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We consider the online traveling salesperson problem (TSP), where requests appear online over time on the

real line and need to be visited by a server initially located at the origin. We distinguish between closed and

open online TSP, depending on whether the server eventually needs to return to the origin or not. While

online TSP on the line is a very natural online problem that was introduced more than two decades ago,

no tight competitive analysis was known to date. We settle this problem by providing tight bounds on the

competitive ratios for both the closed and the open variant of the problem. In particular, for closed online TSP,

we provide a 1.64-competitive algorithm, thus matching a known lower bound. For open online TSP, we give

a new upper bound as well as a matching lower bound that establish the remarkable competitive ratio of 2.04.

Additionally, we consider the online Dial-A-Ride problem on the line, where each request needs to be

transported to a specified destination. We provide an improved non-preemptive lower bound of 1.75 for this

setting, as well as an improved preemptive algorithm with competitive ratio 2.41.

Finally, we generalize known and give new complexity results for the underlying offline problems. In par-

ticular, we give an algorithm with running time O (n2) for closed offline TSP on the line with release dates and

show that both variants of offline Dial-A-Ride on the line are NP-hard for any capacity c ≥ 2 of the server.
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1 INTRODUCTION

In the online Traveling Salesperson Problem (TSP) on the line, we consider a server initially located
at the origin of the real line that has to serve requests that appear over time. The server has unit
speed and serves requests (in any order) by moving to the position of the corresponding request at
some time after its release. The objective in online TSP on the line is to minimize the makespan, i.e.,
the time until all requests have been served. In the closed variant of the problem, the server needs
to return to the origin after serving all requests, while the open variant has no such requirement.

Online TSP is a natural online problem similar to the classical k-server problem [25]. In the latter,
the order in which requests need to be served is prescribed, and the problem thus becomes trivial on
the line for k = 1 server. In contrast, online TSP on the line is a non-trivial problem that arises in 1-
dimensional collection/delivery problems. Examples include robotic welding/screwing/depositing
material, horizontal/vertical item delivery systems, and the collection of objects from mass storage
shelves or along shorelines [2, 26]. The online Dial-A-Ride problem additionally allows trans-
portation requests that specify a source and destination that need to be visited by the server in
this order. If the capacity of the server is finite, then it limits the number of requests that can
be transported simultaneously. In that case, we distinguish the preemptive variant of the problem
where requests can be unloaded at points other than their destination and be picked up later to
be transported further to their destination, and the non-preemptive variant where this is not per-
mitted. The online Dial-A-Ride problem on the line arises, e.g., when controlling robot arms and
industrial or personal elevators [4, 11].

While both online TSP and online Dial-A-Ride on the line are among the most natural online
problems and have been studied extensively over the past two decades [3, 5–7, 9, 12, 18, 20–22],
no satisfactory (tight) analysis was known for either problem in terms of competitive ratios. We
address this shortcoming for TSP on the line by providing a tight upper bound for the closed
variant, as well as tight bounds for the open variant. We emphasize that our results for the open
and closed variant of the problem are independent and require substantially different approaches.
Aside from our results for online TSP, we narrow the gaps for online Dial-A-Ride on the line by
giving improved bounds. In addition to online results, we study the computational complexity of
the underlying offline problems.

1.1 Our Results

We have the following results1 (cf. Tables 1 and 2):

Tight bounds for online TSP on the line. Our main results are best-possible online algorithms
for both the open and closed variant of online TSP on the line, as well as a new (tight) lower
bound for the open variant. Our algorithm for the closed variant has a competitive ratio of

(9 +
√

17)/8 ≈ 1.64, matching a lower bound of Ausiello et al. [7] and improving on their 1.75-
competitive algorithm. For open TSP on the line, we provide a 2.04-competitive online algorithm,
improving on the 2.33-competitive algorithm by Ausiello et al. [7]. We show that this algorithm

1Parts of our results were already claimed in Reference [24], but mostly with weaker bounds and without a conclusive

proof. Nevertheless, some of our ideas are inspired by the approaches described in Reference [24].
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Table 1. Overview of Our Results for Online TSP on the Line and Online Dial-A-Ride on the Line

Online
Closed Open

Lower bound Upper bound Lower bound Upper bound
Online TSP on the line

new 1.64 (Th. 3.5) 2.04 (Th. 4.1) 2.04 (Th. 5.2)
old 1.64 [6, 7] 1.75 [6, 7] 2 [5, 7] 2.33 [5, 7]
Dial-A-Ride on the line

preemptive 1.64 [6, 7] 2 [3] 2.04 (Th. 4.1) 2.41 (Th. 6.2)
non-preemptive 1.75 (Th. 6.4) 3.41 [20]

Table 2. Overview of Our Results for Offline TSP and
Dial-A-Ride on the Line with Release Times

Offline Closed Open
TSP on the line O (n2) (Th. 7.4) O (n2) [26]
Dial-A-Ride on the line

non-preemptive NP-hard (Th. 7.8) NP-hard (Th. 7.8)

is best-possible by giving a matching lower bound. Our results settle online TSP on the line from
the perspective of competitive analysis.

Improved bounds for online Dial-A-Ride on the line. Our lower bounds for online TSP on the line
immediately apply to preemptive and non-preemptive online Dial-A-Ride on the line. In partic-
ular, our lower bound of 2.04 is the first bound greater than 2 for the open variant of the problem.
Additionally, we provide a simple preemptive 2.41-competitive algorithm, which improves a (non-
preemptive) 3.41-competitive algorithm by Krumke [20]. In the uncapacitated case, this algorithm
can be generalized to work in the Euclidean space for both the open and closed Dial-A-Ride vari-
ants. For the closed variant on the line, the lower bound of 1.64 by Ausiello et al. [7] was improved
for one server with unit capacity without preemption to 1.71 by Ascheuer et al. [3]. We improve
this bound further to 1.75 for any finite capacity c ≥ 1. The best known algorithm for closed Dial-
A-Ride on the line for finite capacity c ≥ 1 is 2-competitive and was given by Ascheuer et al. [3].

New offline complexity results. Regarding offline TSP on the line with release times, Psaraftis
et al. [26] showed a dynamic program that solves the open variant in quadratic time. We refute
their claim that all optimal closed tours have a very simple structure with a counterexample, and we
adapt their algorithm to find an optimal closed tour in quadratic time. For the non-preemptive of-
fline Dial-A-Ride problem on the line, results have previously been obtained for the closed variant
without release times. For capacity c = 1 Gilmore and Gomory [15] and Atallah and Kosaraju [4]
gave polynomial time algorithms, and Guan [16] proved hardness for the case c = 2. We show that
both the open and closed variant of the problem are NP-hard for any capacity c ≥ 2. Addition-
ally, we show that the case with release times and any c ≥ 1 is NP-hard. The complexity of offline
Dial-A-Ride on the line with unbounded capacity remains open.

1.2 Further Related Work

For the online TSP problem in general metric spaces, Ausiello et al. [7] show a lower bound of 2
on the competitive ratio for the open version and a 1.64 lower bound for the closed version, both
bounds being achieved on the real line. For the open online TSP, they present a 2.5-competitive
algorithm, and for the closed version they give a 2-competitive algorithm. Jaillet and Wagner [18]
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give 2-competitive algorithms for the closed version that can additionally deal with precedence
constraints or multiple servers. Blom et al. [9] consider the closed online TSP problem on the non-
negative part of the real line and present a best possible algorithm with competitive ratio 1.5. They
also study a “fair” setting where the optimum does not travel outside the convex hull of the known
requests, and they derive an algorithm for the real half-line with a better competitive ratio of 1.28
for this setting. Krumke et al. [22] show that there cannot be a competitive algorithm for open
online TSP with the objective of minimizing the maximum flow time instead of minimizing the
makespan. For the real line they define a fair setting and give a competitive algorithm for it.

The online repairperson problem is the open online TSP problem with the objective of minimiz-
ing the weighted sum of completion times. Feuerstein and Stougie [12] show a lower bound of
2.41 on the best-possible competitive ratio for this problem and provide a 9-competitive algorithm
for the real line. Krumke et al. [21] give an online algorithm with competitive ratio 5.83 for
general metric spaces, and Hwang and Jaillet [17] improve this competitive ratio to 5.14.

For the closed online Dial-A-Ride problem without preemption, Feuerstein and Stougie [12]
show a lower bound of 2 for the competitive ratio in general, and present an algorithm with a
best-possible competitive ratio of 2 for the case that the server has infinite capacity. Ascheuer
et al. [3] analyze different algorithms for the same setting and present a 2-competitive algorithm
for any finite capacity c ≥ 1. For minimizing the sum of completion times instead of the makespan,
Feuerstein and Stougie [12] further show a lower bound of 3 for a server with unit capacity and
a lower bound of 2.41 independent of the capacity. Moreover, they provide a 15-competitive algo-
rithm for the real line and unlimited capacity. For the same objective function, Krumke et al. [21]
present an algorithm with a competitive ratio of 5.83 for a server with unit capacity in an arbitrary
metric space.

The offline version of the TSP problem is a well-studied NP-hard problem (e.g., see Refer-
ence [23]). Afrati et al. [1] show that the offline traveling repairperson problem on the line can
be solved in polynomial time, but becomes hard if requests have deadlines. Sitters [27] shows that
the problem without deadlines is hard on weighted trees. There are many offline variants of the
Dial-A-Ride problem, differing in capacities, the underlying metric space, release times and dead-
lines, open versus closed tours, and in whether preemption is allowed (e.g., see Reference [11]).
The special case without release times and unit capacity is known as the stacker crane problem. At-
talah and Kosaraju [4] present a polynomial time algorithm for the closed, non-preemptive stacker
crane problem on the real line. Frederickson and Guan [13] show that this problem is NP-complete
on trees. Guan [16] shows that the Dial-A-Ride problem remains easy on the line with capacities
larger than one if preemption is allowed, and that it remains hard on trees. Finally, Charikar and
Raghavachari [10] give a O (

√
c logn log logn)-approximation for the closed Dial-A-Ride prob-

lem in metric spaces with n points and without preemption. In the same paper, they claim a 2-
approximation for the problem on the line, however this result seems to be incorrect (personal
communication).

2 PROBLEM DEFINITION AND NOTATION

We consider a server that moves along the real line with (at most) unit speed. We let pos(t )
denote the position of the server at time t ≥ 0 and assume (without loss of generality) that
pos(0) = 0. With this notation, the speed limitation of the server can equivalently be expressed
via |pos(t ) − pos(t ′) | ≤ |t − t ′ | for all t , t ′ ≥ 0. A series of requests σ1, . . . ,σn arrives over
time with σi = (ai ,bi ; ri ), where ri ≥ 0 denotes the release time of the request and ai ,bi ∈ R
denote its source and target position, respectively.2 For TSP, we have ai = bi and write

2For readability, we use a semi-colon to separate source and destination positions of a request from its release time.
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σi = (ai ; ri ). If not stated otherwise, then we assume r1 ≤ r2 ≤ · · · ≤ rn . We use the notation
pR := maxi=1, ...,n max{ai ,bi , 0} to denote the rightmost point that needs to be visited by the
server, and similarly pL := mini=1, ...,n min{ai ,bi , 0}. Here and throughout, we refer to the negative
direction of the real line as left and the positive direction as right.

We observe that we may assume without loss of generality that ri ≥ |ai | holds: On the one hand,
the server cannot reachσi before time |ai | and it only helps the algorithm to know a request earlier;
on the other hand, any algorithm can simply ignore σi until time |ai |. We make this assumption
from now on.

Observation 1. We may assume that ri ≥ |ai | holds, for all requests σi = (ai ,bi ; ri ).

In both TSP and Dial-A-Ride on the line, all requests need to be served. For TSP, we consider
a request served if pos(t ) = ai for some time t ≥ ri . For Dial-A-Ride, the server may collect re-
quest σi at time t ≥ ri if pos(t ) = ai . In the preemptive Dial-A-Ride problem, the server can drop
off any request it is carrying at its current location at any time. If request σi is dropped off at
point pos(t ) at time t , then we consider it to be modified to the new request (pos(t ),bi ; t ). In the
non-preemptive Dial-A-Ride problem, the server may only drop off a request at its target location.
We consider a request served if it is ever dropped off at its target location.

In TSP on the line, the behavior of the server in our algorithms at time t will mostly depend on
so-called extreme requests. For t ≥ 0, we denote by σR (t ) = (R(t ); rR (t )) the unserved request that
is rightmost of the position of the server pos(t ), provided such a request exists, i.e., the unserved
request σ = (a; t ′) with t ′ ≤ t , a > pos(t ), and maximizing a. Analogously, σL (t ) = (L(t ); rL (t ))
denotes the unserved request that is leftmost of the position of the server pos(t ). If there is more
than one right-most (left-most) request, then we choose the one with the largest release time.

In the Dial-A-Ride, if the server has finite capacity c ≥ 1, it can carry at most c requests at any
time. We assume that no time is needed for picking up and dropping off requests, so that the server
can pick up and drop off any number of requests at the same time, as long as its capacity is not
exceeded.

We refer to a valid trajectory of the server together with the description of when it picks up
and drops requests as a tourT . If the tour ends at 0, then we call it closed; otherwise, it is open. We
denote the makespan of the tour T by |T |. The objective in the open (closed) version of both TSP
and Dial-A-Ride is to find an open (closed) tour T that serves all requests and minimizes |T |.

In the offline setting, we assume all requests to be known from the start. We let T opt denote an
optimal offline tour. In the online setting, we assume that request σi is revealed at its release time ri ,
at which point the tour of the server until time ri must already have been fixed irrevocably. Note
that until time ri even the existence of the request σi is unknown. We measure the quality of an
online algorithm via its competitive ratio, i.e., the supremum over all sequences of requests of the
ratio between the makespan of the tour it produces and |T opt |.

To describe the trajectory of the server, we use the notation “move(a)” for the tour that
moves the server from its current position with unit speed to the point a ∈ R and the notation
“waituntil(s )” for the tour that keeps the server stationary until time s . We use the operator ⊕ to
concatenate tours. For example, ifT0 is a tour of the server that ends at time t0 at position pos(t0),
thenT0 ⊕ move(a) describes the tour that ends at time t0 + |a − pos(t0) |, is identical to the tourT0

until time t0 and satisfies pos(t ) = pos(t0) + sign(a − pos(t0)) (t − t0) for t0 ≤ t ≤ t0 + |a − pos(t0) |.
Similarly,T0 ⊕ waituntil(s ) is the tour that ends at time max{t0, s}, which is identical to the tourT0

until time t0 and that satisfies pos(t0) = pos(t ) for all t ∈ [t0,max{t0, s}]. Note that if max{t0, s} = t0,
we have T0 ⊕ waituntil(s ) = T0. For TSP on the line, we do not explicitly specify when a request
is served, but we assume that the server serves a request whenever possible, i.e., whenever the
server passes the location of a request that is already released and not yet served.
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3 ALGORITHM FOR CLOSED ONLINE TSP

In this section, we consider the closed online TSP problem and describe a best-possible algorithm

with competitive ratio ρ = (9 +
√

17)/8 ≈ 1.64, where ρ is the nonnegative root of the polyno-
mial 4x2 − 9x + 4.

We start by developing some intuition for our algorithm. In the followingT alg is the tour planned
by an algorithm Alg. Observe that the decision of how to move the server at time t only depends on
its position pos(t ) and the location of the left- and rightmost extreme requests σL (t ) = (L(t ); rL (t ))
and σR (t ) = (R(t ); rR (t )): all other requests can be served during any tour serving σL (t ) and σR (t ).
Remember that L(t ) and R(t ) are the locations of the leftmost and rightmost extreme at time t ,
respectively, and rL (t ) and rR (t ) are their respective release dates. The following lemma shows
that in this setting, we can assume that all requests are extreme requests at the time they are
released and L(t ) < 0 and R(t ) > 0, provided these extremes exist.

Lemma 3.1. We can assume that the released requests fulfill the following properties without loss
of generality:

(1) All requests are extreme requests with a location outside the interval [0, pos(t )] at the time
they are released.

(2) We can assume L(t ) < 0 if the leftmost extreme exists and R(t ) > 0 if the rightmost extreme
exists.

Proof. We can assume the first property without loss of generality as all requests with a loca-
tion in the interval (L(t ),R(t )) will be served while the algorithm serves the two extreme requests
σL (t ) and σR (t ), and can therefore be ignored. Analogously, all requests in [0, pos(t )] will be served
at the latest when the server returns to the origin.

Suppose that L(t ) ≥ 0. Then σL (t ) will be served while the server returns to the origin after
having served σR (t ). Hence, we can simply delete σL (t ) from the input in this case. The case R(t ) ≤
0 is symmetrical. �

An algorithm Alg has, on a high level, three possible courses of action at a time t at which
|L(t ) |, |R(t ) | > 0. Either Alg immediately decides to serve σL (t ) and σR (t ) in one of the two possi-
ble orders, or it waits for some time for additional information to make a more informed decision.
Intuitively, the critical case for the competitiveness of Alg is the case where it decides to serveσL (t )
and σR (t ) in a different order thanT opt. If both σL (t ) and σR (t ) do exist, then letT RL (t ) andT LR (t )
be the tours that start at the origin at time 0 and then move as follows:

T RL (t ) := waituntil(rR (t ) − |R(t ) |) ⊕ move(R(t )) ⊕ move(L(t )) ⊕ move(0),

T LR (t ) := waituntil(rL (t ) − |L(t ) |) ⊕ move(L(t )) ⊕ move(R(t )) ⊕ move(0).

If σL (t ) does not exist, then T RL (t ) := waituntil(rR (t ) − |R(t ) |) ⊕ move(R(t )) ⊕ move(0) and
T LR (t ) is undefined. Similarly, if σR (t ) does not exist, then T LR (t ) := waituntil(rL (t ) − |L(t ) |) ⊕
move(L(t )) ⊕ move(0) andT RL (t ) is undefined. Note that |T RL (t ) | (resp. |T LR (t ) |) is a lower bound
for the makespan of the shortest tour serving σR (t ) before σL (t ) (resp. σL (t ) before σR (t )). We
now describe a worst case situation against which a ρ-competitive algorithm needs to be able to
defend itself. Say that at time t , we have |L(t ) |, |R(t ) | > 0 and Alg greedily decides to immediately
start serving the extremes in the same order as T LR (t ). To see how this can fail, assume that T opt

initially follows the tour T RL (t ), but continues to move to the left after serving σL (t ). The time
when T opt reaches L(t ) is t ′ = rR (t ) + |R(t ) | + |L(t ) |, since rR (t ) ≥ |R(t ) | by assumption. Let t0 be
the time when Alg reaches the origin 0 after serving σL (t ), and assume that t ′ ≤ t0. Now a new re-
quest σ ′ = (p ′; t0) may arrive at time t0 and position p ′ = −|L(t ) | − (t0 − t ′) = −t0 + rR (t ) + |R(t ) |,
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that the optimum can serve immediately at time t0. We then have

|T opt | = t0 + |p ′ | = t0 + |L(t ) | + (t0 − t ′)
= 2t0 − rR (t ) − |R(t ) |.

At time t0 our algorithm still needs to serve σ ′ and σR, and hence

|T alg | = t0 + 2|p ′ | + 2|R(t ) | = 3t0 − 2rR (t ).

The algorithm Alg is ρ-competitive if

|T opt |
|T alg |

≤ ρ ⇔ t0 ≥
ρ |R(t ) | − (2 − ρ)rR (t )

2ρ − 3
.

We denote by SafeReturn(σR (t ), t ) the earliest time a ρ-competitive algorithm may return to
the origin after having served σL (t ) while σR (t ) still needs to be served afterwards. The setting
described above motivates the definition

SafeReturn(σR (t ), t ) :=
ρ |R(t ) | − (2 − ρ)rR (t )

2ρ − 3
. (1)

The time SafeReturn(σL (t ), t ) is defined symmetrically. Thus, waiting is sometimes necessary
for an algorithm to be competitive. However, we can obviously not afford to wait too long. To
quantify this, we introduce a lower bound on the length of T opt.

Definition 3.2. If σL (t ) and σR (t ) both do exist, then we define the greedy tourT greedy (t ) at time t
as

T greedy (t ) :=

{
T LR (t ) if |T LR (t ) | ≤ |T RL (t ) |, and
T RL (t ) otherwise.

If σR (t ) does not exist, then we set T greedy (t ) := T LR (t ), and T greedy (t ) := T RL (t ) if σL (t ) does not
exist.

Observation 2. If |L(t ) |, |R(t ) | > 0, then we have

|T RL (t ) | = rR (t ) + |R(t ) | + 2|L(t ) |,
|T LR (t ) | = rL (t ) + |L(t ) | + 2|R(t ) |,

and |T greedy (t ) | = min{|T LR (t ) |, |T RL (t ) |} ≤ |T opt |.

Assume Alg is still waiting at the origin at time t , i.e. pos(t ) = 0. From Observation 2, we con-
clude that if t ≤ ρ |T greedy (t ) | − 2|R(t ) | − 2|L(t ) |, we can wait until time ρ |T greedy (t ) | − 2|R(t ) | −
2|L(t ) |, and then still serve σR (t ) and σL (t ) and return to the origin 0 until time ρ |T greedy (t ) | ≤
ρ |T opt |, i.e., we can stay ρ-competitive if no further requests arrive. Formally, we make the follow-
ing definition.

