
ar
X

iv
:2

10
6.

14
45

4v
1

 [
cs

.D
S]

 2
8

Ju
n

20
21

Fractionally Subadditive Maximization

under an Incremental Knapsack Constraint

Yann Disser1, Max Klimm2, and David Weckbecker1

1 TU Darmstadt, {disser|weckbecker}@mathematik.tu-darmstadt.de
2 TU Berlin, klimm@math.tu-berlin.de

Abstract. We consider the problem of maximizing a fractionally subadditive function under a knapsack
constraint that grows over time. An incremental solution to this problem is given by an order in which
to include the elements of the ground set, and the competitive ratio of an incremental solution is
defined by the worst ratio over all capacities relative to an optimum solution of the corresponding
capacity. We present an algorithm that finds an incremental solution of competitive ratio at most
max{3.293

√
M, 2M}, under the assumption that the values of singleton sets are in the range [1,M],

and we give a lower bound of max{2.449, M} on the attainable competitive ratio. In addition, we
establish that our framework captures potential-based flows between two vertices, and we give a tight
bound of 2 for the incremental maximization of classical flows with unit capacities.

1 Introduction

We consider an incremental knapsack problem of the form

max
S⊆E

f(S) s.t. w(S) ≤ C, (1)

with a monotone objective function f : 2E → R≥0 over a finite ground set E of size m := |E|, weights
w : E → R≥0 associated with the elements of the ground set, and a growing capacity bound C > 0.
We denote an optimum solution to (1) for a fixed capacity C by S∗

C and let f∗(C) be its value as a
function of C.

The growing capacity bound models the increase of available resources over time, e.g., the spend-
ing budget of consumers with a steady income, and corporations with a regular cashflow. In these
scenarios, it is natural to fix an order in which elements of the ground set should be purchased. As
an example, think of a consumer with a steady income of 1 per time unit. There are three items
E = {c, s, t}, a compact camera c at a price of w(c) = 1, a system camera s at a price of w(s) = 2,
and a telephoto lens t at a price of w(t) = 2. For a subset S ⊆ E, suppose that f(S) = 1, if S
contains the compact camera, but not the system camera, f(S) = 2 if it contains the system camera,
but not the telephoto lens, f(S) = 3 if it contains both the system camera and the telephoto lens,
and f(S) = 0, otherwise. If the buyer chooses to buy the compact camera first, they receive a utility
of 1 which is optimal for the budget of 1, i.e., f∗(1) = 1. However, if the buyer does delays their
purchase until they can afford the system camera, the value at time 1 is 0 but the value at time 2
is 2 which is optimal, i.e., f∗(2) = 2. As this simple example illustrates, there is a tradeoff between
the attained values at different times and, in particular, there is no purchase order that yields the
optimal value at all times.

In this paper, we address this tradeoff from a perspective of competitive analysis. An incremental
solution to our incremental knapsack problem is given by an ordering π = (eπ(1), eπ(2), . . . , eπ(m))
of the ground set. For capacity C > 0, let π(C) be the items contained in the maximal prefix
of π that fits into the capacity C, i.e., π(C) =

{

eπ(1), eπ(2), . . . , eπ(k)
}

for some k ∈ N such that
∑k

i=1w(eπ(i)) ≤ C and either k = m or
∑k+1

i=1 w(eπ(i)) > C. We say that the ordering π is ρ-
competitive with ρ ≥ 1 if

f∗(C) ≤ ρ · f(π(C)) for all C > 0.

http://arxiv.org/abs/2106.14454v1

We call an ordering competitive if it is ρ-competitive for some constant ρ ≥ 1. It is easy to see that
without any further assumptions, there is no hope to obtain a competitive ordering π. For illustration,
consider the example above where the value of the system camera is changed to M ∈ R≥0. Since any
competitive ordering is forced to buy the compact camera first in order to be competitive for C = 1,
no ordering can be better than M -competitive at time 2. To avoid this issue, we will assume in the
following that the value of each singleton set falls in a bounded interval [1,M] for some constant
M ≥ 1, i.e., f(e) ∈ [1,M] for all e ∈ E. We call such valuations M -bounded. Observe that even
for 1-bounded valuations, complementarities between the items may prevent a competitive ordering.
For illustration, adapt our example such that every non-empty subset of items yields a value of 1
unless it contains both the system camera and the telephoto lens for which the value is N > M .
Again, any competitive ordering has to put the compact camera first and then cannot be better than
N -competitive for budget C = 4. To avoid this issue, we additionally require that f is fractionally
subadditive. Fractional subadditivity is a generalization of submodularity and a standard assumption
in the combinatorial auction literature (cf. Nisan [24], Lehmann et al. [17]). Formally, a function
f : 2E → R≥0 is called fractionally subadditive if f(A) ≤ ∑k

i=1 αif(Bi) for all A,B1, B2, . . . , Bk ∈ 2E

and all α1, α2, . . . , αk ∈ R≥0 such that
∑

i∈{1,...,k}:e∈Bi
αi ≥ 1 for all e ∈ A. Observe that fractional

subadditivity implies regular subadditivity, i.e., f(A ∪B) ≤ f(A) + f(B), but not vice-versa.

To summarize, we consider incremental solutions to (1), assuming that

(MO) f is monotone, i.e., f(A) ≥ f(B) for A ⊇ B,

(MB) f is M -bounded, i.e., f(e) ∈ [1,M] for all e ∈ E,

(FS) f is fractionally subadditive.

