : x = c1(t), t ∈ [0, 1] and Γ2 : x = c2(t), t ∈ [0, 1] be two regular Cn–
continuous planar or spatial curves (base curves) and
f(t), t ∈ [0, 1] a Cn–continuous real function (blending function) with the following properties:

f(0) = 0, f(1) = 1, f (k)(0) = f (k)(1) = 0 for k = 1, ..., n.

Then the curve (blending curve)

Γ : x = c(t) := (1− f(t))c1(t) + f(t)c2(t), t ∈ [0, 1]

has Cn–contact to the curves Γ1,Γ2 at the points c1(0) and c2(1) , .i.e. c(k)(0) = c(k)
1 (0), c(k)(1) =

c(k)
2 (1) for k = 0, 1, ..., n.

Proof: The derivatives of c are:

ċ = −f ′c1 + (1− f)ċ1 + f ′c2 + f ċ2,

c̈ = −f ′′c1 − 2f ′ċ1 + (1− f)c̈1 + f ′′c2 + 2f ′ċ2 + f c̈2,

· · ·
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From the properties of function f we get c(k)(0) = c(k)
1 (0), c(k)(1) = c(k)

2 (1) for k = 0, 1, ..., n. 2

Remark:
a) For the application of Theorem 11.4 to the examples below there is need of parameter transfor-
mations to meet the precondition ”t ∈ [0, 1]”. So the blend curve Γ will have only Gn– (instead of
Cn–) continuous contact to the base curves.
b) Due to the definition (see Theorem 1) a blending curve is contained within the convex hull of
the arcs to be blended.

Though there exist polynomial blending functions we choose the following rational Gn-blending
functions:

fn(t) =
tn+1

tn+1 + (1− t)n+1
, t ∈ [0, 1], n ≥ 0.

Figure 11.9 a) shows graphs of the blending functions f0, f1 and f2.

f  (t)n p(   ,t)λ

λ=0.9

λ=−0.9

1 1

11

tt
a) b)

n=0

n=2

Figure 11.9: Left: graphs of blending function fn(t) for n = 0, 1, 2 and right: graphs of the parameter
transformations p(λ, t) for λ = −0.9, −0.5, 0, 0.5, 0.9

In order to get design parameters we use the following family of rational parameter transformations:

p(λ, t) :=


t

1− λ + λt
, 0 ≤ λ < 1,

t(1 + λ)
1 + λt

, −1 < λ ≤ 0.

Figure 11.9b) shows the graphs of functions p(λ, ·) for λ = −0.9, −0.5, 0, 0.5, 0.9.

(Recognize: p(0, t) = t !) We apply these parameter transformations as follows:

Γ : x = c(t) := (1− fn(t)) c1

(
p(λ1, t)) + fn(t) c2

(
p(−λ2, t)), t ∈ [0, 1].

The negative sign for λ2 ensures that for raising λi the blending curve comes closer to curve Γi near
the point of contact. The following simple examples show the effect of the design parameters λ1, λ2

and the effect of reversing the orientation of one arc.

Example 11.6 parallel line segments
Let Γ1 and Γ2 be the line segments
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Γ1 : c1(t) := (t, 0)>, t ∈ [0, 1], Γ2 : c2(t) := (t, 1)>, t ∈ [0, 1]. Any curve

Γ : x = c(t) := (1− fn(t)) c1

(
p(λ1, t)

)
+ fn(t) c2

(
p(−λ2, t)

)
, t ∈ [0, 1],

for arbitrary pairs λ1, λ2 with −1 < λ1, λ2 < 1, is a Gn-blending curve of Γ1 and Γ2.
Figure 11.10 shows G2-blending curves for different pairs of λ1, λ2.
Figure 11.11 shows the case in which the orientation of the upper segment is reversed, i.e. c2(t) :=
(1− t, 1)>.
In order to visualize the used parameter transformations points on Γ1 and Γ2 with the same param-
eter are connected.

a) b)

c) d)

Figure 11.10: G2–blending curves of two parallel linesegments for parameters a) λ1 = λ2 = 0, b)
λ1 = λ2 = 0.5 c) λ1 = λ2 = −0.5 and d) λ1 = −0.5, λ2 = 0.5

Figure 11.12 shows G2-blending curves of two arcs on two Bézier curves with different design pa-
rameters λ1, λ2. The arcs actually used for blending are bounded by points.

Example 11.7 space curves
Figure 11.13shows a G3–blending curve between an arc on a helix and an arc on a horizontal line
together with the corresponding pipe surfaces. Because the blending curve has G3–contact to the
helix and the line, the whole pipe surface is G2–continuous.
Helix: x(t) = (r0 cos(t), r0 sin(t), 5t), r0 = 50, t1 = π + 0.2, t2 = π + 0.6.
Line: x(t) = (1− t)p1 + tp2, p1 = (r0, 0, 40), p2 = (r0, 100, 40), t1 = 0.2, t2 = 0.5.
Radius of the pipe: r = 10. Design parameter µ = 0.5.
The pipe surface is defined as ringed surface x = c(t)+ r cos(s)a(t)+ r sin(s)b(t), where x = c(t) is
the directrix curve and {ċ(t),a(t),b(t)} is a right-handed orthonormal system. One can prove that
the pipe surface of this example is even G3, too (see Section 5.6).

11.3.2 Gn–blending of parametric surfaces

The Gn–blending method introduced for curves can be extended to surfaces. As for curves the
flexibility of the method depends essentially on suitable parameter transformations.
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a) b)

c) d)

Figure 11.11: Examples of the previous figure with reversed orientation of the upper line

a) b)

Figure 11.12: G2-blending of Bézier curves with parameters a) λ1 = 0, 0.5, 0.8 and λ2 = 0, b)
λ1 = λ2 = 0, 0.5, 0.8

Theorem 11.5 Let Φ1 : x = S1(s, t), s ∈ [s1, s2], t ∈ [0, 1]
and Φ2 : x = S2(s, t), s ∈ [s1, s2], t ∈ [0, 1] be two regular Cn–continuous surface patches (base
surfaces) and
f(t), t ∈ [0, 1] a Cn–continuous real function (blending function) with the following properties:

f(0) = 0, f(1) = 1, f (k)(0) = f (k)(1) = 0 for k = 1, ..., n.

Then the surface patch (blending surface)

Φ : x = S(s, t) := (1− f(t)) S1(s, t) + f(t) S2(s, t), s ∈ [s1, s2], t ∈ [0, 1]

has Cn–contact to the surface patch Φ1 along the curve S1(s, 0), s ∈ [s1, s2] and to Φ2 along the
curve S2(s, 1), s ∈ [s1, s2].