Definition 3.3. We define σnear (t ) = (near(t ), rnear (t )) and σ far (t ) = (far(t ), r far (t )) to denote the
extreme request that is closer to the origin and the extreme request that is further away from
the origin at time t , respectively, provided that both extreme requests exist at time t . If only one
extreme request does exist at time t , then we define σnear (t ) = (0, t ), while σ far (t ) is defined as
before. If both extreme requests have the same distance to the origin, then we set σnear (t ) to be
the leftmost extreme and σ far (t ) to be the rightmost extreme.

Let the safe tour T safe (t ) at time t be defined as

T safe (t ) := Twait ⊕ waituntil(r far (t ) − |far(t ) |) ⊕ move(far(t )) ⊕ move(near(t )) ⊕ move((0)),
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with
Twait := waituntil

(
ρ |T greedy (t ) | − 2|R(t ) | − 2|L(t ) |

)
.

It turns out thatT safe (t ) does not return to the origin too early after having served σ far (t ), which
ensures that the worst case situation described above cannot occur (see Lemma 3.6 below). Thus,
it always makes sense for an algorithm to follow the safe tour whenever possible.

Intuitively, we think of a safe release time t as a point in time where a new request is released
and the server is not too far away from T safe (t ) and is able to follow it and return to the origin by
time ρ |T greedy (t ) |. We formalize this in the following observation.

Definition 3.4. Let t be a time at which a new extreme request is released. We say that t is a safe
release time if

t + |pos(t ) − far(t ) | + |far(t ) | + 2|near(t ) | ≤ ρ |T greedy (t ) |.
Otherwise, we say that t is an unsafe release time. Furthermore, we say an interval [t1, t2] is safe if
every release time t ∈ [t1, t2] is safe and unsafe if every release time in [t1, t2] is unsafe.

Note that if t is a safe release time, then, by the definition of the safe tour (Definition 3.3), we have
|T alg (t ) | = ρ |T greedy (t ) | ≤ ρ |T opt | for the newly computed tour T alg (t ). Also note that an interval
may be neither safe nor unsafe.

Before we formally describe our algorithm (cf. Algorithm 1), we need to introduce additional
notation for i ∈ {1, 2}.

• We define σ Safei (t ) = (Safei (t ), r Safei (t )) and σGreedyi (t ) = (Greedyi (t ), rGreedyi (t )) to be
the two extreme requests on the tour T safe (t ) and T greedy (t ), respectively, in the order in
which they are served.

• We let {σ1 = (a1, t1),σ2 = (a2, t2)} := {σL (t ),σR (t )}.
• We define Return(σ1,σ2, t ) to be the point in time at which the tour that starts at time t at

position pos(t ) and executes move(a1) ⊕ move(a2) ⊕ move(0) returns to the origin. Hence,
we have

Return(σ1,σ2, t ) = t + |a1 (t ) − pos(t ) | + |a1 (t ) | + 2|a2 (t ) |.
• Similarly, we define Return(σ1, t ) := Return(σ1, (0, t ), t ), which yields

Return(σ1, t ) = t + |a1 (t ) − pos(t ) | + |a1 (t ) |.

• We define pL (t ) := mint ′ ≤t {L(t ′)} and pR (t ) := maxt ′≤t {R(t ′)}.

We are now ready to describe our algorithm (cf. Algorithm 1). By Lemma 3.1, it suffices to define
the algorithm so that it takes the current time, the current position of the server, and a pair of
extreme requests as input and then recomputes the tour of the algorithm.

We argued that it is a safe option to follow T safe (t ) to stay ρ-competitive, provided no further
requests appear. It will turn out that it is indeed always good enough to followT safe (t ), if possible.
However, at time t , the server may be too far away from far(t ) to catch up with the safe tour in
time, in which case the algorithm has to resort to secondary strategies. If time t is an unsafe release
time, then it instead bases its behavior on the greedy tour as an estimate forT opt. Surprisingly, this
estimate turns out to be sufficient to obtain a best possible online algorithm.

There are three situations that can occur at time t if t is an unsafe release time. If the online
server is on the same side of the origin as Greedy1 (t ), i.e., sign(pos(t )) = sign(Greedy1 (t )), then
our algorithm decides to follow the greedy tour. If sign(pos(t )) � sign(Greedy1 (t )), then we have
to ensure that the algorithm does not return to the origin too early when serving Greedy2 (t ) first. If
Return(σGreedy2 (t ), t ) ≥ SafeReturn(σGreedy1 (t ), t ), then the algorithm serves Greedy2 (t ) first,
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ALGORITHM 1: Update(t , pos(t ),σL (t ),σR (t )) for the closed online TSP Problem

� This function is called upon release of a new extreme request.

Input: Current time t
Current position pos(t )
Unserved extreme requests σL (t ) and σR (t )

Output: A closed TSP tour serving all remaining requests

twait ← ρ |T greedy (t ) | − ( |pos(t ) − far(t ) | + |far(t ) | + 2|near(t ) |)
if twait ≥ t then � t is safe

(A)(A) T alg ← waituntil(twait) ⊕ move(far(t )) ⊕ move(near(t )) ⊕ move(0)
else if

sign(pos(t )) = sign(Greedy1 (t )) or Return(Greedy2 (t ), t ) < SafeReturn(Greedy1 (t ), t )
then

(B1) ,(B2)(B1) or (B2) T alg ← move(Greedy1 (t )) ⊕ move(Greedy2 (t )) ⊕ move(0)

else

(C)(C) T alg ← move(Greedy2 (t )) ⊕ move(Greedy1 (t )) ⊕ move(0)

return T alg

i.e., it serves the extremes in a different order than T greedy (t ). Otherwise, as we will see, we can
deduce from Return(σGreedy2 (t ), t ) < SafeReturn(σGreedy1 (t ), t ) that we can afford to serve the
opposite extreme first, i.e., to follow T greedy (t ).

In the following sections, we analyze each of the above cases to obtain the main result of this
section:

Theorem 3.5. Algorithm 1 is a (9 +
√

17)/8 ≈ 1.64-competitive algorithm for closed online TSP on
the line.

Analysis of Algorithm 1

We will show that Algorithm 1 is ρ-competitive where ρ is the nonnegative root of the polynomial
4x2 − 9x + 4.

The analysis of Algorithm 1 relies on multiple lemmas describing the behavior of the server
in certain situation. For all of the lemmas stated in the following also the symmetric versions
(obtained by swapping left and right) hold. Throughout this section, we refer to the symmetric
version of a lemma by Lemmasym.

The following lemma motivates our choice of ρ.

Lemma 3.6. The safe tour T safe (t ) arrives at the origin at time t0 after having served σ far (t ) with
t0 ≥ SafeReturn(σnear (t ), t ).

Proof. The safe tour T safe (t ) returns to the origin after having served σ far (t ) at time

t0 = ρ |T greedy (t ) | − 2|near(t ) | ≥ ρ (2|near(t ) | + 2|far(t ) |) − 2|near(t ) |
≥ (4ρ − 2) |near(t ) |.

To deduce that (4ρ − 2) |near(t ) | ≥ SafeReturn(σnear (t ), r ), note that

(2ρ − 2) |near(t ) |
2ρ − 3

≥ ρ |near(t ) | − (2 − ρ)rnear (t )

2ρ − 3
,

because ρ ≤ 2 and rnear (t ) ≥ |near(t ) |. Finally,

(4ρ − 2) |near(t ) | ≥ (2ρ − 2) |near(t ) |
2ρ − 3

⇔ (4ρ2 − 9ρ + 4) ≥ 0, (2)

which proves the lemma for our choice of ρ. �
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Recall that T greedy (t ) denotes the fastest (offline) tour serving the unserved requests at time t .
Also recall |T greedy (t ) | = min{|T LR (t ) |, |T RL (t ) |} (Observation 2).

Definition 3.7. We call an interval [t1, t2] stable if Alg does not serve requests at any time
in (t1, t2).

To analyze Algorithm 1, we assume that the algorithm planned some tour for an initial sequence
of requests. At time t a new extreme request is released and thus an updated tour T alg (t ) is com-
puted. We show that this tour is ρ-competitive. We assume without loss of generality that the
extreme request released at time t is a rightmost extreme σR (t ). Thus, rR (t ) = t .

Recall that if t is a safe release time, then we have |T alg (t ) | = ρ |T greedy (t ) | ≤ ρ |T opt | (Defini-
tions 3.3 and 3.4). Thus, we will in the following assume that t is unsafe.

The next two lemmas restrict the situation that we need to consider.

Lemma 3.8. If σL (t ) does not exist, then T alg (t ) is ρ-competitive.

Proof. Lower bounds for the offline optimum are |T opt | ≥ t + |R(t ) | and |T opt | ≥ 2|pR (t ) | +
2|pL (t ) |. Because |L(t ) | = 0 and |pos(t ) − R(t ) | ≤ |pL (t ) | + |pR (t ) | ≤ T opt/2, we have

|T alg | = t + |pos(t ) − |R(t ) | | + |R(t ) | ≤ 3/2|T opt | < ρ |T opt |,

and thus the tour is ρ-competitive. �

Lemma 3.9. Consider an interval [rL (t ), t] with rR (t ) = t and Greedy1 (t ) = R(t ). Then t is a safe
release time.

Proof. First suppose far(t ) = R(t ), i.e., R(t ) ≥ |L(t ) |. In this case, we need to verify
Return(σR (t ), t ) + 2|L(t ) | ≤ ρ |T greedy (t ) |.

By Lemma 3.1, we have pos(t ) ∈ [L(t ),R(t )], hence |pos(t ) − R(t ) | ≤ |L(t ) | + |R(t ) | and t =
rR (t ) ≥ |R(t ) | by assumption. Together with ρ ≥ 1.5 and Greedy1 (t ) = R(t ), we thus have

Return(σR (t ), t ) = t + |pos(t ) − R(t ) | + |R(t ) |
≤ t + 2|R(t ) | + |L(t ) |
= ρ

(
t + |R(t ) | + 2|L(t ) |

)
+ |R(t ) |

+ (1 − ρ) (t + |R(t ) |) + (1 − 2ρ) |L(t ) |
ρ≥1.5
≤ ρ (t + |R(t ) | + 2|L(t ) |) + |R(t ) | − |R(t ) | − 2|L(t ) |
= ρ (t + |R(t ) | + 2|L(t ) |) − 2|L(t ) |

Obs. 2
= ρ |T RL (t ) | − 2|L(t ) |
= ρ |T greedy (t ) | − 2|L(t ) |.

Thus, time t is a safe release time.
Next suppose far(t ) = L(t ), i.e., |L(t ) | ≥ R(t ). Using Lemma 3.1, we can again deduce that
|pos(t ) − L(t ) | ≤ |R(t ) | + |L(t ) | ≤ 2|L(t ) |. Again, we use ρ ≥ 1.5, Greedy1 (T ) = R(t ) and t ≥ |R(t ) |
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to obtain

Return(σL (t ), t ) = t + |pos(t ) − L(t ) | + |L(t ) |
≤ t + 3|L(t ) |
= ρ (t + |R(t ) | + 2|L(t ) |) + (3 − 2ρ) |L(t ) | + (1 − ρ)t − ρ |R(t ) |

ρ≥1.5
≤ ρ (t + |R(t ) | + 2|L(t ) |) − 2|R(t ) |

Obs. 2
= ρ |T RL (t ) | − 2|R(t ) |
= ρ |T greedy (t ) | − 2|R(t ) |.

Thus, t is again a safe release time. �

The remaining analysis of Algorithm 1 deals with the following case:

At time t a rightmost extreme is released, t is unsafe and Greedy1 (t ) = L(t ). (3)

Note that Greedy1 (t ) = L(t ) in particular implies that σL (t ) does exist. To further analyze Algo-
rithm 1, we have to take the behavior of the server at time rL := rL (t ) into account. Recall that rL (t )
is the release time of the leftmost extreme σL (t ) = σL (rL) at time t . Since the request σL (rL (t )) is
still unserved at time t , no new leftmost extreme is released during (rL, t] and also no leftmost
extreme is served during this interval. We therefore denote L(t ) simply by L from now on.

The analysis of Algorithm 1 is subdivided into several cases.

Case 1: The interval [rL, t] is stable.
Case 1.1: There is a release time t safe ∈ [rL, t ) that is safe.

This case is treated in Lemmas 3.13 through 3.15.
Case 1.2: The interval [rL, t] is unsafe.

This case is treated in Lemma 3.16.
Case 2: Alg serves a rightmost extreme during [rL, t ).

Denote by t serve the latest time at which a rightmost extreme is served during
[rL (t ), t]. Let r ∈ [rL, t serve) be the release time of the last extreme that is released
before time t serve. The request σL (t ) is still unserved at time t . Thus, at time r the
server starts a tour in the direction of σR (r ) and does not turn around before it is
served. Denote by t0 the point in time at which the tour planned at time r returns to
the origin for the first time after having served σR (r ). Lemma 3.17 provides us with a
lower bound for t0, which holds in all but one special case. This Lemma is an integral
part to show ρ-competitiveness in Case 2.1. In the following, we will distinguish be-
tween the cases in which the lower bound on t0 holds in general and the case where
it does not.

Case 2.1: We have Greedy1 (r ) = L(r ) or Greedy1 (r ) = R(r ) while far(r ) = R(r ).
This case is treated in Lemmas 3.17 through 3.18.

Case 2.2: We have Greedy2 (r ) = R(r ) and far(r ) = L(t ′).
This case is treated in Lemmas 3.20 through 3.24.

Before we start analyzing each of the cases above in detail in the following, we first state a few
general lemmas regarding the behavior of Alg.

General Lemmas Regarding the Behavior of Alg

The general properties of Algorithm 1 implied by the lemmas stated in this section (and also
Lemma 3.9) are used repeatedly in the proofs of the lemmas deriving more fine grained properties
of the behavior of the algorithm in Cases 1 and 2.
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Lemma 3.10. Let t = rnear (t ) be unsafe and |far(t ) |, |near(t ) | > 0. Then,

t + |pos(t ) | > (2ρ − 2) ( |near(t ) | + |far(t ) |)

and

2|near(t ) | + |far(t ) | − |pos(t ) | < (ρ − 1) (t + |far(t ) | + 2|near(t ) |).

Proof. By assumption t is an unsafe release time. Using t + |far(t ) − pos(t ) | ≤ t + |far(t ) | +
|pos(t ) |, this implies

t + |pos(t ) |
Def. 3.4
> ρ |T greedy (t ) | − 2|far(t ) | − 2|near(t ) |
≥ ρ (2|far(t ) | + 2|near(t ) |) − 2|far(t ) | − 2|near(t ) |
= (2ρ − 2) ( |far(t ) | + |near(t ) |).

(4)

Using this together with 4ρ2 − 5ρ − 2 = 0 by our choice of ρ and |far(t ) | ≥ |near(t ) |, we get that

2|near(t ) | + |far(t ) | − |pos(t ) |
≤ 2|near(t ) | + |far(t ) | − |pos(t ) | + (2 − ρ) |pos(t ) | + (4ρ2 − 5ρ − 2) |near(t ) |
= |far(t ) | + (1 − ρ) |pos(t ) | + (2ρ2 − 3ρ) |near(t ) | + (2ρ2 − 2ρ) |near(t ) |
≤ (2ρ2 − 3ρ + 1) |far(t ) | + (2ρ2 − 2ρ) |near(t ) | + (1 − ρ) |pos(t ) |

= (ρ − 1) ((2ρ − 2)
(
|far(t ) | + |near(t ) |

)
− |pos(t ) | + |far(t ) | + 2|near(t ) |)

(4)
< (ρ − 1) (t + |far(t ) | + 2|near(t ) |). �

Lemma 3.11. Let t be a release date of a request such that Greedy1 (t ) = near(t ) and sign(pos(t )) =
sign(far(t )). Then, Alg1 (t ) = far(t ) and Return(σ far (t ) (t ), t ) ≥ SafeReturn(σnear (t ), t ).

Proof. If t is a safe release time, then Alg1 (t ) = far(t ) and Return(σ far (t ) (t ), t ) =
SafeReturn(σnear (t ), t ) by the definition of the algorithm.

If t is an unsafe release time, then t > twait in the notation of the algorithm. That is, if the
server serves σ far (t ) first, it finishes its tour later than the safe tour. Since Greedy2 (t ) = far(t )
by assumption, Lemma 3.6 implies that Case (B2) does not hold, i.e., Return(σ far (t ) (t ), t ) =
SafeReturn(σnear (t ), t ). We also have that the algorithm is not in Case (B1) by assumption. Hence,
we indeed have Alg1 (t ) = far(t ). �

Lemma 3.12. Let [rL (t ), t] be unsafe such that t = rR (t ) and Greedy1 (t ) = L. If there is a time
r ∈ [rL, t ) such that, at time r , the algorithm starts or continues moving to the left, then the server
changes its direction at most once during (r , t] before serving any extreme request.

Proof. Assume that at some time r ′ ∈ (r , t] a new rightmost request σR (r ′) is released such that
Alg1 (r ′) = R(r ′), i.e., Alg turns around before having served σL (t ). By Lemmasym 3.9, and since r ′

is unsafe, Greedy1 (r ′) = L. As r ′ is unsafe and Alg1 (r ′) � Greedy1 (r ′), we have sign(pos(r ′)) �
sign(L), so pos(r ′) ≥ 0.

Aiming for a contradiction assume that at time r ′′ ∈ (r ′, t], before Alg can serve σR (r ′), a
new rightmost request σR (t ′′) is released such that Alg1 (r ′′) = L. We have |R(r ′′) | > |R(r ′) |, be-
cause σR (r ′) is still unserved when σR (r ′′) is released. Again, we can deduce using Lemma 3.9
that Greedy1 (r ′′) = L. Because of pos(r ′) ≥ 0 and the fact that between r ′ and r ′′ the server
only moves to the right, we obtain pos(r ′′) ≥ 0. It follows with Lemma 3.11 that far(r ′′) = L.
So far(r ′) = L as well, and we have that sign(pos(r ′)) � sign(Greedy1 (r ′′)) = sign(L), i.e., the
algorithm is not in Case (B1) at time r ′′ (it is also not in Case (A) by assumption). Thus,
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since we have Alg1 (r ′′) = L by assumption, the algorithm is in Case (B2), and thus we have
Return(σR (r ′′), r ′′) < SafeReturn(σL (t ), r ′′).

At time r ′, we have two possible scenarios, far(r ′) = L and far(r ′) = R(r ′). We show that both of
them lead to a contradiction, which concludes the proof of this lemma. First suppose that far(r ′) =
R(r ′). This immediately implies |L| ≤ |R(r ′) | < |R(r ′′) |, a contradiction, because we assumed that
|L| ≥ |R(r ′′) |. Hence, the algorithm does not turn around again after the release of σR (r ′).

More interestingly, suppose that far(r ′) = L, i.e., |L| ≥ |R(r ′) |. By assumption the time r ′ is un-
safe. Also recall that pos(r ′) ≥ 0. Using these facts together with Equation (2) yields

Return(σR (r ′), r ′) = r ′ + 2|R(r ′) | − |pos(r ′) |
Def. 3.4
> ρ |T greedy (t ) | − 2|L|
≥ (4ρ − 2) |L|
(2)
≥ SafeReturn(σL (t ), r ′′).

(5)

At time r ′′ the server directly starts to move to left. Hence, in this case, we have |r ′′ − r ′| =
|pos(r ′) − pos(r ′′) |. Because of pos(r ′′) ≥ pos(r ′) ≥ 0, it also holds that |pos(r ′) − pos(r ′′) | =
|pos(r ′′) | − |pos(r ′) |. This implies r ′′ + 2|R(r ′) | − |pos(r ′′) | = r ′ + 2|R(r ′) | − |pos(r ′) |. Together
with |R(r ′′) | > |R(r ′) |, we have

r ′′ + 2|R(r ′′) | − |pos(r ′′) | > r ′ + 2|R(r ′) | − |pos(r ′) |
(5)
≥ SafeReturn(σL (t ), r ′′),

contradicting Return(σR (r ′′), r ′′) < SafeReturn(σL (t ), r ′′). �

Lemmas Regarding Case 1

For the remainder of the section, we will refer to Setting 1 as the case when all the assumptions
in Equation (3) hold at time t and the server is in Case 1.

Setting 1. Let [rL, t] be stable such that t = rR (t ), t is unsafe, and Greedy1 (t ) = L.

Case 1.1. In the following two lemmas, we derive certain behavioral properties of Algorithm 1
that we then use to prove that the tour planned in Case 1.1 is ρ-competitive.

Lemma 3.13. In Setting 1, if a new rightmost request is released at some time t1 ∈ (rL, t] and
Greedy1 (t1) = L, then

ρ |T greedy (t1) | = ρ |T LR (t1) | > ρ |T greedy (t2) | + 2|R(t1) − R(t2) |

for all t2 ∈ [rL, t1).

Proof. We have
|T LR (t1) | = |T LR (t2) | + 2|R(t1) − R(t2) |.

