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1 Introduction

This lecture focuses on advanced combinatorial algorithms. We will revisit most topics of the lecture Algorithmic
Discrete Mathematics and provide a deeper and more complete picture of the state of the art in each of them. In
particular, we will introduce more sophisticated algorithmic techniques that will allow us to design algorithms
that come close to achieving the best known running times for various problems. Some of these techniques
are based on structural insights in the theory of mathematical optimization that were discussed in the lectures
Introduction to Optimization and Discrete Optimization. Specifically, we will first consider shortest path
problems (Chapter 2), then maximum flow problems (Chapters 3 and 4), and finally matching problems
(Chapter 5). This advanced lecture relies on fundamental concepts and notations of computational complexity
theory and graph theory. We refrain from reintroducing these notions here and refer to the lecture notes of
the course Algorithmic Discrete Mathematics instead.
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2 Shortest Paths

In this chapter, we consider the problem of finding shortest paths in a given directed graph G = (V,E) with
arc weights c : E → R. For convenience, we consider an arbitrary but fixed directed graph G with weights
c throughout this section. As usual, we use the notations c(u, v) := c((u, v)) for (u, v) ∈ E, c(u, u) := 0 for
u ∈ V , and c(u, v) :=∞ for (u, v) /∈ E and u ̸= v. We recall the following fundamental definition of distances
in G with respect to c.

Definition 2.1. We letWuv denote the set of all walks from u to v in G and definea

d(k)c (u, v) := min{c(W ) |W = (v0, e1, . . . , vk′) ∈ Wuv with k′ ≤ k},
dc,G(u, v) := dc(u, v) := lim

k→∞
d(k)c (u, v).

If P is a u-v-path in G with c(P ) = dc(u, v), we say that P is a shortest path in G with respect to c.
aWe use the convention that d(k)c (u, v) = ∞ if Wuv = ∅.

Throughout this chapter, we will be interested in computing the values dc(u, v) for u, v ∈ V with the
understanding that we can obtain shortest paths from these values by backtracking using depth-first search.

2.1 Generic Search

In the lecture Algorithmic Discrete Mathematics we saw several greedy algorithms that compute spanning trees
and/or shortest paths by growing a component from the starting vertex s. Abstractly, these greedy strategies
can be formulated as follows, where the different algorithms differ in their choices of g(u, v).

Algorithm: GenericSearch(G, c, s)

input: graph G = (V,E), weights c : E → R, vertex s ∈ V
output: distances (dsv)v∈V , parents (pv)v∈V

dsv ←

{︄
0, v = s,

∞, otherwise.
pv ← v ∀v ∈ V
R← V (Insert)
while R ̸= ∅ :

u← argminv∈R{dsv}
R← R \ {u} (ExtractMin)
for v ∈ Γ(u) ∩R :

if g(u, v) < dsv :
dsv ← g(u, v) (DecreaseValue)
pv ← u

return (dsv)v∈V , (pv)v∈V
3



For example, if we set g(u, v) = dsu + 1 we recover the simple graph traversal algorithm breadth-first search
(BFS) that can be used to compute shortest paths in an unweighted graph. If we set g(u, v) = c(u, v), we
obtain Prim’s algorithm to compute a minimum spanning tree in an undirected graph. Finally, if we set
g(u, v) = dsu + c(u, v), then GenericSearch turns into Dijkstra’s algorithm for computing shortest paths in
directed graphs. We will see another parameterization of the greedy strategy in Section 2.3 below.
We recall the following result for Prim and Dijkstra. Note that BFS can be implemented to run in linear
time.

Theorem 2.2. GenericSearch can be implemented with a running time of O(m+ n log n).

This result relies on an efficient data structure, called a priority queue, that supports the operations Insert to
insert elements, ExtractMin to extract the element associated with the smallest value, and DecreaseValue
to decrease the value associated with some element. We will now show in detail how such a data structure
can be obtained.

2.1.1 Fibonacci Heaps

We describe a data structure called a Fibonacci heap. A heap is a rooted tree T with the additional property
that the root of every subtree is associated with the smallest value amongst all values associated to nodes of
the subtree. For convenience, in the following we identify nodes with the values associated to them, assuming
each value to be unique. With this, a heap is a rooted tree where every subtree has its smallest value as the
root.
A Fibonacci heap stores its values in a forest of rooted trees, each of which is a heap. Additionally, it maintains
a list R of all roots. The crucial feature of a Fibonacci heap is that it ensures that the heaps it contains have
relatively low degrees but contain a relatively large number of nodes. This structure makes extraction of
the smallest element easy: Since the smallest element is guaranteed to be a root and the number of roots is
relatively small, we can afford to search R to identify the smallest element.
We now describe how a Fibonacci heap maintains its special structure by defining its operations. The operation
MakeRoot and MakeChild are auxiliary routines that are used by the main operations. In the following, we
write Tx to denote the subtree rooted at node x and |Tx| to denote the number of nodes in Tx.

Algorithm: MakeRoot(x)
R← R ∪ {x}
px ← x, unmark x

Algorithm:MakeChild(y, x)
R← R \ {y}
py ← x

Algorithm: Insert(x)
MakeRoot(x)
xmin ← min{x, xmin}

Algorithm: ExtractMin
r ← xmin

for each child x of r :
MakeRoot(x)

R← R \ {r}
while R contains vertices x < y of the same degree :

MakeChild(y, x)
xmin ← min{x ∈ R}
return r

Algorithm: DecreaseValue(x)
xmin ← min{x, xmin}
if x < px :

mark x
while x is marked:

y ← px
MakeRoot(x)
x← y

if x ̸= px :
mark x
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Observe that we allow nodes to lose two children before moving the corresponding subtree to R. Additionally,
we defer reducing the length of R until the next ExtractMin operation. We will see that this “laziness” is
crucial for the performance of the Fibonacci heap. While this laziness introduces some variability in the shape
of the rooted trees, we will show that the shape is closely related to the famous Fibonacci numbers.

Definition 2.3. The Fibonacci numbers (Fk)k∈N∪{0} are defined by

Fk :=

⎧⎪⎨⎪⎩
0 for k = 0,

1 for k = 1,

Fk−1 + Fk−2 for k ≥ 2.

The Fibonacci numbers have many beautiful properties. In particular, the following holds (the proof is left as
an exercise).

Proposition 2.4. The Fibonacci numbers satisfy

(i) Fk+2 = 1 +
∑︁k

i=0 Fi for all k ∈ N ∪ {0},

(ii) Fk+2 ≥ ϕk for all k ∈ N ∪ {0}, where ϕ := (1 +
√
5)/2 is the golden ratio.

With this, we can establish that the trees of a Fibonacci heap must be relatively large, compared to the degrees
of their roots. Here and throughout we assume that Fibonacci heaps start empty and are built up using the
above operations.

Lemma 2.5. For every node x with k children in a Fibonacci heap it holds that |Tx| ≥ Fk+2.

Proof. Let sk be the smallest possible size of a subtree whose root has k children. Observe that sk is monotoni-
cally increasing in k: We can always reduce both the degree and number of vertices of the root by invoking
DecreaseValue on a child, which implies sk−1 ≤ sk. We show that sk ≥ Fk+2 by induction on k. The
induction basis for k ≤ 1 holds, since F3 = 2 and F2 = 1.
Now let T be a smallest possible tree whose root x has k ≥ 2 children. Let c1, . . . , ck denote these children
in the order in which they were attached to x. Observe that every vertex that is not in the root list R can
have lost at most one child during DecreaseValue operations. This means that ci has k′ ≥ i − 2 children.
By induction, and since si grows monotonically in i, for i ≥ 2, we have |Tci | ≥ sk′ ≥ si−2 ≥ Fi. Overall, by
Proposition 2.4 (i), we obtain

sk = 1 + |Tc1 |+
k∑︂

i=2

|Tci | ≥ 2 +
k∑︂

i=2

Fi = 1 +
k∑︂

i=0

Fi
Prop. 2.4

= Fk+2.

This immediately implies that Fibonacci trees maintain small degrees.

Corollary 2.6. Every node in a Fibonacci heap with n nodes has at most ⌊︁logϕ n
⌋︁ children.

Proof. If there was a node with k > logϕ n children, by Proposition 2.4 (ii) and Lemma 2.5, the corresponding
subtree would have to have size at least Fk+2 ≥ ϕk > n.
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We are now ready to show that Fibonacci heaps support arbitrary sequences of operations efficiently. Note
that the bound below immediately yields the running time of Theorem 2.2.

Theorem 2.7. Fibonacci heaps can be implemented to take time O(m+ n log n) for inserting O(n) elements
and performing O(m) ExtractMin and DecreaseValue operations.

Proof. We define a potential function

Φ := κ · (|R|+ 2nmarked),

where nmarked is the number of marked nodes, and κ ∈ N is a suitably large constant. Let Φ0 := 0 and let Φi

denote the value of Φ at the end of the i-th Insert, ExtractMin or DecreaseValue operation. Let further ti
denote the running time needed for the i-th operation and ai := ti +Φi − Φi−1 denote the amortized running
time in step i. Because the potential is always non-negative, the total running time for N operations can be
bounded via

N∑︂
i=1

ti =
N∑︂
i=1

(ai − Φi +Φi−1) =
N∑︂
i=1

ai − ΦN +Φ0 ≤
N∑︂
i=1

ai.

It thus suffices to bound the amortized running time in each step.
First note that the Insert operation has a constant running time and only changes the potential by a constant
amount, hence its amortized running time is O(1).
The operation ExtractMin consists of three phases. First, all children of the smallest node in the root list R
are moved to the root list themselves. By Corollary 2.6, this phase takes time at most O(log n) and the increase
in potential is also at most O(log n). The amortized running time of this phase thus is O(log n). In a second
phase, we merge trees until no two roots have the same degrees. We can accomplish this going over all roots
and inserting them into a list of length ⌊logϕ n⌋+1 at a position corresponding to their degree. Whenever this
position is already occupied, we merge the two trees and put the resulting tree into the next position of the
list, etc. Since, in every step, we either find a free position or reduce the number of trees, the running time
of the second phase is linear in |R|, i.e., it is bounded by κ′ · |R| for some constant κ′ ∈ N. After the second
phase, the root list is R′ and has length |R′| ≤ logϕ n+ 1, thus the potential is decreased by κ · (|R| − |R′|).
For κ ≥ κ′, we obtain an amortized running time of κ′ · |R| − κ · (|R| − |R′|) ≤ κ · |R′| = O(log n) for the
second phase. In the third phase, the new minimum is determined by going over all elements in R′. This
takes time linear in |R′| and does not change Φ, hence the amortized running time of this phase is O(log n).
Overall, ExtractMin has an amortized running time of O(log n).
The running time of the DecreaseValue(x) operation is constant if the value of x does not get smaller than
the value of its parent (and the potential does not change in this case). Otherwise, the running time is linear
in the number nmarked(x) of (consecutive) marked ancestors of x, i.e., it is bounded by κ′′ ·nmarked(x) for some
constant κ′′. These ancestors are unmarked and added to the root list R. Since at most one vertex is marked
by DecreaseValue(x), the change in potential is at most κ · (nmarked(x) + 1) − κ · 2nmarked(x) + κ · 2. For
κ ≥ κ′′, we obtain an amortized running time of κ′′ · nmarked(x)− κ · nmarked(x) + 3κ < 3κ = O(1).
Finally, observe that there can be at most O(n) ExtractMin operations. Thus, the total amortized cost for all
Insert, ExtractMin and DecreaseValue operations is

O(n) +O(n log n) +O(m) = O(m+ n log n).

As discussed above, this also bounds the total running time of these operations. Note, however, that we cannot
guarantee the individual operations to be efficient.
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2.2 All-Pairs Shortest Paths

We move on to the problem of computing all shortest paths in G, or, more precisely, we consider the following
problem.

All-Pairs Shortest Paths Problem
input: graph G = (V,E); edge weights c : E → R
problem: find shortest u-v-paths in G for all u, v ∈ V

Of course, we can solve this problem by solving the single-source shortest path problem starting from every
vertex s ∈ V . However, optimum substructure (see lecture Algorithmic Discrete Mathematics) suggests that we
can do better by reusing optimal subpaths instead of recomputing all paths from scratch n times.
Recall that the algorithm of Bellman-Ford(-Moore) is based precisely on optimum substructure in that it
extends shortest paths/walks into longer shortest paths/walks in each iteration. The final formulation of
BellmanFord(Moore) is a refinement of the following dynamic program (the final algorithm does not
explicitly maintain d

(k)
sv for all k ∈ {1, . . . , n− 1} and only iterates over actual arcs in the inner loop).

Algorithm: DynamicSP(G, c, s)

input: directed graph G = (V,E), weights c : E → R, vertex s ∈ V
output: distances dsv = dc(s, v) for all v ∈ V

d
(0)
sv ←

{︄
0, if v = s,

∞, otherwise.
for k ← 1, 2, . . . , n− 1 :

for v ∈ V :
d
(k)
sv ← minu∈V {d(k−1)

su + c(u, v)}

return (d
(n−1)
sv )v∈V

Correctness of this algorithm is based on the following insights (for proofs see lecture Algorithmic Discrete
Mathematics).

Proposition 2.8. Let G = (V,E) be a directed graph, let u ∈ V , and let c : E → R not induce negative cycles
reachable from u. Then, for all v ∈ V reachable from u, there exists a shortest u-v-path in G with respect to c

and it holds that dc(u, v) = d
(n−1)
c (u, v).

Lemma 2.9. The following recurrence holds:

d(k)c (u, v) =

{︄
c(u, v) if k = 1,

minw∈V {d(k−1)
c (u,w) + c(w, v)} if k ≥ 2.

In particular, DynamicSP correctly computes d(n−1)
c (s, v) for all v ∈ V .

These insights immediately imply the following result.
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Theorem 2.10. DynamicSP solves the single-source shortest path problem in time Θ(n3) on directed graphs
with arcs weights that do not induce negative cycles reachable from s.

Note that DynamicSP only computes shortest paths for graphs without negative cycles. Importantly, however,
Lemma 2.9 does allow negative cycles, which means that the values d(n−1)

c (s, v) for all v ∈ V computed by
DynamicSP are still correct in this case. This yields an easy way of verifying whether c induces negative cycles
(the proof is left as an exercise):

Proposition 2.11. The graph G contains a negative cycle reachable from s if and only if there are u, v ∈ V

with d
(n−1)
c (s, v) > d

(n−1)
c (s, u) + c(u, v).

With this, we can solve the all-pairs shortest paths problem naively by repeating DynamicSP from all starting
vertices, which yields the algorithm RepeatBFM. A more systematic, but equivalent, approach is algorithm
ParallelBFM that computes the values d(k)uv in order of increasing k (i.e., it changes the order of computation
of the dynamic program). For convenience, we let V = {1, . . . , n} in the following and introduce the cost
matrix C = (cuv)u,v∈V ∈ Rn×n with cuv := c(u, v). Similarly, we organize the values d(k)c (u, v) and d

(k)
uv into

matrices D(k)
c and D(k).

Algorithm: RepeatBFM(V,C)

input: vertices V = {1, . . . , n},
weights C ∈ (R ∪ {∞})n×n

output: distance matrix D
(n−1)
c

D(1) ← C
for u← 1, . . . , n :

for k ← 2, . . . , n− 1 :
for v ← 1, . . . , n :

d
(k)
uv ← minv′∈V {d

(k−1)
uv′ + c(v′, v)}

return D(n−1)

Algorithm: ParallelBFM(G,C)

input: vertices V = {1, . . . , n},
weights C ∈ (R ∪ {∞})n×n

output: distance matrix D
(n−1)
c

D(1) ← C
for k ← 2, . . . , n− 1 :

for u← 1, . . . , n :
for v ← 1, . . . , n :

d
(k)
uv ← minv′∈V {d

(k−1)
uv′ + c(v′, v)}

return D(n−1)

We can further refine this naive algorithm by expressing it using matrix multiplications in the min tropical
semiring (or min-plus-algebra), where ’+’ plays the role of the product and ’min’ plays the role of addition (see
algorithm MatrixBFM). We denote this matrix multiplication using the ⨂︁

min,+-operator.
Of course, the running time ofMatrixBFM is stillΘ(n4). However, this reformulation allows for an elegant trick
to improve the running time. Consider the computation of a conventional matrix product C×C×· · ·×C = Cn.
Assuming that n is a power of 2, we can significantly reduce our computational effort by computing the
equivalent product (C × · · · ×C)× (C × · · · ×C) = · · · = (. . . ((C2)2)2 . . . )2 = Cn. This product only requires
log2 n matrix multiplications instead of n − 1. To apply this reformulation, we only used that the matrix
product in associative. It turns out that this is still the case in the tropical semiring (the proof is left as an
exercise).

Lemma 2.12. The matrix product ⨂︁min,+ in the tropical semiring is associative.
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We can therefore reformulate MatrixBFM using repeated matrix squaring in order to improve overall perfor-
mance to Θ(n3 log n) (see algorithm MatrixSquaring). This is significantly better than naively computing
single-source shortest paths from every starting location via RepeatBFM!

Algorithm: MatrixBFM(G,C)

input: vertices V = {1, . . . , n},
weights C ∈ (R ∪ {∞})n×n

output: distance matrix Dc

D(1) ← C
for k ← 2, . . . , n− 1 :

D(k) ← D(k−1)
⨂︁

min,+C

return D(n−1)

Algorithm: MatrixSquaring(G,C)

input: vertices V = {1, . . . , n},
weights C ∈ (R ∪ {∞})n×n

output: distance matrix Dc

Q(1) ← C
for k ← 2, . . . , ⌈log2(n− 1)⌉ :

Q(k) ← Q(k−1)
⨂︁

min,+Q(k−1)

return Q(⌈log2(n−1)⌉)

In terms of the underlying dynamic program, we achieved the above improvement by shrinking the dynamic
programming table and changing dependencies. We now improve the dynamic program further by identifying
a more suitable form of optimum substructure, based on induced subgraphs of the form G[{1, 2, . . . , w}] of G
for increasing values of w ∈ {0, . . . , n}.

Definition 2.13. For u, v, w ∈ V = {1, . . . , n} we define

d(≤0)
uv := c(u, v),

d(≤w)
uv := min

{︁
d(≤w−1)
uv , d(≤w−1)

uw + d(≤w−1)
wv

}︁
.

We formalize the intuition behind this definition:

Lemma 2.14. Let u, v ∈ V = {1, . . . , n} and w ∈ V ∪ {0}. Every u-v-path in G[{1, . . . , w} ∪ {u, v}] has length
at least d(≤w)

uv , and, if d(≤w)
uv <∞, there exists a u-v-walk in G[{1, . . . , w} ∪ {u, v}] of length d

(≤w)
uv .

Proof. We prove the statement via induction on w. The induction basis for w = 0 is trivial.
By Definition 2.13, d(≤w)

uv < ∞ implies that d
(≤w−1)
uv < ∞ or d

(≤w−1)
uw + d

(≤w−1)
wv < ∞. In either case,

the induction hypothesis gives a u-v-walk in G[{1, . . . , w} ∪ {u, v}] of length d
(≤w)
uv .It remains to show that

d
(≤w)
uv ≤ c(Puv) for every u-v-path Puv in G[{1, . . . , w} ∪ {u, v}].

If w /∈ Puv, by the induction hypothesis, we have d
(≤w)
uv ≤ d

(≤w−1)
uv ≤ c(Puv). Otherwise, let Puw ⊕ Pwv := Puv

be such that Puw ∩ Pwv = {w}. We have Puw ⊆ {1, . . . , w − 1} ∪ {u,w} and Pwv ⊆ {1, . . . , w − 1} ∪ {w, v}.
By induction, this implies d(≤w)

uv ≤ d
(≤w−1)
uw + d

(≤w−1)
wv ≤ c(Puw) + c(Pwv) = c(Puv).