Before stating our results, we illustrate the applicability of our framework to different settings.

Example 1. Every submodular objective is fractionally subadditive. This means that, for example,
our framework captures the maximum coverage problem, where we are given a weighted set of sets
E ⊆ 2U over a universe U . Every element of U has a value v : U → R≥0 associated with it, and
f(S) = v

(
⋃

X∈S X
)

for all S ⊆ E where we write v(X) :=
∑

x∈X v(x) for a set X ∈ 2U . In this
context, the M -boundedness condition demands that v(X) ∈ [1,M] for all X ∈ E. Further examples
include maximization versions of clustering and location problems.

Example 2. An objective function f : E → R is called XOS if it can be written as the pointwise
maximum of linear functions, i.e., there are k ∈ N and values ve,i ∈ R for all e ∈ E and i ∈ {1, . . . , k}
such that f(S) = max{1,...,k}

∑

e∈S ve,i for all S ⊆ E. The set of factionally subadditive functions
and the set of XOS functions coincide (Feige [7]). XOS functions are a popular way to encode the
valuations of buyers in combinatorial auctions since they often give rise to a succinct representation
(cf. Nisan [24] and Lehman et al. [17]).

Example 3. The weighted rank function of an independence system is fractionally subadditive (Ama-
natidis et al. [1]). An independence system is a tuple (E,I), where I ⊆2E is closed under taking
subsets and ∅ ∈ I . For a given weight function w′ : E → R≥0, the weighted rank function of (E,I)
is given by f(S) = max{∑e∈I w

′(e)|I ∈ I ∩ 2S}. This setting captures well-known problems such as
weighted d-dimensional matching for any d ∈ N, weighted set packing, weighted maximum indepen-
dent set, and knapsack (i.e., a secondary knapsack problem on the same set ground set).

Example 4. It turns out that a potential-based flow between two vertices s and t along a set E of
parallel edges gives rise to a fractionally subadditive flow function (Proposition 2). A potential-based
flow is given by a classical flow f : E → R≥0 together with vertex potentials ps and pt, coupled via
ps − pt = βeψ(f(e)) for all e ∈ E. Here, βe ∈ R are parameters and ψ is a continuous, strictly

increasing, and odd potential loss function. Different choices of ψ allow to model gas flows, water
flows, and electrical flows, see Groß et al. [9]. In our incremental framework, w : E → R≥0 are
interpreted as construction costs of pipes or cables and the objective is to maximize the flow from
s to t in terms of the objective

f(S ⊆ E) = max
S′⊆S

max
p∈R≥0

∑

e∈S′

ψ−1(p/βe) s.t. ψ−1(p/βe) ≤ µe for all e ∈ S′, (2)

where p := ps − pt and µe are edge capacities. Note that we need to allow turning off edges (by
considering S′ ⊆ S) in order to make f monotone. The M -boundedness condition corresponds to
the assumption that µe ∈ [1,M] and a ρ-competitive ordering determines a construction order of
pipes or cables such that the flow that can be sent through the network is at least a 1/ρ-fraction of
the optimum at all times.

Our results Our main results are bounds on the best possible competitive ratio for incremental
solutions to (1) for objectives satisfying (MO), (MB), and (FS). In other words, we bound the
loss in solution quality that we have to accept when asking for incremental solutions that optimize
for all capacities simultaneously. Note that, as customary in online optimization, we do not impose
restrictions on the computational complexity of finding incremental solutions. We show the following.

Theorem 1. For monotone, M -bounded, and fractionally subadditive objectives, the best possi-
ble ρ for which the knapsack problem (1) admits a ρ-competitive incremental solution satisfies
ρ ∈ [max{2.449,M},max{3.293

√
M, 2M}].

In particular, for M ≥ 2.71, the best possible competitive ratio is between M and 2M , while the
bounds for 1-bounded objectives simplify as follows.

Corollary 1. For monotone, 1-bounded, and fractionally subadditive objectives, the best ρ for which
the knapsack problem (1) admits a ρ-competitive incremental solution satisfies ρ ∈ [2.449, 3.293].

Most interestingly, our upper bound uses a simultaneous capacity- and value-scaling approach.
In each phase, we increase our capacity and value thresholds and pick the smallest capacity for which
the optimum solution exceeds our thresholds. This solution is then assembled by adding one element
at a time in a specific order. The order is chosen based on a primal-dual LP formulation that relies
on fractional subadditivity.

In Section 2, we describe our algorithmic approach in detail and give a proof of the upper bound.
In Section 3, we complement our result with two lower bounds. As an additional motivation, in
Section 4, we show that our framework captures potential-based flows as described in Example 4.
In this context, a 1-bounded objective corresponds to unit capacities. As a contrast, we also show
that classical s-t-flows with unit capacities admit 2-competitive incremental solutions, and this is
best-possible.

Related Work Bernstein et al. [3] considered a closely related framework for incremental maxi-
mization. Their framework assumes a growing cardinality constraint, which is a special case of our
problem in (1) when all elements e ∈ E have unit weight w(e) = 1. A natural incremental approach
for a growing cardinality constraint is the greedy algorithm that includes in each step the element
that increases the objective the most. This algorithm is well known to yield a e/(e−1) approximation
for submodular objectives [23]. Several generalizations of this result to broader classes of functions
are known. Recently, Disser and Weckbecker [5] unified these results by giving a tight bound for the

approximation ratio of the greedy algorithm for γ-α-augmentable functions, which interpolates be-
tween known results for weighted rank functions of independence systems of bounded rank quotient,
functions of bounded submodularity ratio, and α-augmentable functions. Sviridenko [26] showed
that for a submodular function under a knapsack constraint, the greedy algorithm yields a (1−1/e)-
approximation when combined with a partial enumeration procedure. This approximation guarantee
is best possible as shown by Feige [6]. Yoshida [28] generalized the result of Sviridenko to submodular
functions of bounded curvature.