The proof is straight forward differentiating analogously to the curve case.
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Figure 11.13: G3–blending curve between a helix and a line and a corresponding G2–continuous
pipe surface

As blending functions for the examples below we use the functions fn introduced above.

Remarks:
a) The curves S1(s, 0) and S2(s, 1) s ∈ [s1, s2] are the contact curves between the base surfaces and
the blend surface.
The curves S1(s, 1) and S2(s, 0) s ∈ [s1, s2] are called auxiliary curves.
Contact curves and auxiliary curves are boundaries of the surface patches to be blended.
b) Curves x = S(s = const, t) are profile curves which locally define the shape of the blend surface.

Remark:
For the application of Theorem 11.5 to the examples below there is need of parameter transforma-
tions to meet the precondition ”s ∈ [s1, s2], t ∈ [0, 1]”. So the blend surface S will have only Gn–
(instead of Cn–) contact to the base surfaces.

Example 11.8 Bézier patches
Let Φ1 and Φ2 be two tensor product Bézier patches with parametric representations
Φ1 : x = B1(u, v) = (10v − 5, 10u− 5, 6(u− u2 + v − v2)),
Φ2 : x = B2(u, v) = (6(u− u2 + v − v2), 10u− 5, 10v − 5).
The boundary curves on Φ1 are:
curve of contact: v = v11 = 0.5, auxiliary curve: v = v12 = 0.3,
boundary curves: u = 0 and u=0.75,
The boundary curves on Φ2 are:
curve of contact: v = v21 = 0.9, auxiliary curve: v = v22(u) = 0.8(1− (0.5− u)2),
boundary curves: u = 0 and u=0.75.
In order to meet the preconditions of Theorem 2 we use the following parameter transformations:
S1(s, t) := B1(s, v11 + (v12 − v11)t), t ∈ [0, 1]
S2(s, t) := B2(s, v21 + (v22(s)− v21)t), t ∈ [0, 1]
s ∈ [0, 0.75].
Hence
Φ : x = S(s, t) := (1− fn(t)) S1(s, t) + fn(t) S2(s, t), s ∈ [0, 0.75], t ∈ [0, 1]
is a Gn–blending surface.
(fn is a Gn–blending function defined above.)
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Figure 11.14 (left) shows the base surfaces, the curves of contact (thick) and the auxiliary curves
(dashed). The right hand picture shows a G2–blending surface.
In order to get thumbweight parameters we apply parameter transformation p(λ, ·) on parameter t
before blending:
Φ : x = S(s, t) := (1− fn(t)) S1(s, p(λ1, t)) + fn(t) S2(s, p(−λ2, t)), s ∈ [0, 0.75], t ∈ [0, 1],
with the thumbweights λ1, λ2.
Figure 11.15 shows blending surfaces of the given Bézier patches with thumbweights λ1 = λ2 = 0.6
(left), and λ1 = 0, λ2 = 0.8 (right). Increasing λi ∈ [0, 1) brings the blend surface closer to the
surfaces Φi.

contact curve

contact curve

auxiliary curves

Φ1

Φ2

Figure 11.14: G2–blending surface between two tensor product Bézier surfaces thumbweights λ1 =
λ2 = 0 (right) and the boundaries of the patches used for blending (left)

Figure 11.15: G2–blending surface between two tensor product Bézier surfaces with thumbweights
λ1 = λ2 = 0.6 (left) and λ1 = 0, λ2 = 0.8 (right)

Example 11.9 cylinder and plane
Let be Φ1 a cylinder and Φ2 an inclined plane.
Φ1 : x = (cos(u), sin(u), v),
Φ2 : x = (v cos(u), v sin(u), cv cos(u)), c = 0.4.
The boundary curves on Φ1 are:



11.4. BLENDING WITH ROLLING BALL CONTACT CURVES 133

curve of contact: v = v11 = 1.5, auxiliary curve: v = v12(u) = 0.2 + c cos u,
The boundary curves on Φ2 are:
curve of contact: v = v21 = 1.2, auxiliary curve: v = v22 = 2.
Figure 11.16 (left) shows the curves of contact and auxiliary curves for a G2–blending surface
(right). The design parameters are balance µ = 0.5 and thumbweight λ := 0.5.
Figure 11.17 shows a G2–blending surface with a changed curve of contact: v = v11(u) = 1.5 +
0.2 cos(4u).

Figure 11.16: G2–blending surface between a cylinder and a plane (right) and the boundaries of the
patches used for blending (left)

Figure 11.17: Further G2–blending surface between a cylinder and a plane

11.4 Blending with rolling ball contact curves

The blending method:
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1. Let be Φ1,Φ2 two parametric (or implicit) surfaces. We assume that the offset surfaces for
distances 0..1 exist and the intersection curve of the offsets are C2–continuous for any distance
t ∈ [0, 1].

2. Any intersection curve of pairs of offsets (corresponding to the same distance t) can be numer-
ically parametrized by a suitable common Bézier or B-spline curve Γ : c(s), s ∈ [0, 1] (cf. Sec-
tion 4.7.3, see Figure 11.18). Hence we get a (numerical) parameterization V(s, t), s, t ∈ [0, 1]
of the Voronoi surface (points which have equal distance to both the surfaces, see Figure
11.18) which is Cn−1 if Φ1,Φ2,Γ are Cn.

3. The parameterization V(s, t) is used for a (numerical) parameterization (see Section 5.10.3)
of the given surfaces Φ1,Φ2 which we assign by S1(s, t), S2(s, t), s, t ∈ [0, 1].

4. We apply the Cn–blending method out of Section 11.3.2 and get the blending surface

Ψ : x = S(s, t) := (1− f(t)) S1(s, 1− t) + f(t) S2(s, t), s, t ∈ [0, 1]

with blending function f(t) given in Section 11.3.2. The curves of contact S1(s, 1),S2(s, 1), s ∈
[0, 1] can be considered as curves of contact of a rolling ball of fixed radius r = 1 (see Figure
11.19). The curve containing the midpoints of the rolling balls , the spine curve, is the curve
V(s, 1). The auxiliary curves coincide with the intersection curve of given surfaces Φ1,Φ2.

The algorithm for determining point S(s, t) of blending surface Ψ:

1. Calculate c(s) (point of the auxiliary curve)

2. Determine foot point V(s, t) of c(s) on the intersection curve of the offset surfaces belonging
to distance t.
Determine foot point V(s, 1−t) of c(s) on the intersection curve of the offset surfaces belonging
to distance 1− t.