This interpretation of Definition 2.13 suggests a different dynamic program called the Floyd-Warshall algorithm.
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Algorithm: FloydWarshall(G, c)

input: vertices V = {1, . . . , n}, weights C ∈ (R ∪ {∞})n×n

output: distance matrix Dc

D(≤0) ← C
for w ← 1, . . . , n :

for u← 1, . . . , n :
for v ← 1, . . . , n :

d
(≤w)
uv ← min{d(≤w−1)

uv , d
(≤w−1)
uw + d

(≤w−1)
wv }

return D(≤n)

It is easy to see that this algorithm is correct and yields another (minor) improvement to the running time.
Also observe that the distances computed by FloydWarshall allow to infer which vertex lies on a negative
cycle by inspecting the diagonal entries of D(≤n).

Theorem 2.15. If c : V → R does not induce negative cycles in G = (V,E), then FloydWarshall solves the
all pairs shortest paths problem in time Θ(n3).

Proof. The value d
(≤n)
uv are correctly compute by the algorithm by definition. By Lemma 2.14, for every

u, v ∈ V with dc(u, v) < ∞, we have d
(≤n)
uv < ∞. Also, if d(≤n)

uv < ∞, there is a u-v-walk W of length
c(W ) = d

(≤n)
uv ≤ dc(u, v) in G. We can decompose W into a u-v-path P and a set C of cycles (see lecture

Algorithmic Discrete Mathematics). Since c does not induce negative cycles, we have dc(u, v) ≥ d
(≤n)
uv = c(W ) =

c(P ) +
∑︁

C∈C c(C) ≥ c(P ). Since P cannot be shorter than a shortest u-v-path in G, equality must hold,
and, in particular, d(≤n)

uv = dc(u, v). This implies that D(≤n) = Dc and FloydWarshall computes the correct
solution. The algorithm obviously has cubic running time.

In fact, the all-pairs shortest paths problem is a very important problem in algorithm theory and many more
efficient algorithms have been developed. However, all of these algorithms have a running time of the form
O(n3)/no(1), which means that their running times are better than O(n3) only by a subpolynomial factor (for
example by log n/ log log n). Because of our inability to obtain better algorithms, many algorithmists believe
that the following conjecture holds. This conjecture is sometimes used as a basis for conditional proofs of
hardness for other problems.

Conjecture 2.16 (APSP Conjecture). No algorithm can solve the All-Pairs Shortest Paths problem in timeO(n3−ε)
for any fixed ε > 0.

2.2.1 All-Pairs Dijkstra

If all arc weights are non-negative, we can obtain a running time of O(mn+ n2 log n) simply by repeating
Dijkstra from all start vertices s ∈ V . This is never worse than the running time of FloydWarshall and
better on sparse graphs, i.e., on graphs with m ∈ o(n2). We will now see a way of adapting this algorithm for
the case where arc weights can be negative. The idea is to modify arc weights in such a way that they become
non-negative, while preserving shortest paths. We can achieve this if we can find a potential function in the
following sense.
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Definition 2.17. The reduced costs cπ with respect to π : V → R are defined by

cπ(u, v) := c(u, v) + π(u)− π(v),

for all u, v ∈ V . If cπ(u, v) ≥ 0 for all u, v ∈ V , we say that π is a vertex potential.

Crucially, vertex potentials have the property that they do not alter the set of shortest paths.

Proposition 2.18. Let π : V → R and P be a u-v-path in G with u, v ∈ V . Then, P is a shortest path with
respect to c if and only if P is a shortest path with respect to cπ.

Proof. For every u-v-walk W we have

cπ(W ) =
∑︂

(a,b)∈W

cπ(a, b) =
∑︂

(a,b)∈W

(c(a, b) + π(a)− π(b)) = π(u)− π(v) +
∑︂

(a,b)∈W

c(a, b) = δuv + c(W ),

where δuv := π(u)−π(v) is a constant that only depends on u and v. This means that the costs of all u-v-walks
are shifted by the same additive constant. Thus, the set of shortest paths is preserved. Note that, in particular,
c induces negative cycles if and only if cπ induces negative cycles.

Proposition 2.18 implies that, if we have a vertex potential π : V → R, we can solve the all-pairs shortest paths
problem for arbitrary weights by applying Dijkstra using the reduced costs cπ.

Algorithm: AllPairsDijkstra(G, c)

input: vertices V = {1, . . . , n}, weights c : E → R
output: distances (dc(u, v))u,v∈V
π ← Potential(G, c)
for u ∈ V :

(duv)v∈V ← Dijkstra(G, cπ, u)

return (duv − π(u) + π(v))u,v∈V

We still need a way of finding vertex potentials. This can be accomplished as follows.

Algorithm: Potential(G, c)

input: vertices V = {1, . . . , n}, weights c : E → R
output: vertex potential
s← n+ 1; n′ ← n+ 1
G′ ← (V ∪ {s}, E ∪ ({s} × V ))

c′(u, v)←

⎧⎪⎨⎪⎩
0, if u = s and v ∈ V ∪ {s},
∞, if u ∈ V and v = s,

c(u, v), if u, v ∈ V.

(d
(n′−1)
sv )v∈V ∪{s} ← BellmanFord(Moore)(G′, c′, s)

return (d
(n′−1)
sv )v∈V

11



We show that Potential finds a vertex potential if there are no negative cycles. Conversely, if a vertex
potential π exists, then cπ cannot induce negative cycles and Proposition 2.18 implies that c cannot induce
negative cycles.

Proposition 2.19. If c does not induce negative cycles, Potential computes a vertex potential in time O(mn).

Proof. Since c does not induce negative cycles in G, neither does c′ in G′. Proposition 2.11, together with the
fact that inG′ all vertices are reachable from s, yields that d(n′−1)

c′,G′ (s, v) ≤ d
(n′−1)
c′,G′ (s, u)+c′(u, v) for all u, v ∈ V .

By correctnes of BellmanFord(Moore), it follows that d(n′−1)
su + c(u, v) − d

(n′−1)
sv (s, v) ≥ 0 for all u, v ∈ V .

This means that π(v) := d
(n′−1)
sv defines a vertex potential. The running time of Potential is dominated by

the running time of BellmanFord(Moore) (see lecture Algorithmic Discrete Mathematics).

With this, we obtain the following result.

Theorem 2.20. If c does not induce negative cycles in G, then AllPairsDijkstra solves the all pairs shortest
paths problem in time O(n(m+ n log n)).

Proof. Correctness follows from Propositions 2.18 and 2.19. The running time follows from Proposition 2.19
together with the fact that Dijkstra can be implemented with a running time ofO(m+n log n) (Theorem 2.2).

Remark 2.21. Note that this result does not contradict the APSP Conjecture, since it only provides an improved
running time for sparse graphs. In dense graphs, AllPairsDijkstra and FloydWarshall provide the same
theoretical performance guarantee. For practical purposes, FloydWarshall is often superior in dense graphs,
since it is much leaner in terms of the hidden constant in the O-notation and is much easier to implement.

2.2.2 A Duality Approach to Vertex Potentials

We now expose a tight relationship between negative cycles and vertex potentials in terms of linear program-
ming theory. We start with an integer linear programming (ILP) formulation for finding (a collection of)
negative closed walks:

(NC)
min

∑︁
(u,v)∈E cuvxuv

s.t. ∑︁
u:(v,u)∈E xvu =

∑︁
u:(u,v)∈E xuv, ∀v ∈ V

xuv ∈ N ∪ {0} ∀(u, v) ∈ E

Clearly, this ILP is feasible, since xuv = 0 for all u, v ∈ V trivially is a feasible solution. If there are no negative
cycles, then (NC) is also bounded by 0, otherwise it is unbounded. Furthermore, the polytope defined by
the constraints of (NC) is integral, which means that we do not need to require xuv to be integral to have an
integral optimum.

Proposition 2.22. The LP-relaxation of (NC) is integral.
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Proof. First observe that the constraint matrix of (NC) is the incidence matrix of the underlying graph G. We
know that the incidence matrix of a graph is totally unimodular, which implies that the corresponding polytope
is integral (see lecture Discrete Optimization). Thus, the LP-relaxation of (NC) is integral, as claimed.

We can therefore consider the LP-relaxation (NCP) instead of (NC).
(NCP)

min
∑︁

(u,v)∈E cuvxuv

s.t. ∑︁
u:(u,v)∈E xuv −

∑︁
u:(v,u)∈E xvu = 0, ∀v ∈ V

xuv ≥ 0 ∀(u, v) ∈ E

(NCD)
max 0

s.t. yv − yu ≤ cuv, ∀(u, v) ∈ E

yv ∈ R ∀v ∈ V

Observation 2.23. The linear program (NCP) is always feasible, and it is bounded if and only if c does not
induce negative cycles.

We will now consider the dual linear program (NCD) and use weak duality to relate the existence of ver-
tex potentials to the existence of negative cycles. Note that the following proposition also follows from
Propositions 2.18 and 2.19, as discussed above.

Proposition 2.24. A directed graph G = (V,E) with arc weights c : E → R admits a vertex potential if and
only if c does not induce negative cycles.

Proof. Consider the dual LP (NCD) for (NCP). Trivially, (NCD) is always bounded. By identifying π(v) ≡ y(v),
we see that (NCD) is feasible (and bounded) if and only if we can find a vertex potential.
On the other hand, by strong duality (see lecture Introduction to Optimization), the dual (NCD) is feasible and
bounded if and only if the primal (NCP) is feasible and bounded. From Observation 2.23 we know that this is
the case precisely if c does not induce negative cycles.

2.3 Goal-Directed Search

In many applications, in particular routing, we are not interested in all shortest paths in a graph but rather a
shortest s-t-path between specific vertices s and t. Intuitively, from a theoretical worst-case perspective, this
problem is equivalent to the single-source shortest path problem, since the shortest s-t-path may contain all
other shortest paths from s. However, in practice, many heuristic techniques have been developed that are
tailored to finding a shortest path to the destination as quickly as possible. While these algorithms do not
perform better than general shortest path algorithms in the worst case, they are often superior on real graphs
like road networks. We present one of the most important heuristics and establish its correctness.
As a motivation, consider a densely connected graph on points of the plane with arc weights being Euclidean
distances (see Figure 2.1). In such a graph, Dijkstra explores a ball of radius dc(s, t) before finding a
shortest s-t-path. We can significantly reduce the search space by invoking Dijkstra simultaneously from
s (in G = (V,E)) and from t (in the reverse graph (V, Ē)). The corresponding search space consists of two
balls of radius 1

2 · dc(s, t), which, intuitively, should contain about half the number of vertices as before. We
can further reduce the search space if we have some reasonable estimate ht(v) for the distance from v to t
for all v ∈ V . Such an estimate might, for example, be the length of the straight-line connection between v
and t in the plane. With such an estimate, we can direct Dijkstra towards t by favoring vertices with smaller
estimates when choosing where to proceed. One way of doing this is the algorithm A⋆ below.
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Algorithm: A⋆(G, c, s, t)

input: graph G = (V,E),
weights c : E → R≥0,
vertices s, t ∈ V

output: distance dc(s, t)

dsv ←

{︄
0, v = s,

∞, otherwise.
R← V

while t ∈ R :
u← argminv∈R{dsv + ht(v)}
R← R \ {u}
for v ∈ Γ(u) ∩R :

dsv ← min{dsv, dsu + c(u, v)}

return dst

Algorithm: A⋆-Reformulation(G, c, s, t)

input: graph G = (V,E),
weights c : E → R≥0,
vertices s, t ∈ V

output: distance dc(s, t)

d′sv ←

{︄
ht(s), v = s,

∞, otherwise.
R← V

while t ∈ R :
u← argminv∈R{d′sv}
R← R \ {u}
for v ∈ Γ(u) ∩R :

d′sv ← min{d′sv, d′su−ht(u)+c(u, v)+ht(v)}

return d′st − ht(t)

This algorithm can be expressed as a parametrization of GenericSearch with g(u, v) = d′su−ht(u)+ c(u, v)+
ht(v), see A⋆-Reformulation. We have to be careful not to be too generous with our estimation ht(v),
otherwise we may lose correctness of the algorithm. The following theorem gives a relatively weak condition
for ht under which A⋆ is guaranteed to compute a shortest s-t-path. Whether or not our choice of ht actually
improves the practical performance entirely depends on the structure of G and c.

Theorem 2.25. If ht is monotone, i.e., if ht(u) ≤ c(u, v) + ht(v) for all (u, v) ∈ E, then A⋆ is correct.

Proof. Consider algorithm A⋆-Reformulation. This algorithm is equivalent to A⋆ with d′sv = dsv + ht(v). On
the other hand, the algorithm is nothing else than Dijkstra(G, cπ, s) with vertex potential π(v) = −ht(v) for
all v ∈ V . Observe that π defines a potential, since cπ(u, v) = c(u, v)+π(u)−π(v) = c(u, v)−ht(u)+ht(v) ≥ 0
by monotonicity of ht. Correctness thus follows from correctness of Dijkstra and Proposition 2.18.

Note that, by Proposition 2.24, a monotone distance estimate can only exist in the absence of negative cycles.
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Figure 2.1: An intuitive illustration of the search spaces of DIJKSTRA (red), bidirectional DIJKSTRA (blue), and
A⋆ (green) in the plane with Euclidean distances.
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3 Maximum Flows

In this chapter we revisit the maximum flow problem defined as follows. We refer to the lecture Algorithmic
Discrete Mathematics for all basic definitions including residual graphs, augmenting paths and flow decomposi-
tions, as well as fundamental theorems like the max-flow-min-cut theorem, Menger’s theorem, etc. For the
remainder of the chapter we will consider a fixed but arbitrary network (G = (V,E), µ, s, t).

Maximum Flow Problem
input: network (G = (V,E), µ, s, t)
problem: find s-t-flow in G of maximum value

3.1 Dinic Algorithm

Recall the Edmonds-Karp algorithm that implements the Ford-Fulkerson method for computing a maximum
s-t-flow by increasing flow along augmenting paths until we obtain a maximum flow:

Algorithm: EdmondsKarp(G,µ, s, t)

input: network (G = (V,E), µ, s, t)
output: maximum s-t-flow
f ← 0
while ∃s-t-path in Gf :

P ← shortest s-t-path in Gf (unweighted)
δ ← mine∈P µf (e)
Augment(P, δ)

return f

Recall that the length of the shortest path P is monotonically increasing during an execution of EdmondsKarp.
This means that, conceptually, we can subdivide an execution into phases of constant path lengths. We know
that there can be at most n − 1 such phases, since this is the maximum number of arcs any s-t-path can
have. We showed that EdmondsKarp executes each phase in time O(m2) on average, which yields an overall
running time of O(m2n). We now present the algorithm of Dinic, which is based on an idea how to perform
each phase more efficiently.
Intuitively, we aim to execute a phase in a single step, i.e., to simultaneously saturate all shortest s-t-paths
in Gf . To do this, we consider the level graph of Gf , which is defined as follows.

Definition 3.1. The level graph GL = (V,EL) of a graph G = (V,E) with respect to a source vertex s ∈ V is a
subgraph of G defined by EL := {(u, v) ∈ E | d(s, v) = d(s, u) + 1}.
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We can restrict our attention to the level graph without losing shortest paths, while gaining additional structure.

Observation 3.2. The level graph GL is acyclic and contains all shortest s-v-paths of G for v ∈ V .

The fact that the level graph Gf,L of Gf contains all shortest augmenting paths implies that EdmondsKarp
increases the flow only along arcs of Gf,L in each iteration. The idea of the Dinic algorithm is to increase flow
along more than one path in Gf,L in order to simultaneously saturate all s-t-paths in Gf,L. The algorithm
achieves this by computing a blocking flow in Gf,L, which is defined as follows.

Definition 3.3. An s-t-flow f in a network (G,µ, s, t) is called a blocking flow if there is no augmenting path
in G ∩Gf .

With this, we can state Dinic’s algorithm, based on a subroutine for computing blocking flows.

Algorithm: Dinic(G,µ, s, t)

input: network (G = (V,E), µ, s, t)
output: maximum s-t-flow
f ← 0
while ∃ s-t-path in Gf :

Gf,L ← (V, {(v, w) ∈ Gf | dGf
(s, w) = dGf

(s, v) + 1})
f ′ ← BlockingFlow(Gf,L, µf , s, t)
f ← f + f ′

return f

We will now show that the length of a shortest path in Gf is strictly increasing in each iteration of Dinic. In
addition, because Gf,L is acyclic, we will be able to efficiently compute a blocking flow.

Proposition 3.4. Dinic computes a maximum s-t-flow in at most n− 1 iterations. In each iteration dGf
(s, t)

strictly increases.

Proof. By definition of the algorithm, once Dinic terminates, there is no augmenting path inGf , which implies
that f is a maximum s-t-flow (see lecture Algorithmic Discrete Mathematics). It remains to show that this
happens after n− 1 iterations at the latest. To prove this, we show that the distance dGf

(s, t) between s and t
in Gf increases in each iteration.
Let f , f ′′ = f + f ′ be the flows before and after some iteration of Dinic. We show that dGf

(s, t) < dGf ′′ (s, t),
i.e., that shortest s-t-paths in Gf ′′ (if any exist) are longer than shortest s-t-paths in Gf . Let Gf,L be the
level graph of Gf , and let Gf,L̄ := Gf ∪ Ḡf,L be the graph that consists of the arcs of Gf and the reverse
arcs of Gf,L. It holds that Gf ′′ ⊆ Gf,L̄, since all new arcs in the residual graph after the iteration must be
reverse arcs of Gf,L. Moreover, Gf,L̄ contains no arcs (u, v) with dGf

(s, v) > dGf
(s, u) + 1: Obviously such

arcs cannot be part of Gf and for (u, v) ∈ Ḡf,L it even holds that dGf
(s, v) = dGf

(s, u)− 1. In particular, the
arcs (u, v) ∈ Gf,L̄ with dGf

(s, v) = dGf
(s, u) + 1 must be from Gf are thus part of Gf,L. Since f ′ is a blocking

flow for Gf,L, there is no s-t-path in Gf ′′ ∩Gf,L. Hence, every shortest s-t-path P in Gf ′′ ⊆ Gf,L̄ must use at
least one arc (u, v) ∈ Gf ′′ \Gf,L, which must therefore satisfy dGf

(s, v) ≤ dGf
(s, u). We obtain

dGf
(s, t) = dGf

(s, t)− dGf
(s, s) =

∑︂
(u,v)∈P

(dGf
(s, v)− dGf

(s, u)) ≤ |P | − 1 = dGf ′′ (s, t)− 1,

i.e., dGf
(s, t) < dGf ′′ (s, t), as claimed.
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3.1.1 Blocking Flows

We still need a way of efficiently computing a blocking flow, i.e., we need to solve the following problem.

Blocking Flow Problem
input: acyclic network (G = (V,E), µ, s, t)
problem: find blocking s-t-flow

Crucially, we restrict ourselves to acyclic inputs, since the level graph for which we need a blocking flow in
Dinic is acyclic (Observation 3.2). This gives us the existence of a topological ordering of the graph.

Definition 3.5. A topological ordering of a graph G = (V,E) is an ordering {v1, . . . , vn} = V of the vertices
of G with i < j for all (vi, vj) ∈ E.

A topological ordering can be computed efficiently (proof left as an exercise).

Proposition 3.6. A directed graph is acyclic if and only if it has a topological ordering. In that case a topological
ordering can be computed in time O(n+m).