Another closely related setting is the robust maximization of a linear function under a knapsack
constraint. Here, the capacity of the knapsack is revealed in an online fashion while packing, and we
ask for a packing order that guarantees a good solution for every capacity. Megow and Mestre [21]
considered this setting under the assumption that we have to stop packing once an item exceeds
the knapsack capacity and showed that no bounded competitive ratio is possible. Navarra and
Pinotti [22] added the mild assumption that all items fit in the knapsack and devised competitive
solutions for this model. Disser et al. [4] allowed to discard items that do not fit and showed tight
competitive ratios for this case. Kawase et al. [15] studied a generalization of this model in which the
objective is submodular and devised a randomised competitive algorithm for this case. Since these
models allow to discard items, these competitive rations do not translate to our model. Kobayashi
and Takazawa [16] studied randomized strategies for cardinality robustness in the knapsack problem.
Other online versions of the knapsack problem assume that items are revealed over time, e.g., see
Matchetti-Spaccamela and Vercellis [19]. Thielen et al. [27] combined both settings and assumed
that items appear over time while the capacity grows.

In terms of incremental minimization, Lin et al. [18] introduced a general framework, based on a
problem-specific augmentation routine, that subsumes several earlier results. A minimization prob-
lem with growing cardinality constraint that received particular attention is the so-called robust
matching problem introduced by Hassin and Rubinstein [11]. Here, we ask for a weighted match-
ing such that the heaviest k edges of the matching approximate a maximum weight matching of
cardinality k, for all cardinalities k. Hassin and Rubinstein [11] gave tight bounds on the determin-
istic competitive ratio of this problem, and Matuschke et al. [20] gave bounds on the randomized
competitive ratio. Fujita et al. [8] and Kakimura et al. [12] considered extensions of this problem to
independence systems. A similar variant of the knapsack problem where the k most valuable items
are compared to an optimum solution of cardinality k was studied by Kakimura et al. [13].

Incremental optimization has also been considered from an offline perspective, i.e., without un-
certainty in items or capacities. Kalinowski et al. [14] and Hartline and Sharp [10] considered incre-
mental flow problems where the average flow over time needs to be maximized (in contrast to the
worst flow over time). Anari et al. [2] and Orlin et al. [25] considered general robust submodular
maximization problems.

The class of fractionally additive valuations was introduced by Nisan [24] and Lehman et al.
[17] under the name of XOS-valuations as a compact way to represent the utilities of bidders in
combinatorial auctions. In a combinatorial auction, a set of elements E is auctioned off to a set
of n bidders who each have a private utility function fi : 2

E → R≥0. In this context, a natural
question is to maximize social welfare, i.e., to partition E into sets E1, E2, . . . , En with the objective
to maximize

∑n
i=1 fi(Ei). Feige [7] gave a (1− 1/e)-approximation for this problem.

2 Upper bound

In the following, we fix a ground set E, a monotone, M -bounded and fractionally subadditive ob-
jective f : 2E → R≥0, and weights w : E → R≥0. We present a refined variant of the incremental
algorithm introduced in [3]. On a high level, the idea is to consider optimum solutions of increasing

sizes, and to add all elements in these optimum solutions one solution at a time. By carefully choos-
ing the order in which we add elements of a single solution, we ensure that elements contributing the
most to the objective are added first. In this way, we can guarantee that either the solution we have
assembled most recently, or the solution we are currently assembling provides sufficient value to stay
competitive. While the algorithm of [3] only scales the capacity, we simultaneously scale capacities
and solution values. In addition, we use a more sophisticated order in which we assemble solutions,
based on a primal-dual LP formulation. We now describe our approach in detail.

Let λ ≈ 3.2924 be the unique real root of the equation 0 = λ7 − 2λ6 − 3λ5 − 3λ4 − 3λ3 − 2λ2 −
λ− 1, δ := λ3

λ2+1
≈ 3.0143 and ρ := max{λ

√
M, 2M}. Our algorithm Algscale operates in phases of

increasing capacities C1, . . . , CN ∈ R≥0 with C1 := mine∈E w(e), Ci = min{C ≥ δCi−1 | f(S∗
C) ≥

ρf(S∗
Ci−1

)} for i ∈ {2, . . . , N − 1}, and CN :=
∑

e∈E w(e) ∈ (CN−1, δCN−1], where N ∈ N is chosen
accordingly. In phase i ∈ {1, . . . , N}, Algscale adds the elements of the set S∗

Ci
one at a time. We

may assume that previously added elements are added again (without any benefit), since this only
hurts the algorithm.

To specify the order in which the elements of S∗
Ci

are added, consider the following linear program
(LPX) parameterized by X ⊆ E (cf. [7]):

min
∑

B⊆E

αBf(B)

s.t.
∑

B⊆E:e∈B
αB ≥ 1, ∀e ∈ X,

αB ≥ 0, ∀B ⊆ E,

and its dual

max
∑

e∈X
γe

s.t.
∑

e∈B
γe ≤ f(B), ∀B ⊆ E,

γe ≥ 0, ∀e ∈ E.