3. Determine foot point S1(s, 1− t) of V(s, 1− t) on surface Φ1.
Determine foot point S2(s, t) of V(s, t) on surface Φ2.

4. Point on blending surface:

S(s, t) = (1− f(t)) S1(s, 1− t) + f(t) S2(s, t),

where f(t) =
tn+1

tn+1 + (1− t)n+1
.

5. For the examples shown below the parameter transformations p1(t), p2(t) are used:

S(s, t) = f(t)S1(s, 1− p1(t)) + (1− f(t))S2(s, p2(t)),
= f(t)S1(s, p2(1− t)) + (1− f(t))S2(s, p2(t)),

where p1(t) := t
1−λ+λt , and p2(t) := t(1−λ)

1−λt 0 ≤ λ < 1.

Example 11.10 Figure 11.18 shows the numerical parameterization of the Voronoi surface of the
two Bézier patches given in Example 11.8. The auxiliary curve is the Bézier curve of degree 4 with
control points:

(−3.3,−4.9, 2), (−2.5,−3.5, 2.7), (−2,−2, 3.4), (−2, 0, 3.6), (−2.5, 2.4, 3).

The rolling ball has radius r = 2.
Figure 11.19 shows the (numerical) re-parameterization of the two Bézier patches by the Voronoi
surface and a resulting G2–blending surface.

Figure 11.20 shows two further examples. The right one is an application of the method on an
example involving the implicit surface x4 + y4 + z4 = 1.
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a) b)

Figure 11.18: Parameterization of the intersection curve (left) and the Voronoi surface (right) of
two tensor product Bézier surfaces

a) b)

Figure 11.19: Re-parameterization (left) and G2–blending surface (right) of two tensor product
Bézier surfaces with constant radius rolling ball contact curves

a) b)

Figure 11.20: G2–blending of two cylinders (left) and a further example (right) with constant radius
rolling ball contact curves
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Chapter 12

PROPERTIES OF BÉZIER
CURVES

12.1 Properties of the Bernstein polynomes

We extend the definition
a) of the Bernstein polynomes Bn

i (t) :=
(
n
i

)
ti(1− t)n−i, 0 ≤ i ≤ n: Bn

i (t) = 0 , i /∈ {0, 1, ..., n}.
b) of the binomial coefficients:

(
n
i

)
= 0, i /∈ {0, 1, ..., n}.

(1) Relation Bernstein– and monom–basis:

ti =
n∑

j=i

(
j
i

)(
n
i

)Bn
j (t), Bn

i (t) =
n∑

j=i

(−1)j−i

(
n

j

)(
j

i

)
tj ,

(2) Recursion: Bn
i (t) = (1− t)Bn−1

i (t) + tBn−1
i−1 (t),

(3) Scaling: Bn
i (ct) =

∑n
j=0 Bj

i (c)B
n
j (t),

(4) Derivative:
d

dt
Bn

i (t) = n
(
Bn−1

i−1 (t)−Bn−1
i (t)

)
,

(5) Product: Bn
i (t)Bn

j (t) =

(
m
i

)(
n
j

)(
m+n
i+j

) Bm+n
i+j (t).

12.2 The Casteljau–algorithm

For polygon b0,b1, ...,bn ∈ IR2 (or IR3) and t ∈ IR we define recursively for any r = 1, ..., n the
following polygon

br
i (t) = (1− t)br−1

i (t) + tbr−1
i+1 (t), i = 0, ...n− r.

with b0
i (t) = bi.

The polygon for r = 0 agrees with the starting polygon, for r = n we get a point.

From the recursion property of the Bernstein polynomes (s. 12.1) we get

br
i (t) =

r∑
j=0

bi+jB
r
j (t), r = 0, ..., n, i = 0, ..., n− r

137
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(Prove it by induction on r.)
Hence

bn
0 (t) =

n∑
j=0

bjB
n
j (t)

is the Bézier curve with control polygon b0,b1, ...,bn. This method for determining a point by
repeated linear interpolation is called Casteljau–algorithm.

Figure 12.1 shows how to generate a point for a t ∈ IR from a control polygon by repeated linear
interpolation for n = 3.

b1

b2

b3

b
0

b
0
1

b1
1

b2
1

b1
2b

0
2 b

0
3

t

t

1-t

t
t1-t

t1-t

t

1-t

1-t

1-t

Figure 12.1: Casteljau–algorithm for n=3

schematically:

b
0

b1

b2

b3 b2
1

b1
1

b
0
1

b1
2 b

0
3

b
0
2

t

t

t t t

t

1-t

1-t

1-t

1-t

1-t 1-t

Figure 12.2: Scheme of the Casteljau–algorithms
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12.3 Derivative of a Bézier curve

Using the derivations of the Bernstein polynomes (s.12.1) we get the first derivative of a Bézier
curve b(t) =

∑n
i=0 biB

n
i (t):

d

dt
b(t) = n

n−1∑
i=0

(bi+1 − bi)Bn−1
i (t) .

Hence the tangent vectors of a Bézier curve form a Bézier curve with control points ∆bi := bi+1−bi.
Especially:

d

dt
b(0) = n(b1 − b0) and

d

dt
b(1) = n(bn − bn−1).

In order to rewrite the derivatives in a more impressive way we introduce the following difference
operators

∆rbi := ∆r−1bi+1 −∆r−1bi,

and get

∆0bi = bi

∆1bi = bi+1 − bi

∆2bi = bi+2 − 2bi+1 + bi

∆3bi = bi+3 − 3bi+2 + 3bi+1 − bi

· · · = · · ·

∆rbi =
r∑

j=0

(
r

j

)
(−1)r−jbi+j

The r-th derivative of the Bézier curve b(t) =
∑n

i=0 biB
n
i (t) can be written as:

dr

dtr
b(t) =

n!
(n− r)!

n−r∑
i=0

∆rbiB
n−r
i (t)

Especially for t = 0 and t = 1 we get

dr

dtr
b(0) =

n!
(n− r)!

∆rb0 and
dr

dtr
b(1) =

n!
(n− r)!

