Cambridge Core Share

Approximate lumpability for Markovian agent-based models using local symmetries

Journal of Applied Probability, Volume 56, Issue 3

WASIUR R. KHUDABUKHSH, ARNAB AUDDY, YANN DISSER, HEINZ KOEPPL
DOI: 10.1017/jpr.2019.44

Published online: 01 October 2019, pp. 647-671
Print publication: September 2019

Read this article for free

Abstract

We study a Markovian agent-based model (MABM) in this paper. Each agent is endowed with a local state that changes over time as the agent interacts with its neighbours. The neighbourhood structure is given by a graph. Recently, Simon, Taylor, and Kiss [40] used the automorphisms of the underlying graph to generate a lumpable partition of the joint state space, ensuring Markovianness of the lumped process for binary dynamics. However, many large random graphs tend to become asymmetric, rendering the automorphism-based lumping approach ineffective as a tool of model reduction. In order to mitigate this problem, we propose a lumping method based on a notion of local symmetry, which compares only local neighbourhoods of vertices. Since local symmetry only ensures approximate lumpability, we quantify the approximation error by means of the Kullback-Leibler divergence rate between the original Markov chain and a lifted Markov chain. We prove the approximation error decreases monotonically. The connections to fibrations of graphs are also discussed.

How does Cambridge Core Share work?

Cambridge Core Share allows authors, readers and institutional subscribers to generate a URL for an online version of a journal article. Anyone who clicks on this link will be able to view a read-only, up-to-date copy of the published journal article.