Fractional subadditivity of f translates to f(X) ≤ ∑

B⊆E αBf(B) for all α ∈ R
2E feasible for

(LPX). The solution α∗ ∈ R
2E with α∗

X = 1 and α∗
B = 0 for X 6= B ⊆ E is feasible and satisfies

f(X) =
∑

B⊆E α
∗
Bf(B). Together this implies that α∗ is an optimum solution to (LPX). By strong

duality, there exists an optimum dual solution γ∗(X) ∈ R
E with

f(X) =
∑

e∈X
γ∗e (X). (3)

In phase 1, the algorithm Algscale adds the unique element in S∗
C1

. In phase 2, Algscale adds
an element of largest weight in S∗

C2
first and the other elements in an arbitrary order. And in phase

i ∈ {3, 4, ..., N}, Algscale adds the elements of S∗
Ci

in an order (e1, ..., e|S∗
Ci

|) such that, for all

j ∈ {1, ..., |S∗
Ci
| − 1},

γ∗ej(S
∗
Ci
)

w(ej)
≥
γ∗ej+1

(S∗
Ci
)

w(ej+1)
. (4)

For C ∈ [0, Ci] and with j := max{j ∈ {1, ..., |S∗
Ci
|} | w({e1, ..., ej}) ≤ C}, we let S∗

Ci,C
:= {e1, ..., ej}

denote the prefix of S∗
Ci

of capacity C. Furthermore, by πA, we refer to the the permutation of E
that represents the order in which the algorithm Algscale adds the elements of E.

We first show that the dual variables γ∗e (X) associate a contribution to the overall objective to
each element x ∈ X, and that this association is consistent under taking subsets of X.

Lemma 1. Let X ⊆ Y ⊆ E. Then,

f(X) ≥
∑

e∈X
γ∗e (Y).

Proof. Since γ∗(Y) is a feasible solution for the dual of (LPX), it is also a feasible solution for the
dual of (LPY). Thus, since γ∗(X) is an optimum solution of (LPX),

∑

e∈X
γ∗e (Y) ≤

∑

e∈X
γ∗e (X)

(3)
= f(X).

The following lemma establishes that the order in which we add the elements of each optimum
solution are decreasing in density, in an approximate sense.

Lemma 2. Let C,C ′ ∈ R≥0 with C ≤ C ′ ≤ w(E). Then

f∗(C ′) ≤ C ′

C
(f(S∗

C′,C) +M).

Proof. If S∗
C′ = S∗

C′,C , the statement holds trivially. Suppose |S∗
C′ | > |S∗

C′,C |. Let j := |S∗
C′,C |, and

let S∗
C′ = {e1, ..., e|S∗

C′ |} such that (4) holds. Note that, by definition, S∗
C′,C = {e1, ..., ej} and

w({e1, ..., ej}) ≤ C < w({{e1, ..., ej+1}). (5)

We have

f∗(C ′)
(3)
=

|S∗
C′ |

∑

i=1

w(ei)
γ∗ei(S

∗
C′)

w(ei)

(4)

≤
(

j+1
∑

i=1

γ∗ei(S
∗
C′)

)

+

∑j+1
i=1 w(ei)

w({e1, ..., ej+1})

|S∗
C′ |

∑

i=j+2

w(ei)
γ∗ej+1

(S∗
C′)

w(ej+1)

(4)

≤
(

j+1
∑

i=1

γ∗ei(S
∗
C′)

)

+

(

∑j+1
i=1 γ

∗
ei
(S∗

C′)
)

w({e1, ..., ej+1})

|S∗
C′ |

∑

i=j+2

w(ei)

(5)
<

(

j+1
∑

i=1

γ∗ei(S
∗
C′)

)

+

(

∑j+1
i=1 γ

∗
ei
(S∗

C′)
)

C
(C ′ − C)

=
C ′

C

((

j
∑

i=1

γ∗ei(S
∗
C′)

)

+ γ∗ej+1
(S∗

C′)
)

Lemma 1
≤ C ′

C
(f({e1, ..., ej}) + f({ej+1}))

≤ C ′

C
(f(S∗

C′,C) +M).

Since every set S ⊆ E with w(S) ≤ C satisfies f(S) ≤ f∗(C), and since we have w(S∗
C′,C) ≤ C,

we immediately obtain the following.

Corollary 2. Let C,C ′ ∈ R≥0 with C ≤ C ′ ≤ w(E). Then

f∗(C ′) ≤ C ′

C
(f∗(C) +M).

With this, we are now ready to show the upper bound of our main result.

Theorem 2. The incremental solution computed by Algscale is ρ-competitive for ρ = max{λ
√
M, 2M} ≈

max{3.2924
√
M, 2M}.

Proof. We have to show that, for all sizes C ∈ R≥0, we have f∗(C) ≤ ρf(πA(C)). We will do this
by analyzing the different phases of the algorithm. Observe that, for all i ∈ {2, ..., N − 1}, we have

f∗(Ci)
Def. of Algscale≥ ρf∗(Ci−1)

≥ ρi−1f∗(C1)

(MB)

≥ ρi−1

Def. of ρ
≥ (λ

√
M)i−1. (6)

In phase 1, we have C ∈ (0, C1]. Since C1 is the minimum weight of all elements and we start by
adding S∗

C1
, πA(C) is optimal.