∆rbn−r

12.4 Degree elevation of a Bézier curve

An essential manipulation of a Bézier curve is the so called degree elevation, comparable with the
addition of terms 0tn+1, 0tn+2, ... to a polynome a0 + a1t + · · · antn. The polynome is not changed
really but the formal degree is elevated. Analogously one rewrites a given Bézier curve b(t) =∑n

i=0 biB
n
i (t) in the following way: b(t) =

∑n+1
i=0 b(1)

i Bn+1
i (t) with suitable new control points

b(1)
0 , ...,b(1)

n+1. In order to determine the new control points we multiply the original representation
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by t + (1− t):

b(t) =
n∑

i=0

biB
n
i (t)(t + (1− t))

=
n∑

i=0

bi

(
n

i

)
ti(1− t)n−i(t + (1− t))

=
n∑

i=0

bi

(
n

i

)
ti+1(1− t)n−i +

n∑
i=0

bi

(
n

i

)
ti(1− t)n−i+1

=
n+1∑
i=1

bi−1

(
n

i− 1

)
ti(1− t)n+1−i +

n∑
i=0

bi

(
n

i

)
ti(1− t)n−i+1

=
n+1∑
i=0

(
bi−1

(
n

i− 1

)
+ bi

(
n

i

))
ti(1− t)n+1−i

=
n+1∑
i=0

b(1)
i

(
n + 1

i

)
ti(1− t)n+1−i =

n+1∑
i=0

b(1)
i Bn+1

i (t) , with

b(1)
i : =

i

n + 1
bi−1 + (1− i

n + 1
)bi, i = 0, ..., n + 1

= b1
i−1(

n + 1− i

n + 1
) (s. Casteljau–Algor.) i = 1, ..., n

The new control points are: b0,b1
0(

n
n+1 ),b1

1(
n−1
n+1 ), ...,b1

n−1(
1

n+1 ),bn.

Essential properties of the degree elevation:

• Repeated elevation yields an approximation of the Bézier curve by its control polygon.

• The growing number of control points gives more freedom for changing the curve.

• Several Bézier curves of different degrees can represented by Bézier curves of the same degree
which is important for tensor–product Bézier surfaces (see Chapter 13).

Figure 12.3: control polygons for 1-, 2- and 10-times degree elevation

12.5 Bézier spline curves

12.5.1 Division of a Bézier curve

Normally a Bézier curve Γ0 : b(t) is defined for 0 ≤ t ≤ 1. Let be c ∈ (0, 1). Then Γ1 : b(t) with
0 ≤ t ≤ c is a segment of the given Bézier curve. We now want to represent this segment Γ1 as
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Bézier curve c(t) =
∑n

i=0 ciB
n
i (s) mit s ∈ [0, 1] of the same degree n and a suitable control polygon

c0, c1, ..., cn. For s := t
c we demand:

n∑
r=0

crB
n
r (

t

c
) =

n∑
i=0

biB
n
i (t), for t ∈ [0, c]

This is fulfilled for

cr = br
0(c) (s. Casteljau–alg. and Figures 12.1 and 12.2)

because of
n∑

r=0

crB
n
r (

t

c
) =

n∑
r=0

r∑
i=0

biB
r
i (c)Bn

r (
t

c
)

=
n∑

r=0

n∑
i=0

biB
r
i (c)Bn

r (
t

c
) from Br

i (· · · ) = 0 for i > r

=
n∑

i=0

bi

n∑
r=0

Br
i (c)Bn

r (
t

c
)

=
n∑

i=0

biB
n
i (t) because of property (3) of the Bernstein polynomes (see Section 12.1)

12.5.2 Smoothness conditions

12.5.2.1 C1– and C2–connections

For connecting two Bézier curves to a new at least C1 curve we have to define a Bézier curve on a
non standard interval.

We transform the Bézier curve

Γ1 : b(t) =
n∑

i=0

biB
n
i (t), t ∈ [0, 1]

by the parameter transformation t = s−u0
u1−u0

and get a representation on interval [u0, u1]:

c(s) := b(
s− u0

u1 − u0
), s ∈ [u0, u1].

The derivation at u1 is:

ċ(u1) =
ḃ(1)

u1 − u0
= n

bn − bn−1

u1 − u0
.

The second Bézier curve

Γ2 : b′(t) =
n∑

i=0

bn+iB
n
i (t), t ∈ [0, 1]

has the same degree as Γ1 and has to be connected C1–continuously to Γ1. We apply the parameter
transformation t = s−u1

u2−u1
:

c(s) := b′(
s− u1

u2 − u1
), s ∈ [u1, u2].

bn is the last control point of Γ1 and the first of Γ2. Hence Γ : c(s), s ∈ [u0, u2] is at least continuous
curve. In order to achieve a C1–connection at u1 the following condition has to be fulfilled:

(C1)
bn − bn−1

u1 − u0
=

bn+1 − bn

u2 − u1
,
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i.e. point bn divides the line segment bn−1,bn+1 with ratio (u1 − u0) : (u2 − u1) (see Figure 12.4).

bn-1 bn bn+1

u  -u
1 0 u  -u2 1:

Figure 12.4: C1–continuity condition

We get a C2–condition by considering the second derivative of c(s) at s = u1:

c̈(u1) =
b̈(1)

(u1 − u0)2
=

b̈(0)
(u2 − u1)2

The second derivative of a Bézier curve is a Bézier curve with control points consisting of differences
of the given control points (see Section 12.3). Hence the additional condition that guarantees a C2–
connection is:

(C2)
bn − 2bn−1 + bn−2

(u1 − u0)2
=

bn+2 − 2bn+1 + bn

(u2 − u1)2
.

A geometric interpretation of this condition is as follows: Let d be that point on the line through
bn−2,bn−1 such that bn−1 divides the segment bn−2,d with ratio (u1 − u0) : (u2 − u1). With the
abbreviations ∆0 := u1 − u0, ∆1 := u2 − u1 we get:

∆1(bn−1 − bn−2) = ∆0(d− bn−1)
⇔ −∆1(bn−2 − 2bn−1 + bn) + ∆1(bn − bn−1) = ∆0(d− bn−1)

⇔ −∆1(bn−2 − 2bn−1 + bn) = ∆0(d− bn−1 − bn+1 + bn) because of (C1)

Let d′ be the point of the line through bn+1,bn+2 such that bn+1 divides the segment d′,bn+2

with ratio (u1 − u0) : (u2 − u1). Similar considerations for d′ done for d above yield:

−∆0(bn+2 − 2bn+1 + bn) = ∆1(d′ − bn−1 − bn+1 + bn)

Hence: (C2) is true iff d = d′ (see Figure 12.5).

bn

bn-2

bn+2

u  -u2 1u  -u
1 0 :

u  
-u

2
1

u  
-u

1
0

: u  -u2
1

u  -u1
0

:

bn+1bn-1

d = d’

Figure 12.5: C2–condition
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12.5.2.2 G1– and G2–Connections

Connecting the Bézier curves

Γ1 : b(t) =
n∑

i=0

biB
n
i (t), t ∈ [0, 1]

Γ2 : c(t) =
m∑

i=0

ciB
m
i (t), t ∈ [0, 1]

at point bn with continuous tangent line, i.e. G1–continuously, besides condition bn = c0 (i.e.
G0–continuity) the following weaker condition

(G1) bn − bn−1 parallel c1 − c0

has to be fulfilled.