A natural approach to finding a blocking flow is to “push” as much flow forward, in topological order, as
possible. If we never decrease flow values, the last vertex, before t, that is still overflowing will never be able
to push more flow. So we may as well send flow back until it is not overflowing anymore and afterwards keep
all flow entering and leaving this vertex unchanged. We can continue alternating push and balancing phases,
until no vertex (other than t) has excess left. We obtain the following algorithm.

Algorithm: BlockingFlow(G,µ, s, t)

input: acyclic network (G = (V,E), µ, s, t)
output: blocking flow
(s = v1, . . . , vn = t)← TopologicalSort(G) (we set δ−(s) = δ+(t) = ∅)
Lv∈V ← ∅, f ← 0, exf (s) ≡ ∞
for n− 1 times :

/* push step */
for v ← v1, . . . , vn with exf (v) > 0 :

for (v, w)∈δ+(v) with w not marked:
e← (v, w)
γ ← Push(v, e,∞) (send as much flow as possible)
Lw ← Lw ⊕ (e, γ) (remember push)

/* balancing step */
i← max{i < n | exf (vi) > 0}
while exf (vi) > 0 and vi ̸= s :

(Lvi ⊕ (e, γ))← Lvi (extract last edge)
Push(vi, ē, γ) (send as much flow as possible back)

mark vi

return f
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Algorithm: Push(v, e, γmax [default =∞])
γ ← min{exf (v), µf (e), γmax}
Augment(e, γ)
return γ

Note that the function f : E → R≥0 that the above algorithm is maintaining is not a valid flow until the very
end, since it does not satisfy flow conservation. Observe however, that no vertex other than s may underflow,
i.e., have negative excess. Functions with relaxed flow conservation in this sense will become important later,
which warrants the following definition.

Definition 3.7. A function f : E → R≥0 is an s-t-preflow in the network (G = (V,E), µ, s, t) if it satisfies:

(i) (capacity constraints) f(e) ≤ µ(e) for all arcs e ∈ E,

(ii) (overflow) exf (v) ≥ 0 for all vertices v ∈ V \ {s}.

We establish the key invariant of the BlockingFlow algorithm.

Lemma 3.8. After BlockingFlow performs a balancing step with vertex vi, it maintains exf (vi) = 0 unless
vi = s, and the fact that there is no vi-t-path in Gf ∩G.

Proof. When starting a balancing step with vi, there cannot be an overflowing vertex in {vi+1, . . . , vn−1}, i.e.,
behind vi in the topological order. By definition of a topological ordering, flow is only sent to predecessors of vi
in the topological order during the balancing step. This means that the balancing step maintains exf (vj) = 0
for all j ∈ {i+ 1, . . . , n− 1}. We say that all these vertices are in a balanced state. Since the incoming flow
at each vertex is undone in reverse order of when it was created, none of the vertices vj , j ∈ {i+ 1, . . . , n}
will send flow back to vi in future balancing steps (provided they do not receive additional flow from vi). In
addition, since vi is marked after the balancing step, it will never receive new flow in future push steps. If
vi ̸= s, then the balancing step continues until vi is in a balanced state, therefore exf (vi) = 0 is maintained
from this time onward.
For the second part of the claim we use induction on the number of performed balancing steps. The claim
trivially holds at the beginning. At the time when vi is selected for the balancing step, it overflows. This means
that vi can only have outgoing arcs to marked vertices in Gf ∩G, otherwise it could have pushed more flow.
All these vertices were previously selected for balancing steps. This means that, by induction, there are no
paths from vi’s neighbors to t in Gf ∩G now and in the future. As discussed above, the flow to successors
of vi in the topological order will never be undone and vi will never receive new flow, which means that the
set of neighbors of vi in Gf ∩G cannot grow. Thus, there will not be a vi-t-path in Gf ∩G from this point in
time onward.

With this, we are ready to show correctness and running time of BlockingFlow.

Theorem 3.9. BlockingFlow computes a blocking flow in time O(n2).

Proof. By Lemma 3.8, BlockingFlow computes a blocking flow: The lemma implies that no vertex is selected
in more than one balancing step, and after all vertices have been selected once, at the latest, no vertex, except
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for s, has any overflow. Thus, in iteration n− 1 at the latest, s is eventually selected in a balancing step, and
we have that there is no s-t-path in Gf ∩G in the end, which means that f is a blocking flow.
By Proposition 3.6, the initial topological sort can be computed in time O(n+m). Since we can omit iterations
in push steps for arcs (v, w) where exf (v) = 0 or w is marked, it suffices to analyze the number of Push
operations. First observe that the number of Push operations in balancing steps is bounded by the number
of Push operations in push steps. Therefore, it suffices to bound the number of Push operations in push
steps. Since every vertex only pushes flow forward until some arc is not saturated by a push, and vn does
not perform any pushes, the number of unsaturating pushes is bounded by n− 1 in each iteration. For every
saturating push we observe that the capacity along the arc only becomes available again in the future once a
balancing step is performed with the other endpoint of the arc. Therefore this arc will not be used again in a
push step. Hence, the total number of saturating pushes over all iterations is at most m. Overall, the total
number of Push operations can be bounded by O(n2 +m) = O(n2). Our claim for the running time follows,
since each Push operation can be performed in constant time.

Finally, using BlockingFlow as a subroutine for Dinic yields the following running time. Note the improve-
ment over EdmondsKarp for dense graphs, where we can expect many shortest augmenting paths in each
phase of the algorithm.

Theorem 3.10. Dinic can be implemented with a running time of O(n3).

Proof. We can compute the level graph in time O(m) using BFS. The statement therefore follows from
Proposition 3.4 and Theorem 3.9.

3.2 Push-Relabel Algorithm

We now turn to a quite different approach to computing maximum flows. Intuitively, this approach is motivated
by physical water networks, where flow is naturally maximized simply because water flows downhill whenever
possible. With this in mind, we can try to obtain a maximum flow simply by emulating a system where the
source vertex is at a higher elevation than the sink, and by simulating the water flow. The following definition
serves as a mathematical basis for implementing this idea.

Definition 3.11. A function h : V → N∪{0} is a height function with respect to an s-t-preflow f if the following
hold:

(i) h(s) = n,

(ii) h(t) = 0,

(iii) h(u) ≤ h(v) + 1 for all (u, v) ∈ Gf .

Note that we forbid arcs to go downhill by more than one unit of height, which implies the following.

Observation 3.12. Let h be a height function with respect to an s-t-preflow f . For every u-v-path P in Gf it
holds that h(u) ≤ h(v) + |P |.

In particular, the height of vertices with a path to s is limited by 2n− 1. We show next that this includes all
overflowing vertices.
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Lemma 3.13. If f is an s-t-preflow, then s is reachable in Gf from every vertex in {v ∈ V | exf (v) > 0}.

Proof. Let v′ ∈ {v ∈ V | exf (v) > 0} be an overflowing vertex, and let R denote the set of all vertices reachable
from v′ in Gf . Then, µf (e) = 0 for all e ∈ δ+

G∪Ḡ(R) and, in particular, f(e) = 0 for all e ∈ δ−G(R). By definition
of excess, we thus have

∑︂
v∈R

exf (v) =
∑︂
v∈R

⎛⎝ ∑︂
(u,v)∈E

f(u, v)−
∑︂

(v,w)∈E

f(v, w)

⎞⎠
=

∑︂
v∈R

⎛⎝ ∑︂
(u,v)∈E\R2

f(u, v)−
∑︂

(v,w)∈E\R2

f(v, w)

⎞⎠
=

∑︂
e∈δ−G(R)

f(e)−
∑︂

e∈δ+(R)

f(e)

= −
∑︂

e∈δ+(R)

f(e) ≤ 0.

But since exf (v
′) > 0, there must be a vertex u ∈ R with exf (u) < 0. By definition of a preflow, this can only

be s. Hence s is reachable from v′ in Gf , as claimed.

We can initially set up a preflow and height function by giving s a large height and by completely saturating
all arcs in δ+(s) (here and throughout we assume δ−(s) = δ+(t) = ∅, otherwise, we remove these arcs from
the graph without changing the maximum flow value). At this point, the vertices in Γ(s) have positive excess.
Now the idea is to gradually increase the height of overflowing vertices and to simulate water flowing downhill
whenever possible. The definition of a height function requires that we raise vertices one unit of height at a
time, immediately simulate all water flow, and stop increasing the height once a vertex is not overflowing
anymore. Ideally, we repeat this process until no vertex other than t has positive excess. We now show that if
we reach this point, we are guaranteed to have computed a maximum flow!

Lemma 3.14. Let f be an s-t-flow in the network (G,µ, s, t). If any height function with respect to f exists,
then f is a maximum flow.

Proof. By Observation 3.12, every s-t-path in Gf must contain at least h(s)− h(t) arcs. But, by definition, we
have h(s)− h(t) = n and an s-t-path cannot consist of more than n− 1 arcs. Hence, no augmenting path can
exist in Gf , which implies that f is a maximum s-t-flow (see lecture Algorithmic Discrete Mathematics).

We are now ready to formulate our approach as an algorithm. This algorithm is called the Goldberg-Tarjan
algorithm, or the push-relabel algorithm.
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Algorithm: GoldbergTarjan(G,µ, s, t)

input: network (G = (V,E), µ, s, t)
output: maximum s-t-flow

f(e)←

{︄
µ(e), for e ∈ δ+(s),

0, for e ∈ E \ δ+(s).

h(v)←

{︄
n, for v = s,

0, for v ∈ V \ {s}.
while ∃u ∈ V \ {t} with exf (u) > 0 :

if ∃e = (u, v) ∈ δ+Gf
(u) with h(u) = h(v) + 1 :

Push(u, e,∞) (push)
else

h(u)← minv∈ΓGf
(u){h(v) + 1} (relabel)

return f

Algorithm: RelabelToFront(G,µ, s, t)

input: network (G = (V,E), µ, s, t)
output: maximum s-t-flow

f(e)←

{︄
µ(e), for e ∈ δ+(s),

0, for e ∈ E \ δ+(s).

h(v)←

{︄
n, for v = s,

0, for v ∈ V \ {s}.
while ∃u ∈ argmaxv∈V \{t}

{︁
h(v)

⃓⃓
exf (v) > 0

}︁
:

if ∃e = (u, v) ∈ δ+Gf
(u) with h(u) = h(v) + 1 :

Push(u, e,∞) (push)
else

h(u)← minv∈ΓGf
(u){h(v) + 1} (relabel)

return f

We show that we never need to raise vertices above a height of 2n in order to eliminate all excess.

Lemma 3.15. GoldbergTarjan maintains a height function h with respect to the preflow f with h(v) < 2n
for all v ∈ V .

Proof. At the beginning of the algorithm we have h(s) = n and h(v) = 0 for all v ∈ V \ {s}. Moreover, all arcs
in δ+(s) are saturated, hence Gf does not have any “downhill” arcs and h is a height function.
During a relabel step, h remains a height function by definition. Furthermore, we only apply relabeling steps to
vertices u with exf (u) > 0. At this point, by Observation 3.12, there exists a u-s-path P in Gf . By Lemma 3.13
it further follows that h(u) ≤ h(s) + |P | ≤ h(s) + n− 1 = 2n− 1.
During a Push operation along arc e = (u, v) the height function h is not changed, but the reverse arc (v, u)
may be created in Gf . That is no problem, since h(v) = h(u)− 1 < h(u) + 1 ensures that h remains a height
function with respect to Gf .

We have bounded the maximum height of all vertices and it remains to show that GoldbergTarjan keeps
increasing heights, which then implies that the algorithm eventually terminates with f being an s-t-flow.

Lemma 3.16. In every relabel step GoldbergTarjan strictly increases the height of some vertex, and heights
never decrease.

Proof. The height of a vertex v can only change during a relabel step, which is only applied once no push step
is possible anymore. By Lemma 3.15, h is a height function, hence all arcs (u, v) ∈ δ+Gf

(u) satisfy h(v) ≥ h(u)

before a relabel step for u. By Lemma 3.13, exf (u) > 0 implies that a u-s-path exists in Gf , and, in particular,
δ+Gf

(u) ̸= ∅. Thus, the height of u increases during the relabel step.

From Lemmas 3.14 and 3.15 it follows that GoldbergTarjan is correct. We proceed to bound the number of
operations needed by the algorithm to obtain a bound on its running time.
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Proposition 3.17. GoldbergTarjan computes a maximum s-t-flow using O(n2m) Push and O(n2) relabel
operations.

Proof. By Lemma 3.15, the algorithm maintains a height function. When GoldbergTarjan terminates, no
vertex except t may overflow, thus f in an s-t-flow. By Lemma 3.14, f thus is a maximum flow.
We analyze the number of relabel steps. By Lemma 3.16, we increase the height by at least one during each
relabel step. By Lemma 3.15, the number of relabel steps is thus bounded by O(n2).
Now consider the number of push steps in which the corresponding arc (u, v) is saturated. Since the heights
of vertices can never decrease (Lemma 3.16), the height of v must increase by at least two before a push step
can be performed along the reverse arc, after which a push step with (u, v) can occur again. Since the height
is bounded by 2n− 1 (Lemma 3.15), the number of saturating push steps along the same arc is thus bounded
by O(n). The total number of saturating push steps thus is in O(mn).
To bound the number of non-saturating push steps, we consider the potential Φ =

∑︁
v:exf (v)>0 h(v). During

a relabel step, the potential can increase by at most 2n− 1 (Lemma 3.15). During each push step at most
one new overflowing vertex is created. During a saturating push step this may increase the potential by at
most 2n− 2 (Lemma 3.15). During a non-saturating push step along arc (u, v), however, u loses its excess
completely. Since h(u) = h(v)+1, the potential therefore decreases by one (at least – since no new overflowing
vertex may have been created). We already know that the number of relabel and saturating push steps is
O(n2 +mn) = O(mn) (since we can restrict ourselves to the part of the graph connected to s and t, such
that n ∈ O(m)). During these steps the potential increases by O(n), hence the potential can only decrease at
most O(n2m) times overall (every decrease is by at least one, we initially have Φ = 0, and Φ ≥ 0 throughout).
Hence, the total number of non-saturating push steps is at most O(n2m).

Proposition 3.17 suggests that GoldbergTarjan does not perform better than Dinic. However, we can further
improve its running time by choosing the vertex more carefully that we consider in each iteration of the
algorithm. The version of GoldbergTarjan that always selects an overflowing vertex of largest height is often
called relabel-to-front algorithm. We show that this algorithm requires significantly fewer operations.

Proposition 3.18. RelabelToFront only requires O(n2√m) push steps.

Proof. Recall from the proof of Proposition 3.17 that the number of saturating push steps is bounded byO(mn).
Since we can restrict ourselves to the part of the graph connected to s and t, this falls within the claimed
running time. Hence it suffices to bound the number of non-saturating push steps.
Let hmax := maxv∈V : exf (v)>0 h(v) be the largest height among all overflowing vertices. We divide the execution
of the algorithm into maximal phases in such a way that hmax remains constant during each phase. Since h
can only change during a relabel step and can only increase (Lemma 3.16), and since h < 2n (Lemma 3.15),
the total increase of ∑︁v∈V h(v) is at most 2n2. Also hmax can only increase together with ∑︁

v∈V h(v) during a
relabel step and thus at most 2n2 times. Since hmax ≥ 0 and initially hmax = 0, we obtain that hmax can only
decrease at most 2n2 times (each time by at least one). Hence, the number of phases is at most 4n2 = O(n2).
First consider “cheap” phases with at most √m non-saturating push steps. The total number of non-saturating
push steps in all these phases together is O(n2√m). It remains to consider “expensive” phases.
We define the potential

Φ =
∑︂

v∈{v′∈V | exf (v′)>0}

Φ(v) :=
∑︂

v∈{v′∈V | exf (v′)>0}

|{w ∈ V |h(w) ≤ h(v)}| .
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Since Φ(v) ≤ n holds for all v ∈ V , we initially have Φ ≤ n2 and every relabel or saturating push step can
increase Φ by at most n− 1. A non-saturating push step reduces Φ. Since the number of relabel and saturating
push steps is at most O(mn) (Proposition 3.17) and each such step can increase Φ by at most n, the amount
by which Φ can be reduced over all non-saturating push steps is at most O(n2m).
Now consider an expensive phase and only the vertices of height hmax during that phase. Note that heights
remain unchanged during a phase: Only vertices with excess and of maximum height are candidates for relabel
steps. Thus, once a relabel step occurs (or when no vertex other than t has excess) the phase ends. In particular,
the set Vmax := {v ∈ V |h(v) = hmax} remains unchanged during the phase. With every non-saturating push
step a vertex in Vmax loses its excess. Since there are more than √m such steps in an expensive phase, we
have |Vmax| >

√
m. It follows that Φ(v) > √m for all v ∈ Vmax. Every time when a vertex loses its excess, Φ

thus decreases by more than √m (note that a new vertex u with excess may be created, but for this vertex
we have Φ(v)− Φ(u) >

√
m, since h(u) < h(v)). Since Φ can only be reduced by O(n2m) overall, the total

number of non-saturating push steps in expensive phases is bounded by O(n2√m).

In order to implement RelabelToFront efficiently, we need to ensure that each iteration of the algorithm
needs constant time. We can achieve this by explicitly maintaining hmax := max{h(v) | v ∈ V ∧ exf (v) > 0} as
well as the lists L(h) = {v ∈ V \ {t} |h(v) = h∧ exf (v) > 0} for each height h ∈ {0, . . . , 2n− 1}. Additionally,
we store lists Ev = {(v, w) ∈ δ+Gf

(v) |h(v) = h(w) + 1} for every vertex v ∈ V that contain the arcs in δ+Gf
(v)

going downhill. Note that we only ever need to access or modify the first or last elements of these lists, which
can be accomplished in constant time. The following gives an efficient implementation using these lists.

Algorithm: RelabelToFront (implementation)
input: network (G = (V,E), µ, s, t)
output: maximum s-t-flow

f(e)←

{︄
µ(e), for e ∈ δ+(s),

0, for e ∈ E \ δ+(s).

h(v)←

{︄
n, for v = s,

0, for v ∈ V \ {s}.
L(h)← ∅ for all h ∈ {1, . . . , 2n− 1}
hmax ← 0, L(0)← Γ(s) \ {t}
Ev ← ∅ for all v ∈ V

while ∃v ∈ L(hmax) : (take first element)
if ∃e ∈ Ev : (take first element)

Push(v, e)
else

Relabel(v)

return f

Algorithm: Push(v, e ≡ (v, w)) (impl.)
if exf (w) = 0 and w /∈ {s, t} :

L(h(w))← L(h(w))⊕ (w)

Augment(e,min{exf (v), µf (e)})
if exf (v) = 0 :

L(hmax)← L(hmax) \ {v} (remove first)
while hmax > 0 and L(hmax) = ∅ :

hmax ← hmax − 1

if µf (e) = 0 :
Ev ← Ev \ {e} (remove first)

Algorithm: Relabel(v) (implementation)
L(hmax)← L(hmax) \ {v} (remove first)
h(v)← min

{︁
h(w) + 1

⃓⃓
w ∈ ΓGf

(v)
}︁

Ev ←
{︁
(v, w) ∈ δ+Gf

(v)
⃓⃓
h(v) = h(w) + 1

}︁
hmax ← h(v)
L(hmax)← {v}

We analyze the running times of this implementation.

Observation 3.19. The running time for a Relabel operation for vertex v is Θ(degG(v)).

Lemma 3.20. The running time for k Push operations is O(k + n2).
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Proof. Except for updating hmax, the running time of a Push operation is constant. Since h is never reduced
(Lemma 3.16) and h < 2n (Lemma 3.15), the total increase of ∑︁v∈V h(v) is bounded by O(n2). Thus, the
total decrease of hmax is also bounded by O(n2), which proves the claim.