Consider phase 2, and suppose C ∈ (C1, C2). If C2 > δC1 holds, then C2 is the smallest value
such that f∗(C2) ≥ ρf∗(C1), i.e., by monotonicity of f , we have f(πA(C)) ≥ f(πA(C1)) = f∗(C1) >
1
ρ
f∗(C). Now assume C2 = δC1. If C ∈ (C1, 3C1), i.e., any solution of size C cannot contain more

than two elements, or if C ∈ (C1, C2) and S∗
C2

contains at most 2 elements, by fractional subadditivity

and M -boundedness of f , we have f∗(C) ≤ |S∗
C2
|M ≤ 2M and thus, by (6), f(πA(C)) ≥ f∗(C1) ≥

1 ≥ 1
2M f∗(C) ≥ 1

ρ
f∗(C). Now suppose C ∈ [3C1, C2 = δC1) and that S∗

C2
contains at least 3

elements. The prefix πA(C1+C2) contains all elements from S∗
C1

∪S∗
C2

, the prefix πA(C2) = πA(C1+

C2 − C1) contains at least all but one element of S∗
C2

, and the prefix πA(C2 − C1) contains at
least all but 2 elements from S∗

C2
because C1 is the weight of any element is at least C1. Since

C ≥ 3C1 > (δ − 1)C1 = C2 − C1, π
A(C) contains at least all but 2 elements from S∗

C2
. Recall that

in phase 2 the algorithm adds the element with the highest objective value first. Therefore, and
because |S∗

C2
| ≥ 3, we have f(πA(C)) ≥ 1

3f(S
∗
C2
) ≥ 1

ρ
f∗(C).

Consider phase 2 and suppose C ∈ [C2, C1 + C2]. We have

f∗(C1 + C2) ≤ f∗(C2) +M (7)

because f is subadditive and because C1 is the minimum weight of all elements. Furthermore, we
have

f(πA(C2)) ≥ f∗(C2)−M ≥ ρ−M ≥M (8)

where the first inequality follows from subadditivity of f and the fact that the prefix πA(C2) contains
at least all but one element from S∗

C2
. Combining (7) and (8), we obtain f(πA(C2)) ≥ f∗(C1+C2)−

2M ≥ f∗(C1 + C2) − 2f(πA(C2)), i.e., by monotonicity, f∗(C) ≤ f∗(C1 + C2) ≤ 3f(πA(C2)) ≤
ρf(πA(C2)) ≤ ρf(πA(C)).

Now consider phase i ∈ {3, ..., N} and C ∈
(
∑i−1

j=1Cj ,
∑i

j=1Cj]. Note that, for j ∈ {1, ..., i},
Ci ≥ δi−jCj and hence

i−1
∑

j=1

Cj

Ci
≤

i−1
∑

j=1

1

δi−j
<

∞
∑

j=1

1

δi
=

1

δ − 1
< 1,

i.e., we have
∑i−1

j=1Cj ≤ Ci ≤
∑i

j=1Cj. If i = N and
∑i−1

j=1Cj ≥ Ci, we have nothing left to show.

Thus, suppose that
∑N−1

j=1 Cj ≤ CN .

Suppose C ∈
(
∑i−1

j=1Cj, Ci

)

. If Ci > δCi−1 holds, then Ci is the smallest integer such that

f∗(Ci) ≥ ρf∗(Ci−1), i.e., we have f(πA(C))
(MO)

≥ f(πA(Ci−1)) ≥ f∗(Ci−1) >
1
ρ
f∗(C). For the case

that Ci = δCi−1, we distinguish between two different cases:

Case 1 (i = 3): Let c :=
(

1
λ
√
M

+ 1
λ2

)

δC2. Note that
(

1
λ
+ 1

λ2

)

δ = λ2

λ+1 − 1− 1
δ

by definition of λ

and δ and thus

c ≤
(1

λ
+

1

λ2
)

δC2

=
(λ2

λ+ 1
− 1− 1

δ

)

C2

≤ λ2

λ√
M

+ 1
C2 −C2 − C1

=
λ2M

λ
√
M +M

C2 −C2 − C1. (9)

We will show that πA(C1 + C2) is competitive up to size C1 + C2 + c, and that πA(C1 + C2 + c) is
competitive up to size C3. We have

f∗(C1 + C2 + c)
Corollary 2

≤ C1 + C2 + c

C2
(f∗(C2) +M)

(9)

≤
C1 + C2 +

(

λ2M

λ
√
M+M

C2 −C2 − C1

)

C2
(f∗(C2) +M)

=
λ2M

λ
√
M +M

(

1 +
M

f∗(C2)

)

f∗(C2)

(6)

≤ λ2M

λ
√
M +M

(

1 +
M

λ
√
M

)

f∗(C2)

= λ
√
M

λ
√
M

λ
√
M +M

(λ
√
M +M

λ
√
M

)

f∗(C2)

≤ ρf∗(C2)

≤ ρf(πA(C1 + C2)),

where the last inequality follows from the fact that the algorithm starts by packing S∗
C1

and S∗
C2

before any other elements and needs capacity C1+C2 to assemble both sets, i.e., S∗
C2

⊆ πA(C1+C2).

Since Algscale adds the elements from S∗
C3

after those from S∗
C1

and S∗
C2

, we have S∗
C3,c

⊆
πA(C1 + C2 + c), and thus

f(πA(C1 + C2 + c))
(MO)

≥ f(S∗
C3,c

)

Lemma 2
≥ c

C3
f∗(C3)−M

C3=δC2=
((1

λ
√
M

+
1

λ2

)

− M

f∗(C3)

)

f∗(C3)

(6)

≥
(1

λ
√
M

+
1

λ2
− M

λ2M

)

f∗(C3)

=
1

λ
√
M
f∗(C3)

≥ 1

ρ
f∗(C3).