For the additional continuity of the curvature at bn i.e. G2–continuity, the condition

‖ḃ(1)× b̈(1)‖
‖ḃ(1)‖3

=
‖ċ(0)× c̈(0)‖
‖ċ(0)‖3

has to be fulfilled. With

ḃ(1) = n(bn − bn−1) and ċ(0) = m(c1 − c0),

b̈(1) = n(n− 1)((bn − bn−1)− (bn−1 − bn−2)) and c̈(0) = m(m− 1)((c2 − c1)− (c1 − c0))

we get the condition

(G2)
(n− 1)‖(bn − bn−1)× (bn−1 − bn−2)‖

n‖(bn − bn−1)‖3
=

(m− 1)‖(c1 − c0)× (c2 − c1)‖
m‖(c1 − c0)‖3

.

(In case of planar curves the vector product has to be replaced by a determinant.) An essential
consequence of the representation of the curvature is: The control point bn−2 and c2 respectively
can be moved parallel to the tangent at point bn and c0 respectively without changing the curvature
of Γ1 and Γ2 respectively at this point. Once a curvature continuous solution is found, the control
points bn−2 and c2 can be moved indepently parallel to the tangent line at the common point bn.

bn-1 c1

c2
bn-2

bn

c0

Figure 12.6: G2–continuity

Condition G2 can be seen as a relation between the areas of the triangles bn−2,bn−1,bn and
c0, c1, c2, too.

The criteria derived in this subsection are applicable to space curves, too.
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12.6 Rational Bézier curves

12.6.1 Rational curves and projective curves

Parametrizations of Bézier curves use polynomes, only. But technical important and geometrically
simple curves like circles have no polynomial representation. This lack motivates an extension of
the base functions to rational ones. Any conic has a rational representation. A curve Γ with a
rational representation

(
p1(t)
q1(t)

,
p2(t)
q2(t)

)

where pi and qi are polynomials, has with respect to homogeneous coordinates the polynomial
representation

< (p1(t)q2(t), p2(t)q1(t), q1(t)q2(t)) > .

Hence a planar rational curve can be considered as a central projection of a Bézier curve in IR3 onto
the plane x3 = 1 .

a 0 a
1

a 3

a 2

b
0

b1

b2

b
3

x

x

x

x

y

1

3

1

2

Figure 12.7: Central projection of a Bézier curve into the plane x3 = 1

The analogous statement is true for curves in IR3. They can be considered as a central projection of
a Bézier curve in IR4 into the hyperplane x4 = 1. And any advantage of the Bézier–representation
of a polynomial curve is available for rational curves, too.

12.7 Rational Bézier curves

Let be n > 0 a fixed integer and b0,b1, · · · ,bn, bi 6= 0, a polygon in IR3. Then x(t) := b0B
n
0 (t) +

b1B
n
1 (t)+· · ·+bnBn

n(t), 0 ≤ t ≤ 1, is a Bézier–curve of (maximal) degree n. The points b0, · · · ,bn

are the control points of the Bézier curve. (see Section 4.6) We consider the 1–dimensional subspaces

< b0B
n
0 (t) + b1B

n
1 (t) + · · ·+ bnBn

n(t) >, 0,
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as points of the real projective plane with x3 = 0 as plane of infinity. The affine part of this
projective Bézier curve is called rational Bézier curve.
The control points of the original Bézier curve in IR3 can be described by:
bi = wi(xi, yi, 1), wi > 0 in case of bi not on the line of infinity x3 = 0 and
bi = wi(xi, yi, 0), wi > 0 in case of bi on the line of infinity.
Switching to inhomogeneous coordinates maps a control point either onto the affine point ai :=
(xi, yi) or onto the point of infinity in direction ai := (xi, yi)>. Point ai is called finite control point
or infinite control point respectively of the rational Bézier curve and the wi the weight of control
point ai.
Hence, a Bézier curve has the representation:∑n

i=0 wiaiB
n
i (t)∑n

i=0 δiwiBn
i (t)

,

where δi = 1 in case of finite and δi = 0 in case of infinite control points.
The rational Bézier curves have the following properties:

If ai, wi, i = 0, ..., n, are the finite control points and weights of a rational Bézier curve Γ, then

1. curve Γ contains the control points a0,an (first and last point of the control polygon),

2. the tangent line at point a0 and an has the direction a1 − a0 and an − an−1, respectively.

3. rising the weight wi brings the curve closer to the control point ai. (see Figure 12.7). The
weights are not unique, because curve Γ can be represented by the same control points, but
different weights.

12.8 Conics as rational Bézier curves

A Bézier curve of degree two with non collinear control points b0,b1,b2 in IR3 is a parabola and
can be represented by

x(t) = p0 + tf1 + t2f2

(cf. Section 9.1.3). If a parabola in IR3 is used for the generation of a (planar) projective curve and
its plane does not contain the origin, then its projection onto the plane x3 = 1 is an ellipse or a
hyperbola or a parabola. For example

< (t2(1, 0, 0) + 2t(1− t)(0, 0, 1/2) + (1− t)2(0, 1, 0) >, t ∈ IR,

are points of the projective conic with equation x1x2 = x2
3 (see Section A.5. As a curve of the affine

plane x3 = 1 this curve is a hyperbola (see Figure 12.8). Changing to inhomogeneous coordinates
yields the rational parametric representation x(t) := t/(1 − t), y(t) = (1 − t)/t of the hyperbola
y = 1/x.
For the following example the control point b1 is an infinite one:

< (t2(1, 0, 1) + 2t(1− t)(0, 1, 0) + (1− t)2(−1, 0, 1) >, 0 ≤ t ≤ 1,

is the homogeneous representation of one half of a circle. The projective points are on the conic
with equation x2

1 + x2
2 = x2

3 (see Figure 12.8).
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x1

x2

x3

x1

x
3

x2

x

y

x

y

1 1

Figure 12.8: a) hyperbola as rational Bézier curve with two infinite control points, b) half of a circle
as rational Bézier curve with an infinite control point



Chapter 13

BÉZIER–SURFACES

There are two possibilities extending the Bézier technique to surfaces which suggest them-self: tensor
product Bézier surfaces and Bézier triangular surfaces. The latter is the more natural extension.