With this, we can bound the running time of RelabelToFront. Observe that the running time is never worse
than that ofDinic and better on sparse graphs.

Theorem 3.21. RelabelToFront can be implemented with a running time of O(n2√m).

Proof. As shown above (Proposition 3.18), the number of Push operations is O(n2√m). By Lemma 3.20,
the running time for all these operations together is thus O(n2√m + n2) = O(n2√m). We have O(n)
Relabel operations for each vertex (Proposition 3.17), with a total running time of O(mn) = O(n2√m)
(Observation 3.19).
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4 Minimum-Cost Flows

In the previous chapter, we focused on the maximum flow problem as a framework for algorithmic problems
where a throughput in a network needs to be maximized. In practice, we are often not only interested in
maximizing throughput, but also on simultaneously minimizing the cost of our solution with respect to some
cost function. For example, in a logistics network, we are not only interested in maximizing the amount of
goods that we can deliver, but we also want to minimize (among other factors) the total distance we need to
travel. To account for this, we now consider the problem of finding a maximum flow that has minimum cost
among all maximum flows. Since we want to restrict ourselves to maximum flows, it will be useful to introduce
a notion of networks with prescribed demands and supplies associated with all vertices. In this setting, we
implicitly fix the total desired flow value, instead of having source and sink vertices with unbounded supply
and demand and maximizing the flow.

Definition 4.1. A circulation network is a triple (G,µ, b) where G = (V,E) is a directed graph, µ : E → R≥0

are capacities, and b : V → R are balances satisfying ∑︁
v∈V b(v) = 0. As for networks, to simplify notation,

we additionally require that {(u, v), (v, u)} ⊈ E for all u, v ∈ V .

We need to adapt our definition of a flow accordingly. Note that we no longer need flow conservation.

Definition 4.2. A function f : E → R≥0 is a b-flow in a circulation network (G,µ, b) if f(e) ≤ µ(e) for all
e ∈ E and exf (v) = −b(v) for all v ∈ V .

Note how, intuitively, positive balances b(v) act as supplies while negative balances act as demands.
The following observation summarizes how network flows and b-flows in circulation networks relate. In
particular, observe that a circulation network fixes the flow value of the s-t-flow in the corresponding network.
This allows us to easily restrict ourselves to maximum flows (e.g., by setting b(s) = |f⋆| = −b(t) to transition
from a network with maximum flow value |f⋆| to a circulation network with prescribed flow value |f⋆|).

Observation 4.3. Let (G,µ, b) be a circulation network with G = (V,E) and (G′, µ′, s, t) be a network with
G′ = (V ∪{s, t}, E ∪ ({s}×V )∪ (V ×{t})). Let further µ′(s, v) = max{0, b(v)} and µ′(v, t) = max{0,−b(v)}
for all v ∈ V , and µ′|E = µ. Then, there is a b-flow f in (G,µ, b) if and only if there is an s-t-flow f ′ in
(G′, µ′, s, t) with |f ′| = 1

2

∑︁
v∈V |b(v)|, and we may choose f and f ′ such that f ′|E = f .

This observation allows us to formulate theminimum-cost flow problemwithout explicitly demandingmaximum
flows:

Minimum-Cost Flow Problem
input: circulation network (G = (V,E), µ, b); arc costs c : E → R
problem: find b-flow f of minimum cost c(f) := ∑︁

e∈E f(e) · c(e)
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For convenience, we consider an arbitrary but fixed circulation network (G = (V,E), µ, b) with fixed costs
c : E → R throughout this chapter. We will often operate on residual graphs of G and we set c(ē) := −c(e) for
the cost of reverse arcs ē ∈ Ē.
We begin by reformulating the max-flow min-cut theorem (see lecture Algorithmic Discrete Mathematics) for
b-flows.
Proposition 4.4. A b-flow exists if and only if, for all X ⊆ V , it holds that∑︂

e∈δ+(X)

µ(e) ≥
∑︂
v∈X

b(v).

Proof. Let G′ be the graph of Observation 4.3. By the max-flow min-cut theorem, there is an s-t-flow of value
(at least) 1

2

∑︁
v∈V |b(v)| in (G′, µ′, s, t), and therefore a b-flow in (G,µ, b), if and only if∑︂

e∈δ+
G′ ({s}∪X)

µ′(e) ≥ 1

2

∑︂
v∈V
|b(v)| (4.1)

for all X ⊆ V . In addition, since ∑︁
v∈V b(v) = 0 by definition,∑︂

e∈δ+
G′ ({s}∪X)

µ′(e) =
∑︂

e∈δ+G(X)

µ(e) +
∑︂

v∈V \X

max{0, b(v)}+
∑︂
v∈X

max{0,−b(v)}

=
∑︂

e∈δ+G(X)

µ(e) +
∑︂
v∈V

max{0, b(v)} −
∑︂
v∈X

max{0, b(v)}+
∑︂
v∈X

max{0,−b(v)}

=
∑︂

e∈δ+G(X)

µ(e) +
1

2

∑︂
v∈V
|b(v)|+

∑︂
v∈X

(max{0,−b(v)} −max{0,+b(v)})

=
∑︂

e∈δ+G(X)

µ(e) +
1

2

∑︂
v∈V
|b(v)| −

∑︂
v∈X

b(v).

Together with (4.1) this concludes the proof.

As discussed above, finding a valid b-flow is equivalent to finding a maximum network flow. This can be
accomplished as follows:

Algorithm: bFlow(G,µ, b)

input: circulation network (G = (V,E), µ, b)
output: b-flow if one exists
G′ ← (V ∪ {s, t}, E ∪ ({s} × V ) ∪ (V × {t}))

µ′(u, v)←

⎧⎪⎨⎪⎩
max{0, b(v)}, for u = s, v ∈ V

max{0,−b(u)}, for u ∈ V, v = t,

µ(u, v), for u ∈ V, v ∈ V.

f ← RelabelToFront(G′, µ′, s, t)

if 2|f | =
∑︁

v∈V |b(v)| :
return f |E

else
fail
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Proposition 4.5. If a b-flow exists, bFlow finds one in time O(n2√m).

Proof. This follows from Observation 4.3 and the running time of RelabelToFront (Theorem 3.21).

Intuitively, every pair of b-flows differ by a set of cycles. The following notion will be important to formalize
this intuition.
Definition 4.6. A circulation is a function that is a b-flow in the circulation network (G,µ, b) with b = 0.

We move on by defining the difference between b-flows.

Definition 4.7. For a b-flow f and a b′-flow f ′ we define f ′ ⊖ f := g with g(e) = max{0, f ′(e) − f(e)} and
g(ē) = max{0, f(e)− f ′(e)} for all e ∈ E.

The following shows in particular that two b-flows differ by a circulation.

Lemma 4.8. For a b-flow f and a b′-flow f ′ it holds that g = f ′ ⊖ f is a (b′ − b)-flow in (Gf , µf , b
′ − b) with

c(g) = c(f ′)− c(f).

Proof. By definition, g ≥ 0. For every vertex v ∈ V of Gf it holds that
−exg(v) =

∑︂
e∈δ+

G∪Ḡ
(v)

g(e)−
∑︂

e∈δ−
G∪Ḡ

(v)

g(e)

=
∑︂

e∈δ+G(v)

g(e)−
∑︂

e∈δ−
Ḡ
(v)

g(e)−
∑︂

e∈δ−G(v)

g(e) +
∑︂

e∈δ+
Ḡ
(v)

g(e)

=
∑︂

e∈δ+G(v)

(g(e)− g(ē))−
∑︂

e∈δ−G(v)

(g(e)− g(ē))

=
∑︂

e∈δ+G(v)

(︁
f ′(e)− f(e)

)︁
−

∑︂
e∈δ−G(v)

(︁
f ′(e)− f(e)

)︁
=
(︂ ∑︂

e∈δ+G(v)

f ′(e)−
∑︂

e∈δ−G(v)

f ′(e)
)︂
−
(︂ ∑︂
e∈δ+G(v)

f(e)−
∑︂

e∈δ−G(v)

f(e)
)︂

= b′(v)− b(v).

For e ∈ E, we have g(e) ≤ f ′(e)− f(e) ≤ µ(e)− f(e) = µf (e) and g(ē) ≤ f(e)− f ′(e) ≤ f(e) = µf (ē). Hence,
g is a (b′ − b)-flow in (Gf , µf , b

′ − b).
Lastly, it holds that

c(g) =
∑︂

e∈E∪Ē

c(e) · g(e)

=
∑︂
e∈E

(c(e) · g(e) + c(ē) · g(ē))

=
∑︂
e∈E

c(e) · (g(e)− g(ē))

=
∑︂
e∈E

c(e) · (f ′(e)− f(e))

= c(f ′)− c(f).
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Finally, we can translate the fact that flows can be decomposed into paths and cycles (see lecture Algorithmic
Discrete Mathematics) to circulations.

Corollary 4.9. For every circulation g there exists a family of cycles K with |K| ≤ |E| and weights w : K → R>0

with g(e) =
∑︁

K∈K:e∈K w(K) for all e ∈ E.

Proof. This follows immediately by existence of a path decomposition for s-t-flows, since g is an s-t-flow (of
value 0) for arbitrary s, t ∈ V .

We are now ready to state the first fundamental characterization of minimum-cost b-flows. Note how negative(-
cost) cycles play a similar role as augmenting paths for network flows.

Theorem 4.10. A b-flow f has minimum cost if and only if Gf does not contain a negative-cost cycle.

Proof. If there is a negative-cost cycle, we can increase the flow along this cycle and obtain a b-flow of lower
cost, hence f cannot have minimum cost.
On the other hand, let f ′ be a b-flow with smaller cost than f . We consider g = f ′ ⊖ f . By Lemma 4.8, g is a
circulation in G ∪ Ḡ with c(g) = c(f ′)− c(f) < 0. By Corollary 4.9, we can decompose g into cycles K with
weights w : K → R>0, such that g(e) = ∑︁

K∈K:e∈K w(K). From g(e) = 0 for all e ∈ (E ∪ Ē) \Gf (Lemma 4.8)
and w > 0 it follows that every cycle in K is a subgraph of Gf . We obtain

c(g) =
∑︂

e∈E∪Ē

c(e) · g(e)

=
∑︂

e∈E∪Ē

c(e) ·
∑︂

K∈K:e∈K
w(K)

=
∑︂
K∈K

w(K) ·
∑︂
e∈K

c(e)

=
∑︂
K∈K

w(K) · c(K).

From c(g) < 0 and w > 0 it follows that K must contain a negative-cost cycle.

4.1 Minimum-Mean-Cycle Cancelling

Theorem 4.10 immediately suggests an algorithm that repeatedly augments flow along negative cycles until
all such cycles are eliminated, very similarly to the FordFulkerson method. As with the FordFulkerson
method, it turns out that it is important how we select negative cycles in each step. Much like EdmondsKarp
selects a shortest augmenting path in each iteration, it turns out that selecting short (i.e., very negative) cycles
first is beneficial. However, we additionally need to account for the number of arcs in the cycle. We do this
by selecting the cycle first whose arcs have minimum cost on average. More precisely, we use the following
notion to compare cycles.

Definition 4.11. Let f be a b-flow and let Kf be the set of all cycles in Gf . A cycleK in Gf is a minimum-mean
cycle with respect to c if c(K)/|K| = mc(f) := minK′∈Kf

c(K ′)/|K ′|.
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Assuming we can find minimum-mean cycles, we can compute a minimum-cost b-flow as follows.

Algorithm: MinMeanCycleCancelling(G,µ, b, c)

input: circulation network (G,µ, b), costs c : E → R
output: minimum cost b-flow
f ← bFlow(G,µ, b)

K ← MinMeanCycle(Gf , c)
while K ̸= ∅ and c(K) < 0 :

γ ← mine∈K µf (e)
Augment(K, γ)
K ← MinMeanCycle(Gf , c)

return f

To prove that MinMeanCycleCancelling always terminates and to estimate its running time, we proceed
analogously to the analysis of EdmondsKarp. We first establish that the algorithm makes progress in terms of
the value of mc(f).

Lemma 4.12. Let fi denote the flow and Ki the chosen cycle at the start of each iteration i of
MinMeanCycleCancelling. For every two such cycles Kj , Kℓ with j < ℓ, we have

|mc(fj)| ≥
n

n− 2min{1,mjℓ}
· |mc(fℓ)|,

where mjℓ := |{e ∈ E | e, ē ∈ Kj ∪Kℓ}|.

Proof. We may assume that there is no cycle Ki, j < i < ℓ that contains an arc e with ē ∈ Kℓ. Otherwise, by
induction on ℓ− j, we immediately have |mc(fj)| ≥ |mc(fi)| ≥ n

n−2 |mc(fℓ)| ≥ n
n−2min{1,mjℓ} |mc(fℓ)|.

Let Ējℓ := {e ∈ E ∪ Ē | e, ē ∈ Kj ∪ Kℓ}. We consider the graphs Hj = (V,Ej) := (V,Kj \ Ējℓ), Hℓ =
(V,Eℓ) := (V,Kℓ \ Ējℓ), and Hjℓ = (V,Ejℓ) := (V, (Kj ∪Kℓ) \ Ējℓ). Since the cycles Kj+1, . . . ,Kℓ−1 do not
contain any reverse arcs to arcs in Kℓ, we have Kℓ \ Ējℓ ⊆ Gfj and hence Hj , Hℓ, Hjℓ ⊆ Gfj . Moreover,
we have |δ+Hj

(v)|+ |δ+Hℓ
(v)| = |δ−Hj

(v)|+ |δ−Hℓ
(v)| for all v ∈ V , which means that g : Ejℓ → {1, 2} with

g(e) = |{H ∈ {Hj , Hℓ} | e ∈ H}| defines a circulation inHjℓ. By Corollary 4.9 we can decompose g into cycles,
each of which are subgraphs of Hjℓ ⊆ Gfj and thus have average cost at least mc(fj), by definition. Since g
encodes all arcs of Hj and Hℓ, we obtain

c(Ej) + c(Eℓ) = c(g) ≥ mc(fj) · (|Ej |+ |Eℓ|) . (4.2)
Since the costs of opposing arcs cancel out, we further have

c(Ej) + c(Eℓ) = c(Kj) + c(Kℓ) = mc(fj)|Kj |+mc(fℓ)|Kℓ|. (4.3)
Finally, it holds that

|Ej |+ |Eℓ| = |Kj |+ |Kℓ| − 2mjℓ

≤ |Kj |+ |Kℓ| −
|Kℓ|
n

2mjℓ

= |Kj |+
n− 2mjℓ

n
|Kℓ|. (4.4)
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Together with mc(fj) < 0, this implies

mc(fj)

(︃
|Kj |+

n− 2mjℓ

n
|Kℓ|

)︃ (4.4)
≤ mc(fj) (|Ej |+ |Eℓ|)

(4.2)
≤ c(Ej) + c(Eℓ)

(4.3)
= mc(fj)|Kj |+mc(fℓ)|Kℓ|,

and thus mc(fj) ≤ n
n−2mjℓ

·mc(fℓ). This completes the proof, since mc(fj) < 0 and mc(fℓ) < 0.

We can conclude that the value of mc(f) must approach 0 (from below) significantly in each batch of n ·m
iterations.

Lemma 4.13. MinMeanCycleCancelling reduces |mc(f)| by a factor of at least 2 in n · m consecutive
iterations.

Proof. Let Ki, . . .Ki+m be the augmenting cycles chosen in m+ 1 consecutive iterations, and let fi, . . . , fi+m

be the b-flows at the start of the corresponding iterations. Since every augmentation removes an arc of the
residual graph, there are two cycles Kj , Kℓ, i ≤ j < ℓ ≤ i + m who contain opposing arcs. According to
Lemma 4.12, we have

mc(fi) ≤ mc(fj) ≤
n

n− 2
mc(fℓ) ≤

n

n− 2
mc(fi+m).

Thus, after n ·m iterations, the reduction of |mc(f)| is at least
(︂

n
n−2

)︂n
=

(︂(︂
x

x−1

)︂x)︂2
> e2 ≈ (2.72)2 > 2,

where x := n/2.

From this, it is easy to infer a bound on the overall number of iterations. Note, however, that the following
bound is not strongly polynomial in n and m, since it depends on the number of bits (and not only the number
of numbers) needed to encode the input.

Corollary 4.14. If c(e) ∈ Z for all e ∈ E, MinMeanCycleCancelling computes a min-cost b-flow in
O(mn(log n+ log |cmin|)) iterations, where cmin := mine∈E c(e).

Proof. At the beginning, we have |mc(f)| ≤ |cmin|. By Lemma 4.13, the algorithm needs O(nm log |cmin|)
iterations until mc(f) > −1, and, hence, O(nm(log n+ log |cmin|)) iterations until mc(f) > −1/n. Since all
costs in the residual graph remain integral, and augmenting cycles have at most n arcs, we have mc(f) /∈
(−1/n, 0). Consequently, we have mc((f) ≥ 0) after O(nm(log n + log |cmin|)) iterations and the algorithm
terminates. By Theorem 4.10, the resulting b-flow is optimal.

We now give a more careful estimation that yields a polynomial bound.

Theorem 4.15. MinMeanCycleCancelling computes a min-cost b-flow in O(m2n log n) iterations.

Proof. Correctness follows from Theorem 4.10. We show that after each additional mn(⌈log2 n⌉+1) iterations
an additional arc will remain unchanged in future iterations. Let f , f ′ be the flows before and after such a
sequence of iterations, and let Kf be the augmenting cycle chosen for f . The proof proceeds as follows:
(i) We show that the costs of arcs in Gf ′ are bounded from below.
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(ii) We show that there is a very cheap arc e0 ∈ Gf \Gf ′ , so that ē0 is very expensive in Gf ′ .
(iii) We claim that the residual capacity of e0 remains 0 in future iterations of the algorithm. By Lemma 4.12,

to show this, it suffices to show that, for all b-flows f ′′ with e0 ∈ Gf ′′ , it holds that mc(f ′′) < mc(f ′).
(iv) We consider the decomposition of g := f ′′⊖ f ′ into a set of cycles K and show that there must be a cycle

K0 ∈ K with ē0 ∈ K0 ⊆ Gf ′ .
(v) We show that, because of (i) and (ii), K0 is very expensive.
(vi) It follows that K̄0 = {ē | e ∈ K0} ⊆ Gf ′′ is sufficiently cheap in Gf ′′ to ensure mc(f ′′) < mc(f ′).
We now address these steps in detail.
(i) By Lemma 4.13, we have

mc(f) ≤ 2⌈log2 n⌉+1mc(f ′) ≤ 2nmc(f ′), (4.5)
since mc(f),mc(f ′) < 0.
We define c′(e) = c(e)+|mc(f ′)| = c(e)−mc(f ′) for all e ∈ Gf ′ . With this, c′ does not induce any negative
cycles in Gf ′ . By Proposition 2.24 there exists a potential π : V → R with 0 ≤ c′π(e) = cπ(e)−mc(f ′) —
recall that cπ(u, v) := π(u)− π(v) + c(u, v). Hence,

cπ(e) ≥ mc(f ′), (4.6)
for all e ∈ Gf ′ .

(ii) We obtain ∑︂
e∈Kf

cπ(e) =
∑︂
e∈Kf

c(e) = mc(f) · |Kf |
(4.5)
≤ 2nmc(f ′)|Kf |.

This means we can choose e0 ∈ Kf ⊆ Gf with
cπ(e0) ≤ 2nmc(f ′) < mc(f ′). (4.7)

By (4.6) we have e0 /∈ Gf ′ .
(iii) We claim that the flow along e0 remains unchanged in future iterations. Let f ′′ be a b-flow with e0 ∈ Gf ′′ .