This, together with monotonicity of f , implies f∗(C) ≤ ρf(πA(C)) for all C ∈ (C1 + C2, C3].

Case 2 (i ≥ 4): Recall that C ∈
(
∑i−1

j=1Cj , Ci

)

. We have

f∗(C)
(MO)

≤ f∗(Ci)

Corollary 2
≤ Ci

Ci−1
(f∗(Ci−1) +M)

Ci=δCi−1
= δ

(

1 +
M

f∗(Ci−1)

)

f∗(Ci−1)

(6)

≤ δ
(

1 +
M

λ2M

)

f∗(Ci−1)

=
λ3

λ2 + 1

(

1 +
1

λ2

)

f∗(Ci−1)

= λf∗(Ci−1)

≤ ρf(πA(C)).

Thus, also in this case, we found f∗(C) ≤ ρf(πA(C)) for all C ∈
(
∑i−1

j=1Cj , Ci

)

.

Now, consider C ∈
[

Ci,
∑i

j=1Cj

]

. Up to this budget, the algorithm had a capacity of C −
∑i−1

j=1Cj > C − Ci ≥ 0 to pack elements from S∗
Ci

, i.e., S∗
Ci,C−∑i−1

j=1
Cj

⊆ πA(C). This yields

f(πA(C))
(MO)

≥ f(S∗
Ci,C−

∑i−1

j=1
Cj
)

Lemma 2
≥

C −∑i−1
j=1Cj

Ci
f∗(Ci)−M

Corollary 2
≥

C −∑i−1
j=1Cj

Ci

(Ci

C
f∗(C)−M

)

−M

=
(C −∑i−1

j=1Cj

C
−
C −∑i−1

j=1Cj

Ci
· M

f∗(C)
− M

f∗(C)

)

f∗(C)

Ci≤C≤∑i
j=1

Ci

≥
(

1−
i−1
∑

j=1

Cj

Ci
− 1 · M

f∗(C)
− M

f∗(C)

)

f∗(C)

(6),Cj+1≥δCj

≥
(

1−
i−1
∑

j=1

1

δi−j
− 2M

ρi−1

)

f∗(C)

≥
(

1−
∞
∑

j=1

1

δj
− 2M

ρi−1

)

f∗(C)

=
(

1−
(1

1− δ−1
− 1

)

− 2M

λ2M

)

f∗(C)

≥ 0.319 · f∗(C)

≥ 1

ρ
f∗(C).

For 1-bounded objectives, Theorem (2) immediately yields the following.

Corollary 3. If M = 1, the incremental solution computed by Algscale is 3.2924-competitive.

3 Lower bound

In this section, we show the second part of Theorem 1, i.e., we give a lower bound on the compet-
itive ratio for the incremental knapsack problem (1) with monotone, M -bounded, and fractionally
subadditive objectives, and we show a lower bound for the special case with M = 1.

Proposition 1. For monotone, M -bounded, and fractionally subadditive objectives, the knapsack
problem (1) does not admit a ρ-competitive incremental solution for ρ < M .

Proof. Consider the set E = {e1, e2} with weights w(ei) = i for i ∈ {1, 2} and the values v(e1) = 1
and v(e2) = M . We define the objective f(X ⊆ E) :=

∑

e∈X v(e). It is easy to see that f is
monotone, M -bounded and modular and thus fractionally subadditive.

Consider some competitive algorithm with competitive ratio ρ ≥ 0 for the knapsack problem (1).
In order to be competitive for capacity 1, the algorithm has to add element e1 first. Thus, the solution
of the algorithm of size 2 cannot contain element e2, i.e., the value of the solution of capacity 2 given
by the algorithm has value 1. The optimal solution of capacity 2 has value M , and thus ρ ≥M .

For M ∈ [1,
√
6), we obtain a stronger lower bound.

Theorem 3. For monotone, 1-bounded, and fractionally subadditive objectives, the knapsack prob-
lem (1) does not admit a ρ-competitive incremental solution for ρ <

√
6.

Proof. Consider the set E = E1 ∪ E2 ∪ E3 = {e1} ∪ {e2, e3, e4} ∪ {e5, ..., e10} the weights

w(e) =

101, for e ∈ E1,

102, for e ∈ E2,

103, else,

and the objective f : E → R≥0 with

f(X ⊆ E) = max{|X ∩E1|,
√
6

3
|X ∩ E2|, |X ∩E3|, |X ∩ {e2}|, |X ∩ {e3}|, |X ∩ {e4}|}.

It is easy to see that f(e) = 1 for all e ∈ E and that f is monotone. Furthermore, f is fractionally
subadditive because it is an XOS-valuation since all terms in the maximum of the definition of f
are modular set functions on E.

Suppose there was an algorithm Alg with competitive ratio ρ <
√
6. Let π : {1, ..., 10} →

{1, ..., 10} be a permutation that represents the order in which Alg adds the elements of E. To be
competitive for capacity C = 101, we must have π(1) = 1. For capacity C = 306, the optimum
solution E2 has value

√
6. To be competitive for this capacity, Alg has to achieve an objective value

of
√
6
ρ
> 1. This is not possible by adding one element of E2 and one of E3. Furthermore, adding two

elements of E3 is not possible with a capacity of C, since the elements in E3 have weight 103, i.e., we
must have {π(2), π(3)} ⊂ {2, 3, 4}. Without loss of generality, we can assume (π(2), π(3)) = (2, 3).
We distinguish between two different cases:

Case 1: π(4) = 4. We consider the capacity C = 6 · 103 = 618. The solution of capacity at
most C given by Alg can contain at most two elements of E3. Thus, the value of the solution of
Alg of capacity C = 618 is

√
6 which is not ρ-competitive since the optimum solution E3 of capacity

C = 618 has value 6 and ρ
√
6 < 6.