This implies ρ |T LR (t1) | = ρ |T LR (t2) | + 2ρ |R(t1) − R(t2) | and

ρ |T greedy (t1) | = ρ |T LR (t1) |
= ρ |T LR (t2) | + 2ρ |R(t1) − R(t2) |

≥ ρ |T greedy (t2) | + 2ρ |R(t1) − R(t2) |

> ρ |T greedy (t2) | + 2|R(t1) − R(t2) |. �

Lemma 3.14. Assume the algorithm is in Setting 1 and that there is at least one safe release time

during [rL, t ) (i.e., the algorithm is in Case 1.1). Let t safe ∈ [rL, t ) be the last safe release time in this
interval. Then pos(t ) ≤ 0, far(t safe) = L and the server does not turn around after time t safe before
σL (t ) is served.
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Proof. We will show that all cases except for the one in the lemma lead to a contradiction.
Since [rL, t] is stable, the server does not serve any extremes during [rL, t ). Also, σL (t ) is not
served before time t . Thus, a new rightmost request σR (t ′) with |R(t ′) | ≥ |R(t safe) | is released at
some time t ′ ∈ (t safe, t] before Alg serves any extreme. By definition of t safe the release time t ′ is
unsafe. By Lemma 3.9, Greedy1 (t ′) = L for all times r ∈ (t safe, t] at which a new request is released.
Thus, by Lemma 3.13, we have

ρ |T greedy (t ′) | = ρ |T LR (t ′) | > ρ |T greedy (t safe) | + 2|R(t ′) − R(t safe) |. (6)

Aiming for a contradiction assume far(t safe) = R(t safe), i.e., |R(t ′) | ≥ |R(t safe) | ≥ |L|. The server
can be in three situations at time t ′. Either Alg is already moving along the safe tour toward
σR (t safe), it is still waiting, or it is moving toward the safe tour to catch up with it. As (rL, t] is
stable, σR (t safe) is still unserved at time t ′. In each of the three situations, Definition 3.4 implies

Return(σR (t safe),σL (t ′), t ′) = t ′ + |pos(t ′) − R(t safe) | + |R(t safe) | + 2|L|

≤ ρ |T greedy (t safe) |.
(7)

By using Equations (6), (7), and |R(t ′) | ≥ |R(t safe) |, we get that

Return(σR (t ′),σL (t ), t ′)

= t ′ + |pos(t ′) − R(t ′) | + |R(t ′) | + 2|L|

= t ′ + |pos(t ′) − R(t safe) | + 2|R(t ′) − R(t safe) | + |R(t safe) | + 2|L|
(7)
≤ ρ |T greedy (t safe) | + 2|R(t ′) − |R(t safe) |
(6)
< ρ |T greedy (t ′) |.

Thus, by Definition 3.4 the release time t ′ > t safe is safe, a contradiction. Thus, we have far(t safe) =
L, i.e., |L| ≥ |R(t safe) |.

Next, we show that |L| < |R(t ′) |. Again, we aim for a contradiction and assume |L| ≥ |R(t ′) |. In
this case, we also have far(t ′) = L. By the same argumentation as above using Equation (6), we get
that

Return(σL (t ),σR (t ′), t ′) = t ′ + |pos(t ′) − L| + |L| + 2|R(t ′) |
= t ′ + |pos(t ′) − L| + |L|

+ 2|R(t safe) | + 2|R(t ′) − R(t safe) |
(6)
≤ ρ |T greedy (t safe) | + 2|R(t ′) − R(t safe) |

< ρ |T greedy (t ′) |.

Hence, t ′ is a safe release time, a contradiction. Thus, we have |L| < |R(t ′) |.
First suppose pos(t ′) ≥ 0. Then, since at time t safe the safe tour serves σL (t ) first and

Greedy1 (t safe) = L, we get again as above using Equation (6)

Return(σL (t ),σR (t ′), t ′) = t ′ + |pos(t ′) | + 2|L| + 2|R(t ′) |

= t ′ + |pos(t ′) | + 2|L| + 2|R(t safe) | + 2|R(t ′) − R(t safe) |
(7)
≤ ρ |T greedy (t safe) | + 2|R(t ′) − R(t safe) |
(6)
< ρ |T greedy (t ′) |.

Thus, again t ′ is safe, a contradiction.
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It follows that pos(t ′) < 0, i.e., sign(Greedy1 (t ′)) = sign(pos(t ′)). Thus, the algorithm is in
Case (B1) at time t ′, i.e., the server immediately starts a tour first serving σL (t ) at time t ′.
Whenever at some time t ′′ ∈ (t ′, t] a new request is released, Case (B1) continues to hold and
Greedy1 (t ′′) = L. This proves the lemma. �

We are now ready to prove that the tour planned in Case 1.1 is ρ-competitive.

Lemma 3.15. Let t = rR (t ) be unsafe, Greedy1 (t ) = L, assume that there is at least one safe release
time during [rL, t ) (Case 1.1) and denote the last safe release time in the interval [rL, t ) by t safe. If the

interval [t safe, t] is stable, then the tour planned at time t is ρ-competitive.

Proof. Lemma 3.14 implies that in this setting, we have pos(t ) ≤ 0. Using this and the fact that
at time t the request σL (t ) is still unserved, we get

|T alg | ≤ t + 2|L| + 2|R(t ) | − |pos(t ) |. (8)

Since the server moves to the left without stopping during [t safe, t], we get t = t safe + |pos(t safe) −
pos(t ) |. Together with the fact that t safe is a safe release time and far(t safe) = L this yields with
Definition 3.4

t ≤ ρ |T greedy (t safe) | − 2|L| − 2|R(t safe) | + |pos(t ) |. (9)

Also note that with t1 = t and t2 = t safe the requirements for Lemma 3.13 are fulfilled, and thus we
get

ρ |T greedy (t ) | = ρ |T LR (t ) | > ρ |T greedy (t safe) | + 2|R(t ) − R(t safe) |. (10)

Overall this yields

|T alg |
(8)
≤ t + 2|L| + 2|R(t ) | − |pos(t ) |
(9)
≤ ρ |T greedy (t safe) | − 2|L| − 2|R(t safe) | + 2|L| + 2|R(t ) |

= ρ |T greedy (t safe) | + 2|R(t ) − R(t safe) |
(10)
< ρ |T greedy (t ) | ≤ ρ |T opt |. �

Case 1.2. Using Lemmas 3.9 through 3.12, we can show that the tour planned in Case 1.2 is also
ρ-competitive, which finishes our analysis of Case 1.

Lemma 3.16. Suppose the algorithm is in Setting 1. If the stable interval [rL, t] is unsafe (Case 1.2),
then the tour planned at time t is ρ-competitive.

Proof. To analyze this case, we have to take the behavior of Alg at time rL into account.
At first note that if at time t ′′ ∈ (rL, t] a request is released, the released request has to be a

rightmost extreme, because σL (rL) is still unserved at time t . By Lemma 3.9, Greedy1 (t ′′) = L.

Case A: At time rL the algorithm starts a (unsafe) tour in the direction of σL (t ).
Case A(i): The server does not turn around before serving σL (t ).

Observation 2 implies |T opt | ≥ rL + |L| + 2|R(t ) |. Together with |T opt |/2 ≥
|pL (t ) | + |pR (t ) | ≥ |pos(rL) − L|, we get

|T alg | = rL + |pos(rL) − L| + |L| + 2|R(t ) | ≤ 3/2|T opt |.

Hence, Alg is ρ-competitive.

ACM Transactions on Algorithms, Vol. 17, No. 1, Article 3. Publication date: December 2020.



3:16 A. Bjelde et al.

Case A(ii): The server does turn around before having served σL (t ).
Suppose that at some time t ′ ∈ (rL, t] a new rightmost request σR (t ′) is released
such that Alg turns around before having served σL (t ). By our arguing above, we
have Greedy1 (t ′) = L. As t ′ is unsafe by assumption, the algorithm will only start
a tour in the direction of σR (t ′) at time t ′ if sign(pos(t ′)) � sign(Greedy1 (t ′)), i.e.,
pos(t ′) ≥ 0 (Case (C)). Lemma 3.12 implies that the server does not turn around
again during [rL, t] before having served an extreme. Hence, using pos(rL) >
pos(t ′) ≥ 0 and the fact that σR (t ) must be released before σR (t ′) is served by
assumption, we get that

|T alg | ≤ rL + |pos(rL) | + 2|R(t ) | + 2|L|.

Again, using rL + |L| + 2|R(t ) | ≤ |T opt | and |pos(rL) | + |L| ≤ |pR (t ) | + |pL (t ) | ≤
|T opt |/2, we get

|T alg | ≤ 3|T opt |/2,

hence Alg is ρ-competitive.
Case B: At time rL the server starts a (non-safe) tour in the direction of σR (rL).

This can only happen if |R(rL) | > 0. By Lemma 3.9, we haveT greedy (rL) = T RL (rL).
Case B(i): The server does not turn around before serving σR (rL).

By assumption σR (t ) has to be released before σR (rL) is served. Thus, using
|T opt | ≥ rL + |L| + 2|R(t ) |, we have

|T alg | = Return(σR (t ),σL (rL), rL)

≤ rL + 2|R(t ) | + |pos(rL) | + 2|L|
≤ |T opt | + |L| + |pos(rL) |.

Note that if |pos(rL) | ≤ |R(t ) | or pos(rL) ≥ 0, we are done, because then |L| +
|pos(rL) | ≤ |pL (t ) | + |pR (t ) | ≤ |T opt |/2 by using pos(t ) ∈ [L,R(t )] (Lemma 3.1).

Next suppose pos(rL) < 0. Then, sign(pos(rL)) � sign(Greedy1 (rL)). Together
with the fact that rL is unsafe this implies that Alg is in Case (C). Now Lemma 3.11
implies that T safe (rL) serves σR (rL) first, i.e., |R(rL) | > |L| ≥ |pos(rL) |. As the
server does not serve a rightmost extreme during [rL, t ), we get |R(t ) | ≥ |R(rL) | ≥
|pos(rL) |. Thus, we can apply the same reasoning as before to deduce that
|L| + |pos(rL) | ≤ |T opt |/2.

Case B(ii): The server does turn around before having served σR (rL).
We will in the following show that this case cannot occur. Assume that the
server turns around before having served σR (rL). This implies that at some point
in time t ′ ∈ (rL, t] before Alg can serve σR (rL) a new rightmost request with
|R(t ′) | > |R(rL) | is released. Recall that as a consequence of Lemma 3.9, we have
Greedy1 (t ′) = L.

First suppose that far(t ′) = R(t ′), i.e., |R(t ′) | ≥ |L|. We then have

ρ |T LR (t ′) | = ρ (rL + |L| + 2|R(t ′) |)
≥ rL + (ρ − 1) |L| + ρ |L| + 2ρ |R(t ′) |
= rL + 2ρ ( |L| + |R(t ′) |) − |L|.
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In the first inequality, we used that rL ≥ |L|. Using ρ > 1.5, |R(t ′) | ≥ |L| and
pos(rL) ∈ [L,R(rL)], this implies that

ρ |T greedy (t ′) | − 2|L| − |R(t ′) |
= ρ |T LR (t ′) | − 2|L| − |R(t ′) |

≥ rL + (2ρ − 3)
(
|L| + |R(t ′) |

)
+ 2|R(t ′) |

≥ rL + (2ρ − 3)
(
|L| + |R(t ′) |

)
+ |L| + |R(t ′) |

> rL + |L| + |R(t ′) |
≥ rL + |pos(rL) − R(t ′) |
= t ′ + |pos(t ′) − R(t ′) |.

Hence, the release time t ′ is safe, contradicting our assumption that [rL, t] is un-
safe.

Next suppose that far(t ′) = L. Then |R(rL) | < |R(t ′) | < |L|. If sign(pos(rL)) =
sign(far(rL)), then Lemma 3.11 implies Alg1 (rL) = far(rL) = L. Thus, we have
pos(rL) ≥ 0.

By assumption rL is unsafe, and we have |L| > |R(rL) |. Thus, at time rL, all
conditions for Lemma 3.10 are fulfilled, and we get that

(ρ − 1) (rL + |L| + 2|R(rL) |) > 2|R(rL) | + |L| − |pos(rL) |. (11)

At time t ′ the server turns around and can reach the origin before time rR +

2|R(rL) | − |pos(rL) |, because at time t ′ the request σR (rL) is still unserved. Thus,
rL + |pos(rL) | ≤ rR + 2|R(rL) | − |pos(rL) |. Using this, we get that

ρ |T greedy (t ′) | − 2|L| − 2|R(t ′) |
= ρ |T LR (t ′) | − 2|L| − 2|R(t ′) |
= ρ (rL + |L| + 2|R(t ′) |) − 2|L| − 2|R(t ′) |
(11)
> (2|R(rL) | + |L| − |pos(rL) |) + rL + |L| + 2|R(rL) |
− 2|L| − 2|R(rL) |
= rL + 2|R(rL) | − |pos(rL) |
≥ t ′ + |pos(t ′) |.

Thus, the release time t ′ is safe, contradicting our assumption. �

Lemmas Regarding Case 2

For the remainder of the section, we will refer to Setting 2 as the case when all the assumptions
in Equation (3) hold at time t and the server is in Case 2.

Setting 2. Let [rL, t] be unstable such that t = rR (t ) is unsafe, |L| > 0, and Greedy1 (t ) = L. Let
t serve be the last time during [rL (t ), t] at which a rightmost extreme is served. Let r be the last release
time with r < t serve.

Case 2.1. The following lemma is central for proving that the tour planned by the algorithm in
Case 2.1 is ρ-competitive.
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Lemma 3.17. Assume the algorithm is in Setting 2. If Greedy1 (r ) = L, or Greedy1 (r ) = R(r ) =
far(r ), then

t serve + pos(t serve) ≥ SafeReturn(σL (t ), t ).

Proof. Note that at time t serve + pos(t serve) the server returns to the origin for the first time
after having served the rightmost extreme released at time r .

First suppose Greedy1 (r ) = L. In this case the server starts a tour in the direction of the right-
most extreme if far(r ) = R(r ) and r is safe (Case (A)), or the algorithm is in Case (C). In both cases,
we have

t serve + pos(t serve) ≥ SafeReturn(σL (t ), t ). (12)

Next suppose Greedy1 (r ) = R(r ) = far(r ), i.e., |R(r ) | ≥ |L|. SinceT alg (r ) also serves σR (r ) first, the
server is either on the safe tour (Case (A)) or it follows the safe tour without being able to catch
up with it (Case (B1) and Case (B2)). We are done by Lemma 3.6. �

With the next lemma the analysis of Case 2.1 is complete.

Lemma 3.18. Assume the algorithm is in Setting 2. If at time r , we have Greedy1 (r ) = L, or
Greedy1 (r ) = R(r ) = far(r ), then the tour planned at time t is ρ-competitive.

Proof. By Lemma 3.17, we know that

t serve + pos(t serve) ≥ SafeReturn(σL (t ), t ). (13)

Note that we also have t serve + pos(t serve) ≤ t + |pos(t ) |. By Lemma 3.9, Greedy1 (r ) = L. We next
prove that the following inequality holds if after time t no new request is released:

|T alg | ≤ t + 2|L| + 2|R(t ) | − |pos(t ) |. (14)

To show this, we make a case distinction regarding pos(t ).
At first suppose pos(t ) ≤ 0. In this case the algorithm is in Case (B1), because sign(pos(t )) =

sign(Greedy1 (t )) = sign(L), which means that at time t the server immediately starts a tour in
the direction or σL (t ). Since pos(t ) ≤ 0 by assumption, this implies that Equation (14) holds.

Next suppose pos(t ) > 0. Then the algorithm is not in Case (B1) and sign(pos(t )) �
sign(Greedy1 (t )). If near(t ) = Greedy1 (t ), then sign(pos(t )) = sign(far(t )) and Alg1 (t ) =
Greedy2 (t ) = R(t ) by Lemma 3.11. If far(t ) = Greedy1 (t ), then we obtain

t + 2|R(t ) | − |pos(t ) | ≥ t + |pos(t ) | ≥ t serve + pos(t serve) ≥ SafeReturn(σL (t ), t ),

using that pos(t ) ∈ [L,R(t )] by Lemma 3.1. Thus, the algorithm is in Case (C) at time t . Hence,
Equation (14) also holds in this case.

With t + |R(t ) | ≤ |T opt |, it thus suffices to prove that

2|L| + |R(t ) | − |pos(t ) | ≤ (ρ − 1) |T opt | (15)

to show ρ-competitiveness in this case, but this follows with Lemma 3.10. �

Case 2.2. The next three lemmas are needed to prove that the tour planned in Case 2.2 is ρ-
competitive.

Lemma 3.19. Assume the algorithm is in Setting 2. If at time r , we have Greedy1 (r ) = L, or
Greedy1 (r ) = R(r ) = far(r ), then

2|L| + |R(t ) | − |pos(t ) | ≤ (ρ − 1) |T opt |.
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Proof. Lemma 3.17 implies

t serve + pos(t serve) ≥ ρ |L| − (2 − ρ)rL

2ρ − 3
. (16)

We now make a case distinction on the value |R(t ) |.
First suppose

|R(t ) | ≤ 3 − ρ
2ρ − 3

|L| + 1 − ρ
2ρ − 3

rL + |pos(t ) |. (17)

L Using 1.640 ≤ ρ ≤ 2 and Inequality Equation (16), we get

2|L| + |R(t ) | − |pos(t ) |
(17)
≤ (2 − ρ)

(
3 − ρ
2ρ − 3

|L| + 1 − ρ
2ρ − 3

rL + |pos(t ) | − |R(t ) |
)

+ 2|L| + |R(t ) | − |pos(t ) |

= (ρ − 1)

(
ρ |L| − (2 − ρ)rL

2ρ − 3
− |pos(t ) | + |R(t ) |

)
(16)
≤ (ρ − 1) (t0 − |pos(t ) | + |R(t ) |)
≤ (ρ − 1) (t + |R(t ) |)
≤ (ρ − 1) |T opt |.

Next, suppose

|R(t ) | > 3 − ρ
2ρ − 3

|L| + 1 − ρ
2ρ − 3

rL + |pos(t ) |. (18)

We obtain

2|L| + |R(t ) | − |pos(t ) | =((3 − ρ) |L| + (1 − ρ)rL) − (2ρ − 3) |R(t ) |
− |pos(t ) | + (ρ − 1) (rL + |L| + 2|R(t ) |)

(18)
< − (2ρ − 3) |pos(t ) | − |pos(t ) | + (ρ − 1) (rL + |L| + 2|R(t ) |)
≤(ρ − 1) (rL + |L| + 2|R(t ) |)
≤(ρ − 1) |T opt |. �

Lemma 3.20. Assume the algorithm is in Setting 2 and that Greedy1 (r ) = R(r ) and far(r ) = L.
Then, r = rL, pos(rL) ≥ 0 and rL is unsafe. Moreover, if there is a safe release time in (rL, t], then the
tour planned at time t is ρ-competitive and if (rL, t] is unsafe, then Greedy1 (t ′) = L for every release
time in (rL, t].

Proof. By the definition of r , we have Alg1 (r ) = R(r ) � far(r ). Thus, r is unsafe. Therefore,
and because Greedy1 (r ) = R(r ), we have r = rL by Lemma 3.9 (since if r > rL, a rightmost extreme
would be released at time r ). Also, by Lemma 3.11, we have pos(r ) ≥ 0, since Alg1 (r ) = R(r ). Thus,
pos(r ) ≥ 0.

To show r = rL, we again assume to the contrary that r > rL. Then a new rightmost extreme is
released at time r . Now Lemma 3.9 implies that r is safe, a contradiction. Hence, r = rL.

If (rL, t] is unsafe, then Greedy1 (t ′) = L by Lemma 3.9. If there is a safe release time in (rL, t],
then denote by t safe ∈ (rL, t ) the latest safe release time in this interval.

First suppose that during [t safe, t] no rightmost extreme is served. Note that then the algorithm
is in Setting 1 except for the assumption that during [rL, t] no rightmost extreme is served. With
Lemma 3.15 this implies that we can apply Lemma 3.15, which yields that the tour planned at time
t is ρ-competitive.
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Next assume that after time t safe > rL a rightmost extreme is served. The served rightmost ex-
treme is released at some time t̃ ∈ [t safe, rL], in particular t̃ > rL. This means that at time t̃ , we
have Greedy1 (t̃ ) = L(t̃ ), or Greedy1 (t̃ ) = R(t̃ ) and the safe tour at time t̃ serves σL (t̃ ) first, be-
cause the other remaining case can only occur at time t̃ = rL by our argument above. Lemma 3.18
now implies that the tour planned at time t is ρ-competitive. �

Lemma 3.21. Let [rR (t ), t] with t = rL (t ) be unsafe and set rR = rR (t ) and rL = rL (t ). Assume that
the following assumptions hold:

• The interval [rR, rL] is stable and safe.
• We have pos(rL) ≥ 0.
• The server moves to the left during [rR, rL].

Then there exists a time r ∈ [rR, rL] at which the server turns to the right after moving to the left
immediately before. Assume that r is the last time with this property in [rR, rL].

Then the server only moves to the left during [rR, r ] and to the right during [r , rL], and we have
that sign(pos(rR)) = sign(pos(r )).

Proof. Since [rR, rL] is unsafe, Lemma 3.9 implies that

Greedy1 (r ) = R(r ) for all t ′ ∈ (rR, rL] at which a leftmost extreme is released. (19)

Note that at time rL the server starts a tour in the direction of σR (rL) because of
sign(Greedy1 (rL)) = sign(pos(rL)). Together with the assumption that the server moves to the
left at some point during [rR, rL] this implies that there exits a time r ∈ [rR, rL] at which the server
turns to the right after moving to the left immediately before.