We show thatmc(f ′′) < mc(f ′). Sincemc(f) is growing monotonically during the course of the algorithm
(Lemma 4.12), this proves the claim.

(iv) Let g := f ′′ ⊖ f ′. By Lemma 4.8 and Corollary 4.9, we may consider the decomposition of g into a set of
cycles K in Gf ′ .
We show that g(e) = max{0, µf ′′(ē)−µf ′(ē)} for all e ∈ E∪Ē: For e ∈ E we have g(e) = max{0, f ′′(e)−
f ′(e)} = max{0, µf ′′(ē) − µf ′(ē)}. For e ∈ Ē we have g(e) = max{0, f ′(ē) − f ′′(ē)} = max{0, (µ(ē) −
µf ′(ē))− (µ(ē)− µf ′′(ē))} = max{0, µf ′′(ē)− µf ′(ē)}. In particular, it follows from e0 ∈ Gf ′′ \Gf ′ that
µf ′(e0) = 0 < µf ′′(e0), hence g(ē0) = µf ′′(e0) > 0. We can therefore find K0 ∈ K with ē0 ∈ K0. By
Lemma 4.8, we have g(e) = 0 for e ∈ (E ∪ Ē) \Gf ′ , which implies K0 ⊆ Gf ′ .

(v) We obtain (using mc(f ′) < 0, otherwise, the statement is trivial)
c(K0) =

∑︂
e∈K0

cπ(e)

= cπ(ē0) +
∑︂

e∈K0\{ē0}

cπ(e)

(4.6)
≥ −cπ(e0) +

∑︂
e∈K0\{ē0}

mc(f ′)

(4.7)
≥ −2n ·mc(f ′) + (n− 1) ·mc(f ′)

> −n ·mc(f ′). (4.8)
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(vi) Let K̄0 be the cycle consisting of the opposing arcs to the arcs in K0. For all e ∈ K0, it holds that
0 < g(e) = max{0, µf ′′(ē)−µf ′(ē)}, hence µf ′′(ē) > 0. It follows that K̄0 ⊆ Gf ′′ . But c(K̄0) = −c(K0) <
n ·mc(f ′) by (4.8). This completes the proof (by (iii)), since

mc(f ′′) ≤ c(K̄0)

|K̄0|
<

nmc(f ′)

|K̄0|
mc(f ′)<0

≤ mc(f ′).

4.1.1 Finding a minimum-mean cycle

For a bound on the overall running time of MinMeanCycleCancelling we first need to describe how to find
a minimum-mean cycle in each iteration. In other words, we consider the following problem.

Minimum-Mean Cycle Problem
input: graph G = (V,E); arc costs c : E → R
problem: find a minimum-mean cycle K in G with respect to c

We will need the following notation.

Definition 4.16. We let d(=k)
c (u, v) denote the minimum cost among all walks from u to v with exactly k arcs.

We first characterize the cases in which the minimum-mean cycle has cost exactly 0 and show how to find
such a cycle.

Lemma 4.17. Let c not induce negative cycles in G and let all vertices be reachable from s ∈ V . Then G has a
cycle of cost 0 if and only if

min
v∈V

max
0≤k<n

(d(=n)
c (s, v)− d(=k)

c (s, v)) = 0.

Let v be the vertex for which the minimum is attained. Then, every cycle on a shortest walk with n arcs from s
to v has cost 0.

Proof. It holds that d(=n)
c (s, v) ≥ dc(s, v) = min0≤k<n d

(k)
c (s, v), since c does not induce negative cycles in G.

Hence, we have max0≤k<n(d
(=n)
c (s, v) − d

(=k)
c (s, v)) ≥ 0 for all vertices v ∈ V . Now let K be a cycle of

cost 0 and u ∈ K be a vertex on K. We consider a shortest s-u-path and extend it by adding n copies
of K. The resulting walk is a shortest s-u-walk, thus, by optimum substructure (see lecture Algorithmic
Discrete Mathematics), the prefix W with exactly n arcs must be a shortest walk from s to some vertex
v ∈ K. By Proposition 2.8, this implies d

(=n)
c (s, v) = c(W ) = dc(s, v) = min0≤k<n d

(=k)
c (s, v) and thus

max0≤k<n(d
(=n)
c (s, v)− d

(=k)
c (s, v)) = 0.

Conversely, if there is a vertex v ∈ V with max0≤k<n(d
(=n)
c (s, v)− d

(=k)
c (s, v)) = 0, then we have d(=n)

c (s, v) ≤
d
(=k)
c (s, v) for all k ∈ {0, . . . , n − 1}, and hence d

(=n)
c (s, v) = dc(s, v). It follows that every s-v-walk with n

arcs and length d
(=n)
c (s, v) is a shortest s-v-walk. Thus any cycle along this walk must have cost 0 (note that

every walk with n arcs must contain a cycle).

We can now apply Lemma 4.17 to the general case by shifting costs so that the minimum cycle has cost 0.
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Lemma 4.18. Let all vertices of G be reachable from s ∈ V . Then the minimum mean cost mc among all
cycles in G satisfies

mc = min
v∈V

max
0≤k<n

d
(=n)
c (s, v)− d

(=k)
c (s, v)

n− k
.

Let v be the vertex for which the minimum is attained. Then, every cycle on a shortest walk with n arcs from s
to v has minimum mean cost.

Proof. Consider the cost function given by c′(e) := c(e)−mc for all e ∈ E. Compared to c, with respect to
c′, the mean cost of every walk is shifted by exactly mc. It follows that c′ does not induce negative cycles
and cyles of cost 0 (with respect to c′) correspond to cycles of minimum mean value with respect to c. In
particular, c′ induces a cycle of cost 0. By Lemma 4.17, we have

0 = min
v∈V

max
0≤k<n

d
(=n)
c′ (s, v)− d

(=k)
c′ (s, v)

n− k

= min
v∈V

max
0≤k<n

d
(=n)
c (s, v)− n ·mc− (d

(=k)
c (s, v)− k ·mc)

n− k

= min
v∈V

max
0≤k<n

d
(=n)
c (s, v)− d

(=k)
c (s, v)

n− k
−mc.

The second part of the claim follows by Lemma 4.17, since cycles of cost 0 translate to minimum mean
cycles.

With this, we efficiently find a minimum-mean cycle.

Algorithm: MinMeanCycle(G, c)

input: graph G = (V,E), costs c : E → R
output: cycle of minimum mean cost
G′ ← (V ∪ {s}, E ∪ ({s} × V ))

c′(u, v)←

{︄
0, for u = s, v ∈ V,

c(u, v), for u ∈ V, v ∈ V.

(d
(=k)
sv )k∈{1,...,n} ← BellmanFord(-Moore)′(G′, c′)

v ∈ argminu∈V max0≤k<n(d
(=n)
su − d

(=k)
su )/(n− k)

W ← Backtrack(d(=n)
sv , s, v) (shortest s-v-walk with n arcs)

return any cycle in W (or ∅ if none exists)

Theorem 4.19. We can find a cycle of minimum-mean cost in time O(nm).

Proof. We can introduce a vertex s and connect it to all other vertices, and use an algorithm very similar to
BellmanFord(-Moore) to compute d

(=k)
c (s, v) for all 0 ≤ k ≤ n and v ∈ V . Lemma 4.18 gives us a way to

obtain a cycle of minimum-mean cost (see algorithm MinMeanCycle).

Using this together with Theorem 4.15 yields the following running time.

Theorem 4.20. MinMeanCycleCancelling can be implemented to compute a min-cost b-flow in time
O(m3n2 log n).
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4.2 Successive Shortest Paths

In the previous section, we started with a b-flow that may be too expensive and repeatedly decreased its cost
by augmenting along negative cycles in the residual graph. A different approach is to start with some b′-flow
that is guaranteed to have minimum cost among all b′-flows, but may have b′ ̸= b, and to then repeatedly send
flows along paths in order to transition to a b-flow. Such a transition is possible by the following insight.

Lemma 4.21. Let f be a minimum-cost b-flow and f ′ be a b′-flow that results from augmenting f along a
shortest (with respect to c) path P between some vertices s and t in Gf . Then, f ′ is a minimum-cost b′-flow.

Proof. For the sake of contradiction, assume that f ′ does not have minimum cost. Then, by Theorem 4.10,
c induces a negative cycle K in Gf ′ .
Let ĒPK := {e ∈ E∪ Ē | e, ē ∈ P ∪K}. We consider the graphsHP = (V, P \ ĒPK),HK := (V,K \ ĒPK), and
HPK = (V,EPK) := (V, (P ∪K) \ ĒPK). No arc e ∈ Gf ′ \Gf can be contained in HPK , since ē ∈ P . Hence,
HPK ⊆ Gf . Therefore, as f has minimum cost, by Theorem 4.10,HPK cannot contain negative cycles. We have
|δ+HP

(v)|+|δ+HK
(v)| = |δ−HP

(v)|+|δ−HK
(v)| for all v ∈ V \{s, t}, and |δ+HP

(s)|+|δ+HK
(s)| = |δ−HP

(s)|+|δ−HK
(s)|+1.

This means that g : EPK → {1, 2} with g(e) = |{H ∈ {HP , HK} | e ∈ H}| defines an s-t-flow of value |g| = 1
in HPK ⊆ Gf . We can therefore decompose g into an s-t-path P ′ and a set of cycles (see lecture Algorithmic
Discrete Mathematics). Since these cycles cannot have negative costs, we have

c(P ′) ≤ c(g) = c(HP ) + c(HK) = c(P ) + c(K) < c(P ),

which contradicts our choice of P .

We show that we can apply these transitions to reduce the balances. Note that, by definition of circulation
networks, ∑︁v∈V b(v) = 0, hence b ̸= 0 implies existence of u ∈ V with b(u) > 0.

Lemma 4.22. If a b-flow exists in (G,µ, b) for b ̸= 0, then for every u ∈ V with b(u) > 0 there is v ∈ V with
b(v) < 0 reachable from u in G.

Proof. Let R be the set of vertices reachable from u. By Proposition 4.4, we have

0 =
∑︂

e∈δ+(R)

µ(e) ≥
∑︂
v∈R

b(v) >
∑︂

v∈R\{u}

b(v),

hence there must be v ∈ R with b(v) < 0.

Lemmas 4.21 and 4.22 immediately suggest another algorithm similar to EdmondsKarp. To start our
algorithm, we need some minimum-cost b′-flow for arbitrary b′. By Theorem 4.10, such a flow can be obtained
by eliminating all negative cycles. This can be accomplished easily, by fully saturating all arcs of negative
costs.
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Algorithm: SuccessiveShortestPath(G,µ, b, c)

input: circ. network (G,µ, b), costs c : E → R
output: minimum cost b-flow
b, f ← MinCostStartFlow(G,µ, b, c)
while b ̸= 0 :

if ∃ s-t-path in Gf with b(s) > 0 and b(t) < 0 :
P ← ShortestPath(Gf , c, s, t)
Push(P )

else
fail

return f

Algorithm: MinCostStartFlow(G,µ, b, c)

input: circ. network (G,µ, b), costs c : E → R
output: balances b′ : V → R,

min-cost (b− b′)-flow f

f ← 0

for e ∈ E with c(e) < 0 :
f(e)← µ(e)

for v ∈ V :
b′(v)← b(v) + exf (v)

return b′, f

Algorithm: Push(P )

γ ← min{mine∈P µf (e), b(s),−b(t)}
b(s)← b(s)− γ, b(t)← b(t) + γ
Augment(P, γ)

We show that SuccessiveShortestPath is correct.

Theorem 4.23. SuccessiveShortestPath only fails if no b-flow exists. If it terminates without failing, it
returns a minimum-cost b-flow.

Proof. Let b⋆ be the original value of b at the start of the algorithm, and let b0 be the value after computation of
the starting flow f0. Since f0 saturates all arcs of negative costs and does not use other arcs, f0 is a minimum-
cost (b⋆− b0)-flow. By Lemma 4.21, f remains a minimum-cost (b⋆− b)-flow. Since the algorithm only properly
terminates when f is a b⋆-flow, it follows that SuccessiveShortestPath returns a minimum-cost b⋆-flow if it
terminates without failing.
Now assume thatSuccessiveShortestPath fails, and let f be the (b⋆ − b)-flow at the time it does. The
algorithm fails, since there is no more s-t-path with b(s) > 0 and b(t) < 0 in Gf . By Lemma 4.22, no b-flow
exists in (Gf , µf , b) at this point. This means that no b⋆-flow f⋆ can exist in (G,µ, b⋆), since, otherwise, f⋆⊖ f
would be a b-flow in (Gf , µf , b) by Lemma 4.8.

For integral balances and capacities, we can bound the total number of iterations of SuccessiveShortestPath.
In case of irrational data, similarly to FordFulkerson, the algorithm may not terminate.

Corollary 4.24. If all balances and all capacities are integral, SuccessiveShortestPath computes aminimum-
cost b-flow in O(B) augmentations, where B :=

∑︁
v∈V |b(v)|+

∑︁
e∈E µ(e).

Proof. In MinCostStartFlow, ∑︁v∈V |b(v)| may increase by at most 2∑︁e∈E µ(e). Afterwards, since balances
and capacities are integral, in every augmentation from some vertex s ∈ V to some vertex t ∈ V , the absolute
values of b(s) and b(t) are reduced by at least one, while their signs remain unchanged.

Observe that the above bound is not polynomial in n andm, since capacities and balances may have exponential
values. The bound is tight, i.e., there are instances on which SuccessiveShortestPath requires exponentially
many iterations (see Figures 4.1 and 4.2) (note that the network Ni has 2(i+ 1) vertices).
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Figure 4.1: Recursive construction of the networkNi with 2(i+1) vertices onwhichSUCCESSIVESHORTESTPATH
needs an exponential number of iterations. Each arc is labeled by its cost and its capacity in
this order, and we set b(si) = 2i and b(ti) = −2i. The cost of the shortest si-ti-path in iteration
j ∈ {1, . . . , 2i} is exactly j − 1.

Proposition 4.25. SuccessiveShortestPath needs 2i = Θ(B) augmentations to compute a minimum-cost
flow in the network Ni of Figure 4.1 for any i ∈ N.

In order to bound the running time of SuccessiveShortestPath beyond bounding the number of iterations,
we need to specify how shortest paths are computed. As shown in Section 2.2.1, we can use Dijkstra,
provided that we have a vertex potential at hand. We cannot recompute such a potential in every iteration,

s0 t0

s1

t1

s2 t2 s0 t0

s1

t1

s2 t2 s0 t0
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s2 t2

s0 t0

s1
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Figure 4.2: Illustration of the iterations performed by SUCCESSIVESHORTESTPATH on the network N2 of Fig-
ure 4.1. The shortest path in each iteration is marked in red, and arcs are oriented in the direction
in which they are used next. Note that, after 2i = 4 iterations, the configuration of the residual
graph is the same as in the beginning if we switch the roles of s2 and t2. This allows to recursively
embed the network into N3 and so on.
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since this would dominate the running time of Dijkstra. However, we can compute a vertex potential once
and update it cheaply in every iteration.

Algorithm: SuccessiveShortestPath(G,µ, b, c) (potential)
input: circ. network (G = (V,E), µ, b), costs c : E → R
output: minimum cost b-flow
b, f ← MinCostStartFlow(G,µ, c)
π ← Potential(Gf , c) (or just π ← 0)
while b ̸= 0 :

if ∃ s-t-path in Gf with b(s) > 0 and b(t) < 0 :
(dsv)v∈V ← Dijkstra(Gf , cπ, s)
P ← Backtrack((dsv)v∈V , s, t)
Push(P )
for v ∈ V :

π(v)← π(v) + min{dsv, dst}

else
fail

return f

We now show that vertex potentials are maintained correctly.

Theorem 4.26. SuccessiveShortestPath with potential only fails if no b-flow exists and otherwise returns
a minimum-cost b-flow.

Proof. By Theorem 4.23, it suffices to show the invariant that π is always a vertex potential for Gf and that
we choose a shortest augmenting path in Gf with respect to c in every step. By correctness of Potential
(Proposition 2.19), π is a potential at the start of the algorithm. Let fi be the b-flow at the start of iteration i,
let πi be the potential at the start of iteration i, and let Pi be the s-t-path chosen in this iteration. By correctness
of Dijkstra, and since cπi ≥ 0, we choose Pi as a shortest s-t-path with respect to cπ. Thus, Pi is a shortest
path with respect to c as well (Proposition 2.18).
Assume that πi is a vertex potential for Gfi with respect to c at the start of iteration i. In iteration i, Dijkstra
computes the values (dsv)v∈V such that dsv = dcπi (s, v). We have to show that πi+1 is a potential, i.e., that
cπi+1(u, v) = c(u, v) + πi+1(u)− πi+1(v) ≥ 0 for all (u, v) ∈ Gfi+1

. First observe that
cπi+1(u, v) = c(u, v) + πi+1(u)− πi+1(v)

= c(u, v) + πi(u) + min{dsu, dst} − πi(v)−min{dsv, dst}
= cπi(u, v) + min{dsu, dst} −min{dsv, dst}. (4.9)

Consider arcs (u, v) ∈ Gfi ∩ Gfi+1
. If min{dsu, dst} = dst, then min{dsu, dst} − min{dsv, dst} ≥ 0, and

cπi+1 ≥ 0 follows from cπi(u, v) ≥ 0 by our invariant, since (u, v) ∈ Gfi . If min{dsu, dst} = dsu, we obtain
cπi+1(u, v) ≥ (cπi(u, v) + dcπi (s, u))− dcπi (s, v) ≥ 0, since (u, v) ∈ Gfi .
Now consider arcs (u, v) ∈ Gfi+1

\ Gfi . We have (v, u) ∈ Pi, since only the flow along Pi was changed in
iteration i. Since cπi ≥ 0 and Pi is a shortest s-t-path, by optimum substructure (see lecture Algorithmic Discrete
Mathematics), we have min{dcπi (s, u), dcπi (s, t)} = dcπi (s, u) and min{dcπi (s, v), dcπi (s, t)} = dcπi (s, v). Also,
we have dsu = dcπi (s, u) = dcπi (s, v) + cπi(v, u) = dsv − cπi(u, v), and thus cπi+1(u, v) = 0 by (4.9).
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This allows us to bound the overall running time. Note that, exponential worst-case running time notwith-
standing, SuccessiveShortestPath is the best known algorithm for the case B = O(n) and µ ∈ N, b ∈ Z.

Corollary 4.27. If all balances and all capacities are integral, SuccessiveShortestPath with potential
computes a minimum-cost b-flow in time O(nm+B(m+ n log n)), where B :=

∑︁
v∈V |b(v)|+

∑︁
e∈E µ(e).

Proof. This follows from Theorem 4.26 and Corollary 4.24, together with the running times of Potential
(Proposition 2.19) and Dijkstra (Theorem 2.2). Note that, by Lemma 4.22, we can find s and t in each
iteration simply by running DFS or BFS starting at any vertex s with b(s) > 0 (alternatively, t can be found
during the execution of Dijkstra).

Remark 4.28. Note that we can slightly improve the running time of SuccessiveShortestPath by initializing
the potential to 0 instead of invoking Potential. We can do this, since we eliminate all arcs of negative costs
from the initial residual graph. However, this approach no longer works for the algorithm of the next section.

4.2.1 Capacity Scaling

Intuitively, in the example of Figure 4.1, the problem is that SuccessiveShortestPath augments the flow
by very small amounts in each step, even though paths of larger capacity would be available. It turns out that
we can significantly improve performance by prioritizing augmenting paths that allow for large changes in
flow values. We need to balance this carefully with trying to augment along cheap paths first. This can be
accomplished by operating in phases, where each phase only considers paths that change the flow by at least
some threshold value. Once a phase is complete, we lower the threshold and repeat the process. This general
method is called capacity scaling.
For convenience, from now on, we assume that µ = ∞, i.e., capacities are unbounded. We can transform
every instance to have this property, as shown in the following lemma. Note, however, that this transformation
affects the running time of all algorithms, since we introduce an additional vertex for each arc.