Case 2: π(4) ∈ {5, ..., 10}. We consider the capacity C = 5 · 103 = 515. The solution of capacity
at most C given by Alg can contain at most two elements of E3. Thus, the value of the solution of
Alg of capacity C = 515 is 2, which is not ρ-competitive since the optimum solution E3 of capacity
k = 515 has value 5, and we have 2ρ < 5.

This is a contradiction to the fact that Alg has competitive ratio ρ <
√
6.

4 Application to flows

In this section we show that our algorithm Algscale can be used to solve problems as given in Example
4, where we are given a graph G = (V,E) consisting of two nodes s and t with a collection of edges
between them, and want to dertermine an order in which to build the edges while maintaining a
potential-based flow between s and t that is as large as possible. As mentioned in Example 4, the
corresponding objective (2) is monotone and M -bounded for µe ∈ [1,M]. Now we show fractional
subadditivity.

Proposition 2. The function

f(S ⊆ E) = max
S′⊆S

max
p∈R≥0

∑

e∈S′

ψ−1(p/βe) s.t. ψ−1(p/βe) ≤ µe for all e ∈ S′

is fractionally subadditive.

Proof. For i ∈ {1, ..., |E|}, let

pi := βeψ(µe)

be the maximum potential difference between s and t such that the flow along pi is still feasible.
For i ∈ {1, ..., k} and e ∈ E, we define xe(pi) to be the flow value along e induced by a potential
difference of pi between s and t if this flow is feasible and 0 otherwise. For S ⊆ E, we have

f(S) = max
S′⊆S

max
p∈R≥0

∑

e∈S′

ψ−1(p/βe) s.t. ψ−1(p/βe) ≤ µe for all e ∈ S′

= max
i∈{1,...,|E|}

∑

e∈S
xe(pi),

i.e., f is an XOS-function and thus fractionally subadditive (see Example (2)).

We now turn to an incremental variant of classical s-t-flows. In the problem Incremental

Maximum s-t-Flow we are given a graph G = (V,E) and consider the objective

f(X ⊆ E) = max{F | there exists an s-t-flow of value F in (V,X)}.

We restrict ourselves to the case where all edges have unit weight and unit capacity.

To solve this problem, we describe the algorithm Quickest-Increment from [14]: The al-
gorithm starts by adding the shortest path and then iteratively adds the smallest set of edges
that increase the maximum flow value by at least 1. Let r ∈ N be the number of iterations until
Quickest-Increment terminates. For i ∈ {0, 1, ..., r}, let λi be the size of the set added in itera-
tion i, i.e., λ0 is the length of the shortest s-t-path, λ1 the size of the set added in iteration 1, and
so on. For k ∈ {1, ..., |E|}, we denote the solution of size k of the algorithm by SA

k .

With Xmax ∈ R≥0 defined as the maximal possible s-t-flow value in the underlying graph, for
j ∈ {1, ..., ⌊Xmax⌋}, we denote by cj the minimum number of edges required to achieve a flow value
of at least j.

In [14] the authors relate the values λi and cj in the following way.

Lemma 3. In the unit capacity case, we have λi ≤ cj/(j − i) for all i, j ∈ N with 0 ≤ i < j ≤ r.

Using this estimate, we can find a bound on the competitive ratio of Quickest-Increment.

Theorem 4. The algorithm Quickest-Increment has a competitive ratio of at most 2 for the
problem Incremental Maximum s-t-Flow with unit capacities.

Proof. Note that, since we consider the unit capacity case, we have Xmax − 1 = r ∈ N because
Quickest-Increment increases the value of the solution by exactly 1 in each iteration.

Consider some size k ∈ {1, ..., |E|}. If k < c1, we have f(S∗
k) = 0, i.e., every solution is competi-

tive. If k ≥ c1, let j := f(S∗
k). Note that f(S∗

cj
) = j = f(S∗

k) and therefore k ≥ cj . By Lemma 3, we

have

⌈

j
2

⌉

−1
∑

i=0

λi ≤

⌈

j
2

⌉

−1
∑

i=0

cj
j − i

= cj

⌈

j

2

⌉

−1
∑

i=0

1

j − i

≤ cj

⌈

j

2

⌉

−1
∑

i=0

1

j −
⌈

j
2

⌉

+ 1

= cj
⌈j

2

⌉ 1
⌊

j
2

⌋

+ 1

≤ cj . (10)

This implies f(SA
k) ≥ f(SA

cj
)

(10)

≥
⌈

j
2

⌉

≥ 1
2j =

1
2f(S

∗
k).

As it turns out, there exists no algorithm with a better competitive ratio than Quickest-Increment.

Theorem 5. There is no algorithm with a competitive ratio of less than 2 for the problem Incremental

Maximum s-t-Flow with unit capacities.

Proof. Consider the graph G = (V,E) with

V := {s, t, u1, u2, u3, v1, v2, v3},
E := {(s, u1), (s, v1), (u1, u2), (v1, v2), (u3, t), (v3, t), (u1, v3)},

with unit capacities (cf. Figure 1).