To show the remaining statements of the lemma, we have to take the tour of the server im-
mediately before time r into account. By our assumptions the interval [rR, rL] is unsafe. Thus,
immediately before time r the server was on a non-safe tour first serving the leftmost extreme,
because σR (rL) is not served during [rR, rL) and the server moves to the left immediately before
time r . Assume r ′ is the release time of the last request released strictly before time r . By our ar-
guing above, at time r ′ the server starts a tour first moving to the left. This in particular means
|L(r ′) | > 0. We make a case distinction regarding the position of the server at time r .

First suppose pos(r ) ≥ 0. This implies pos(r ′) ≥ 0 as the server by definition only moves to the
left during [r ′, r ]. The fact that Alg1 (r ′) = L(r ′) implies that Greedy1 (r ′) = L(r ′), because other-
wise the algorithm would start a tour first servingσR (r ′) at time r ′, which yields a contradiction. By
Equation (19), we know that Greedy1 (r ′) = R(r ′) if r ′ > rR. Hence, we have r ′ = rR, which implies
that during [rR, r ] the server only moves to the left, and it also holds sign(pos(r )) = sign(pos(rR)),
which means that the assertions of the lemma are fulfilled.

Next suppose pos(r ) < 0. This in particular means that r � rL, because pos(rL) ≥ 0 by the as-
sumptions of the lemma. We have r ∈ (rR, rL]. Hence, we know by Equation (19) that Greedy1 (r ) =
R(r ). Thus, since the algorithms starts a tour in the direction of R(rL) at time r , the algorithm is in
Case (B2) at time r . Thus,

Return(σL (r ), r ) = r + 2|L(r ) | − |pos(r ) | < SafeReturn(σR (r ), r ). (20)

The fact that the server starts a tour first serving R(r ) at time r also implies far(r ) = R(r ) by
Lemma 3.11. Using this and the fact that at time r ′ the algorithm is going in the direction of a
leftmost extreme, there are only two cases that can occur at time r ′.

First suppose Greedy1 (r ′) = L(r ′). This in particular implies that r ′ = rR by Equation (19). At
time r , a new leftmost extreme is released and, as no leftmost extremes are served during [rR, rL],
we have |L(r ) | > |L(rR) |. As the safe tour at time r serves σR (r ), we also get |R(rL) | > |L(rR) |,
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i.e., far(rR) = R(rR). This implies pos(rR) < 0 by Lemma 3.11. Thus, we have that sign(pos(r )) =
sign(pos(rR)), and by definition of r ′ = rR the server only moves to the left during [rR, r ]. Hence,
again the assertions of the lemma are fulfilled.

Next suppose Greedy1 (r ′) = R(r ′). As |L(r ′) | > 0 by assumption, we can use Lemma 3.9 to
deduce that r ′ > rR, as otherwise the server could reach the safe tour at time rR. At time r ′

the algorithm starts a tour toward the leftmost extreme. As Greedy1 (r ′′) = R(r ′), the algorithm
is in Case (C) at time r ′. Thus, we have sign(pos(r ′)) � sign(Greedy1 (r ′)) = sign(R(r ′)), i.e.,
pos(r ′) < 0 and

Return(σL (r ′), r ′) = r ′ + 2|L(r ′) | − |pos(r ′) | ≥ SafeReturn(σR (r ), r ). (21)

We deduced above that r ′ > rR. Hence, at time r ′ a leftmost extreme with |L(r ′) | < |L(r ) | is re-
leased, because no leftmost extreme is served during [rL, rR]. Between r ′ and r , the server con-
stantly moves to the left. Thus, we have (r − r ′) = |pos(r ′) − pos(r ) |. Since, pos(r ) ≤ pos(r ′) < 0,
we have that |pos(r ′) − pos(r ) | = |pos(r ) | − |pos(r ′) |. Thus, we have r + 2|L(r ′) | − |pos(r ) | = r ′ +
2|L(r ′) | − |pos(r ′) |. Using this and |L(r ) | > |L(r ′) |, we get

r + 2|L(r ) | − |pos(r ) | > r ′ + 2|L(r ′) | − |pos(r ′) |
(21)
≥ SafeReturn(σR (r ), r ),

contradicting Inequality Equation (20). �

The next two lemmas are important building blocks for proving that the tour planned in Case 2.2
is ρ-competitive.

Lemma 3.22. Assume the algorithm is in Setting 2 and that Greedy1 (r ) = R(r ) and far(r ) = L.
Then,

|T alg | ≤ rL + 2|R(rL) | + 2|L| + 2|R(t ) | − |pos(rL) |. (22)

Proof. Lemma 3.20 yields r = rL and pos(rL) ≥ 0. If [rL, t ) contains a safe release time, then
Lemma 3.20 implies that the tour computed at time t is ρ-competitive. Hence, we only need to
consider the case where [rL, t ) is unsafe. In this case Lemma 3.20 implies

Greedy1 (t̂ ) = L, for all t̂ ∈ (rL, t] at which a rightmost extreme appears.

Recall that at time rL the server starts a tour in the direction of R(rL) and that during (rL, t] only
rightmost extremes are released. Our claim for |T alg | follows immediately in two situations: The
first situation occurs if between rL and t there are no new requests released; the other situation
occurs if all rightmost requests that are released after σR (rL) was served force the server onto
a non-safe tour in the direction of σL (t ). We will in the following analyze the behavior of the
algorithm if at a time r ′ ≤ t after Alg has served σR (rL) a new rightmost request is released such
that the tour planned at time r ′ is non-safe with Alg1 (r ′) = σR (r ′). Also assume that r ′ is the first
time at which the server moves toward a rightmost extreme after having served σR (rL).

Note, that the server does not serve σR (r ′) during [r ′, t] as rL is the release time of the last
rightmost extreme that is served during [rL, t]. Furthermore, Lemma 3.12 implies that the server
does turn around again before a request is served. We also know that at time r ′ the greedy tour
serves σL (r ′) first. Thus, if pos(r ′) < 0, then we have sign(pos(r ′)) = sign(Greedy1 (r ′)) and the
server always starts a tour in the direction of σL (t ) at time r ′ (because r ′ is unsafe) (Case (B1)).
This contradicts the definition of r ′, which implies that pos(r ′) ≥ 0. Also note that between times
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σR (rL) and r ′ the server does not leave [pos(r ′),R(rL)]. Overall, this yields

|T alg | ≤rL + |R(rL) | − |pos(rL) | + |R(rL) − pos(r ′) |
− |pos(r ′) | + 2|L| + 2|R(t ) |
≤rL + |R(rL) | + 2|L| + 2|R(t ) | − |pos(rL) |,

as claimed. �

Lemma 3.23. Assume the algorithm is in Setting 2 and that with Greedy1 (r ) = R(r ) and far(r ) = L.
Further assume that in the optimal offline solution σR (r ) is served before σL (t ) while σR (t ) is served
after σL (t ) and that |R(r ) | > |R(t ) |. Then the tour planned at time t is ρ-competitive.

Proof. Lemma 3.20 yields r = rL and pos(rL) ≥ 0. If [rL, t ) contains a safe release time, then
Lemma 3.20 implies that the tour computed at time t is ρ-competitive. Hence, we only need to
consider the case where [rL, t ) is unsafe. In this case, Lemma 3.20 implies

Greedy1 (t̂ ) = L, for all t̂ ∈ (rL, t] at which a rightmost extreme appears.

Define rR := rR (rL) to be the release time of σR (rL). Our assumption on the offline optimum solu-
tion implies

|T opt | ≥ rR + |R(rL) | + 2|L| + 2|R(t ) |. (23)

To analyze this case, we have to regard the behavior of Alg before σL (t ) is released, i.e., we are
interested in the time interval between rR and rL. By definition, no new rightmost request appears
during (rR, rL]. We again distinguish several cases:

Case A: During [rR, rL] no leftmost extreme is served.
Case A(i): During [rR, rL) there is at least one safe release time.

Recall that by assumption rL is unsafe. Let t safe ∈ [rR, rL) be the last safe release
time in this interval. Recall that at the unsafe release time rL, we have |R(rL) | > 0
and Greedy1 (rL) = R(rL) by assumption. Also during [rR, rL] is stable. Thus, by
Lemmasym 3.14, we have that pos(rL) ≥ 0, far(t safe) = R(rL) and the server does

not turn around after t safe before σR (rL) is served. Using the fact t safe is safe and
that the server only moves to the right during [t safe, rL], we get with Definition 3.4,

rL ≤ ρ |T greedy (t safe) | − 2|L(t safe) | − 2|R(t safe) | + |pos(rL) |. (24)

Also note that the requirements for Lemmasym 3.13 are fulfilled, and we have that

ρ |T greedy (rL) | = ρ |T RL (rL) | > ρ |T greedy (t safe) | + 2|L − L(t safe) |. (25)

Recall that at time rL the greedy tour serves σR (rL) first, which implies

|T opt |
(23)
≥ rR + |R(rL) | + 2|L| + 2|R(t ) | = T greedy (rL) + 2|R(t ) |. (26)

Thus, all in all, we get (note that R(t safe) = R(rL))

|T alg |
Lem. 3.22
≤ rL + 2|R(rL) | + 2|L| + 2|R(t ) | − |pos(rL) |
(24)
≤ ρ |T greedy (t safe) | − 2|L(t safe) | + 2|L| + 2|R(t ) |

= ρ |T greedy (t safe) | + 2|L − L(t safe) | + 2|R(t ) |
(25)
< ρ |T greedy (rL) | + 2|R(t ) |

(26)
< ρ |T opt |.
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Case A(ii): The interval [rR, rL) is unsafe.
In this case, we have Greedy1 (t ′) = R(t ′) whenever at time t ∈ (rR, rL] a leftmost
extreme is released, by Lemmasym 3.9.

In the following, we will regard two cases. Either the server does not move to
the left at all during [rR, rL] or it moves to the left but is forced to turn around
before reaching a leftmost request. Recall that at time rL the server starts a tour in
the direction of σR (rL). Hence, if the server moves to the left during [rR, rL], then
it is forced to turn around at the latest at time rL.

First suppose that Alg does not move to the left at all between rR and rL. Then,
since [rR, rL] is unsafe, the server directly starts to move to the right without
interruption at time rR (Case (B1), Case (B2) or Case (C)). Thus, we have rL = rR +

|pos(rR) − pos(rL) |, because σR (rL) is still unserved at time rL. Using Lemma 3.22,
Equation (23), and |pos(t ) − R(rL) | ≤ |T opt |/2 by Lemma 3.1, we get

|T alg |
Lem. 3.22
≤ rL + 2|R(rL) | + 2|L| + 2|R(t ) | − |pos(rL) |
= rR + |pos(rR) − pos(rL) | + |R(rL) | − |pos(rL) |
+ |R(rL) | + 2|L| + 2|R(t ) |

≤ rR + |pos(rR) − R(rL) | + |R(rL) | + 2|L| + 2|R(t ) |
(23)
≤ 3|T opt |/2 < ρ |T opt |.

Next, suppose that the server does move to the left during [rR, rL]. Denote by
r ′ ∈ (rR, rL] the last point in time at which the server turns around to move to
the right after moving to the left before. As by assumption, no leftmost request is
served during this interval, this in particular means that at time r ′ a new leftmost
request is released. The release of σL (r ′) thus has the effect that the server starts to
move to the right without having served the previous leftmost request. Note, that
such a r ′ always exists in the interval (rR, rL] (if we assume that Alg is moving
to the left at some point in this time frame), because at time rL the server starts a
tour in the direction of σR (rL). Now the requirements of Lemma 3.21 are fulfilled,
which implies that during [rR, r ′] the server only moves to the left, during [r ′, rL]
the server only moves to the right, and sign(pos(rR)) = sign(pos(r ′)).

In particular, we have |L(rR) | > 0 as the server starts a tour in the direction of a
leftmost extreme at time rR.
We now make a case distinction regarding the position of the server at time r ′.
First suppose pos(r ′) ≥ 0. Since during [rR, r ′] the server only moves to the left by
assumption this implies we have pos(rR) ≥ pos(r ′) ≥ 0 and r ′ = rR + |pos(r ′) −
pos(rR) | = rR + |pos(rR) | − |pos(r ′) |. During [r ′, rL] the server only moves to
the right, thus rL = r ′ + |pos(rL) − pos(r ′) | = r ′ + |pos(rL) | − |pos(r ′) |, because
pos(rL) ≥ pos(r ′) ≥ 0 (we have pos(rL) ≥ 0 by our assumption from the begin-
ning of the proof). Note that we have |pos(rR) | < |R(rL) | ≤ |L|, because far(rL) =
L by assumption. Thus, we have |pos(rR) | + |R(rL) | ≤ |R(rL) | + |L| ≤ |T opt |/2.
This implies together with Lemma 3.22 that

|T alg |
Lem. 3.22
≤ rL + 2|R(rL) | + 2|L| + 2|R(t ) | − |pos(rL) |
= r ′ + 2|R(rL) | + 2|L| + 2|R(t ) | + |pos(r ′) |
= rR + |pos(rR) | + 2|R(rL) | + 2|L| + 2|R(t ) |

(23)
≤ 3|T opt |/2.
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Next suppose pos(r ′) < 0, i.e., also pos(rR) < 0. Between rR and r ′ the server
moves to the left without interruption and between r ′ and rL it moves to the right
without interruption. With pos(rL) ≥ 0 by the assumptions from the beginning
of the proof and pos(rR) < 0 this implies rL ≤ rR + |L(rR) − pos(rR) | + |L(rR) −
pos(rL) | = rR + |L(rR) | − |pos(rR) | + |L(rR) | + |pos(rL) |. Using Lemma 3.22 this
yields

|T alg |
Lem. 3.22
≤ rL + 2|R(rL) | + 2|L| + 2|R(t ) | − |pos(rL) |
≤ rR + 2|L(rR) | + 2|R(rL) | + 2|L| + 2|R(t ) | − |pos(rR) |.

As

|T opt |
(23)
≥ rR + |R(rL) | + 2|L| + 2|R(t ) |,

we are left to prove that

2|L(rR) | + |R(rL) | − |pos(rR) | ≤ (ρ − 1) |T opt |.
At time rR, we have |L(rR) | > 0, |R(rR) | = |R(rL) | ≥ |L(rR) | by assumption (see
Equation (28)). Also rR is unsafe. Hence, at time rR all conditions for Lemma 3.10
are fulfilled, which implies

2|L(rR) | + |R(rL) | − |pos(rL) | < (ρ − 1) (rR + |R(rL) | + 2|L|)
(23)
≤ (ρ − 1) |T opt |.

Case B: During [rR, rL] a leftmost extreme is served.
Let r ′ ∈ [rR, rL] be the last release date of a request before Alg serves a leftmost
extreme for the last time in [rR, rL]. In particular this means |L(r ′) | > 0. At time r ′

the server starts a tour in the direction of the current leftmost extreme σL (r ′) and
does not turn around before serving it. Recall that at time rL a new leftmost extreme
is released and that rL is unsafe.

Suppose that at time r ′, we have Greedy1 (r ′) = R(r ′), or Greedy1 (r ′) = L(r ′) and
far(r ′) = L(r ′). Then the requirements for Lemmasym 3.19 are fulfilled, and we have
that

2|R(rL) | + |L| − |pos(rL) | ≤ (ρ − 1) |T opt |,

using Equation (23). Next suppose that Greedy1 (r ′) = L(r ′) and far(r ′) = R(r ′), i.e.,
R(r ′) ≥ |L(r ′) |.

By Lemma 3.11, we have pos(r ′) < 0. As the safe tour at time r ′ serves σR (r ′)
first while the server starts a tour in the direction of σL (r ′), we know that time r ′ is
unsafe. Assume r ′ > rR. Then by definition of r ′, a new leftmost extreme is released
at time r ′. Lemma 3.9 implies that r ′ is safe, a contradiction. Hence, we have r ′ = rR.
Now Lemma 3.10 implies using Equation (23) that 2|R(rL) | + |L(rL) | − |pos(rL) | ≤
(ρ − 1) |T opt |.
Hence, in general, we have that

2|R(rL) | + |L| − |pos(rL) | ≤ (ρ − 1) |T opt |.
Thus, we can deduce

|T alg | ≤ rL + 2|R(rL) | + 2|L| + 2|R(t ) | − |pos(rL) |
≤ rL + |L| + 2|R(t ) | + (ρ − 1) |T opt |
≤ ρ |T opt |. �
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With the next lemma the analysis of Case 2.2 is complete.

Lemma 3.24. Assume the algorithm is in Setting 2 and that Greedy1 (r ) = R(r ) and far(r ) = L.
Then the tour planned at time t is ρ-competitive.

Proof. Lemma 3.20 yields r = rL and pos(rL) ≥ 0. If [rL, t ) contains a safe release time, then
Lemma 3.20 implies that the tour computed at time t is ρ-competitive. Hence, we only need to
consider the case where [rL, t ) is unsafe. In this case Lemma 3.20 implies

Greedy1 (t̂ ) = L, for all t̂ ∈ (rL, t] at which a rightmost extreme appears.

At time rL, we have |L| ≥ |R(rL) |, because far(rL) = L by assumption. Also, recall that |R(rL) | > 0
and that at time rL a leftmost request is released. Thus, at time rL all conditions for Lemma 3.10
are fulfilled, which implies

2|R(rL) | + |L| − |pos(rL) | < (ρ − 1) (rL + |L| + 2|R(rL) |). (27)

We have to distinguish several cases. First suppose that |R(rL) | ≤ |R(t ) |. Lemma 3.22 and Equa-
tion (27) and rL + |L| + 2|R(rL) | ≤ rL + |L| + 2|R(t ) | ≤ |T opt | yield

|T alg |
Lem. 3.22
≤ rL + 2|R(rL) | + 2|L| + 2|R(t ) | − |pos(rL) |
(27)
≤ (ρ − 1) (rL + |L| + 2|R(rL) |) + rL + |L| + 2|R(t ) |
≤ ρ (rL + |L| + 2|R(t ) |)
≤ ρ |T opt |.

Next suppose that

|R(rL) | > |R(t ) |. (28)

To analyze this case, we have to take the behavior of the offline optimum into account.
First, suppose that in the offline optimal solution σR (rL) is served after σL (t ), i.e.,

|T opt | ≥ rL + |L| + 2|R(rL) |. (29)

Inequality Equation (27) and |R(rL) | > |R(t ) | imply 2|R(t ) | + |L| − |pos(rL) | < (ρ − 1) (rL + |L| +
2|R(rL) |). Thus, the following holds:

|T alg |
Lem. 3.22
≤ rL + 2|R(rL) | + 2|L| + 2|R(t ) | − |pos(rL) |

≤ (ρ − 1)
(
rL + |L| + 2|R(rL) |

)
+ rL + |L| + 2|R(rL) |

= ρ
(
rL + |L| + 2|R(t ) |

)
(29)
≤ ρ |T opt |.

Second, suppose that in the offline optimal solution the requests σR (rL) and σR (t ) are served
before σL (t ). Then,

|T opt | ≥ t + |R(t ) | + 2|L|. (30)

By assumption the request σR (rL) is served during [rL, t]. Thus, the σR (rL) is served before the
release of σR (t ) at time t , which implies

t ≥ rL + |R(rL) | − |pos(rL) |. (31)
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Hence, again using Lemma 3.22, |R(rL) | ≤ |L|, pos(t ) ∈ [L,R(t )] by Lemma 3.1, and our assumption
regarding the offline optimum, we get that

|T alg |
Lem. 3.22
≤ rL + 2|R(rL) | + 2|L| + 2|R(t ) | − |pos(rL) |
(31)
≤ t + |R(rL) | + 2|L| + 2|R(t ) |

(30)
≤ |T opt | + |R(rL) | + |R(t ) |
≤ |T opt | + |L| + |R(t ) |

Lem. 3.1
≤ 3|T opt |/2.

The last case when in the optimal offline solution σR (rL) is served before σL (t ) while σR (t ) is
served after σL (t ) is handled by Lemma 3.23. �

Proof of Theorem 3.5

We are now finally able to to give the proof of Theorem 3.5.

Proof of Theorem 3.5. Recall that in our analysis of Algorithm 1, we assumed without loss
of generality that at time t a new rightmost extreme is released. If t is safe, then T alg (t ) is ρ-
competitive by the definition of the safe tour. Also, we have shown in Lemmas 3.8 and 3.9 that
T alg (t ) is ρ-competitive if |L| = 0 or Greedy1 (t ) = R(t ).

It remains to analyze the algorithm when the assumptions in Equation (3) are fulfilled. This was
done by analyzing Cases 1 and 2. We showed in Lemmas 3.15, 3.16, 3.18, and 3.24 that the tours
planned in the considered subcases are ρ-competitive. �

4 LOWER BOUND FOR OPEN ONLINE TSP

In this section, we consider open online TSP on the line and give a tight lower bound on the best-
possible competitive ratio. Note that a lower bound of 2 is obvious: At time 1, we present a request
either at −1 or 1, whichever is further away from the online server. The online tour has length
at least 2 while the optimum tour has length 1. Remarkably, we are able to show a slightly larger
bound that turns out to be tight.