Lemma 4.29. Every instance (G = (V,E), µ, b, c) of the minimum-cost flow problem can be transformed into
an equivalent, acyclic instance (G′ = (V ∪ E,E′),∞, b′, c′) with n+m vertices and 2m arcs.

Proof. For every arc e = (u, v) ∈ E, we introduce arcs (e, u) ∈ E′ and (e, v) ∈ E′, with c′(e, u) = 0 and
c′(e, v) = c(e). We further define the balance by b′(e) = µ(e) for all e ∈ E and b′(v) = b(v)−

∑︁
e∈δ+G(v) µ(e)

for all v ∈ V .
Let f be a b-flow in (G,µ, b, c). For e = (u, v) ∈ E, we set f ′(e, v) = f(e) and f ′(e, u) = µ(e) − f(e). Then,
f ′ is a b′-flow in (G′,∞, b′, c′) of cost c′(f ′) = c(f). Conversely, let f ′ be a b′-flow in (G′,∞, b′, c′). We set
f(u, v) = f ′((u, v), v) for all (u, v) ∈ E and obtain a b-flow f with c(f) = c′(f ′).

Eliminating capacities allows us to cleanly state a capacity-scaling algorithm, where the scaling aspect only
reflects in our selection of source and sink in each step.
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Algorithm: CapacityScaling(G, b, c)

input: circ. network (G = (V,E),∞, b : V → Z),
costs c : E → R

output: minimum cost b-flow
f ← 0

γ ← 2⌊log2(maxv∈V b(v))⌋

while b ̸= 0 :
if γ < 1 :

fail
while ∃ s-t-path in Gf with b(s) ≥ γ and b(t) ≤ −γ :

P ← ShortestPath(Gf , c, s, t)
Push(P, γ)

γ ← γ/2

return f

Algorithm: Push(P, γ)
if γ < 0 :

Push(P̄ ,−γ)
else

b(s)← b(s)− γ
b(t)← b(t) + γ
Augment(P, γ)

We now show that this algorithm is indeed still correct and achieves a better (weakly polynomial) running
time than SuccessiveShortestPath.

Theorem 4.30. If µ = ∞, b(v) ∈ Z for all v ∈ V , and c does not induce negative cycles, CapacityScaling
computes a minimum-cost b-flow in time O(n(m+ n log n) log bmax), where bmax := maxv∈V b(v).

Proof. First observe that all residual capacities are either∞ or integer multiples of γ throughout the algorithm,
hence all Push operations are well-defined. Since b is integral throughout, the algorithm only fails if there
exists no s-t-path with b(s) > 0 and b(t) < 0. As in the proof of Theorem 4.23, this implies that no solution
exists by Lemmas 4.8 and 4.22. With this, correctness follows by Lemma 4.21 together with the fact that
the initial flow (f = 0) is a minimum-cost circulation (i.e., 0-flow) by Theorem 4.10, since c does not induce
negative cycles.
We divide the execution of CapacityScaling into maximal phases in which γ is constant and we show that the
algorithm takes at most n iterations in each phase. To this end, consider f , b at the start of a phase associated
with any fixed value of γ. We define

S := {v ∈ V | b(v) ≥ γ},
S+ := {v ∈ V | b(v) ≥ 2γ},
T := {v ∈ V | b(v) ≤ −γ},

T+ := {v ∈ V | b(v) ≤ −2γ},
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and let R be the set of all vertices that are reachable from an element of S+ in Gf . We have S+ ⊆ R by
definition, and R ∩ T+ = ∅, as the previous phase ended because no paths remain from S+ to T+.
Let ((si, ti))i=1,...,k be the pairs (s, t) chosen during the current phase. Since every augmentation is by the
same amount γ, every augmentation with si ∈ R and ti /∈ R reduces the capacity of the cut δ+

G∪Ḡ(R) by γ.
Since δ+Gf

(R) = ∅, this means that for every augmentation across δ+
G∪Ḡ(R) we first need to augment at least

once across δ−
G∪Ḡ(R). We obtain

|{i | si ∈ R ∧ ti /∈ R}| ≤ |{i | si /∈ R ∧ ti ∈ R}| .

The total number k of iterations in the phase is therefore bounded by
k = |{i | si ∈ R ∧ ti ∈ R}|+ |{i | si ∈ R ∧ ti /∈ R}|+ |{i | si /∈ R ∧ ti ∈ R}|+ |{i | si /∈ R ∧ ti /∈ R}|
≤ |{i | si ∈ R ∧ ti ∈ R}|+ 2 · |{i | si /∈ R ∧ ti ∈ R}|+ |{i | si /∈ R ∧ ti /∈ R}|
= |{i | ti ∈ R}|+ |{i | si /∈ R}| .

But since R∩ T+ = ∅, we have b(t) > −2γ for every sink t ∈ R, which means that every sink in R can be used
at most once. This implies |{i | ti ∈ R}| ≤ |T ∩R|. Analogously, every source s /∈ R can only be used once,
since S+ \R = ∅. This implies |{i | si /∈ R}| ≤ |S \R|. We obtain

k ≤ |T ∩R|+ |S \R| ≤ |T |+ |S| ≤ n.

This establishes that the algorithm needs at most n iterations per phase. Obviously, there are O(log bmax)
phases overall, and every phase can be implemented as in SuccessiveShortestPath with potential. This
yields the claimed running time.

4.3 Orlin’s Algorithm

In CapacityScaling, we reduce γ by factor 2 after each phase. Assuming, for the moment, that we have p
augmentations per phase, we can conclude that the total magnitude of all augmentations after a γ-phase is
p
∑︁

i≥1 2
−iγ = pγ. This means that all arcs ē ∈ Ē for which f(e) > pγ at the end of the γ-phase remain in the

residual graph from now on (and so does e, because of µ =∞). This insight allows us to improve efficiency by
treating connected components formed by such arcs e, ē as single vertices. Importantly, we know that there
cannot be cheaper paths connecting the endpoints of e, ē, since this would induce negative cycles. We can
therefore discard all other arcs between the components of the two endpoints of e, ē before merging these
components. This gradual simplification of the graph significantly improves the running time of the algorithm,
as we will see. We first formalize the notion of merging components (cf. Figure 4.3).

Definition 4.31. Let {u, v} ∈ E be an edge of an undirected graph G = (V,E), and let c : E → R be
edge costs. The result of contracting {u, v} in G, c is G′ = (V ′, E′), c′ with V ′ := (V ∪ {xuv}) \ {u, v}
and E′ := (E \ δG({u, v})) ∪ {{xuv, w} |w ∈ ΓG({u, v})} and c′(e) = c(e) for e ∈ E′ ∩ E and c′(xuv, w) :=
min{c(u,w), c(v, w)} for {xuv, w} ∈ E′ \ E. Contracting arcs of directed graphs is defined analogously.

We do not explicitly contract arcs, but rather keep track of the forest F of all arcs that have been contracted
and the subgraph H ⊆ G in which all other arcs within components have been removed. To further simplify
the algorithm, we refine a representative r for each component in F and we maintain rv = r for all vertices v
of this component. When merging components we ensure that b(v) = 0 if v is not the representative of the
new component, by augmenting flow once along the unique path between the two representatives. Finally, we
further improve the algorithm by reducing γ by more than factor 2 whenever possible. With these modifications
we obtain Orlin’s algorithm. Note that we assume n ≥ 2 in the following.
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Figure 4.3: Illustration of the contraction of an arc (u, v). Left: original graph, right: contracted graph.

Algorithm: Orlin(G, b, c)

input: circ. network (G = (V,E),∞, b), costs c : E → R
output: minimum cost b-flow
rv ← v ∀v ∈ V
F ← ∅, H ← G, ε← 1/n
f ← 0, γ ← maxv∈V |b(v)|
while b ̸= 0 :

while ∃v ∈ V with |b(v)| > (1− ε)γ :
if ∃s-t-path in Gf with b(s) > (1−ε)γ ∧ b(t) < −εγ

or b(s) > εγ ∧ b(t) < −(1−ε)γ :
P ← ShortestPath(Hf , c, s, t)
Push(P, γ)

else
fail

if f(e) = 0 ∀e ∈ H \ F :
γ ← min{γ/2,maxv∈V |b(v)|}

else
γ ← γ/2

while ∃e ∈ H \ F with f(e) > 6nγ :
Contract(e)

return f
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Algorithm: Contract(e)
input: arc e ≡ (u, v) ∈ Hf

F ← F ∪ {e, ē}
Q← ru-rv-path in F
Push(Q, b(ru))

for e′ ≡ (x, y) ∈ H \ F with {rx, ry} = {ru, rv} :
H ← H \ {e′}

for y ∈ V with ry = ru :
ry ← rv

An important consequence of our contraction strategy is that all arcs that have not been contracted or removed
carry a flow that is an integer multiple of γ. This means we do not have to worry that our Push operations
may not be well-defined.

Observation 4.32. Throughout the execution of Orlin, it holds that f(e) is an integer multiple of γ for all
e ∈ H \ F .

Proof. As long as f(e) ̸= 0 for some e ∈ H \ F , we halve γ in each iteration. Since we only augment by γ
in Hf and since Contract only uses arcs in F , it is ensured that f(e) remains an integer multiple of γ for all
e ∈ H \ F . Note that we can reduce γ by more than half if f(e) = 0 for all e ∈ H \ F without violating this
invariant.

We divide the execution of Orlin into maximal phases in which γ stays constant. For γ′ ∈ R, the γ′-phase is
the phase in which γ = γ′. We first relate the number of augmentations outside of and within Contract.

Lemma 4.33. In each phase of Orlin, the number of augmentations outside of Contract is not larger than
the number of augmentations within Contract plus the number of vertices v with |b(v)| > (1− ε)γ at the
beginning of the phase.

Proof. Consider the potential function Φ :=
∑︁

v∈V kv :=
∑︁

v∈V ⌈|b(v)|/γ − (1− ε)⌉ ≥ 0. We show that
during each augmentation along some s-t-path outside of Contract, this potential Φ is reduced by at least 1.
Without loss of generality, let b(s) > (1 − ε)γ and b(t) < −εγ. In case |b(s)| ≥ γ, we reduce |b(s)|/γ by 1
and therefore also ks by 1. Otherwise, we reduce ks by 1 to 0. If b(t) ≤ −γ/2, we do not increase |b(t)|,
therefore kt does not increase. Otherwise, we have b(t) ∈ (−γ/2,−εγ), which implies |b(t)|/γ ∈ (ε, 1/2) and
|b(t) + γ|/γ ∈ (1/2, 1− ε) with ε ≤ 1/2 for n ≥ 2. Hence, kt stays 0.
Now consider an augmentation by δ within Contract. We increase |b(rv)| by at most δ and hence krv by at
most ⌈δ/γ⌉. On the other hand, we reduce kru by at least ⌊δ/γ⌋. The increase of Φ is therefore at most 1.
At the beginning of the phase, Φ is bounded by the number of vertices v with |b(v)| > (1 − ε)γ, since
|b(v)| ≤ (1 − ε)2γ and thus kv ≤ 1, otherwise the previous phase would not have ended. The number of
augmentations outside of Contract is therefore bounded by the number of such vertices plus the number of
augmentations within Contract.

We now establish that the algorithm is well-defined in the sense that it maintains a (b⋆ − b)-flow, where b∗

denotes the initial value of b.
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Lemma 4.34. Orlin maintains the invariant that f is a (b⋆ − b)-flow with f(e) > 0 for all e ∈ G ∩ F .

Proof. To show that f is a b′-flow for some b′, we need to show that f(e) ≥ 0 for all e ∈ G. Arcs in G \H do
not change their flow values. Consider an arc e ∈ H \ F . By Observation 4.32, the flow along e, and thus
the residual capacity of ē, is always an integer multiple of γ. In Contract we only augment along arcs in F .
Since, otherwise, we only augment flow by γ and only along arcs of positive residual capacity, we never reduce
f(e) below 0. For e ∈ G ∩ F we additionally need to show that we never reduce f(e) to 0. We show that even
the total magnitude of all augmentations after e was added to F would not suffice to reduce f(e) to 0.
We show that the total magnitude of all augmentations during a γ-phase and all subsequent phases is at
most 6nγ along each arc. We know that there are at most n− 1 Contract operations overall, since only arcs
between vertices in different components of F are contracted. Let k be the number of Contract operations in
a γ′-phase with γ′ ≤ γ. We know that, at the beginning of the γ′-phase, we have |b(v)| ≤ 2(1− ε)γ′ < 2γ for
all vertices v ∈ V , because the previous phase ended. It follows that the total magnitude of all augmentations
along some arc within Contract during the γ′-phase is at most 2kγ, i.e., less than 2γ on average per Contract
operation (we ignore flow changes that are undone in the same phase and use that F corresponds to a forest).
In total, the magnitude of all remaining augmentations along a fixed arc inside Contract is strictly less than
2nγ.
By Lemma 4.33, in each γ′-phase with γ′ ≤ γ, the number of augmentations outside of Contract is at most
equal to the number of other augmentations plus the number of vertices v with |b(v)| > (1− ε)γ′, i.e., at most
2n− 1. Since each such augmentation is by γ′, the magnitude of these augmentations is less than 2nγ′.
We only insert e ∈ E into F once f(e) > 6nγ. Note that γ is at least halved after every phase. The total
magnitude in the γ-phase and all subsequent phases is thus less than

2nγ +

∞∑︂
i=0

2n
γ

2i
= 6nγ.

It follows that we do not augment enough flow along ē to ever reduce the flow along e to 0.
Finally, observe that we update b whenever we push flow such that exf (v) = −(b⋆(v) − b(v)) for all v ∈ V .
Hence, f is a (b⋆ − b)-flow.

The following is the key lemma for the correctness of Orlin. We show that our simplification strategy via
contractions does not introduce errors.

Lemma 4.35. Orlin maintains the invariant that f is a minimum-cost (b⋆ − b)-flow, provided that c does not
induce negative cycles.

Proof. We show that the invariant is maintained and, additionally, shortest paths inHf always are shortest paths
in Gf . Both holds initially for f = 0, since we assume that c does not induce negative cycles (Theorem 4.10).
We show that, as long as f has minimum cost, every shortest u-v-path P in Hf is also a shortest path in Gf .
Note that, since f has minimum cost, c cannot induce negative cycles inGf (Theorem 4.10), and shortest paths
in Hf , Gf exist. Assume there was a u-v-path P ′ in Gf shorter than P . We can replace every arc e ∈ P ′ \Hf

by a (unique) path Pe in F to obtain a u-v-walk W in Hf . By assumption, we thus have c(P ′) < c(P ) ≤ c(W ).
This means that there is an arc e ∈ P ′ \Hf for which c(Pe) > c(e). By Lemma 4.34 and since capacities are
unbounded, all reverse arcs of arcs e′ ∈ Pe have a positive residual capacity, thus P̄ e ⊆ Gf . We consider the
cycle e⊕ P̄ e ⊆ Gf . The cost of this cycle is

c(e) + c(P̄ e) = c(e)− c(Pe) < 0,
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hence c induces a negative cycle in Gf . This is a contradiction to optimality of f (Theorem 4.10), and we
conclude that P must be a shortest path in Gf .
Consequently, in every step, we augment along a shortest path in Gf . This is also true within Contract, since
every path in F is a shortest path in Hf and thus in Gf . By Lemma 4.21, it follows that the resulting flow still
has minimum cost, which means that our invariant is maintained.

Finally, we conclude that Orlin computes the correct result by refining Lemma 4.22.

Theorem 4.36. If c does not induce negative cycles, Orlin only fails if no b-flow exists and otherwise returns
a minimum-cost b-flow.

Proof. If Orlin terminates without failing, the statement follows from b = 0 and Lemma 4.35. Now assume,
without loss of generality, that the algorithm fails because there is a vertex s with b(s) > (1 − ε)γ but no
vertex t with b(t) < −εγ that is reachable from s in Gf . Let R be the set of all vertices reachable from s
in Gf . Since capacities are unbounded, we have δ+G(R) = ∅ (and not just δ+Gf

(R) = ∅). Moreover, we have
f(e) = 0 for all e ∈ δ−G(R), since δ+Gf

(R) = ∅. Because f is a (b⋆ − b)-flow (Lemma 4.34), it follows that∑︁
v∈R(b

⋆(v)− b(v)) =
∑︁

v∈R(−exf (v)) =
∑︁

e∈δ+G(R) f(e)−
∑︁

e∈δ−G(R) f(e) = 0. We obtain
∑︂
v∈R

b⋆(v) =
∑︂
v∈R

b(v) = b(s) +
∑︂

v∈R\{s}

b(v) > (1− ε)γ − (n− 1)εγ
ε=1/n
= 0,

but δ+G(R) = ∅ and thus ∑︁e∈δ+G(R) µ(e) = 0 <
∑︁

v∈R b⋆(v). By Proposition 4.4, this means that no b⋆-flow
exists in (G,∞, b⋆), and Orlin can safely fail.

To bound the running time of the algorithm, much like for the previous algorithms, we need to establish that
we make progress over time.

Lemma 4.37. If we have |b(z)| > (1− ε)γ for z ∈ V at some point during the execution of Orlin, then the
connected component of z in F grows within the next ⌈2 log2 n+ log2m⌉+ 3 phases.

Proof. Let |b(z)| > (1− ε)γ1 for some z ∈ V at the beginning of the γ1-phase for γ1 > 0. Let γ0 ≥ 2γ1 be the
value of γ in the previous phase (or γ0 := 2γ1 if we are in the first phase) and let γ2 be the value of γ after
k := ⌈2 log2 n+ log2m⌉+ 2 additional phases. Since γ is reduced by factor 2 or more after each phase, we
have

γ1 ≥ 2kγ2 ≥ 22 log2 n2log2 m22γ2 = 4n2mγ2. (4.10)
Let f1 and b1 be the values of f and b, respectively, at the beginning of the γ1-phase, and let f2 and b2 be the
values at the end of the γ2-phase. Let further b⋆ denote the original value of b, and let Cz be the connected
component of z in F at the beginning of the γ1-phase. Assume that Cz does not grow in the next k phases
after the γ1-phase. In Contract we ensure that b(v) = 0 for all v with rv ̸= v. Therefore, we have rz = z and
b1(v) = 0 for all v ∈ Cz \ {z} at the beginning of the γ1-phase. Since f1 is a (b⋆ − b1)-flow (Lemma 4.34), we
further have(︁∑︂

v∈Cz

b⋆(v)
)︁
− b1(z) =

∑︂
v∈Cz

(b⋆(v)− b1(v)) =
∑︂
v∈Cz

(−exf1(v)) =
∑︂

e∈δ+G(Cz)

f1(e)−
∑︂

e∈δ−G(Cz)

f1(e) =: rγ0,

with r ∈ Z by Observation 4.32, since (δ−G(Cz) ∪ δ+G(Cz)) ⊆ H \ F . If r · b1(z) ≥ 0, we obtain
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⃓⃓⃓∑︂
v∈Cz

b⋆(v)
⃓⃓⃓
= |rγ0 + b1(z)| ≥ |b1(z)| > (1− ε)γ1

n≥2
≥ 1

n
γ1, (4.11)

and otherwise (i.e., if r · b1(z) < 0) we have r ̸= 0 and thus (note that |b1(z)| < (1− ε)γ0, since the previous
phase ended) ⃓⃓⃓∑︂

v∈Cz

b⋆(v)
⃓⃓⃓
= |rγ0 + b1(z)| = |rγ0| − |b1(z)| > γ0 − (1− ε)γ0 =

1

n
γ0 >

1

n
γ1. (4.12)

Note that we need ε > 0 in (4.12) to get a strictly positive right-hand side.
Since f2 is a (b⋆ − b2)-flow (Lemma 4.34), we obtain as above(︁∑︂

v∈Cz

b⋆(v)
)︁
− b2(z) =

∑︂
e∈δ+G(Cz)

f2(e)−
∑︂

e∈δ−G(Cz)

f2(e). (4.13)

Together with |b2(z)| ≤ (1− ε)γ2 (since the γ2-phase ended), this yields∑︂
e∈δ+G(Cz)∪δ−G(Cz)

f2(e) ≥
⃓⃓⃓ ∑︂
e∈δ+G(Cz)

f2(e)−
∑︂

e∈δ−G(Cz)

f2(e)
⃓⃓⃓

(4.13)
=

⃓⃓⃓(︁∑︂
v∈Cz

b⋆(v)
)︁
− b2(z)

⃓⃓⃓
≥

⃓⃓⃓∑︂
v∈Cz

b⋆(v)
⃓⃓⃓
−
⃓⃓⃓
b2(z)

⃓⃓⃓
(4.11),(4.12)

>
1

n
γ1 − (1− ε)γ2

(4.10)
≥ 4nmγ2 − (1− ε)γ2

> (4nm− 1)γ2

> m(6n
γ2
2
).