We consider the problem Incremental Maximum s-t-Flow and an algorithm Alg which finds
an approximation for this problem. In order to be competitive for size k = 3, Alg has to add the
blocking path s, u1, v3, t first. But this implies that the solution of size k = 8 does not contain
both paths, s, u1, u2, u3, t and s, v1, v2, v3, t, i.e., the optimal solution of size k = 8 has flow value 2
while the solution of Alg has flow value 1. Thus, the competitive ratio of Alg cannot be smaller
than 2.

s

v1 v2 v3

u1 u2 u3

t

Fig. 1. A lower bound instance with best possible competitive ratio 2 for the problem Incremental Maximum

s-t-Flow

References

1. Georgios Amanatidis, Georgios Birmpas, and Evangelos Markakis. Coverage, matching, and beyond: New results
on budgeted mechanism design. In Proceedings of the 12 International Conference on Web and Internet Economics
(WINE), pages 414–428, 2016.

2. Nima Anari, Nika Haghtalab, Seffi Naor, Sebastian Pokutta, Mohit Singh, and Alfredo Torrico. Structured robust
submodular maximization: Offline and online algorithms. In Proceedings of the 22nd International Conference on
Artificial Intelligence and Statistics (AISTATS), volume 89, pages 3128–3137, 2019.

3. Aaron Bernstein, Yann Disser, Martin Groß, and Sandra Himburg. General bounds for incremental maximization.
Math. Program., 2020.

4. Yann Disser, Max Klimm, Nicole Megow, and Sebastian Stiller. Packing a knapsack of unknown capacity. SIAM
J. Discret. Math., 31(3):1477–1497, 2017.

5. Yann Disser and David Weckbecker. Unified greedy approximability beyond submodular maximization.
arXiv:2011.00962, 2020.

6. Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
7. Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM J. Comput., 39(1):122–142,

2009.
8. Ryo Fujita, Yusuke Kobayashi, and Kazuhisa Makino. Robust matchings and matroid intersections. SIAM J.

Discret. Math., 27(3):1234–1256, 2013.
9. Martin Groß, Marc E. Pfetsch, Lars Schewe, Martin Schmidt, and Martin Skutella. Algorithmic results for

potential-based flows: Easy and hard cases. Networks, 73(3):306–324, 2019.
10. Jeff Hartline and Alexa Sharp. Incremental flow. Networks, 50(1):77–85, 2007.
11. Refael Hassin and Shlomi Rubinstein. Robust matchings. SIAM J. Discret. Math., 15(4):530–537, 2002.
12. Naonori Kakimura and Kazuhisa Makino. Robust independence systems. SIAM J. Discret. Math., 27(3):1257–

1273, 2013.
13. Naonori Kakimura, Kazuhisa Makino, and Kento Seimi. Computing knapsack solutions with cardinality robust-

ness. Jpn. J. Ind. Appl. Math., 29(3):469–483, 2012.
14. Thomas Kalinowski, Dmytro Matsypura, and Martin W.P. Savelsbergh. Incremental network design with maxi-

mum flows. Eur. J. Oper. Res., 242(1):51–62, 2015.
15. Yasushi Kawase, Hanna Sumita, and Takuro Fukunaga. Submodular maximization with uncertain knapsack

capacity. SIAM J. Discret. Math., 33(3):1121–1145, 2019.
16. Yusuke Kobayashi and Kenjiro Takazawa. Randomized strategies for cardinality robustness in the knapsack

problem. Theor. Comput. Sci., 699:53–62, 2017.
17. Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing marginal utilities.

Games Econ. Behav., 55(2):270–296, 2006.
18. Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajaraman, and David P. Williamson. A general approach

for incremental approximation and hierarchical clustering. SIAM J. Comput., 39(8):3633–3669, 2010.
19. Alberto Marchetti-Spaccamela and Carlo Vercellis. Stochastic on-line knapsack problems. Math. Program., 68:73–

104, 1995.
20. Jannik Matuschke, Martin Skutella, and José A. Soto. Robust randomized matchings. Math. Oper. Res.,

43(2):675–692, 2018.
21. Nicole Megow and Julián Mestre. Instance-sensitive robustness guarantees for sequencing with unknown packing

and covering constraints. In Proceedings of the 4th Conference on Innovations in Theoretical Computer Science
(ITCS), pages 495–504, 2013.

22. Alfredo Navarra and Cristina M. Pinotti. Online knapsack of unknown capacity: How to optimize energy con-
sumption in smartphones. Theor. Comput. Sci., 697:98–109, 2017.

23. George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approximations for maximizing
submodular set functions - I. Math. Program., 14:265–294, 1978.

24. Noam Nisan. Bidding and allocation in combinatorial auctions. In Proceedings of the 2nd ACM Conference on
Electronic Commerce (EC), pages 1–12, 2000.

25. James B. Orlin, Andreas S. Schulz, and Rajan Udwani. Robust monotone submodular function maximization.
Math. Program., 172(1-2):505–537, 2018.

26. Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack constraint. Oper.
Res. Lett., 32:41–43, 2004.

27. Clemens Thielen, Morten Tiedemann, and Stephan Westphal. The online knapsack problem with incremental
capacity. Math. Methods Oper. Res., 83(2):207–242, 2016.

28. Yuichi Yoshida. Maximizing a monotone submodular function with a bounded curvature under a knapsack
constraint. SIAM J. Discret. Math., 33(3):1452–1471, 2019.

	Fractionally Subadditive Maximization under an Incremental Knapsack Constraint