Theorem 4.1. Let ρ ≈ 2.04 be the second-largest root (out of the four real roots) of 9ρ4 − 18ρ3 −
78ρ2 + 210ρ − 107. There is no (ρ − ε )-competitive algorithm for open TSP on the line for any ε > 0.

In the following, we fix any online algorithm Alg and ρ ′ ∈ (2, ρ) and describe an adversarial
strategy that forces |T alg | to be larger than |T opt | by a factor of at least ρ ′. After the first request
σR

0 is released at r0 = 1 to the right3 of the origin, we alternatingly present leftmost and rightmost

extreme requests, in the i-th iteration called σL
i and σR

i , respectively, depending on Alg’s behavior.

Roughly, a new leftmost request σL
i appears whenever the last rightmost request σR

i−1 is served,

and a new rightmost request σR
i appears when Alg has moved close enough to σL

i . Importantly,

we will show that, eventually, some pair (σL
i ,σ

R
i ) is critical, in the following sense.

Definition 4.2. We call the last two requests σ ∗0 = (a∗0; |a∗0 |) and σ ∗1 = (a∗1; |a∗1 |) of a request se-
quence with sign(a∗0) � sign(a∗1) and 0 < |a∗0 | ≤ |a∗1 | critical for Alg if the following conditions
hold:

(i) Both tours move(a∗0) ⊕ move(a∗1) and move(a∗1) ⊕ move(a∗0) serve all the requests pre-
sented until time |a∗1 |.

3We assume pos(1) ≤ 0; the other case is symmetrical.
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(ii) Alg serves both σ ∗0 and σ ∗1 after time |a∗1 |, and pos( |a∗1 |) lies between a∗0 and a∗1.
(iii) Let k ∈ {0, 1} be such that Alg serves σ ∗

k
before σ ∗

1−k
. Then Alg serves σ ∗

k
no earlier

than t∗ := (2ρ ′ − 2) · |a∗
1−k
| + (ρ ′ − 2) · |a∗

k
|.

(iv) We have |a∗
1−k
|/|a∗

k
| ≤ 2.

Indeed, we will show the following lemma.

Lemma 4.3. If there is a request sequence with two critical requests for Alg, then we can release
additional requests such that Alg is not (ρ ′ − ε )-competitive on the resulting instance for any ε > 0.

In the proof, we use the notation from Definition 4.2. We assume that sign(a∗
k

) ≥ 0; the other

case is symmetric. For the sake of readability, we defineσL = (L;−L) := σ ∗
1−k

andσR = (R; R) := σ ∗
k

.

Conceptually, we want to present additional requests after |a∗1 | so that Alg serves σR before σL.

However, it will turn out that servingσR first is a mistake for Alg compared to using the tourT LR :=
move(σL) ⊕ move(σR). Roughly, we make Opt follow the tourT LR and then let it continue moving
to the right until all requests are served by Alg. Accordingly, we will ensure that all additional
requests we introduce coincide with Opt’s position at their release time.

Assume that we could force Alg to serve σL immediately after σR, before serving any additional
requests. In this case, we could simply introduce another request at position R at time |T LR |, and,
by Definition 4.2 (iii), we would have

|T alg | ≥ t∗ + 2( |R| + |L|)
= (2ρ ′ − 2) · |L| + (ρ ′ − 2) · |R| + 2( |R| + |L|)
= ρ ′(2|L| + |R|) = ρ ′|T opt |,

(32)

as claimed.
In general, however, Alg may not serve σL immediately after σR, for example, by waiting for a

while at R—which forces us to postpone the release of additional requests. Of course, Alg needs
to start moving toward σL at some point to stay competitve if no new requests appear. Our goal is
to balance these two effects by introducing one or two new requests.

The additional requests we use depend on the tour that Alg takes after time |a∗1 |. Toward this,

let t∗∗ be the earliest possible time that a server starting in R at time t∗ could serve σL, that is,

t∗∗ := t∗ + |R| + |L|
= (2ρ ′ − 2) · |L| + (ρ ′ − 2) · |R| + |R| + |L|
= (2ρ ′ − 1) · |L| + (ρ ′ − 1) · |R|.

We characterize the trajectory of Alg at time t ≥ |a∗1 | by the difference between t∗∗ and the

earliest possible time that Alg can still serve σL if it aborts its tour at time t and takes the shortest
tour serving σR (if needed) and then σL. Formally, for t ≥ |a∗1 |, we let

delay(t ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t + 2|R| + |L| − pos(t ) − t∗∗ if by time t request σR has

not yet been served;

t + |L| + pos(t ) − t∗∗ if by time t request σR has been

served, but σL has not; and

undefined otherwise.

It is easy to see that the following properties hold.
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Fact 1. Consider some t such that delay(t ) is defined. Let T be the set of tours that start in posi-
tion pos(t ) at time t and, if Alg has not served σR at time t , that do not visit L before R. The following
is true:

(i) There is no tour T ∈ T that arrives at L earlier than t∗∗ + delay(t ).
(ii) There is a tour T ∈ T that arrives at L at time t∗∗ + delay(t ).

The following two lemmata state useful properties of the delay function that will be used to
define the additional requests.

Lemma 4.4. There existsW ≥ 0 with

delay

(
|T LR | + W

ρ ′ − 1

)
=W . (33)

Proof. First observe that Alg has served neither σL nor σR at time |a∗1 |, by Definition 4.2 (ii).

Since, by definition, σL is served after σR, and, hence, σL is still unserved at time |a∗1 | + |L| + |R| ≥
|T LR | = 2|L| + |R|. Therefore, delay( |T LR |) is defined. Now note that we have

t∗ = (2ρ ′ − 2) · |L| + (ρ ′ − 2) · |R| < 2.08 · |L| + 0.04 · |R| ≤ 2|L| + |R| = |T LR |,

where the last inequality follows by Definition 4.2 (iv). Since Alg does not serve σR earlier than t∗

by Definition 4.2 (iii), this implies that no tourT ∈ T (as in Fact 1) can arrive at L earlier than t∗∗ =
t∗ + |L| + |R|, and thus

delay( |T LR |) ≥ 0 (34)

by Fact 1 (ii).
If delay( |T LR |) = 0, then we have W = 0, and we are done. Otherwise, by Inequality Equa-

tion (34), we must have delay( |T LR |) > 0. Observe that, if no new requests appear, Alg must
serve σL at some time to stay (ρ − ε )-competitive. Let W ∗ be chosen such that Alg serves σL

at time |T LR | +W ∗/(ρ ′ − 1), that is,

delay

(
|T LR | + W ∗

ρ ′ − 1
− ε ′

)

is defined for some sufficiently small ε ′ ≤ |L|. Thus, if

delay

(
|T LR | + W ∗

ρ ′ − 1
− ε ′

)
≤ W ∗

ρ ′ − 1
− ε ′,

then we can findW within the interval (0,W ∗ − ε (ρ ′ − 1)], since delay( |T LR |) > 0 and both sides
of Equation (33) are continuous, and we are done. Otherwise,

delay

(
|T LR | + W ∗

ρ ′ − 1
− ε ′

)
>

W ∗

ρ ′ − 1
− ε ′.

So, by Fact 1 (i), Alg has not served σL at time

t∗∗ +
W ∗

ρ ′ − 1
− ε ′ = (2ρ ′ − 1) · |L| + (ρ ′ − 1) · |R| + W ∗

ρ ′ − 1
− ε ′

> |T LR | + W ∗

ρ ′ − 1
,

where we use the definition of t∗∗ in the first step and ρ ′ > 2, ε ′ ≤ |L| in the second step. We obtain
a contradiction to the definition ofW ∗. �

Lemma 4.5. LetW be the value given by Lemma 4.4. Alg serves σR no later than time |T LR | + W
ρ′−1 .
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Proof. Fix t = |T LR | + W
ρ′−1 and let T be as in Fact 1. Assume that

|T LR | + W

ρ ′ − 1
≥ t∗ +W . (35)

Then, by definition of W and by Fact 1 (ii), there must be T ∈ T that serves σL at time t∗∗ +
delay(t ) = t∗∗ +W . Since t ≥ t∗ +W by assumption, this can only be the case if Alg serves σR no
later than time t∗∗ +W − |L| − |R| = t∗ +W ≤ t as claimed.

It remains to show Equation (35). By Definition 4.2 (i), and since |a∗0 | ≤ |a∗1 |, the tour move(a∗0) ⊕
move(a∗1) is optimal. By Fact 1 (i) and for Alg to be (ρ − ε )-competitive, we thus have

t∗∗ + delay(t ) ≤ (ρ − ε ) · (2|a∗0 | + |a∗1 |),

and thus

delay(t ) ≤ (ρ − ε ) · (2|a∗0 | + |a∗1 |) − t∗∗ ≤ |a∗0 | + |a∗1 |. (36)

We can now derive Inequality Equation (35) (solved forW ):

|T LR | − t∗
1 − 1/(ρ ′ − 1)

=
(ρ ′ − 1) ( |T LR | − t∗)

ρ ′ − 2

=
(ρ ′ − 1) (4 − 2ρ ′)

(ρ ′ − 2)
· |L| + (ρ ′ − 1) (3 − ρ ′)

(ρ ′ − 2)
· |R|

> −2.08|L| + 25|R|
> |L| + |R| (Definition 4.2 (iv))

= |a∗0 | + |a∗1 |
≥W .

This completes the proof. �

To prove Lemma 4.3, we show that if we present an additional request at time |T LR | +W /(ρ ′ − 1)
(at a distance ofW /(ρ ′ − 1) to the right of σR) and Alg decides to serve σL before the new request,
the ratio between Alg’s and Opt’s additional costs (Inequality Equation (32)) is at least ρ ′. If Alg
can save time by serving the new request first and does so, then we need to present yet another
request.

Proof of Lemma 4.3. LetW be the value given by Lemma 4.4. We present the request

σR
+ = (R+; rR

+ ) :=

(
|R| + W

ρ ′ − 1
; |T LR | + W

ρ ′ − 1

)

and distinguish two cases:

Case 1: At time rR
+ , Alg is at least as close to L as to R+, or it deliberately serves σL before σR

+ .
We do not present additional requests. Since Alg has already served σR at time rR

+

(Lemma 4.5), it follows by Fact 1 (i) and the definition ofW that Alg does not serve σL

earlier than t∗∗ +W . Hence, the total cost of Alg is

|T alg | ≥ t∗∗ +W + |L| + |R| + W

ρ ′ − 1

= ρ ′ ·
(
|T LR | + W

ρ ′ − 1

)
= ρ ′ · rR

+ ≥ ρ ′ · |T opt |,

which shows the claim.
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Case 2: At time rR
+ , Alg is closer to R+ than to L, and it serves σR

+ first.
The offline server first serving σL continues going to the right at time rR

+ (note that,
in fact, it has been going to the right from time |L| on). For later times t , we denote
by

M (t ) :=
−|L| + (t − 2|L|)

2
=
t − 3|L|

2

the midpoint between the current position of the offline server and −|L|. We distin-
guish two cases.

Case 2.1: Alg does not serve σR
+ until time M−1 (aR

+ ), i.e., the midpoint reaches σR
+ before Alg.

We do not present additional requests and compute Alg’s cost. Because we are in
Case 2, σL is also not served before M−1 (aR

+ ). Using Equation (35) from the proof
of Lemma 4.5, we have rR

+ ≥ t∗ +W and the resulting total cost for Alg is

|T alg | ≥ M−1 (R+) + |R+ | + |L|
(35)
≥ t∗ +W +

(
M−1 (R+) − rR

+

)
+ |R+ | + |L|

=
(ρ ′ + 1)W

ρ ′ − 1
+ ρ ′ |R| + 2ρ ′|L|

= ρ ′ ·
(
|T LR | + W

ρ ′ − 1

)
+

W

ρ ′ − 1
≥ ρ ′ · |T opt |,

which shows the claim.
Case 2.2: Alg serves σR

+ before time M−1 (aR
+ ).

By the definition of W , the delay function is defined at time rR
+ . Hence, Alg

cannot have served σL before this time. Since Alg is to the right of the mid-
point at time rR

+ , there must be a (first) time tmid after Alg has served σR
+ at

which M (tmid) = pos(tmid). We present a last request σR
++ = (R++; rR

++) := (tmid −
2|L|, tmid). Because at time tmid Alg is at the midpoint between L and R++, at this
time the tours move(σR

++) ⊕ move(σL) and move(σL) ⊕ move(σR
++) incur identical

costs for Alg, and we have

|T alg | = tmid + 3

(
tmid − 3|L|

2
+ |L|

)
=

5tmid − 3|L|
2

.

For Alg to not be (ρ − ε )-competitive, we need

|T alg | ≥ ρ ′ · |T opt | = ρ ′ · |R++ | = ρ ′ · tmid,

which is equivalent to

(5 − 2ρ ′) · tmid ≥ 3|L|. (37)

Since the coefficient 5 − 2ρ ′ of tmid is positive, we may assume that tmid is minimal
to show Equation (37). By assumption, σR

+ is already served at time tmid. Hence,
tmid is minimized if, starting at time rR

+ at pos(rR
+ ), Alg serves σR

+ and then goes to
the left, both at full speed. We get

|R+ | − �
�
tmid − rR

+ −
���R+ − pos(rR

+ )���	

= pos(tmid)

=M (tmid) =
tmid − 3|L|

2
.

(38)
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By Lemma 4.5, σR is already served at time |T LR | + W
ρ′−1 , and thus we can

solve Equation (33) for pos(rR
+ ):

pos(rR
+ ) = delay

(
|T LR | + W

ρ ′ − 1

)
− |L| − |T LR | − W

ρ ′ − 1
+ t∗∗

=W − 2|L| − W

ρ ′ − 1
+ t∗

= (2ρ ′ − 4) · |L| + (ρ ′ − 2) · |R| + ρ ′ − 2

ρ ′ − 1
·W (39)

< 0.08 · |L| + 0.04 · |R| + ρ ′ − 2

ρ ′ − 1
·W

≤ |R| + W

ρ ′ − 1
= R+. (Definition 4.2 (iv))

This implies that Alg is to the left of R+ at time rR
+ . Using this insight, we get

|R+ − pos(rR
+ ) | = R+ − pos(rR

+ ). By applying this insight to (38) and solving for tmid,
we obtain

tmid =
1

3

(
3|L| + 4|R+ | + 2rR

+ − 2pos(rR
+ )

)

=
1

3

(
7|L| + 6|R| + 6W

ρ ′ − 1
− 2pos(rR

+ )

)

=
1

3

(
(15 − 4ρ ′) · |L| + (10 − 2ρ ′) · |R| + (10 − 2ρ ′) ·W

ρ ′ − 1

)
,

where we plug in the definition of R+ in the second step and Equation (39) in the
second step. By substituting this into Inequality Equation (37) and noting that it is
hardest to satisfy whenW = 0, we get

|L|
|R| ≤

4ρ ′2 − 30ρ ′ + 50

−8ρ ′2 + 50ρ ′ − 66︸�����������������︷︷�����������������︸
> 2.08

,

which is true due to Definition 4.2 (iv). �

To prove Theorem 4.1 it remains to show that we can define a request sequence (depending on
Alg) that ends with a pair of critical requests. We use the following strategy:

• W.l.o.g. pos(1) ≤ 0. The first request is σR
0 := (1, 1).

• Whenever, at some time, called rL
i in the following, a request at σR

i−1 gets served, we present

the new request σL
i := (Li = −rL

i ; rL
i ). Based on rL

i , we define for t ≥ rL
i the two functions

�Li (t ) := (2ρ ′ − 3) · t − (3 − ρ ′) · rL
i ,

�Ri (t ) := (4 − ρ ′) · t − (2ρ ′ − 2) · rL
i ,

which can as well be viewed as lines in the time–distance diagram.
• If at some time rR

i after rL
i Alg crosses �Li (t ) or �Ri (t ), then we present the request σR

i :=

(Ri = r
R
i ; rR

i ).

• We stop the procedure when one of the following cases occurs. (The pair (σL
i ,σ

R
i ) will be

shown to be critical in these cases.)

Case 1: Alg serves σL
i before σR

i if no new requests appear.
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Case 2: Alg serves σR
i not before time (2ρ ′ − 2) · rL

i + (ρ ′ − 2) · rR
i if no new requests ap-

pear.

The intuition behind the lines �Li and �Ri is the following: Suppose the position of Alg at rR
i is

on or to the right of �Li and Alg decides to serve σL
i before σR

i in case no new requests appear

after rR
i . Then the pair (σL

i ,σ
R
i ) satisfies Definition 4.2 (iii). The symmetric statement holds for �Ri .

The following lemma ensures that, in each iteration, we obtain a (not necessarily critical) pair of
unserved requests (σL

i ,σ
R
i ) and that Definition 4.2 (iv) is fulfilled.

Lemma 4.6. Let i ≥ 1. At time rL
i , Alg is to the right of �Li and �Ri and crosses one of them after rL

i

and before it serves σL
i . We also have that rR

i ≤ 2rL
i .

Proof. We use induction on i . For the induction base, note that rL
1 ∈ [2, ρ ′). Thus, �L1 (rL

1 ) =
−�R1 (rL

1 ) ∈ [6ρ ′ − 12, ρ ′ · (3ρ ′ − 6)). In particular, �L1 (rL
1 ) and �R1 (rL

1 ) are both contained is contained

in (−t1, pos(rL
1 )) = (L1, 1). Since the coefficients of t in both �L1 (t ) and �R1 (t ) are positive, there is

no way for Alg to serve σL
1 before crossing the line.

We get an upper bound on rR
1 by neglecting the possible intersection of Alg with �L1 . Also note

that rR
1 is maximized if Alg goes to the right at full speed throughout the interval (t1, r

R
1 ). In this

case,

�R1 (rR
1 ) = (4 − ρ ′) · rR

1 − (2ρ ′ − 2) · rL
1 = 1 + (rR

1 − rL
1 ),

and, using rL
1 ≥ 2,

rR
1

rL
1

=
2ρ ′ − 3

3 − ρ ′ +
1

(3 − ρ ′)rL
1

≤ 4ρ ′ − 5

6 − 2ρ ′
< 1.63,

for ρ ′ ∈ (2, ρ), in accordance with our claim.
For the induction step, consider some i > 1 and assume the statement was true for all smaller i .

Observe that Alg served σR
i−1 before (2ρ ′ − 2) · rL

i−1 + (ρ ′ − 2) · rR
i−1, since otherwise we would

have stopped the procedure. Using rR
i−1 ≥ rL

i−1, this implies

rL
i < (3ρ ′ − 4) · rR

i−1 = (3ρ ′ − 4) · |Ri−1 | = (3ρ ′ − 4) · pos(rL
i ).

Hence, �Li (rL
i ) = −�Ri (rL

i ) = (3ρ ′ − 6) · rL
i < (3ρ ′ − 6) (3ρ ′ − 4) · pos(rL

i ). Consequently �Li (rL
i )

and �Ri (rL
i ) are both contained in (−rL

i , pos(rL
i )) = (Li , pos(rL

i )), which implies, as before, that Alg

crosses �Li or �Ri before serving σL
i .

We prove the upper bound on rR
i /r

L
i . First, observe that in step i − 1, Alg cannot have crossed

�Ri−1 at time rR
i−1, because in this case σR

i can be served no earlier than

rR
i−1 + Ri−1 − �Ri−1 (rR

i−1) = (2ρ ′ − 2) · rL
i−1 + (ρ ′ − 2) · rR

i−1,

which is the condition of Case 2. Hence,

�Ri−1 (rR
i−1) < �Li−1 (rR

i−1) ⇔ rL
i−1 >

7 − 3ρ ′

3ρ ′ − 5
· rR

i−1

and, using pos(rR
i−1) = �Li−1 (rR

i−1),

pos(rR
i−1)

rR
i−1

= (2ρ ′ − 3) − (3 − ρ ′)
rL

i−1

rR
i−1

< (2ρ ′ − 3) − (3 − ρ ′) (7 − 3ρ ′)

3ρ ′ − 5
.

This implies
rL

i

rR
i−1

≥
rR

i−1 + Ri−1 − pos(rR
i−1)

rR
i−1

>
−3ρ ′2 + 9ρ ′ − 4

3ρ ′ − 5
. (40)
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As rR
i−1 = |pos(rL

i ) |, Inequality Equation (40) gives an upper bound to the quotient |pos(t ) |/t at the

time rL
i the request σR

i is served. This inequality can be interpreted as a bound on the speed of the
server and it is essential for the design and proof of Algorithm 2.

To see the claimed upper bound on rR
i /r

L
i , we again neglect the intersection with �Li , and note

that, rL
i , rR

i are maximized if Alg goes to the right at full speed throughout the interval (rL
i , r

R
i ). In

this case,

�Ri (rR
i ) = (4 − ρ ′) · rR

i − (2ρ ′ − 2) · rL
i

= pos(rL
i ) + (rR

i − rL
i ) = Ri−1 + (rR

i − rL
i ) = rR

i−1 + (rR
i − rL

i ),

and, using Inequality Equation (40),

rR
i

rL
i

≤ −6ρ ′3 + 27ρ ′2 − 32ρ ′ + 7

3ρ ′3 − 18ρ ′2 + 31ρ ′ − 12
< 1.72,

for ρ ′ ∈ (2, ρ), as claimed. �

In the proof of Theorem 4.1, we show that Case 1 or 2 eventually occurs, and we formalize the
above intuition to show, along with Lemma 4.6, that the requests (σL

i ,σ
R
i ) are indeed critical.