13.1 Tensor product Bézier surfaces

Let be bm(u) =
∑m

i=0 biB
m
i (u) a Bézier curve in IR3. We assume that the control points depend

on an additional parameter v in such away that they lie on Bézier curves: bi(v) =
∑n

j=0 bijB
n
i (v).

Hence

bm,n(u, v) =
m∑

i=0

n∑
j=0

bijB
m
i (u)Bn

i (v), u, v ∈ [0, 1]

is a surface, the (m,n)–tensor product Bézier surface with control points or control net
{bij | i = 0, ..,m, j = 0, .., n}.
The surface contains the points b00,bm0,b0n,bmn and the bounding curves are Bézier curves.
A (1, 1)–tensor–product Bézier surface contains lines but usually it is not planar . For example: for
b00 = (0, 0, 0),b10 = (1, 0, 0),b01 = (0, 1, 0),b11 = (1, 1, 1) we get a patch of the quadric z = xy.

a) b)

Figure 13.1: a) (2,2)– b) (3,3)–tensor–product Bézier surface and its control net
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13.2 The Casteljau algorithm

Linear interpolation of pairs of points is the basic idea of the Casteljau algorithm for curves. The
analogous technique for tensor product surfaces is the bilinear interpolation (see Section 10.4 on
Coons patches) of four points which appears in the simplest example of a tensor product Bézier
surface: A (1,1)-tensor–product Bézier surface for the four points b00,b10,b01,b11 is:

b1,1(u, v) = (1− u)(1− v)b00 + u(1− v)b10 + (1− u)vb01 + uvb11

Or in matrix form:

b1,1(u, v) = (1− u, u)
(

b00 b01

b10 b11

) (
1− v

v

)
We start with a (n× n)–control–net and determine for r = 1, 2, .., n and a pair of parameters (u, v)
intermediate vectors by bilinear interpolation:

br
i,j = (1− u, u)

(
br−1

i,j br−1
i,j+1

br−1
i+1,j br−1

i+1,j+1

) (
1− v

v

)
,

where b0
i,j := bi,j . Hence point bn

0,0 is the surface point belonging to (u, v).

In case of m > n and r ≥ n the second index is constant j = 0 and the interpolation is just linear
(instead of bilinear) as it is for Bézier curves. Point bm

0,0 is the surface point.
In case of m < n we deal analogously.

13.3 Degree elevation

It is an advantage if for a (m,n)–tensor–product Bézier surface we have m = n. If this is not the
case it can be achieved by suitable degree elevations.
The degree elevation from (m,n) to (m + 1, n) of the tensor product Bézier surface

bm,n(u, v) =
n∑

j=0

[
m∑

i=0

bijB
m
i (u)

]
Bn

i (v)

leads to the n + 1 degree elevations for the Bézier curves [· · · ]:

m∑
i=0

bijB
m
i (u) =

m+1∑
i=0

b(1,0)
ij Bm+1

i (u), j = 0, ...n

with
b(1,0)

ij := (1− i

m + 1
)bi,j +

i

m + 1
bi−1,j , i = 0, ...,m + 1.

13.4 Derivatives of a Bézier surface

The partial derivative of the tensor product Bézier surface

bm,n(u, v) =
n∑

j=0

m∑
i=0

bijB
m
i (u)Bn

i (v)

for u is
∂

∂u
bm,n(u, v) =

n∑
j=0

[
∂

∂u

m∑
i=0

bijB
m
i (u)

]
Bn

i (v).
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From the result for the derivative of a Bézier curve (12.3) we get:

∂

∂u
bm,n(u, v) = m

n∑
j=0

[
m−1∑
i=0

∆1,0bijB
m−1
i (u)

]
Bn

i (v),

with ∆1,0bi,j := bi+1,j−bi,j . Analogously we get the partial derivative for v and higher derivatives.

The vectors ∆1,0b0,0,∆0,1b0,0 are tangent to the surface at point b0,0. Hence ∆1,0b0,0 ×∆0,1b0,0

is a normal vector to the surface at this point and the tangent plane at a vertex of the control net
is determined by the vertex and its two closest neighbours.

13.5 Bézier triangular surfaces

A natural extension of the Bernstein polynomes to functions with two variables would start with
the relation 1 = (u + v + (1 − u − v))n = · · · . For the positivity of all terms the (u, v) must
be contained by the triangle (0, 0), (1, 0), (0, 1). Two of the three line segments correspond to the
intervals of the coordinate axes in the parameter plane. In order to omit this different meanings we
introduce homogeneous coordinates u, v, w with the constraint u+v +w = 1, u, v, w ≥ 0. u, v, w are
called barycentric coordinates. the generalized Bernstein polynomes are items of the development
of (u + v + w)n:

Bn
ijk(u, v, w) :=

n!
i!j!k!

uivjwk

with i + j + k = n, i, j, k ≥ 0 and u + v + w = 1, u, v, w ≥ 0.
With the notations I := (i, j, k), u := (u, v, w) and |I| := i + j + k, |u| := u + v + w we get

Bn
I (u) :=

n!
i!j!k!

uivjwk, |u| = 1 and
∑
|I|=n

Bn
I = 1.

Let be b00n,b10,n−1, ...bn00,b01,n−1,b11,n−2, ...,bn−1,10, ...,b0n0 a triangular net of points in IR3,
the control points.

bn(u) :=
∑
|I|=n

bIB
n
I (u)

is the corresponding Bézier triangular surface.

Figure 13.2 shows the net for the case n = 4.

b
040

b
022

b121
b220

b
013

b112 b310

b
103

b
400

b004 b
202

b
301

b211

b
130

b031

Figure 13.2: control points of a Bézier triangular surface for n = 4
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In order to describe the Casteljau algorithm for Bézier triangular surfaces we introduce the
following notations: e1 := (1, 0, 0), e2 := (0, 1, 0), e3 := (0, 0, 1) and o := (0, 0, 0).
Let be {bI|I = (i, j, k), i + j + k = n} a triangular net of points in IR3 and u a parameter vector in
barycentric coordinates. We define for r = 1, ..., n and I := (i, j, k) with i + j + k = n− r

br
I := ubr−1

I+e1
(u) + vbr−1

I+e2
(u) + wbr−1

I+e3
(u)

with b0
I(u) := bI. Point bn

o(u) is a point of the Bézier triangular surface. The proof of this statement
uses (analogously to the curve case) the following formulae of recursions for the Bernstein polynomes:

Bn
I (u) = uBn−1

I−e1
(u) + vBn−1

I−e2
(u) + wBn−1

I−e3
(u), I = (i, j, k) with i + j + k = n.