But this means that at least one arc in δ+G(Cz) ∪ δ−G(Cz) carries a flow of at least 6nγ at the beginning of the
next phase and is therefore contracted. This causes the component of z in F to grow.

Now, we have everything we need to bound the running time of Orlin. Note that it is crucial that we reduce γ
by more than half whenever possible.

Theorem 4.38. Orlin can be implemented to run in time O((m+ n log n)n log n).

Proof. We can make use of a vertex potential as in SuccessiveShortestPath with potential. This allows to
compute shortest paths in time O(m+ n log n). It remains to bound the number of augmentations and phases.
There are at most n− 1 augmentations within Contract, since we merge two distinct components in each
Contract operation.
We count the maximum number of phases until some arc is contracted. As soon as an augmentation is
performed outside of Contract, by Lemma 4.37, the number of phases until the next Contract is bounded
by O(logm) = O(log n). Before that, however, there may be additional phases without vertices v satisfying
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|b(v)| > (1− ε)γ. If there is at least one arc e ∈ H \ F with f(e) > 0, then this arc carries at least γ units of
flow (Observation 4.32). After ⌈log2 n⌉+ 3 phases without change in flow, we have f(e) ≥ 2⌈log2 n⌉+3γ > 6nγ,
since we reduce γ by at least half after each phase. Then, e can be contracted. On the other hand, if f(e) = 0
for all arcs e ∈ G \F , the algorithm sets γ = maxv∈V |b(v)|, which leads to an augmentation in the next phase.
It follows that after at most O(log n) phases some arc is contracted, which means that we have O(n log n)
phases overall.
By Lemma 4.33, the number of augmentations outside of Contract is at most n− 1 plus the number of pairs
(γ, z) with |b(z)| > (1− ε)γ at the beginning of the γ-phase. At such a point in time, it holds that r(z) = z,
since only the representative of a connected component may have b(z) ̸= 0. By Lemma 4.37, the connected
component grows within the next O(logm+ log n) = O(log n) phases. A connected component can therefore
be responsible for at most O(log n) augmentations, before it changes. The total number of different connected
components throughout the course of the algorithm is 2n− 1, since we start with n components and reduce
the number of components by one in each Contract operation, until we are left with a single component.
Hence, the total number of augmentations is O(n log n).
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5 Maximum Cardinality Matchings

We now turn to the maximum matching problem on general graphs. Elementary results and algorithms for
bipartite graphs were discussed in the lecture Algorithmic Discrete Mathematics. We will present a better
algorithm for bipartite graphs and extend results to general graphs. We begin by recalling basic definitions.

Definition 5.1. A matching in an undirected graph G = (V,E) is a set M ⊆ E of pairwise disjoint edges. A
vertex v ∈ V \

⋃︁
e∈M e is (M -)exposed and we write v /∈M . A vertex v ∈

⋃︁
e∈M e is (M -)covered and we write

v ∈M . The matching M is

• perfect if all vertices of G are M -covered (i.e., if |M | = 1
2 |V |),

• maximal if there is no matching M ′ ⊋ M in G,

• maximum (cardinality) if it maximizes the number of edges in the matching, i.e., if |M | =
max{|M ′| |M ′ is a matching in G}.

With this, the maximum matching problem is defined as follows. We sometimes explicitly speak of maximum
cardinality matchings to distinguish them from maximum weight matchings.
Maximum (Cardinality) Matching Problem
input: graph G = (V,E)
problem: find maximum cardinality matching M ⊆ E of G

As before, from now on we fix an undirected graph G = (V,E). We recall the following characterization of
maximum matchings.

Definition 5.2. Let M be a matching in G. A u-v-path P in G is (M -)alternating if P \M is a matching. If,
additionally, u, v /∈M , then P is (M -)augmenting.

Theorem 5.3. Let M be a matching in G. Then, M is a maximum matching in G if and only if there is
no M -augmenting path in G.

5.1 Bipartite Graphs Revisited

We begin by revisiting the maximum matching problem in bipartite graphs. This problem can be reduced to
the maximum flow problem by introducing the following auxiliary network (see Figure 5.1).

Definition 5.4. Let G = (U ∪ V,E) be a bipartite graph with s, t /∈ (U ∪ V ). The flow network
NG = (H,µ, s, t) induced by G is given by H = (VH , EH) with vertices VH = U ∪ V ∪ {s, t} and arcs
EH={(u, v) ∈ U×V | {u, v} ∈ E}∪({s}×U)∪(V×{t}), and µ(e) = 1 for all e ∈ EH .
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t
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Figure 5.1: Left: bipartite graph G. Right: flow network NG induced by G (µ = 1).

With this, the maximum matching problem can easily be solved by invoking any maximum flow algorithm.
For example, we may use the following algorithms. Note that FordFulkerson and Dinic are guaranteed to
compute a maximum flow f with f(e) ∈ {0, 1} for all edges e, since µ(e) ∈ {0, 1}.

Algorithm: FordFulkersonMatching(G)

input: bipartite graph G = (U ∪ V,E)
output: maximum card. matching M ⊆ E in G

(H,µ, s, t)← NG

f ← FordFulkerson(H,µ, s, t)
return {{u, v} ∈ E|(u, v) ∈ U×V ∧ f((u, v)) = 1}

Algorithm: DinicMatching(G)

input: bipartite graph G = (U ∪ V,E)
output: maximum card. matching M ⊆ E in G

(H,µ, s, t)← NG

f ← Dinic(H,µ, s, t)
return {{u, v} ∈ E|(u, v) ∈ U×V ∧ f((u, v)) = 1}

Importantly, in this application, FordFulkersonMatching performs just as well as DinicMatching in terms
of running time.

Theorem 5.5. Both FordFulkersonMatching and DinicMatching solve the maximum matching problem
in time O(nm).

Proof. The first part of the statement follows from the fact that FordFulkerson has running time O(m · |f⋆|)
(see lecture Algorithmic Discrete Mathematics) and |f⋆| < n in NG.
The running time of DinicMatching follows from the fact that NG has unit capacities, implying that
BlockingFlow only uses saturating pushs. With this observation, the analysis in the proof of Theorem 3.9
yields a running time of O(m) for BlockingFlow. Together with Proposition 3.4, we obtain the claimed
bound on the running time of DinicMatching.

We can further simplify Dinic for flow networks induced by bipartite graphs by realizing that every vertex
except s and t can only be part of a single augmenting path, since their indegree our outdegree is 1 and all
arcs have unit capacity. This allows to replace BlockingFlow by a simple variant of DFS without the need to
topologically sort the graph. The resulting improvement yields the Hopcroft-Karp algorithm:
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Algorithm: HopcroftKarp(G)

input: bipartite graph G = (U ∪ V,E)
output: maximum cardinality matching M ⊆ E in G

(H,µ, s, t)← NG

f ← 0

while ∃ s-t-path in Hf :
Hf,L ← (V, {(v, w) ∈ Hf | dHf

(s, w) = dHf
(s, v) + 1})

f ′ ← BipartiteBlockingFlow(Hf,L, µf , s, t)
f ← f + f ′

return {{u, v} ∈ E|(u, v) ∈ U×V ∧ f((u, v)) = 1}

In BipartiteBlockingFlow we simply use the vertex-disjoint (except for s and t) paths found by DFS as
augmenting paths.

Algorithm: BipartiteBlockingFlow(G,µ, s, t)

input: network (G = (V,E), µ = 1, s, t)
with max{d+(v), d−(v)} ≤ 1 ∀v ∈ V

output: blocking flow
f ← 0

while P ← DFS(G, s, t) ̸= ∅ :
Augment(P, 1)

return f

Algorithm: DFS(G, u, t)

input: graph G = (V,E), vertices u, t ∈ V
output: u-t-path in G along unmarked

vertices
if u = t :

return (t)

mark u (t is never marked)
for v ∈ Γ(u) with v not marked:

if P ← DFS(G, v, t) ̸= ∅ :
return (u)⊕ P

return ∅

We show that this method of computing blocking flows is correct for flow networks.

Proposition 5.6. BipartiteBlockingFlow computes a blocking flow in time O(m).

Proof. We show that BipartiteBlockingFlow computes a blocking flow. The running time then follows,
because every vertex is visited at most once and only if it is reachable from s.
For the sake of contradiction, assume that there is still an s-t-path P in G ∩ Gf upon termination of
BipartiteBlockingFlow. Then, at least one vertex of P \ {s, t} must be marked, otherwise DFS would
have still found some s-t-path. Let v ∈ V \{s, t} the last such vertex along P . Then, a v-t-path without marked
vertices exists. This means that DFS either did not visit all neighbors of v, or t ∈ Γ(v). In either case, DFS
must have found a v-t-path at some point, which means that BipartiteBlockingFlow must have augmented
flow over some path P ′ that contains v. From µ = 1 it follows that P and P ′ do not share arcs. Since both P
and P ′ contain v, this implies that v has both in- and out-degree greater one, contradicting the assumption on
the input of the algorithm.

With Proposition 3.4, this again immediately gives a running time of O(nm), which does not yet improve
upon FordFulkersonMatching. But we can further strengthen the analysis. Note that DinicMatching
achieves the same running time.
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Theorem 5.7. HopcroftKarp computes a maximum matching in bipartite graphs in time O(m√n).

Proof. We have already seen that the length of a shortest s-t-path in Gf increases in every iteration of Dinic
(Proposition 3.4). Consider the situation after iteration √n + 2. Let M be the bipartite matching in G
corresponding to the current flow in H, and let M⋆ be a maximum matching in G. The symmetric difference
M△M⋆ has at most one edge of M and at most one of M⋆ at every vertex. This allows to partition M△M⋆

into both M - and M⋆-alternating cycles and paths. The number of M -augmenting paths in this partition is
exactly |M⋆| − |M |, since there cannot be any M⋆-augmenting paths (Theorem 5.3). We also know that every
M -augmenting path corresponds to an augmenting path in Hf , which, in turn, has length at least √n+ 2.
It follows that every M -augmenting path in M△M⋆ has length at least √n. Since these paths are disjoint,
there can be at most √n such paths, and, hence, |M⋆| − |M | ≤

√
n. Since the size of the matching increases

in every iteration (Proposition 3.4), HopcroftKarp needs at most √n more iterations to reach a maximum
cardinality matching. Overall, the number of iterations is bounded by 2

√
n+ 2 = O(

√
n).

To apply Proposition 5.6 and conclude that each iteration takes time O(m), which yields the claimed running
time, we need to show that the algorithm maintains the invariant that degrees in Hf,L are bounded (and
not just in H). For this, it is sufficient to prove the invariant for Hf ⊇ Hf,L. It initially holds, because H is
induced by a bipartite graph, and it is maintained because every augmentation is by one unit of flow and
µ = 1, which implies that in- and outdegrees remain unchanged in Hf .

5.2 Characterization of Matchings

We turn to matchings in general (not necessarily bipartite) undirected graphs. We first give an algebraic
characterization of graphs that admit perfect matchings. This characterization relies on the following matrix
similar to an adjacency matrix, but with variables as its entries. Recall that an orientation of an undirected
graph is a directed graph that is obtained by assigning a direction to each edge.

Definition 5.8. For x = (xe)e∈E and an arbitrary orientation G′ of G, the Tutte matrix T (x) = (tu,v)u,v∈V is
given by

tu,v :=

⎧⎪⎨⎪⎩
xe, if e = (u, v) ∈ G′,

−xe, if e = (v, u) ∈ G′,

0, otherwise.

It is a beautiful mathematical connection that the determinant of the Tutte matrix vanishes if and only if the
underlying undirected graph has no perfect matching.

Theorem 5.9 (Tutte). An undirected graph G does not have a perfect matching if and only if all terms in the
polynomial detT (x) cancel out (symbolically).

Proof. Let V = {1, . . . , n} and let Sn denote the set of all permutations of V . By the Leibniz formula for
determinants, we have

detT (x) =
∑︂
π∈Sn

sgn(π)
∏︂
v∈V

tv,π(v).
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First assume that a perfect matching M exists in G. Consider the permutation π(u) = v and π(v) = u for all
{u, v} ∈M . For this and no other permutation we have∏︂

v∈V
tv,π(v) =

∏︂
e∈M

(−x2e).

Therefore, this term does not cancel with any other term in detT (x).
Now, conversely, assume that detT (x) ̸= 0. Let S′

n := {π ∈ Sn |
∏︁

v∈V tv,π(v) ̸= 0} denote the set of all
permutations that contribute to detT (x). We interpret every permutation π ∈ Sn as a directed graph Hπ with
arcs (u, v) between every u, v ∈ V with v = π(u). Every vertex of Hπ has in- and out-degree 1, and, hence,
Hπ consists of cycles – the permutation cycles of π. For all π ∈ S′

n we have that Hπ is a subgraph of G′ ∪ Ḡ
′,

where G′ is an arbitrary orientation of G.
We show that the contributions of all permutations π ∈ S′

n that contain at least one odd cycle in Hπ cancel out
in detT (x). Let r ∈ Sn be the permutation which changes the orientation of the first odd cycle in π, i.e., the
odd cycles in Hπ and Hr◦π containing the smallest vertex have opposite orientations and all other cycles are
the same.
We first show that sgn(π) = sgn(r ◦ π), i.e., π can be translated to r ◦ π with an even number of swaps.
Let v1, . . . , v2k+1 be the first odd cycle in Hπ. For i = 1, . . . , k, we swap (in this order) v2i−1with v2k and,
analogously, v2i with v2k+1. Let v−1 := v2k and v0 := v2k+1. Now, for all i ∈ {1, . . . , k}, we ensured that
r(vi) = vi−2, since vi−2 was first swapped with v2k or v2k−1 and then (from there) with vi. Hence, we have

r(π(vi)) = r(vi+1) = vi−1,

i.e., the first odd cycle is flipped. As we used an even number of swaps, we have sgn(π) = sgn(r(π)).
Since we changed the orientation of an odd cycle, the sign of an odd number of entries of∏︁v∈V tv,π(v) changed.
In particular, π ∈ S′

n implies r ◦ π ∈ S′
n. Consequently,

∏︁
v∈V tv,π(v) = −

∏︁
v∈V tv,r(π(v)) and the contributions

of π and r ◦ π cancel out. Furthermore, r ◦ r ◦ π = π, therefore we can pair the elements of S′
n with odd cycles,

such that the contributions of each pair to detT (x) cancels out.
Now, since detT (x) ̸= 0, a permutation with only even cycles must exist. But then we can construct a perfect
matching by taking every second edge of each cycle (ignoring orientations).

While the above characterization is beautiful, it is often difficult to apply. We now derive a much more useful
characterization. To this end, we need some definitions.

Definition 5.10. Let G = (V,E) be an undirected graph and X ⊆ V . Then q(X) := qG(X) denotes the
number of connected components with an odd number of vertices in the induced subgraph G[V \X].

In order to inductively characterize graphs that admit perfect matchings, we need a way of splitting a graph
into smaller parts that allows us to relate the existence of a perfect matching in the original graph to the
existence of a perfect matching in every part. Sets of vertices X ⊆ V with q(X) = |X| allow us to do this
nicely, because they split the graph into parts in such a way that every part of odd cardinality in V \X needs
to have exactly one edge to X in every perfect matching. All other edges need to be within parts. This justifies
the following definitions.

Definition 5.11. A barrier is a set of vertices X ⊆ V with q(X) = |X|.

Definition 5.12. An undirected graph G = (V,E) is called factor critical if G− v has a perfect matching for all
v ∈ V .
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The following lemma will be useful.

Lemma 5.13. For all undirected graphs G = (V,E) and all X ⊆ V it holds that |V | ± q(X)± |X| is even.

Proof. Let Z be the partition of V into the vertex sets of the connected components of G−X and the set X.
Then, q(X) ± |X| is even if and only if Z contains an even number of odd (cardinality) sets. Since Z is a
partition of V , this is the case if and only if |V | is even. It follows that |V | ± q(X)± |X| is always even.

We now present a characterization, similar to the marriage theorem for bipartite graphs.

Theorem 5.14 (Tutte). An undirected graph G = (V,E) has a perfect matching if and only if

q(X) ≤ |X| ∀X ⊆ V. (5.1)

Proof. If a perfect matching M exists in G, then, for every X ⊆ V , every odd component of G−X must have
a matching edge to a distinct element of X. Hence, q(X) ≤ |X|.
Conversely, assume that the Tutte condition (5.1) holds. We show, by induction over n = |V |, that a perfect
matching exists. For n = 2, by the Tutte condition, we have q(∅) = 0 so there must be an edge between the
two vertices. Thus, a perfect matching exists.
Now consider the case n > 2. The Tutte condition implies q(∅) = 0, hence ∅ is a barrier and nmust be even. We
can therefore choose a barrier X of maximum size. By definition, G−X has |X| odd connected components.
Let x ∈ V be a vertex of an even component. By the Tutte-condition, we have q(X ∪{x}) ≤ |X|+1, but it also
holds that q(X ∪ {x}) ≥ q(X) + 1 = |X|+ 1. Hence, X ∪ {x} is a barrier – a contradiction to the maximality
of X. Hence, G−X cannot have even components.
We claim that every connected component of G−X is factor critical. Let C be such a component and v ∈ C
be one of its vertices. Assume that C − v did not have a perfect matching. By induction, it then follows that
the Tutte condition is violated for the graph C − v. In other words, there must be a set of vertices Y ⊆ C − v
with qC−v(Y ) > |Y |. Since G −X has no even components, C is odd and C − v is even. By Lemma 5.13,
qC−v(Y )− |Y | must be even as well. It follows that

qC−v(Y ) ≥ |Y |+ 2.

Since X, Y , and {v} are pairwise disjoint, it follows that

q(X ∪ Y ∪ {v}) = q(X)− 1 + qC(Y ∪ {v})
= |X| − 1 + qC−v(Y )

≥ |X| − 1 + |Y |+ 2

= |X ∪ Y ∪ {v}|.