Proof of Theorem 4.1. The proof has two parts: We first show that we can indeed apply
Lemma 4.3 in Cases 1 and 2, and then we argue that the procedure terminates.

Consider the step i in which the procedure terminates. In both cases, we apply Lemma 4.3, that
is, we have to show that we have two critical requests. We set σ ∗0 := σL

i and σ ∗1 := σR
i , which are

obviously of the desired form (a; |a |) for some a and fulfill sign(a∗0) � sign(a∗1) as well as 0 < |a∗0 | ≤
|a∗1 |. Again let σ ∗

k
be the request served first by Alg in case no new requests appear. We argue that

Properties (i)–(iv) of Definition 4.2 are fulfilled.
The tours move(a∗0) ⊕ move(a∗1) and move(a∗1) ⊕ move(a∗0) both serve all requests presented

until time rR
i as all these requests have the form (a, |a |) for some a and there are no requests among

them outside [a∗0,a
∗
1]. So Property (i) is fulfilled. Since �Li has a positive slope and �Li (rL

i ) > Li ,

Lemma 4.6 implies that σL
i is still unserved at time rR

i . From pos(1) ≤ 0 it follows that pos(t ) < t

at all times, hence σR
i also remains unserved at time rR

i = |Ri |. In particular pos(rR
i ) ∈ (Li ,Ri ), and

Property (ii) is also fulfilled. Property (iv) follows by Lemma 4.6. To see Property (iii), we make a
case distinction:

• Consider Case 1, that is, we have σ ∗
k
= σL

i . By definition of rR
i , we have

pos(rR
i ) ≥ �Li (rR

i ) = (2ρ ′ − 3) · rR
i + (ρ ′ − 3) · rL

i

= (2ρ ′ − 3) · |a∗1−k | + (ρ ′ − 3) · |a∗k |.

With pos(rR
i ) > Li , this implies that σ ∗

k
is served no earlier than

t∗ = rR
i + |Li − pos(rR

i ) | = rR
i + |Li | + pos(rR

i )

= (2ρ ′ − 2) · |a∗1−k | + (ρ ′ − 2) · |a∗k |.

• Consider Case 2. We can assume that Case 1 is not fulfilled, meaning that Alg servesσR
i = σ ∗

k
first and, since we are in Case 2, not earlier than

t∗ = (2ρ ′ − 2) · rL
i + (ρ ′ − 2) · rR

i = (2ρ ′ − 2) · |a∗1−k | + (ρ ′ − 2) · |a∗k |.

It remains to show that the procedure terminates. We show this by contradiction. Assume Case 1
and Case 2 both never occur. First observe that, if �Ri is crossed at rR

i , Case 2 is fulfilled as we have

rR
i + Ri − �Ri (rR

i ) = (2ρ ′ − 2) · rL
i + (ρ ′ − 2) · rR

i .

Thus, we have rR
i = �

L
i (rR

i ).
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We consider the difference between the release times rL
i , r

R
i−1 of the two consecutive requests

σR
i−1,σ

L
i . It is at least the time to move from �Li−1 (rR

i−1) to Ri−1:

rL
i − rR

i−1 ≥ Ri−1 − �Li−1 (rR
i−1) ⇔ rL

i ≥ (5 − 2ρ ′) · rR
i−1 + (3 − ρ ′) · rL

i−1. (41)

Similarly, the difference between the release times rR
i , r

L
i is at least the time to move from Ri−1 to

�Li (rR
i ). If �Li (rR

i ) < Ri−1, then this is equivalent to the following inequality, which is true otherwise,

since rR
i > rL

i :

rR
i − rL

i ≥ Ri−1 − �Li (rR
i ) ⇔ (2ρ ′ − 2) · rR

i ≥ rR
i−1 + (4 − ρ ′) · rL

i . (42)

As Case 2 is not triggered when σR
i−1 is served, we have

rL
i

¬(Case 2)
< (2ρ ′ − 2) · rL

i−1 + (ρ ′ − 2) · rR
i−1

(41)
< (2ρ ′ − 2) · rL

i−1 +
ρ − 2

5 − 2ρ ′
· (rL

i − (3 − ρ ′) · rL
i−1)

⇔ rL
i <
−3ρ ′2 + 9ρ ′ − 4

7 − 3ρ ′
· rL

i−1

⇒ rL
i <

(
−3ρ ′2 + 9ρ ′ − 4

7 − 3ρ ′

) i−1

· rL
1 .

Combining Inequality Equation (41) and the fact that Case 2 does not occur also yields

(3 − ρ ′) · rL
i + (5 − 2ρ ′) · rR

i

(41)
< rL

i+1

¬(Case 2)
< (2ρ ′ − 2) · rL

i + (ρ ′ − 2) · rR
i

⇔ rL
i >

7 − 3ρ ′

3ρ ′ − 5
· rR

i . (43)

We use this relation between the release time of right and left requests in Inequality Equation (42)

(2ρ ′ − 2) · rR
i > rR

i−1 + (4 − ρ ′) · 7 − 3ρ ′

3ρ ′ − 5
· rR

i

⇔ rR
i >

3ρ ′ − 5

3ρ ′2 + 3ρ ′ − 18
· rR

i−1

⇒ rR
i >

(
3ρ ′ − 5

3ρ ′2 + 3ρ ′ − 18

) i

· rR
0 .

Combining the bounds on rL and rR, we get(
3ρ ′ − 5

3ρ ′2 + 3ρ ′ − 18

) i

< rR
i

(43)
<

3ρ ′ − 5

7 − 3ρ ′
· rL

i < c ·
(
−3ρ ′2 + 9ρ ′ − 4

7 − 3ρ ′

) i

.

for some constant c > 1. This can only be true for all i if

3ρ ′ − 5

3ρ ′2 + 3ρ ′ − 18
≤ −3ρ ′2 + 9ρ ′ − 4

7 − 3ρ ′

⇔ 9ρ ′4 − 18ρ ′3 − 78ρ ′2 + 210ρ ′ − 107 ≤ 0

⇔ ρ ′ ≥ ρ,

where we use ρ ′ ≥ 2 in the last step. This contradicts our choice of ρ ′ and thus proves that the
request procedure terminates. �
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5 ALGORITHM FOR OPEN ONLINE TSP

In this section, we propose an algorithm for the open online TSP on the line, which achieves a
competitive ratio of ρ ≈ 2.04, matching the lower bound presented in Section 4. In the first part
of this section, we describe the algorithm and give some intuition. Afterwards, in the second part,
we analyze the algorithm and prove its competitive ratio.

5.1 Algorithm and Intuition

We introduce a new algorithm for the open case, listed in Algorithm 2. As in Algorithm 1 for the
closed case, our algorithm is given by a subroutine that is called every time a new extreme request
is released, and that takes the current time, the current position of the server, and a pair of extreme
requests as input. It then computes a new tour serving the current extreme requests and thus also
all other requests between these extremes. The algorithm decides the order in which it serves the
extremes and possibly waits based on the current position pos(t ) of the server, the current time t ,
and the release times and positions of the single or the two extreme requests.

ALGORITHM 2: Update(t , pos(t ),σL (t ),σR (t )) for the open online TSP Problem

� This function is called every time a new extreme request is released.

Input: Current time t
Current position pos(t )
Unserved extreme requests σL (t ) and σR (t )

Output: An open TSP tour serving all remaining requests

T0 � move(0) ⊕ waituntil(∞)

if ∃ only single extreme σ1 = (a1; r1) then

(P1)(E1)(P1),(E1) return T0. until(τ + |pos(τ ) − a1 | ≥ ρr1) ⊕ move(a1)

if 0 � [L(t ),R(t )] then

(O) return move(near(t )) ⊕ T0. until(τ + |pos(τ ) − far(t ) | ≥ ρ · r far (t )) ⊕ move(far(t ))

else

if t + |pos(t ) − early(t ) | ≤ L(σ early (t ),σ late (t )) then

(P2) return

T0. until(τ + |pos(τ ) − early(t ) | = L(σ early (t ),σ late (t ))) ⊕ move(early(t )) ⊕
move(late(t ))

else if t + |pos(t ) − late(t ) | ≤ L(σ late (t ),σ early (t )) and

|late(t ) | ≤ 3ρ−5
(2ρ−2)(7−3ρ ) (ρ · r early (t ) + (ρ − 2) |early(t ) |) then

(A2) return

T0. until(τ + |pos(τ ) − late(t ) | = L(σ late (t ),σ early (t ))) ⊕ move(late(t )) ⊕
move(early(t ))

else

(E2) return move(early(t )) ⊕ move(late(t ))

The basic strategy of the algorithm is to move to the origin whenever possible and to serve
the extremes in the latest tour that still guarantees a competitive ratio of ρ. The idea is to wait for
more information and delay the choice in which order to serve the extremes for as long as possible.
The tour that moves to the origin and waits there is defined as T0 := move(0) ⊕ waituntil(∞). We
further introduce the notation T0. until(condition(τ )) to denote the tour that follows T0 until the
first time τ that satisfies “condition(τ ).” Note that this may happen before the server reaches the
origin.
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By moving to the origin whenever possible, the algorithm ensures that the ratio |pos(t ) |/t is
bounded by a constant significantly smaller than 1. In fact, in the lower bound construction (Sec-
tion 4), we observed that a ρ-competitive algorithm may not serve a request too early, i.e., |pos(t ) |/t
cannot be above a certain threshold. The exact bound on this ratio is computed in the proof of
Lemma 4.6 and coincides with the following bound in Lemma 5.1. In the next section, we see that
this bound is crucial for the overall analysis of the algorithm.

Lemma 5.1. The position of the server in a tour computed by Algorithm 2 satisfies

|pos(t ) |
t

≤ 3ρ − 5

−3ρ2 + 9ρ − 4
≈ 0.583

for all times t ≥ 0.

We now discuss the different cases occurring in Algorithm 2 step-by-step. Let us first consider
the simplest case where only one extreme request σ1 = (a1; r1) is present (cases (P1) and (E1) in
Algorithm 2). The offline optimum Opt obviously cannot finish before time r1 in this case. To
guarantee ρ-competitiveness it is therefore sufficient to serve σ1 at time ρr1. Hence, we can afford
to move to the origin and wait until the equation t + |pos(t ) − a1 | = ρr1 is satisfied for the current
time t and position pos(t ). In the next section, we show that this ensures that |pos(t ) |/t is bounded
as stated in Lemma 5.1. Moving to the origin and waiting there further gives us the option to
change our tour without much additional cost if an extreme on the other side is released later
on. We call the resulting tour in this case, the preferred tour (case (P1)). It can happen, however,
that we are only able to serve σ1 later than time ρr1, i.e., t + |pos(t ) − a1 | > ρr1. This means that
the until-condition is already satisfied and the server serves σ1 immediately. We call this tour the
enforced tour (case (E1)). The makespan of Algorithm 2 in this case is |T alg | = r1 + |pos(r1) − a1 |,
and we have |T opt | ≥ r1 and also |T opt | ≥ |pos(t ) − a1 | as Algorithm 2 only visits points on the real

line that must also be visited by Opt at some time. Overall, we have |T alg | ≤ 2 · |T opt |, implying
ρ-competitiveness.

Now, consider the case where two extremes σ1 = (a1; r1) and σ2 = (a2; r2) are present. The two
extremes define an interval

[L(t ),R(t )] = [min{a1,a2},max{a1,a2}].
Note that L(t ) < pos(t ) < R(t ) holds by the definition of extreme requests. Furthermore, we de-
fine σnear (t ) = (near(t ), rnear (t )) and σ far (t ) = (far(t ), r far (t )) to denote an arbitrary extreme re-
quest at time t that is closest to the origin and the other extreme request, respectively. Similarly,
let σ early (t ) = (early(t ), r early (t )) and σ late (t ) = (late(t ), r late (t )) be an arbitrary extreme request at
time t that has been released earliest and the other extreme request, respectively.

If 0 � [L(t ),R(t )] (case (O) in Algorithm 2), then we immediately serve σnear (t ) to ensure that
Lemma 5.1 holds and |pos(t ) |/t stays small. We know that the offline optimum Opt cannot finish
before time r far (t ). After serving σnear (t ) it is therefore safe to return to the origin and wait as long
as we can to reach far(t ) at time ρrnear (t ). We can thus follow the tour T0 after serving σnear (t ) at
time t + |pos(t ) − far(t ) | ≥ ρr far (t ). Possibly, this equation is already satisfied from the start, and
we serve σ far (t ) immediately.

Next, consider the case that 0 ∈ [L(t ),R(t )] (cases (P2), (A2) and (E2)) at time t = r late (t ). We
have a lower bound of |T opt | ≥ r early (t ) + |early(t ) | + |late(t ) |, irrespective of whether Opt serves

σ early (t ) or σ late (t ) first. If we serve σ early (t ) first, which we call the preferred tour (case (P2)),
then we ensure that the tour produced by Algorithm 2 is not longer than ρ |T opt | by satisfying the
inequality

t + |pos(t ) − early(t ) | + |early(t ) | + |late(t ) | ≤ ρ (r early (t ) + |early(t ) | + |late(t ) |). (44)
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Now suppose that Opt serves σ late (t ) first and a new request σ ′ = (early(t ); r late (t ) + |early(t ) | +
|late(t ) |) appears at the same position as σ early (t ) when Opt arrives there. The new request does
not increase the cost for Opt, which is still only lower bounded by |T opt | ≥ r late (t ) + |early(t ) | +
|late(t ) |. But our algorithm, which served σ early (t ) first, may be closer to σ late (t ) at the time when
this new request appears and now has to go all the way back to the position early(t ) after serving
σ late (t ). The intuition for why it is sufficient to protect against this worst-case situation is that if σ ′

appears at a position further away from the origin, then this additional distance has to be traveled
by Opt as well, and if σ ′ appears closer to the origin, it only benefits our algorithm. To ensure
ρ-competitiveness in this scenario, the following inequality has to be satisfied additionally:

t + |pos(t ) − early(t ) | + 2( |early(t ) | + |late(t ) |)

≤ ρ (r late (t ) + |early(t ) | + |late(t ) |).
(45)

If we now define

L(σ1,σ2) := min{ρr1 + (ρ − 1) |a1 | + (ρ − 1) |a2 |,
ρr2 + (ρ − 2) |a1 | + (ρ − 2) |a2 |},

then Inequality Equations (44) and (45) are simultaneously satisfied if and only if t + |pos(t ) −
early(t ) | ≤ L(σ early (t ),σ late (t )). If this latter inequality is satisfied with some slack, then we again
follow the tourT0 until it becomes tight, so that |pos(t ) |/t stays small, and we are more flexible to
change our tour when new requests appear.

In case the conditions for the preferred tour are not satisfied, we try to serve σ late (t ) first. This is
called the anticipated tour (case (A2)). The inequalities that need to be satisfied in this case are the
same as those for the preferred tour with σ early (t ) and σ late (t ) exchanged. Moreover, to ensure that
|pos(t ) |/t is bounded as claimed in Lemma 5.1, the following inequality also needs to be satisfied
if Algorithm 2 serves σ late (t ) first:

|late(t ) | ≤ 3ρ − 5

(2ρ − 2) (7 − 3ρ)
(ρr early (t ) + (ρ − 2) |early(t ) |)

≈ 1.21 · r early (t ) + 0.02 · |early(t ) |.
(46)

Intuitively, the inequality ensures that σ late (t ) is not too far from the origin compared to σ early (t ),
as otherwise we would need to start too early to serve the extreme σ late (t ) and would violate the
bound on |pos(t ) |/t .

Last, in case neither the conditions for the preferred tour nor the anticipated tour are met, we
immediately serve the earlier request σ early (t ) first and σ late (t ) directly afterwards. This is called
the enforced tour (case (E2)). The main challenge in showing ρ-competitiveness in the analysis
of the algorithm in the next section is to derive a better lower bound on Opt in this case by
considering extremes that must have been released before.

5.2 Algorithm Analysis

The main goal of this section is to prove the following theorem stating that the competitiveness
of Algorithm 2 indeed matches the lower bound from Theorem 4.1:

Theorem 5.2. Algorithm 2 is ρ-competitive with ρ ≈ 2.04 being the second-largest root of the
polynomial 9ρ4 − 18ρ3 − 78ρ2 + 210ρ − 107.

Recall that we assume without loss of generality that r ≥ |a | holds for all requests σ = (a; r ),
because the server cannot reach σ before time |a | and it only helps the algorithm to know a re-
quest earlier. Note that Algorithm 2 is called only if the newly released request is an extreme.
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Lemma 3.1 (1) also holds for open online TSP, and we can therefore assume for the analysis that
every request σ is an extreme at its release time. Moreover, we will frequently use the following
lower bounds for an optimal offline algorithm.

Lemma 5.3. We have the following lower bounds for the makespan of an optimal (offline) schedule
|T opt |. If σ1 = (a1; r1) and σ2 = (a2; r2) are two requests such that r1 ≤ r2, then

|T opt | ≥ r1 + |a1 − a2 | ≥ |a1 − a2 |.

Moreover, if σ1 = (a1; r1) is a request and pos(t ) denotes the position of the server at an arbitrary
time t in a tour computed by Algorithm 2, then

|T opt | ≥ |pos(t ) − a1 |.

Proof. The first inequality follows from the fact that Opt needs to serve both σ1 and σ2. For
the second inequality, let pR (t ) be the rightmost location of a request seen until time t and pL (t )
be the leftmost location of a request seen until time t . The server following the tour computed by
Algorithm 2 never moves left of pL (t ) or right of pR (t ), thus pos(t ) ∈ [pL (t ),pR (t )] and |T opt | ≥
|pL (t ) − pR (t ) | ≥ |pos(t ) − a1 |. �

The first important step of the analysis is now to show the bound on |pos(t ) |/t stated in
Lemma 5.1.

Proof of Lemma 5.1. Observe that the server in a tour computed by Algorithm 2 always ei-
ther moves with unit speed or it waits at the origin. If the server moves with unit speed toward
the origin, then the ratio |pos(t ) |/t is decreasing, and if it moves away from the origin with unit
speed toward a request, then the ratio |pos(t ) |/t is increasing (unless it is 1). The ratio |pos(t ) |/t
is therefore maximized at a time t when a request is served and the server moves back to the
origin afterwards. To show the claim it is thus sufficient to only consider times when an extreme
request is served. Let t∗ be the time at which the tour serving the extreme request is planned by
Algorithm 2. We distinguish between the cases that can occur in Algorithm 2 at time t∗.

(1) Cases (P1) and (E1)
The server follows the preferred or enforced tour serving a single extreme request
σ early (t∗) = (a1; r1). Let t be the time this request is served. In Case (P1) the server ar-
rives at a1 exactly at time ρr1 and in Case (E1) it arrives after time ρr1. Thus, we have
t ≥ ρr1 and using ρ > 2 and a1 ≤ r1, we obtain

pos(t )

t
≤ a1

ρr1
≤ a1

ρa1
=

1

ρ
<

1

2
< 0.583.

(2) Case (O)
The server follows the tour defined according to Case (O). As long as the server moves
toward σnear (t∗), the ratio |pos(t ) |/t decreases. The request σ far (t∗) is not served until
time ρ · r far (t∗). We again apply ρ > 2 and far(t∗) ≤ r far (t∗) and get

pos(ρ · r far (t∗))

ρ · r far (t∗)
=

far(t∗)

ρ · r far (t∗)
≤ far(t∗)

ρ · far(t∗)
=

1

ρ
<

1

2
< 0.583.

(3) Cases (P2) and (E2)
The algorithm follows the preferred or enforced tour serving σ early (t∗) followed by
σ late (t∗). Let t be the time when the server arrives at early(t∗). In Case (P2), we have
t = L(σ early (t∗),σ late (t∗)), while in Case (E2), we have t > L(σ early (t∗),σ late (t∗)). Using
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|early(t∗) | ≤ r early (t∗) ≤ r late (t∗), we obtain

t ≥ L(σ early (t∗),σ late (t∗))

= min{ρr early (t∗) + (ρ − 1) |early(t∗) | + (ρ − 1) |late(t∗) |, ρr late (t∗)

+ (ρ − 2) |early(t∗) | + (ρ − 2) |late(t∗) |},
≥ (2ρ − 2) |early(t∗) |.

Thus, |pos(t ) |/t ≤ 1/(2ρ − 2) < 1/2 < 0.583 holds, which implies the claim for σ early (t∗).
After serving σ early (t∗), the server moves to late(t∗) to serve σ late (t∗). Let t ′ be the time
the server arrives at late(t∗). We have |late(t∗) | ≤ r late (t∗), and therefore

t ′ ≥ L(σ early (t∗),σ late (t∗)) + |early(t∗) | + |late(t∗) |

= min{ρr early (t∗) + ρ |early(t∗) | + ρ |late(t∗) |, ρr late (t∗)

+ (ρ − 1) |early(t∗) | + (ρ − 1) |late(t∗) |}
≥ ρ |late(t∗) |.