For more details see Farin Curves and Surfaces for Computer Aided Geometric Design or
Hoschek & Lasser Fundamentals of Computer Aided Geometric Design.



Chapter 14

B–SPLINE CURVES

There are two essential disadvantages using Bézier curves:

• A Bézier curve determined by many control points is of high degree.

• Changing one of the control points affects the whole curve.

This disadvantages can be omitted by using base functions with local effect.

14.1 The B–Spline base functions

The B–spline base functions are piecewise polynomial and non vanishing within a prescribed interval
only (local support). They are defined recursively:

A vector (t0, t1, ..., tm) ∈ IRm+1 with t0 < t1 · · · < tm is called knot vector.
Given n, k ∈ IN, n, k ≥ 1 and the knot vector T := (t0, t1, ..., tn+k). With functions

Ni1 :=
{

1 , ti ≤ t ≤ ti+1

0 , sonst

for i = 1, 2, ..., n + k we define recursively for k > 1:

Nik :=
t− ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t

ti+k − ti+1
Ni+1,k−1(t).

The functions Nik are called B–Spline–base functions of order k. They are piecewise polynomial
of degree (k-1) and have the following properties

(B1) Nik(t) > 0 for ti < t < ti+k, the interval [ti, ti+k] is called support of Nik,

(B2) Nik(t) = 0 for t0 ≤ t ≤ ti, ti+k ≤ t ≤ tn+k,

(B3)
∑n

i=0 Nik(t) = 1 for t ∈ [tk−1, tn+1],

(B4) at knots tl with ti ≤ tl ≤ ti+k functions Nik are Ck−2–continuous.

In case of special knot vectors (0, 1, 2, ..., n + k) the base functions are called uniform.

Figures 14.1 show graphs of some B–spline base functions of order 1,2 and 3, respectively. They are
piecewise ploynomial of degree 0,1 bzw. 2.
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Figure 14.1: B–spline base functions with exclusively simple knots

An essential extension of the definition of the base functions is the possibility of muliple knots. For
example in case of t1 = t0 we get N01 = 0 and one omits t−t0

t1−t0
N01(t) for the evaluation of N02.

Especially for t0 = t1 = 0, t2 = 1 we get N02 = 1− t, the Bernstein polynome B1
1(t). In general:

T = (0, 0, ..., 0︸ ︷︷ ︸
k−mal

, 1, 1, ...1︸ ︷︷ ︸
k−mal

) =⇒ Nik(t) = Bk−1
i (t).

For a multiple knot with multiplicity l function Nik is Ck−l−1–continuous only.

Figure 14.2 shows base functions with multiple knots for k = 3. N23 and N33 are discontinuous at
the 3-fold knot t3 = t4 = t5.

Analogously to the Bézier curve the B–Spline curve is defined using the B–spline base functions:
Let be n, k ∈ IN, T = (t0, t1, ..., tn+k) a knot vector and di ∈ IR2, i = 0, 1, ..., n. Hence

x(t) :=
n∑

i=0

diNik(t), tk−1 ≤ t ≤ tn+1

is a B–spline curve withcontrol points or de–Boor points d0, ...,dn.
If the curve should contain the points d0,dn, the first and the last knot must have multiplicity k. .
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Figure 14.2: B–Spline base functions with multiple knots

14.2 The de–Boor algorithm

Let be n, k ∈ IN, T = (t0, t1, ..., tn+k) the knot vector and di ∈ IR2, i = 0, 1, ..., n the control points
of a B–spline curve

x(t) :=
n∑

i=0

diNik(t), tk−1 ≤ t ≤ tn+1.

The de–Boor algorithm defines (analogously to the Casteljau algorithm for Bézier curves) interme-
diate points by linear interpolations:

Dj
i := (1− αj

i )D
j−1
i−1 + αj

iD
j−1
i , j > 0.

with
αj

i :=
t− ti

ti+k−j − ti
and D0

i := dj .

With the recursion formulae for the base functions one proves:

x(t) = Dk−1
r for t ∈ [tr, tr+1].

For more details: see Hoschek & Lasser: Fundamentals of Computer Aided Geometric Design.
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Appendix A

THE REAL PROJECTIVE
PLANE

A.1 The real affine plane

Definition A.1 Let be

P := IR2, the points
G := {{(x, y) ∈ IR2| ax + by + c = 0}| (0, 0) 6= (a, b) ∈ IR2}

= {{(x, y) ∈ IR2| y = mx + d}| m, d ∈ IR} ∪ {{(x, y) ∈ IR2 | x = c}|c ∈ IR}
the lines.

A(IR) := (P,G,∈) is called real affine plane.

A permutation of P which maps lines onto lines is called collineation of A(IR)).

Theorem A.1 Any collineation κ of A(IR) can be represented by
κ : (x, y)→ (ax + by + s, cx + dy + t), ad− bc 6= 0,
with suitable a, b, c, d, s, t ∈ IR. κ is called affinity.

proof: omitted.

Example A.1

a) (x, y) → (x + s, y + t), s, t ∈ IR translation.
b) (x, y) → (x, dy), 0 6= d ∈ IR axial affinity with axis y = 0 and direction (0, 1)>.
c) (x, y) → (ax, y), 0 6= a ∈ IR axial affinity with axis x = 0 and direction (1, 0)>.
d) (x, y) → (ax, ay), 0 6= a ∈ IR dilatation at point (0, 0).
e) (x, y) → (x + by, y), b ∈ IR shearing with axis y = 0.
f) (x, y) → (x, y + cx), c ∈ IR shearing with axis x = 0.

A.2 The real projective plane

Definition A.2 Let be

P1 = IR2 ∪ IR ∪ {∞}, ∞ 6∈ IR
G1 = {{(x, y) ∈ IR2| y = mx + d} ∪ {(m)}| m, d ∈ IR}

∪{{(x, y) ∈ IR2| x = c} ∪ {(∞)}| c ∈ IR}
∪ {{(m)| m ∈ IR} ∪ {(∞)}}︸ ︷︷ ︸

g∞
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P1(IR) := (P1,G1,∈) is called inhomogeneous model of the real projective plane

y x = c

(m)

(0)

y = m x + d

y = m x + d’ x

(oo)

Figure A.1: Inhomogeneous model of the real projective plane

Remark:
Essential properties of the projective plane are:

• Any two points are connected by exactly one line (same in an affine plane).