By the Tutte condition, we also have q(X ∪ Y ∪ {v}) ≤ |X ∪ Y ∪ {v}|. Therefore, X ∪ Y ∪ {v} is a barrier – a
contradiction to maximality of X. We conclude that every component of G−X is factor critical.
Now consider the bipartite graph G′ = (X ∪ Z, E′), where Z is the set of components of G − X and E′

contains an edge between x ∈ X and C ∈ Z if and only if x ∈ ΓG(C). If there is no perfect matching in G′,
then, by the marriage theorem (see Algorithmic Discrete Mathematics), there exists A ⊆ Z with |ΓG′(A)| < |A|.
Since the components in Z are not connected in G−X, the set ΓG′(A) ⊆ X isolates every component in A
from the rest of G. Since every C ∈ A ⊆ Z is an odd component of G−X, it follows that qG(ΓG′(A)) ≥ |A|.
We conclude that qG(ΓG′(A)) > |ΓG′(A)|, which is a contradiction to the Tutte condition.
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Thus, there must be a perfect matching in G′. Since every C ∈ Z is factor critical, we can transform this
perfect matching into a perfect matching M⋆ of G: For every edge {x,C} in the matching, let v ∈ C with
{x, v} ∈ E be a vertex of C that shares an edge with x in G. We include this edge in M⋆. Because C is factor
critical, there is a perfect matching in C − v, which we can also include in M⋆.

While Tutte’s theorem gives a characterization for the existence of perfect matchings, it does not apply for
graphs that do not admit perfect matchings. We now extend this characterization to capture maximum
matchings in general. Note that the following theorem subsumes Tutte’s theorem for perfect matchings, since
then |M⋆| = n/2 and q(X) ≤ |X|, q(∅) = 0.

Theorem 5.15 (Berge-Tutte). For all undirected graphs G = (V,E) it holds that

2|M⋆|+ max
X⊆V
{q(X)− |X|} = |V |,

where M⋆ denotes a maximum cardinality matching in G.

Proof. For every X ⊆ V , every matching M must leave at least q(X) − |X| vertices exposed, since every
odd component of G−X either has an exposed vertex or a matching edge to a vertex of X. It follows that
2|M |+ q(X)− |X| ≤ |V |.
Now let

k := max
X⊆V
{q(X)− |X|}

and H = (V ′, E′) be the graph G with k additional vertices that each have edges to all other vertices. Assume
that H has a perfect matching M⋆

H . Then, for a maximum matching M⋆ in G, it holds that |M⋆| ≥ |M⋆
H | − k,

since we can construct a matching in G from M⋆
H by removing all matching edges that contain a vertex of

V ′ \ V . Since M⋆
H is perfect, we have

2|M⋆|+ k ≥ 2|M⋆
H | − k = |V ′| − k = |V |.

It remains to show that H always has a perfect matching. Assume this was not the case. By Tutte’s theorem
(Theorem 5.14), it follows that there is a set Y ⊆ V ′ with qH(Y ) > |Y |. By Lemma 5.13, |V ′| = |V | + k is
even. Hence, qH(∅) = 0 and thus Y ̸= ∅. It follows that qH(Y ) > |Y | ≥ 1, hence H − Y consists of multiple
components. But then Y must contain all vertices in V ′ \ V , since these are connected to all vertices. We
obtain a contradiction to the definition of k (with X = Y ∩ V ):

qG(Y ∩ V ) = qH(Y ) > |Y | = |Y ∩ V |+ k.

5.3 Edmonds’ Algorithm

After having characterized the existence of matchings, we now focus on finding maximummatchings in general
graphs algorithmically. We approach this problem greedily as follows: While there is still an unmatched vertex
r, we take any neighbor v ∈ Γ(r). If v is unmatched, we can augment the matching by adding the edge {r, v}
and restart. Otherwise, we can store the path from r to v’s matching partner z. Let Teven = {r, z}. We can
repeat the process with any neighbor of Teven that we have not considered yet. If this neighbor is unmatched,
we found an augmenting path, which means that we can augment the matching and restart. Otherwise,
we can store another path, add its endpoint to Teven in the same way, and repeat the process looking for
unconsidered neighbors of Teven. In this way, we greedily build up the following structure (see Figure 5.2).
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Figure 5.2: Illustration of an alternating tree. Thick edges are in the matching, square vertices are in Todd,
and circle-shaped vertices are in Teven.

Definition 5.16. An alternating tree with respect to a matching M in graph G = (V,E) is a subtree T =
(V ′, E′) ⊆ G rooted at r ∈ V with the following properties.

(i) The root r is the only M -exposed vertex of T .

(ii) Every path in T starting at r is M -alternating.

(iii) For every leaf v of T the distance dT (r, v) is even.

We let Teven ⊆ V ′ denote the set of vertices v ∈ V ′ with even dT (r, v), and Todd := V ′ \ Teven.

Assuming that we never encounter edges between two vertices in Teven, we are sure to eventually find a
perfect matching if one exists. We can prove this formally, by proving that, if a perfect matching exists, we
find neighbors in Teven until we have matched all vertices. In other words, it cannot be the case that all edges
of δG(T ) are adjacent to vertices in Todd.

Observation 5.17. If an alternating tree T exists w.r.t. a matching M in G such that Todd is a vertex cover of
G[T ] ∪ δG(T ), then G does not have a perfect matching.

Proof. Observe that |Todd| < |Teven|, since r and every leaf of T are in Teven. If Todd is a vertex cover of
G[T ] ∪ δG(T ), then every vertex of Teven is its own odd component in G− Todd. This means that q(Todd) ≥
|Teven| > |Todd|, i.e., the Tutte condition (5.1) is violated for X = Todd. Therefore, by Tutte’s theorem
(Theorem 5.14), no perfect matching exists in G.

Note that if we demand that G is bipartite, we can never encounter edges between vertices in Teven, because
these edges would close an odd cycle in T . Hence, we have described an algorithm to find a perfect matching in
a bipartite graph if one exists. A precise formulation of the resulting algorithm is given below. The operations
Augment and ExtendTree are illustrated in Figures 5.3 and 5.4, respectively.
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Figure 5.3: Illustration of the operation AUGMENT(u, v). Left: alternating tree before the augmentation; right:
situation after the augmentation. Note that the alternating tree is not maintained.
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Figure 5.4: Illustration of the operation EXTENDTREE(u, v). Left: alternating tree before the extension; right:
situation after the extension. Note that the alternating tree is maintained.

Algorithm: EdmondsPerfectBipartite(G)

input: bipartite graph G = (V,E)
output: perfect matching in G

M ← ∅
MakeTree(∅)
while ∃{u, v} ∈ E with u ∈ Teven and v /∈ T :

if v /∈M :
Augment(u, v)
MakeTree(∅)

else
ExtendTree(u, v)

if T = ∅ :
return M

else
fail

Algorithm: MakeTree(R)

if ∃r /∈ R with r /∈M :
T ← ({r}, ∅)
Teven ← {r}
Todd ← ∅

else
T ← ∅, Teven ← ∅, Todd ← ∅

Algorithm: Augment(u, v)
P ← r-u-path in T + {u, v}
M ←M△P

Algorithm: ExtendTree(u, v)
{z} ← ΓM (v)
T ← T + {u, v}+ {v, z}
Todd ← Todd ∪ {v}
Teven ← Teven ∪ {z}

We show formally that this algorithm indeed always finds a perfect matching in bipartite graphs or concludes
that none exists.

Proposition 5.18. EdmondsPerfectBipartite is correct.

Proof. We prove that EdmondsPerfectBipartite maintains the invariant that M is a matching and T is an
alternating tree with root r (or T = ∅). This is the case initially, since every vertex is M -exposed, M = ∅, and
T = ({r}, ∅). Now consider an iteration for edge {u, v} ∈ E with u ∈ Teven and v ∈ V \ T . First assume that v
is M -exposed and let Pru be the unique r-u-path in T . Then, the path P = Pru ⊕ (v) is an M -augmenting
path, since r and v are M -exposed and Pru has even length. Hence, we may augment and M remains a
matching. Afterwards, we either set T = ∅ or T = ({r′}, ∅) for some new vertex r′ ∈ V , hence the invariant
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is maintained. If v is M -covered, we extend the tree T by the edges {u, v} and {v, z} with {u, v} /∈M and
{v, z} ∈M . Hence, T remains an alternating tree and the invariant is maintained.
If the algorithm terminates successfully, then T = ∅ and, by the invariant, M is a matching. The only way
that T can be set to ∅ is if no M -exposed vertex exists in MakeTree. But then M is a perfect matching.
Finally, if the algorithm fails, then no edge {u, v} ∈ E exists with u ∈ Teven and v ∈ V \ T . Also, there cannot
be any edge in G[Teven], since such an edge would close an odd cycle, which would be a contradiction with G
being bipartite. Hence, every edge in G[T ]∪ δG(T ) must contain a vertex of Todd, i.e., Todd is a vertex cover of
G[T ] ∪ δG(T ). By Observation 5.17, there is no perfect matching, hence the algorithm legitimately fails.

To generalize EdmondsPerfectBipartite to general graphs, we need to address edges between vertices
in Teven. As observed above, such edges close a unique odd cycle in T . Restricted to this odd cycle, the current
matching covers all vertices except for the unique vertex of the cycle closest to the root (see Figure 5.5). We
can formalize this as follows.

Definition 5.19. A blossom w.r.t. a matching M in G is a factor critical subgraph C = (VC , EC) ⊆ G with
|M ∩ EC | = (|VC | − 1)/2. The (blossom) basis of C is the unique (M ∩ EC)-exposed vertex of C.

The key idea now is to contract the corresponding blossom C whenever we find an edge between two vertices
of Teven, i.e., to shrink it to a single vertex vC and to replace the endpoints in C of all edges in δ(C) by vC
(see Figure 5.5). In the resulting graph, we eliminated the critical edge, and we can continue as before. Once
we find a maximum matching in the contracted graph, we can easily recover a maximum matching in the
original graph. This key insight is called the blossom lemma.

Lemma 5.20 (blossom lemma). Let C = (VC , EC) be a blossom with respect to matching M in G, and let G′,
M ′ be obtained from G, M , respectively, by contraction of C. Let further Q be an M -alternating path of even
length in G from an M -exposed vertex to the basis b of C, such that Q∩C = ({b}, ∅). Then, M is a maximum
matching in G if and only if M ′ is a maximum matching in G′.

Proof. Let M ′ not be a maximum matching in G′. We can extend every matching in G′ to a matching in G

with |VC |−1
2 additional edges, since, by definition, C is factor critical. For maximum matchings M ′⋆ in G′ and

M⋆ in G it therefore holds that

|M⋆| ≥ |M ′⋆|+ |VC | − 1

2
> |M ′|+ |VC | − 1

2
= |M |.

This means that M is not a maximum matching in G.
Conversely, let M not be a maximum matching in G and consider N := M△Q. Since Q has even length, this
matching has the same cardinality as M and is therefore not maximum. Also, Q having even length implies
that it has exactly one M -exposed endpoint, hence b is M -covered and therefore N -exposed. Because N is not
maximum, there is an N -augmenting path P in G (Theorem 5.3). Since C contains only a single N -exposed
vertex, P has an endpoint v /∈ C. Let P̄ be the maximal subpath of P that contains this end v and contains no
vertex of C in its interior. If we contract C, as b is N -exposed in G, the resulting vertex is N ′-exposed in G′,
where N ′ denotes N after contracting C. Let Q′ be the path in G′ obtained from Q by contracting C. In G′,
the path P̄ corresponds to an N ′-augmenting path. Hence, N ′ is not maximum in G′. But M ′ = N ′△Q′ has
the same cardinality as N ′, since Q has even length and |Q′| = |Q|. Thus, M ′ is not maximum either.
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Figure 5.5: Illustration of the operation CONTRACT(u, v). Left: alternating tree before the extension; right:
situation after the extension. Note that the alternating tree is maintained.

With this, we can extend EdmondsPerfectBipartite to general graphs, as follows. The operation Contract
is illustrated in Figure 5.5, and an example of an execution of the algorithm can be found in Figure 5.6. In the
following we denote by V (u) the set of vertices of G contained in the (possibly contracted) vertex u.

Algorithm: EdmondsPerfect(G)

input: undirected graph G = (V,E)
output: perfect matching in G

M ← ∅
MakeTree(∅)
G′ = (V ′, E′)← G

while ∃{u, v} ∈ E′ with u ∈ Teven and v /∈ Todd :
if v /∈ T and v /∈M :

Augment(u, v)
M ← Expand(M, ∅)
G′ ← G
MakeTree(∅)

else if v /∈ T and v ∈M :
ExtendTree(u, v)

else
Contract(u, v)

if T = ∅ :
return M

else
fail

Algorithm: Contract(C,G = (V,E))

Ec ← {e ∈ E|e ∩ C = ∅}
Ec ← Ec ∪ {{vC , v} | v ∈ Γ(C)}
Vc ← (V \ C) ∪ {vC}
return (Vc, Ec)

Algorithm: Contract(u, v)
C ← (v-u-path in T )⊕ (v)
G′ ← Contract(C,G′)
M ← Contract(C,M)
T ← Contract(C, T )

Algorithm: Expand(M,R)

while ∃vC ∈ V ′ \R with vC contracted :
{v} ← ΓM (vC)
let u ∈ C s.t.∃e ∈ δG(V (u)) ∩ δG(V (v))
M ′ ← max. matching in C \ {u}
M ← (M \ δM (vC)) ∪M ′ ∪ {e}
V ′ ← V ′ − vC + C

return M
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Figure 5.6: Example of an execution of EDMONDSPERFECT.

We show that this algorithm works in general to find perfect matchings.

Proposition 5.21. EdmondsPerfect is correct.

Proof. Again, the algorithm maintains the invariant that M is a matching in G′ and that T is an alternating
tree with root r. It is maintained during augmentations and extensions of T , as in the proof of Proposition 5.18.
It is also maintained when a blossom C is contracted or expanded, since the basis of C is the unique vertex of
C that may be part of an edge in δG′(C) ∩M (unless it coincides with r).

If the algorithm terminates successfully, we have T = ∅, which means that the last operation was MakeTree,
there is no M -exposed vertex, and G′ = G. By the invariant, M is a perfect matching in G.

If the algorithm fails, all edges in G′[T ] ∪ δG′(T ) have one end in Todd. Then qG′(Todd) ≥ |Teven| > |Todd|,
as in Observation 5.17, and G′ does not have a perfect matching by Theorem 5.14. Observe that blossom
bases always fall in Teven, thus Todd does not contain contracted vertices and Todd ⊆ V . Since blossoms are
odd, expanding a contracted blossom maintains the parity of the corresponding component in G − Todd.
Hence, qG(Todd) > |Todd| and G does not have a perfect matching by Theorem 5.14. Hence, the algorithm
legitimately fails.

Finally, we extend the algorithm further to settings where a perfect matching need not exist. The key idea
is to store completed trees, and to start new trees, until all exposed vertices are part of some tree. This
yields Edmonds’ famous blossom algorithm, which is considered to be one of the most beautiful algorithms in
combinatorial optimization, due to the various key ideas that it combines in elegant fashion.
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Algorithm: Edmonds(G)

input: undirected graph G = (V,E)
output: maximum cardinality matching in G

M ← ∅, R← ∅, MakeTree(∅), G′ = (V ′, E′)← G

while ∃r /∈ R with r /∈M :
MakeTree(R)
while ∃{u, v} ∈ E′ with u ∈ Teven and v /∈ Todd ∪R :

if v /∈ T and v /∈M :
Augment(u, v)
M ← Expand(M,R)
while ∃vC ∈ V ′ \R with vC contracted :

V ′ ← V ′ − vC + C

G′ ← R ∪G[V ′ \R], T ← ∅
break inner loop

else if v /∈ T and v ∈M :
ExtendTree(u, v)

else
Contract(u, v)

R← R ∪ T

return Expand(M, ∅)

We show that Edmonds’ algorithm computes a maximum matching in general graphs.

Theorem 5.22. Edmonds is correct.

Proof. We show that M is a maximum matching in G′ upon termination of the algorithm. Since blossom bases
always fall in Teven, by the blossom lemma (Lemma 5.20), it follows that M expanded to G is also maximum.
We first observe that, during each update of R, the vertices of an alternating tree are added to R. These
vertices remain unchanged afterwards, therefore the graph G′ = (V ′, E′) contains all these trees T1, T2, . . . at
the end. Every tree contains exactly one exposed vertex, namely its root. Let Veven denote the set of vertices
in Teven of all these trees T ∈ {T1, T2, . . . }, and let Vodd be defined analogously. There are no edges between
vertices in Teven of a single tree, otherwise a blossom could have been contracted. Also there are no edges
between vertices in Veven of different trees, otherwise the first of these trees could have been extended further.
Now, if we remove all vertices of Vodd from G′, we obtain |Veven| components consisting of a single vertex
each. If k is the number of trees, then |Veven| = |Vodd| + k. Hence, qG′(Vodd) = |Veven| = |Vodd| + k. Since
every M -exposed vertex of G′ is contained in some tree, and since every tree contains exactly one M -exposed
vertex, we have

|M | = |V
′| − k

2
.

By the Theorem of Berge-Tutte (Theorem 5.15) for G′, it holds that

|M ′⋆| = |V
′| −maxX⊆V {qG′(X)− |X|}

2
≤ |V

′| − qG′(Vodd) + |Vodd|
2

=
|V ′| − k

2
= |M |,

hence M is maximum in G′.
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To implement Edmonds efficiently, we need to maintain contracted components and to maintain δ(Teven).
The former can be achieved using a union-find data structure (see lecture Algorithmic Discrete Mathematics),
and the latter can be achieved by explicitly maintaining a list L that contains all edges in δ(Teven) that have
not yet been considered.

Algorithm: Edmonds(G) (implementation)
input: undirected graph G = (V,E)
output: maximum cardinality matching in G

M ← ∅, R← ∅
MakeTree(∅)
while ∃r /∈ R with r /∈M :

MakeTree(R)
L← {(r, rv) | v ∈ ΓG(r)}
while ∃(u, v) ∈ L :

L← L \ {(u, v)} (extract first)
if Find(u) ̸= Find(v) and v /∈ Todd :

if v /∈ T and v /∈M :
Augment(u, v)
M ← Expand(M,R)

else if v /∈ T and v ∈M :
ExtendTree(u, v)

else
Contract(u, v)

R← R ∪ T

return M

Algorithm: ExtendTree(u, v) (impl.)
{z} ← ΓM (v)
T ← T + {u, v}+ {v, z}
Todd ← Todd ∪ {v}
Teven ← Teven ∪ {z}
for w ∈ {rw′ |w′ ∈ ΓG(z)} \ {v} :

L← L⊕ {(z, w)}

Algorithm: Contract(u, v) (impl.)
C ← (v-u-path in T )⊕ (v)

for {a, b} ∈ C :
Union(a, b)

Algorithm: Expand(M,R)

for v ∈M with v /∈ R :
rv ← v

We remark (without proof) that a union-find data structure can be implemented efficiently. Recall that α(m)
is the inverse Ackermann function that grows extremely slowly (e.g., α(9876!) = 5).

Proposition 5.23. A union-find data structure can be implemented such that every sequence of O(m) opera-
tions takes time O(m · α(m)).

With this, we obtain a very efficient implementation of Edmonds’ algorithm.

Theorem 5.24. Edmonds can be implemented with a running time of O(nm · α(m)).

Proof. Since every augmentation increases the size of the matching, there can be at most n/2 = O(n)
augmentations. We consider the operations between two augmentations. Obviously, every edge is added to L
at most once. It follows that we have O(m) Find and O(n) Union operations. The total running time of these
operations is O(m · α(m)) if we use a suitable union-find data structure, by Proposition 5.23.
We have O(n) ExtendTree operations that consider each edge at most twice overall. The total running time
for this is O(m).
In every contraction, the number of vertices is reduced by the size of the contracted blossom minus 1 and the
running time required is linear in the size of the blossom. The total running time for contractions therefore is
O(n) plus the running time of the involved Union operations.
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Overall, the running time is O(nm · α(m)), assuming that we implement trees by storing predecessors for
each node.
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