We get |pos(t ′) |/t ′ ≤ 1/ρ < 1/2 < 0.583 as claimed.
(4) Case (A2)

In the anticipating tour Algorithm 2 serves σ late (t∗) = (late(t∗); r late (t∗)) before
σ early (t∗) = (early(t∗); r early (t∗)). Moreover, as the conditions for the anticipating tour are
satisfied, we also have

|late(t∗) | ≤ 3ρ − 5

(2ρ − 2) (7 − 3ρ)
(ρr early (t∗) + (ρ − 2) |early(t∗) |). (47)

Let t be the time when the server arrives at late(t∗). By using Inequality Equation (47) and
r early (t∗) ≤ r late (t∗), we obtain

t = L(σ late (t∗),σ early (t∗))

= min{ρr late (t∗) + (ρ − 1) |late(t∗) | + (ρ − 1) |early(t∗) |, ρr early (t∗)

+ (ρ − 2) |late(t∗) | + (ρ − 2) |early(t∗) |}

= ρr early (t∗) + (ρ − 2) |late(t∗) | + (ρ − 2) |early(t∗) |
(47)
= |late(t∗) |

(
(ρ − 2) +

(2ρ − 2) (7 − 3ρ)

3ρ − 5

)

= |late(t∗) | −3ρ2 + 9ρ − 4

3ρ − 5
.

Thus, Inequality Equation (56) is satisfied with equality.
Now, let t ′ be the time the server arrives at early(t∗) after having served σ late (t∗). Using

r early (t∗) ≥ early(t∗), we obtain

t ′ = L(σ late (t∗),σ early (t∗)) + |late(t∗) | + |early(t∗) |

= ρr early (t∗) + (ρ − 1) |late(t∗) | + (ρ − 1) |early(t∗) |
≥ (2ρ − 1) |early(t∗) |.

Therefore, |pos(t ′) |/t ′ ≤ 1/(2ρ − 2) < 1/2 < 0.583 holds, as claimed. �

We are now ready to show the main result.
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Proof of Theorem 5.2. At time t a new request is released and Algorithm 2 computes a new
tour T alg. We show that this new tour is ρ-competitive, i.e., |T alg | ≤ ρ |T opt |. In the proof, we first
distinguish between the cases that can occur at time t and also in previous calls of Algorithm 2.

Without loss of generality, we assume that the new extreme request released at time t is a
rightmost request denoted by σR (t ) = (R(t ); t ). If at the call of Algorithm 2 at time t Case (P1),
(P2), or (A2) occurs, i.e., the newly computed tour T alg is preferred or anticipating, then we know
that T alg is ρ-competitive. This is because the request served last will be served at time ρt at the
latest and obviously |T opt | ≥ t . Thus, we only need to analyze the other cases that can occur at
time t . If at time t a leftmost extreme σL (t ) exists, then we denote its release time by rL := rL (t ).

(1) Case (E1) at time t
In this case σR (t ) = (R(t ); t ) is the only extreme request at time t and the server immedi-
ately moves toward σR (t ) as t + |pos(t ) − R(t ) | > ρt . We have |T alg | = t + |pos(t ) − R(t ) |
and Lemma 5.3 implies |T opt | ≥ t as well as |T opt | ≥ |pos(t ) − R(t ) |. Thus, |T alg | = t +
|pos(t ) − R(t ) | ≤ 2|T opt | < ρ |T opt | holds, as desired.

(2) Case (O) at time t
In this case two extremes σL (t ) and σR (t ) are present such that 0 � [L(t ),R(t )]. Recall that
the position of the server is strictly between both extremes, because R(t ) is right of the
server and L(t ) left of the server by definition and both requests are unserved at time t .
If there is no unserved request on one side of the server, then the algorithm would be in
Case (P1) or (E1).

If after serving σ early (t∗) the server follows the tour T0 for some time, then it serves
σ late (t∗) by time ρr late (t∗) and the tour computed by Algorithm 2 is ρ-competitive. Thus,
from now on, we suppose that the server moves toward σ early (t∗) and then σ late (t∗) with-
out interruption. We distinguish the two cases |R(t ) | < |L(t ) | and |R(t ) | > |L(t ) |.

We first consider the case where |R(t ) | < |L(t ) |. As we are in the Case (O), this im-
plies that R(t ), L(t ) < 0. The tour in this case chooses to serve σR (t ) = σ early (t∗) first. Us-
ing |L(t ) − R(t ) | ≤ |L(t ) | ≤ rL, pos(t ) ∈ (L(t ),R(t )) and the bounds |T opt | ≥ t and |L(t ) −
R(t ) | + rL ≤ |T opt | by Lemma 5.3 (t ≥ rL), we obtain

|T alg | = t + |pos(t ) − R(t ) | + |R(t ) − L(t ) |
≤ t + |pos(t ) − R(t ) | + rL

≤ t + |L(t ) − R(t ) | + rL

≤ 2|T opt |.

Next suppose that |R(t ) | > |L(t ) | and hence L(t ),R(t ) > 0. In this case σL (t ) is served first,
and we obtain

|T alg | = t + |pos(t ) − L(t ) | + |L(t ) − R(t ) |.

Recall that pos(t ) ∈ [L(t ),R(t )]. If pos(t ) = L(t ) this implies that |T alg | = t + |L(t ) −
R(t ) | ≤ 2|T opt |. If pos(t ) > L(t ), we have to take the situation during the time interval
[rL, t] into account. As σL (t ) was released at rL, only rightmost extremes are released dur-
ing (rL, t], which means that Case (O) occurs whenever a new request is released during
this time frame, because L(t ) > 0. At time rL only the Cases (P1), (E1), or (O) can occur,
again because L(t ) > 0. In all these cases the server will immediately move toward L(t ) or
0, i.e., to the left, and pos(t ) > L(t ) implies that the server does not reach L(t ) by time t .
Thus, the server moves uninterrupted to the left during [rL, t]. Applying Lemma 5.3 and
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L(t ) < pos(t ), we get

|T alg | = rL + |pos(rL) − L(t ) | + |L(t ) − R(t ) |
Lem. 5.3
≤ 2|T opt |.

(3) Case (E2) at time t
In this case, we have L(t ) ≤ 0 and R(t ) ≥ 0 at time t . Hence, from time t on, the tour com-
puted by Algorithm 2 serves σL (t ) and σR (t ) without interruption in this order provided
no new requests are released after time t . If pos(t ) ≤ 0, then we obtain using Lemma 5.3

|T alg | ≤ t + |L(t ) | + |L(t ) − R(t ) | ≤ t + (rL + |L(t ) − R(t ) |)
Lem. 5.3
≤ 2|T opt |.

Thus, from now on, we suppose that pos(t ) > 0. In this case, we get

|T alg | = t + |pos(t ) | + |L(t ) | + |L(t ) − R(t ) |.

It is not possible to directly show ρ-competitiveness in this case. Instead, we need to take
the behavior of the server during times [rL, t] into account. We distinguish two cases.
Either the server only moves to the left toward σL (t ) without interruption during this
interval or the server gets delayed, because it waits at the origin or moves to the right for
some time. Let pR (t ) be the rightmost point of a request seen until time t . In the first case,
we know that 0 < |pos(t ) | ≤ |pos(rL) | ≤ pR (t ) as the server only moves left during [rL, t]
and pos(t ) > 0 by assumption. Applying Lemma 5.3 and and using |pos(rL) | ≤ |pR (t ) |, we
obtain

|T alg | ≤ rL + |pos(rL) | + |L(t ) | + |L(t ) − R(t ) |
≤ ( |pR (t ) | + |L(t ) |) + (rL + |L(t ) − R(t ) |)

Lem. 5.3
≤ 2|T opt |.

We now consider the case where the server does not move toward σL (t ) without inter-
ruption during [rL, t]. For this to happen, there has to be a call of the Algorithm 2 at
some time t̂ ∈ [rL, t ) such that the tour followed by the server in [t̂ , t] waits at the ori-
gin or moves to the right for some time. We choose t̂ maximal with this property. By
Lemma 5.4, only the Cases (A2), (P2), and (E2) can occur at time t̂ . The Cases (A2) and (P2)
are both treated in Lemma 5.6. Finally, Case (E2) is treated in Lemma 5.7. This concludes
the proof. �

5.3 Remaining Lemmas in the Proof of Theorem 5.2

We still have to show ρ-competitiveness of Algorithm 2 in the following setting (last case of the
proof of Theorem 5.2.)

Setting 3. Consider the following setting of requests in an instance for Algorithm 2.

• At time t the request σR (t ) = (R(t ), t ) appears with R(t ) ≥ 0 and Case (E2) occurs.
• At time t there is a leftmost extreme σL (t ) = (L(t ), rL) present with L(t ) ≤ 0.
• The position of the server satisfies pos(t ) > 0.
• Time t̂ ∈ [rL, t ) is the last time Algorithm 2 is called such that the tour followed by the server in

[t̂ , t] waits at the origin or moves to the right for some time, i.e., is not identical to “move(L(t ))”.

In the next lemma, we limit the cases that can occur at time t̂ in the setting above.

Lemma 5.4. In Setting 3 the only cases that can occur when Algorithm 2 is called at time t̂ are
Case (A2) if t̂ > rL, and Cases (P2) and (E2) if t̂ = rL.

Proof. We first establish the following two claims:
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• The tour computed at t̂ does not serve the extreme request σL (t ) first.
Aiming for a contradiction assume that σL (t ) is served first. Note that by the choice of t̂
any tour computed after t̂ immediately moves left. If pos(t̂ ) ≤ 0, then also pos(t ) ≤ 0 holds,
because the computed tour does not move right of the origin before serving σL (t ) in this
case. However, this contradicts pos(t ) > 0. If pos(t̂ ) > 0, then the server will move toward
the origin first. If the server arrives at the origin and waits there during [rL, t ), then we
have pos(t ) ≤ 0, which is again a contradiction. If it does reach the origin or does not wait
there, then the server moves toward L(t ) during [t̂ , t] without interruption, contradicting
our assumptions about t̂ in Setting 3.

• Case (O) cannot occur at time t̂ .
As L(t ) ≤ 0 holds, Case (O) would imply that pos(t̂ ) ≤ σR (t̂ ) < 0. But this contradicts
pos(t ) > 0, because the tour computed at t̂ only moves to σR (t̂ ) and then left and any tour
computed after t̂ immediately moves to the left by the choice of t̂ .

First consider the case rL < t̂ < t . This implies that Alg is forced to divert from the direct tour
toward σL (t ) caused by the release of a rightmost extreme at time t̂ . The release of a leftmost
extreme would contradict that σL (rL) is still the leftmost extreme at time t . The Cases (P1) and
(E1) cannot occur at time t̂ , because two different extremes exists at this point in time. By the
first claim above, (P2) and (E2) cannot occur and by the second claim, Case (O) cannot occur. This
leaves Case (A2) as the only possibility.

Next, let us consider the case t̂ = rL. This means that Algorithm 2 computes a tour at the release
of σL (t ) at time rL that waits at the origin or moves to the right for some time. By the first claim
above, Case (P1), (E1), and (A2) cannot occur. Moreover, Case (O) cannot occur by the second claim.
Thus, only Case (P2) and Case (E2) are possible for t̂ = rL. �

Later, we will also consider the following analogous version of the setting above where the role
of the leftmost and rightmost extreme are exchanged, the server is on the other side of the origin,
and we again consider the time interval between the release times of both extremes.

Setting 4. Consider the following setting of requests of an instance for Algorithm 2.

• At time rL the request σL (t ) = (L(t ), rL) appears with L(t ) ≤ 0 and Case (E2) occurs.
• At time rL there is a rightmost extreme σR (rL) = (R(rL), rR) present with R(rL) ≥ 0.
• The position of the server satisfies pos(rL) < 0.
• Time t̃ ∈ [rR, rL) is the last time Algorithm 2 is called such that the tour followed by the

server in [t̃ , rL] waits at the origin or moves to the left for some time, i.e., is not identical
to “move(R(rL)).”

With a completely analogous proof, we obtain the same result as in Lemma 5.4 for the setting
above.

Corollary 5.5. In Setting 4, the cases that can occur when Algorithm 2 is called at time t̃ are
Case (A2) when t̃ > rR, and Cases (P2) and (E2) when t̃ = rR.

The following lemma now treats the Cases (P2) and (A2) at t̂ .

Lemma 5.6. In Setting 3, if Case (P2) or Case (A2) occur at time t̂ , no additional requests appear
after σR (t ) = (R(t ), t ) is released at time t and the tour computed by Algorithm 2 at t̂ serves σR (t̂ )
before σL (t ), then |T alg | ≤ ρ |T opt |.

Proof. By the choice of t̂ , we know that the server immediately moves toward L(t ) without
waiting if any new extreme arrives in (t̂ , t]. From then on it will serve σL (t ) and afterwards σR (t )
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without interruption, because Case (E2) occurs at time t . Thus, the latest point in time after t̂ at
which the server starts moving to the left is when it reaches R(t̂ ). Hence, we have pos(t ) ≤ R(t̂ )
and additionally using pos(t ) > 0, we obtain

|T alg | ≤ t + |pos(t ) | + 2|L(t ) | + |R(t ) |
≤ t + |R(t̂ ) | + 2|L(t ) | + |R(t ) |. (48)

By the definition of Cases (P2) and (A2) the server reaches R(t̂ ) at the latest at time L(σR (t̂ ),σL (t )).
From then on it will serveσL (t ) and afterwardsσR (t ) without interruption. Using L(σR (t̂ ),σL (t )) ≤
ρrL + (ρ − 2)R(t̂ ) + (ρ − 2)L(t ), we also have the following bound:

|T alg | ≤ L(σR (t̂ ),σL (t )) + |R(t̂ ) | + 2|L(t ) | + |R(t ) |
≤ ρrL + (ρ − 1) |R(t̂ ) | + ρ |L(t ) | + |R(t ) |.

For |R(t̂ ) | ≤ |R(t ) |, we immediately obtain |T alg | ≤ ρ (rL + |L(t ) | + |R(t ) |) ≤ ρ |T opt |. Otherwise, we
have |R(t ) | < |R(t̂ ) | and get

|T alg | ≤ ρ (rL + |L(t ) | + |R(t̂ ) |). (49)

To show ρ-competitiveness in this case, we consider the six possible orders in which the requests
σL (t ), σR (t̂ ) and σR (t ) can be served in an optimal tour.

• In the three cases where the optimal tour serves σL (t ) before σR (t̂ ), we have |T opt | ≥ rL +

|R(t̂ ) | + |L(t ) | and Inequality Equation (49) ensures ρ-competitiveness.
• If the optimal tour serves σR (t ) before σL (t ), then we obtain |T opt | ≥ t + |R(t ) | + |L(t ) |. By

the bound in Equation (48), we obtain

|T alg |
(48)
≤ t + |R(t̂ ) | + 2|L(t ) | + |R(t ) |
= (t + |L(t ) | + |R(t ) |) + ( |L(t ) | + |R(t̂ ) |) ≤ 2|T opt |.

• In the remaining case where the optimum uses the order σR (t̂ ),σL (t ),σR (t ), we have that
|T opt | ≥ 2|R(t̂ ) | + 2|L(t ) | + |R(t ) |. Using Equation (48) together with |T opt | ≥ t , we can con-
clude that

|T alg |
(48)
≤ t + |R(t̂ ) | + 2|L(t ) | + |R(t ) |
≤ t + (2|R(t̂ ) | + 2|L(t ) | + |R(t ) |) ≤ 2|T opt |. �

Finally, we treat the remaining Case (E2) at time t̂ .

Lemma 5.7. In Setting 3, if Case (E2) occurs at time t̂ = rL and no additional requests appear after

σR (t ) = (R(t ), t ), then |T alg | ≤ ρ |T opt |.

Proof. By assumption Case (E2) occurs at time rL = t̂ and the server immediately moves toward
R(rL) by Lemma 5.4. It either serves σR (rL) and then moves left to serve σL (t ) or it moves to σL (t )
earlier when a new extreme arrives in (t̂ , t]. By time t the server has not reached L(t ) as σL (t ) is
still unserved at time t . Now Case (E2) occurs and the server serves σL (t ) and afterwards σR (t )
without interruption. We denote the release time of σR (rL) by rR. We first consider the case where
pos(rL) ≥ 0. Using 0 ≤ pos(rL) ≤ |R(rL) | ≤ rR and applying Lemma 5.3 twice, we obtain

|T alg | ≤ rL + 2|R(rL) | + 2|L(t ) | + |R(t ) |
≤ (rR + |R(rL) | + |L(t ) |) + (rL + |L(t ) | + |R(t ) |)

Lem. 5.3
≤ 2|T opt |.
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So, from now on, we suppose pos(rL) < 0. In this case, we have

|T alg | ≤ |rL + |pos(rL) | + 2|R(rL) | + 2|L(t ) | + |R(t ) | (50)

= (rL + |L(t ) | + |R(t ) |) + ( |pos(rL) | + 2|R(rL) | + |L(t ) |)
Lem. 5.3
≤ |T opt | + ( |pos(rL) | + 2|R(rL) | + |L(t ) |). (51)

The remaining proof of the lemma proceeds along the following key claims. Note that Claims 2
and 3 together show that Algorithm 2 is ρ-competitive, because either Inequality Equation (53) or
Inequality Equation (54) is satisfied.

Claim 1: We can assume the following lower bound for Opt (otherwise Algorithm 2 is ρ-
competitive):

|T opt | ≥ rL + |L(t ) | +max( |R(rL) |, |R(t ) |). (52)

Claim 2: We can show |T alg | ≤ ρ |T opt | provided that

|L(t ) | ≤ 3ρ − 5

(2ρ − 2) (7 − 3ρ)
(ρrR + (ρ − 2) |R(rL) |). (53)

Claim 3: We can show |T alg | ≤ ρ |T opt | provided that

|L(t ) | > 3ρ − 5

(2ρ − 2) (7 − 3ρ)
(ρrR + (ρ − 2) |R(rL) |). (54)

The claims are proven below. This concludes the proof of the lemma. �

It remains to prove the claims made in the proof of the Lemma 5.7. We start with the auxiliary
claim.

Proof of Claim 1. Suppose at first that |R(rL) | > |R(t ) |. In this case, we know that by time t
Algorithm 2 has served σR (rL), since at that time σR (t ) is the extreme rightmost of pos(t ) rather
than σR (rL). As Case (E2) occurs at time t , we have pos(t ) ∈ [L(t ),R(t )] and therefore t ≥ rL +

|pos(rL) | + |R(rL) | + ( |R(rL) | − |R(t ) |). Using this inequality and pos(rL) < 0, we obtain

|T alg |
(50)
≤ rL + |pos(rL) | + 2|R(rL) | + 2|L(t ) | + |R(t ) |
= rL + |pos(rL) | + |R(rL) | + ( |R(rL) | − |R(t ) |) + 2|L(t ) | + 2|R(t ) |
≤ t + 2|L(t ) | + 2|R(t ) |
= (t + |R(t ) | + |L(t ) |) + ( |L(t ) | + |R(t ) |)
≤ (t + |R(t ) | + |L(t ) |) + |T opt |.

If the optimal tour serves σR (t ) before σL (t ), then we have |T opt | ≥ t + |L(t ) | + |R(t ) |, which

implies that |T alg | ≤ 2|T opt |. If, however, the optimal tour serves the requests in the order
σR (rL),σL (t ),σR (t ), then we know that |T opt | ≥ 2|R(rL) | + 2|L(t ) | + |R(t ) | ≥ 2|L(t ) | + 2|R(t ) | +
|R(rL) |. This implies that

|T alg | ≤ t + (2|R(t ) | + 2|L(t ) |) ≤ 2|T opt |.

Next suppose that |R(rL) | > |R(t ) | holds. Then in the optimal tour σL (t ) is served before σR (rL). Of
course, it might still be the case that |R(rL) | ≤ |R(t ) |; however, in both cases we obtain the claimed
lower bound |T opt | ≥ rL + |L(t ) | +max( |R(rL) |, |R(t ) |). �

Next, we prove the two remaining claims, establishing that the algorithm has the claimed com-
petitive ratio.
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Proof of Claim 2. Using rR ≥ R(rL), the assumption implies

|L(t ) | ≤ 3ρ − 5

(2ρ − 2) (7 − 3ρ)
(ρrR + (ρ − 2) |R(rL) |) ≤ 3ρ − 5

7 − 3ρ
rR. (55)

Note that the assumed inequality is exactly the second condition for Case (A2) at time rL. Because
Case (E2) occurs at time rL by assumption, we know that the first condition of Case (A2) does
not hold, i.e., rL + |pos(rL) − L(t ) | > L(σL (t ),σR (rL)). We have rR ≤ rL and thus L(σL (t ),σR (rL)) =
ρrR + (ρ − 2) |L(t ) | + (ρ − 2) |R(rL) |. Moreover, |pos(rL) − L(t ) | = |L(t ) | − |pos(rL) | holds, because
pos(rL) < 0. Hence, we obtain

|pos(rL) | < rL + |L(t ) | − L(σL (t ),σR (rL))

= rL + (3 − ρ) |L(t ) | + (2 − ρ) |R(rL) | − ρrR. (56)

Using Inequality Equation (56), 2rL ≤ ρrL + (2 − ρ) |L(t ) | and Inequality Equation (55), we obtain

|T alg |
(50)
≤ rL + |pos(rL) | + 2|R(rL) | + 2|L(t ) | + |R(t ) |

(56)
≤ 2rL + (5 − ρ) |L(t ) | + (4 − ρ) |R(rL) | + |R(t ) | − ρrR

≤ ρrL + (7 − 3ρ) |L(t ) | + ρ |L(t ) | + (4 − ρ) |R(rL) | + |R(t ) | − ρrR

(55)
≤ ρrL + (3ρ − 5)rR + ρ |L(t ) | + (4 − ρ) |R(rL) | + |R(t ) | − ρrR

= ρrL − (5 − 2ρ)rR + ρ |L(t ) | + (4 − ρ) |R(rL) | + |R(t ) |
≤ ρrL − (5 − 2ρ) |R(rL) | + ρ |L(t ) | + (4 − ρ) |R(rL) | + |R(t ) |
= ρrL + (ρ − 1) |R(rL) | + ρ |L(t ) | + |R(t ) |

≤ ρ
(
rL + |L(t ) | +max( |R(rL) |, |R(t ) |)

)
(52)
≤ ρ |T opt |.