• Any two lines intersect in exactly one point (new !).

Definition A.3 Let be O := (0, 0, 0) and < x > the 1–dimensional subspace generated by x 6= o.

P2 = {lines of IR3 containing point O}
= {< (x1, x2, x3)> > |(0, 0, 0)> 6= (x1, x2, x3) ∈ IR3}

G2 = {planes of IR3 containing point O}
= {{< (x1, x2, x3)> > ∈ P2|ax1 + bx2 + cx3 = 0}|(0, 0, 0)> 6= (a, b, c)> ∈ IR3}

P2(IR) = (P2,G2,∈) is called homogeneous model of the real projective plane

A.3 Isomorphism between the two models

The following isomorphism maps the inhomogeneous model onto the homogeneous one in such a
way that the (affine) points IR2 are mapped onto the 1-dimensional subspaces of IR3 which have a
point with plane x3 = 1 in common:

(x, y) → < (x, y, 1) > = < (xx3, yx3, x3) >, x3 6= 0.
(m) → < (1,m, 0) > = < (x1,mx1, 0) >, x1 6= 0.
(∞) → < (0, 1, 0) > = < (0, x2, 0) >, x2 6= 0.

The inverse mapping:

< (x1, x2, x3) > →
(

x1

x3
,
x2

x3

)
, falls x3 6= 0

< (x1, x2, 0) > →
(

x2

x1

)
, falls x1 6= 0

< (0, x2, 0) > → (∞) , falls x2 6= 0.
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x1

x2

x3

x3 = 1

x3 = 0

x 1
x 2

m
= 0

-

x

y

(x,y)

y = mx

<(x,y,1)>

(m)

<(1,m,0)>

(    )

Figure A.2: Isomorphism between the homogeneous and the inhomogeneous model

For special points we have the corresponding:

(0, 0) ←→ < (0, 0, 1)> >, (0) ←→ < (1, 0, 0) >
(∞) ←→ < (0, 1, 0)> >, (1, 1) ←→ < (1, 1, 1)> >

The correspondence between the lines is:

y = mx + d ←→ x2

x3
= m

x2

x3
+ d ←→ mx1 − x2 + dx3 = 0

x = c ←→ x1

x3
= c ←→ x1 − cx3 = 0

g∞ ←→ line containing < (1, 0, 0)> >, < (0, 1, 0)> > ←→ x3 = 0

Remark:
Of course there are different isomorphisms possible.
For example: (x, y) −→ < (1, x, y)> >, i.e. g∞ is the line x1 = 0 (plane in IR3).

A.4 Collineations of the real projective plane

Definition A.4 A permutation of the set of points which maps lines onto lines is called collineation.
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Installment of the affinities:

in P1(IR) in P2(IR)

a) (x, y) → (x + s, y + t) < (x1, x2, x3) >→ < (x1 + sx3, x2 + tx3, x3) >

(m) → (m) (in IR3 : shearing with axis) x3 = 0

(∞) → (∞)

 1 0 s
0 1 t
0 0 1


b) (x, y) → (x, dy) < (x1, x2, x3) >→< (x1, dx2, x3) >

(m) → (md) (in IR3 : axial affinity with axis x2 = 0 and direction(0, 1, 0)>.)

(∞) → (∞)

 1 0 0
0 d 0
0 0 1


c) (x, y) → (ax, ay) < (x1, x2, x3) >→< (ax1, ax2, x3) >

(m) → (m) (in IR3 : dilatation at line x1 = 0, x2 = 0)

(∞) → (∞)

 a 0 0
0 a 0
0 0 1


d) (x, y) → (x, y + cx) < (x1, x2, x3) >→< (x1, x2 + cx1, x3) >

(m) → (m + d) (in IR3 : shearing with axis x1 = 0)

(∞) → (∞)

 1 0 0
c 1 0
0 0 1


e) general case:

(x, y) → (ax + by + s, cx + dy + t)
(m) → ( c+dm

a+bm )

(“Calculate” with ∞ in “usual” manner:

m→ {
c+dm
a+bm , falls a + bm 6= 0
∞, falls a + bm = 0

, ∞→ {
d
b , falls b 6= 0
∞, falls b = 0 .)

< (x1, x2, x3) > → < (ax1 + bx2 + sx3, cx1 + dx2 + tx3, x3) >

Hence, the installment of an affinity can be represented in the homogeneous model by a linear map
with matrix  a b s

c d t
0 0 1



A.5 Projective equivalency of the conics

In this section we shall show that all non degenerated conics (ellipse, hyperbola, parabola) are
projectively equivalent, i.e. any pair of non degenerate conics are related by a projective collineation.
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The hyperbola

The transformation of the equation y = 1
x of the unit hyperbola into homogeneous coordinates by

x = x1/x2, y = x2/x3 shows that the points of the hyperbola fulfil the equation

x1x2 = x2
3 (C1).

The set of all (projective) points which fulfil this equation is called a non degenerate conic (One
should recognize that the (projective) points < (1, 0, 0) >,< (0, 1, 0) > of the line of infinity g∞
fulfil equation (C1), too !)

The parabola

Following the same procedure we get from the equation y = x2 of the unit parabola the equation
in homogeneous coordinates

x2x3 = x2
1 (C2).

(Recognize that the (projective) point < (0, 1, 0) > of the line of infinity g∞ fulfils equation (C2),
too.)
Obviously conic (C1) can be transformed into conic (C2) by a simple coordinate transformation,
i.e. by a projective collineation.

The circle

Starting with the unit circle x2 + y2 = 1 we get the equation

x2
1 + x2

2 = x2
3 (C3).

No point of the line of infinity g∞ fulfils this equation.
In IR3 equation (C3) describes a cone with vertex (0, 0, 0) and x3–axis as cone axis. In order
to recognize the projective equivalence of (C3) to (C1) and (C2) we apply a linear coordinate
transformation which induces a projective collineation:

x′1 = x1, x′2 = x3 − x2, x′3 = x3 + x2

maps
(C3): x2

1 = (x3 − x2)(x3 − x2).

onto conic (C2) which proves the projective equivalence of the conics.

Figure A.3 shows the hyperbola, parabola and circle as affine curves in plane x3 = 1 and the
corresponding cones which contain the conics as plane sections.
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Figure A.3: Projective conics and the corresponding cones for (C1), (C2) (C3) respectively,