This completes the proof of the claim. �

Proof of Claim 3. To show |T alg | ≤ ρ |T opt | in this case, we have to take the situation during
[rR, rL] into account. Let us first suppose that during this interval Algorithm 2 moves towardσR (rL)
without interruption. In particular, this implies that pos(rR) < pos(rL) < 0. Let us additionally
assume that the following inequality holds:

|pos(rR) | ≤ (2ρ − 2) |L(t ) | − (3 − ρ) |R(rL) | − rR. (57)

Recall that at time rL Case (E2) occurs, σR (rL) is still the rightmost extreme and the server contin-
ues moving toward σR (rL). The server then moves toward σL (t ) at the latest by the time it reaches
σR (rL). From then on it serves σL (t ) and then σR (t ) without interruption. Using Inequality Equa-
tion (57) and Claim 1, we therefore obtain

|T alg | ≤ rR + |pos(rR) | + 2|R(rL) | + 2|L(t ) | + |R(t ) |
(57)
≤ (2ρ − 2) |L(t ) | − (3 − ρ) |R(rL) | + 2|R(rL) | + 2|L(t ) | + |R(t ) |
= 2ρ |L(t ) | + (ρ − 1) |R(rL) | + |R(t ) |
≤ ρ |rL | + ρ |L(t ) | + ρ max( |R(t ) |, |R(rL) |)
(52)
≤ ρ |T opt |.
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Thus, it is sufficient to show that Inequality Equation (57) is satisfied. Using Inequality Equa-
tion (54), Lemma 5.1, |R(rL) | ≤ rR and the definition of ρ, we get

(2ρ − 2) |L(t ) | − (3 − ρ) |R(rL) | − rR

(54)
>

3ρ − 5

7 − 3ρ
(ρrR + (ρ − 2) |R(rL) |) − (3 − ρ) |R(rL) | − rR

=
3ρ2 − 2ρ − 7

7 − 3ρ
rR − 11 − 5ρ

7 − 3ρ
|R(rL) |.

The latter term is at least

≥ 3ρ2 − 2ρ − 7

7 − 3ρ
rR − 11 − 5ρ

7 − 3ρ
rR

=
3ρ2 + 3ρ − 18

7 − 3ρ
rR

Lem. 5.1
≥ 3ρ2 + 3ρ − 18

7 − 3ρ
· −3ρ2 + 9ρ − 4

3ρ − 5
|pos(rR) |.

Hence, it suffices to show

3ρ2 + 3ρ − 18

7 − 3ρ
· −3ρ2 + 9ρ − 4

3ρ − 5
≥ 1,

which is equivalent to −9ρ4 + 18ρ3 + 78ρ2 − 210ρ + 107 ≥ 0. The left-hand side is zero by the def-
inition of ρ. This completes the case that the server moves constantly toward R(rL) during [rR, rL].

Next, we consider the case in which the server does not constantly move toward R(rL) during
[rR, rL]. For this to happen, there has to be a call of Algorithm 2 at some time t̃ ∈ [rR, rL) such
that the tour followed by the server in [t̃ , rL) waits at the origin or goes to the left for some time.
We choose t̃ maximal with this property. This setting is stated in Setting 4 and analogous to the
Setting 3 we considered before. By Corollary 5.5, we know that only Case (A2) can occur when
t̃ > rR and Cases (P2) and (E2) can occur at time t̃ = rR.

We first establish that in all three cases the following inequality holds:

rL + |pos(rL) − L(t̃ ) | ≥ L(σL (t̃ ),σR (rL)). (58)

Let f (τ ) := τ + |pos(τ ) − L(t̃ ) |, then we need to show f (rL) ≥ L(σL (t̃ ),σR (rL)). Observe that the
function f is monotonously increasing in τ , because the server moves with at most unit speed.
Thus, if f (t ′) ≥ L(σL (t̃ ),σR (rL)) holds for some t ′ < rL, then Inequality Equation (58) follows. If
Case (E2) occurs at time t̃ = rR, then f (rR) > L(σL (t̃ ),σR (rL)), because the condition for Case (P2)
is not satisfied. Thus, we get Inequality Equation (58) in Case (E2) by monotonicity. In the
Cases (P2) and (A2), we know that the tour computed at time t̃ by Algorithm 2 serves σL (t̃ ) first
and then σR (rL). More precisely, the computed tour is

T0. until(τ + |pos(τ ) − L(t̃ ) | = L(σL (t̃ ),σR (rL))) ⊕ move(L(t̃ )) ⊕ move(R(rL)).

If the until-condition becomes satisfied at a time t ′ ≤ rL, i.e., f (t ′) = L(σL (t̃ ),σR (rL)), then In-
equality Equation (58) holds by the monotonicity of f . Otherwise, there is a request appearing
before the until-condition is satisfied. Let t ′ the first time after t̃ at which an extreme appears.
By the choice of t̃ , we know that the server will immediately move toward R(rL) at t ′. Thus, if
the server is waiting at the origin at t ′, i.e., pos(t ′) = 0, then we have pos(rL) ≥ 0 contradicting
that pos(rL) < 0 by assumption. Next suppose that the server is still moving toward the origin
at time t ′. If additionally pos(t ′) < 0 holds, then the server moves continuously to the right in
[t̃ , rL] contradicting the choice of t̃ . If pos(t ′) > 0 holds, then we also get pos(rL) > 0, because the

ACM Transactions on Algorithms, Vol. 17, No. 1, Article 3. Publication date: December 2020.



Tight Bounds for Online TSP on the Line 3:47

server moves to the right from time t ′ onwards and does not reach σR (rL) as this request is still the
rightmost extreme at rL. Thus, the until-condition must become satisfied as all other cases were
contradictions.

We have shown that Inequality Equation (58) holds in any of the three Cases (A2), (P2), and (E2).
Now, we analyze the cases t̃ > rR (Case (A2)) and t̃ = rR (Cases (P2) and (E2)) separately.

(1) Case (A2) at time t̃ > rR.
Note that we cannot use the same argumentation as in Lemma 5.6, because there we rely
on the fact that after t (here it would be after rL) no new requests appear.

We have rR < t̃ and rR ≥ |R(rL) |, and therefore

L(σL (t̃ ),σR (rL)) = ρrR + (ρ − 2) |L(t̃ ) | + (ρ − 2) |R(rL) |
≥ (ρ − 2) |L(t̃ ) | + (2ρ − 2) |R(rL) |. (59)

Using |pos(rL) − L(t̃ ) | = |L(t̃ ) | − |pos(rL) |, since L(t̃ ) ≤ pos(rL) < 0, we can simplify In-
equality Equation (58) as follows:

|pos(rL) | ≤ rL + |L(t̃ ) | − L(σL (t̃ ),σR (rL))
(59)
≤ rL + (3 − ρ) |L(t̃ ) | + (2 − 2ρ) |R(rL) |.

(60)

As Case (A2) occurred at time t̃ , we know that

|L(t̃ ) | ≤ 3ρ − 5

(2ρ − 2) (7 − 3ρ)
(ρrR + (ρ − 2) |R(rL) |) ≤ 3ρ − 5

7 − 3ρ
rR. (61)

By Inequality Equation (54), this implies that |L(t̃ ) | < |L(t ) |. Using the last two statements
together with Equation (60) and Claim 1, we obtain

|pos(rL) | + 2|R(rL) |
(60)
≤ rL − ρrR + (3 − ρ) |L(t̃ ) | + (4 − ρ) |R(rL) |
=rL − ρrR + (7 − 3ρ) |L(t̃ ) | + (2ρ − 4) |L(t̃ ) | + (4 − ρ) |R(rL) |

(61)
≤ rL − ρrR + (7 − 3ρ)

3ρ − 5

7 − 3ρ
rR + (2ρ − 4) |L(t̃ ) | + (4 − ρ) |R(rL) |

≤rL − ρrR + (7 − 3ρ)
3ρ − 5

7 − 3ρ
rR + (2ρ − 4) |L(t ) | + (4 − ρ) |R(rL) |

=rL − (5 − 2ρ)rR + (2ρ − 4) |L(t ) | + (4 − ρ) |R(rL) |
≤rL − (5 − 2ρ) |R(rL) | + (2ρ − 4) |L(t ) | + (4 − ρ) |R(rL) |
=rL + (ρ − 2) |L(t ) | + (ρ − 1) |L(t ) | + (ρ − 1) |R(rL) | − |L(t ) |
≤((ρ − 1)rL + (ρ − 1) |L(t ) | + (ρ − 1) |R(rL) |) − |L(t ) |

(52)
≤ (ρ − 1) |T opt | − |L(t ) |.

This implies |T alg | ≤ ρ |T opt | by Inequality Equation (51).
(2) Cases (P2) or (E2) at time rR = t̃
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Using rR ≥ |L(rR) |, rR ≥ |R(rL) | and ρ ≥ 2, we can bound L(σL (rR),σR (rL)) as follows

L(σL (rR),σR (rL)) = min{ρrL (rR) + (ρ − 1) |L(rR) | + (ρ − 1) |R(rL) |,
ρrR + (ρ − 2) |L(rR) | + (ρ − 2) |R(rL) |}

≥ min{|L(rR) | + |R(rL) |, ρrR}
≥ |L(rR) | + |R(rL) |. (62)

Recall that L(rR) ≤ pos(rL) < 0 and hence |pos(rL) − L(rR) | = |L(rR) | − |pos(rL) |. This
means that Inequality Equation (58) for t̃ = rR can be simplified to rL + |L(rR) | −
|pos(rL) | ≥ L(σL (rR),σR (rL)). Applying Inequality Equation (62) above yields

|pos(rL) | ≤ rL + |L(rR) | − L(σL (rR),σR (rL))
(62)
≤ rL + |L(rR) | − |L(rR) | − |R(rL) | = rL − |R(rL) |. (63)

Finally, using Inequality Equation (51) and Lemma 5.3, we obtain

|T alg |
(51)
≤ |T opt | + |pos(rL) | + 2|R(rL) | + |L(t ) |

(63)
≤ |T opt | + rL − |R(rL) | + 2|R(rL) | + |L(t ) |
= |T opt | + rL + |R(rL) | + |L(t ) |
≤ 2|T opt |.

This concludes the proof of the claim. �

This finishes the proof of Theorem 5.2.

6 ONLINE DIAL-A-RIDE ON THE LINE

In this section, we give a (1 +
√

2)-competitive algorithm for (preemptive) open online Dial-A-
Ride on the line. Our algorithm repeatedly computes a tour for serving a set of requests optimally
and executes it with some delay. We adapt it for both the capacitated and the uncapacitated version
of our problem.

6.1 The capacitated case

The following lemma allows us to use optimal tours that do not negatively affect future tours.

Lemma 6.1. Among the optimal tours to serve any set of requests S , there exists one in which the
server never moves any request away from its destination.

Proof. Consider a feasible tour T . We modify T to a tour T ′ in which the server never moves
any request away from its destination, without changing its makespan. In T ′ the server moves
identically to T , but we change the times at which any request σ is picked up and dropped off,
respectively. Let (�1, r1), (�2, r2), . . . be the maximum time intervals in increasing order during
which, according toT , σ is closer to its destination than at any previous point in time (thus, during
these time periods the server transports σ toward its destination). InT ′, for any i , the server picks
up σ at time �i and drops it off at time ri . Note that, by induction, σ is indeed at the position of
the server at each time �i . Further, inT ′, the server delivers each request at the same time as inT ,
so that T ′ has the same makespan as T . Note that, at every point in time, in T ′, the server carries
a subset of the requests that it carries in T , thus T ′ obeys the capacity constraint. �

To serve any set S of requests, there thus exists an optimal tour starting at 0 in which the server
never moves requests away from their destinations. We denote an arbitrary such tour by T

opt
S

. It
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could be computed, e.g., using an algorithm given by Guan [16]. Further, at any time t , we let R (t )
denote the set of released but not yet delivered requests.

Our algorithm works as follows (cf. Algorithm 3): The server stays at position 0 until the first
request arrives. Whenever a new request arrives at some time t , the server stops its current tour
and unloads all requests that it was carrying. The corresponding operation is denoted by “unload”
in the following, and it formally results in changing the source of each unloaded request to pos(t ).
The server then returns to 0 and stays there until time

√
2 · |T opt

R (t )
|. Importantly, we will prove that

the server can always be back at the origin by this time. Then, the server starts the tour T
opt

R (t )
.

ALGORITHM 3: For the open online Dial-A-Ride problem with c ≥ 0 fixed.

� This function is called upon receiving a new request.

Input: Current time t , current position pos(t )
Unserved requests R (t ), new request σ

Output: An open tour starting at pos(t ) and serving all requests in R (t )

return unload ⊕move(0) ⊕ waituntil(
√

2 · |T opt

R (t )
|) ⊕ T opt

R (t )

Toward the analysis, for any time t , define R0 (t ) to be the set of requests in R (t ) with their
original sources and destinations (before being moved). Note that, by Lemma 6.1, each tour serving
R0 (t ) is a tour serving R (t ), and thus the following fact holds.

Fact 2. At every time t during the execution of Algorithm 3, we have |T opt

R (t )
| ≤ |T opt

R0 (t )
|.

We are now ready to show the competitiveness result.

Theorem 6.2. Algorithm 3 is (1 +
√

2) ≈ 2.41-competitive for the preemptive open online Dial-A-
Ride problem with capacity c ≥ 1.

Proof. Let |T opt | be the length of an optimal tour and |T alg | be the length of the tour produced

by our algorithm. Suppose that the server can always return to 0 until time
√

2 · |T opt

R (ri )
| upon

receiving a new requestσi . Then, after the last requestσn is received, the server stays at 0 until time√
2 · |T opt

R (tn )
| and then finishes all requests within time |T opt

R (tn )
|. Thus, |T alg | ≤

√
2 · |T opt

R (tn )
| + |T opt

R (tn )
|.

Using Fact 2, we have |T opt

R (tn )
| ≤ |T opt

R0 (tn )
| ≤ |T opt |, and the algorithm is (1 +

√
2)-competitive, as

claimed.
It remains to show that the server can always return to 0 until time

√
2 · |T opt

R (ri )
| when receiving

a new request σi at time ri . We prove this by induction on the number i of released requests.
Let t∗ be the first time when the server left 0. Then, the statement clearly holds if ri ≤ t∗, and,
in particular, if i = 1. Now consider a request σi with i ≥ 2, ri > t∗, and suppose that, at time tj

the server would still have been able to return to 0 by time
√

2 · |T opt

R (tj )
|, for all j ∈ {1, . . . , i − 1}.

As an optimal tour T
opt

R (ri )
over the set of requests R (ri ) cannot finish before all requests are

released, we have |T opt

R (ri )
| ≥ ri . For the sake of contradiction, suppose the server cannot return

to the origin until time
√

2 · |T opt

R (ri )
| ≥
√

2 · ri . This implies that the distance |pos(ri ) | is larger

than
√

2 · ri − ri . To reach position pos(ri ) at time ri , the server cannot have been at 0 after time

ri − |pos(ri ) | = ri − (
√

2 · ri − ri ) = 2ri −
√

2 · ri . Consider the last request σj before σi for which
the server started to actually execute the tour T

opt

R (tj )
(such a request exists, because ri > t∗). By

induction, the server was at 0 at time
√

2 · |T opt

R (tj )
|, and from before, we know that it cannot have

been at 0 after time 2ti −
√

2 · ri . We thus have
√

2|T opt

R (tj )
| ≤ 2ri −

√
2ri , or

���T
opt

R (tj )
��� ≤
√

2ri − ri . (64)
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By the choice of σj , at time ri , the algorithm is either following T
opt

R (tj )
, moving back to the

origin, or already waiting there. In either case, we know that T
opt

R (tj )
visits pos(ri ), which implies

|T opt

R (tj )
| ≥ |pos(ri ) |. However, by our assumption above, we have |pos(ri ) | >

√
2 · ri − ri , which

contradicts Equation (64). �

Note that the proof of Theorem 6.2 does not use that we are in the open variant of Dial-A-
Ride, and, consequently, carries over to the closed variant (we omitted this in the statement of
Theorem 6.2, since better bounds are known for this case; see Table 1).

6.2 The uncapacitated case

Using the above techniques, we prove that a slightly modified version of Algorithm 3 works in the
uncapacitated case, even if the server does not move on a line but in the Euclidean space M with
Euclidean metric ‖ · ‖. The server moves again with unit speed, i.e., ‖pos(t ) − pos(t ′)‖ ≤ ‖t − t ′‖
for all t , t ′ ≥ 0. A series of requests σ1, . . . ,σn arrives over time with σi = (ai ,bi ; ri ), where ri ≥ 0
denotes the release time of the request and ai ,bi ∈ M denote its source and destination position,
respectively. The other preconditions remain the same.

The algorithm differs from Algorithm 3 in that currently loaded requests are not unloaded when
a new request appears. In terms of notation, whenever a request is picked up, we keep it in R (t )
for future t , but we change its source to 0. We provide a formal description in Algorithm 4.

ALGORITHM 4: For uncapacitated open/closed online Dial-A-Ride.

� This function is called upon receiving a new request.

Input: Current time t , current position pos(t )
Unserved requests R (t ), new request σ

Output: A tour starting at pos(t ) and serving all requests in R (t )

return move(0) ⊕ waituntil(
√

2 · |T opt

R (t )
|) ⊕ T opt

R (t )

To analyze this algorithm, we need a fact analogous to Fact 2. Recall that R0 (t ) is the set of
requests in R (t ) with their original sources and destinations (before being moved). Again, we use
that each tour serving R0 (t ) serves R (t ) as well.

Fact 3. When we run Algorithm 4, for each t , we have |T opt

R (t )
| ≤ |T opt

R0 (t )
|.

We now get a competitive result that is analogous Theorem 6.2.

Theorem 6.3. Algorithm 4 is (1 +
√

2) ≈ 2.41-competitive for the uncapacitated, non-preemptive
open or closed online Dial-A-Ride problem in Euclidean space.

Proof. This proof is identical to the proof of Theorem 6.2 if we replace Fact 2 by Fact 3 and | · |
by ‖ · ‖ throughout. Recall that the proof of Theorem 6.2 carries over to the closed variant (cf. note
below the proof). �

Remark 1. Note that Algorithm 3 relies on the observation (Lemma 6.1 and Fact 2) that we can
drop off requests anywhere closer to their destinations without increasing the length of an opti-
mum tour. For Euclidean space this is no longer true, as illustrated by the following example in R2:
Let σ1 = ((1, 2), (1, 0); 0), σ2 = ((0, 0), (1, 2); t ), σ3 = ((1, 2), (2, 1); t ), σ4 = ((2, 1), (1, 0); t ) and σ5 =

((0, 0), (0, 0); t +
√

5 + 2
√

2 + 1) for some t ≥ 0. Clearly, waiting until time t and then following
the trajectory (0, 0) → (1, 2) → (2, 1) → (1, 0) → (0, 0) yields an optimum (open or closed) tour of

length t +
√

5 + 2
√

2 + 1 for the original set of requests. Now suppose that we started to serve σ1

at some point before t and dropped it off at (1, 1), i.e., along the shortest connection between (1, 2)
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and (1, 0), thus modifying σ1 to σ ′1 = ((1, 1), (1, 0); 0). This increases the length of an optimum

tour starting at time t , e.g., (0, 0) → (1, 2) → (2, 1) → (1, 1) → (1, 0) → (0, 0), to t +
√

5 +
√

2 + 3.
Algorithm 4 avoids this issue by never dropping off requests before reaching their destinations.

We also provide a lower bound for non-preemptive closed Dial-A-Ride on the line that improves
the lower bound of 1.70 from Reference [3].

Theorem 6.4. No algorithm for the non-preemptive closed Dial-A-Ride problem on the line with
fixed capacity c ≥ 1 has competitive ratio lower than ρ = 1.75.

Proof. Consider any ρ-competitive online algorithm Alg. We define an instance with three

types of requests σ (0) = (0, 0; 1), σ (1)
i = (t , 0; t ), σ (2)

i = (−t , 0; t ), where i = 1, . . . , c and t ≥ 1 is the

time when Alg serves σ (0) . First, suppose that Alg serves the c requests σ (1)
1 , . . . ,σ

(1)
c not together

in one tour from t to 0. As Alg can pick up any σ (1)
i at the earliest at time 2t and Alg has to return

to t to pick up the remaining requests σ (1)
i it did not bring to 0 in the first trip, we have |T alg | ≥ 7t

in this case. We have |T opt | = 4t and hence obtain |T alg |/|T opt | ≥ 7/4 in this case. An analogous

argument shows that Alg has to take the c requests σ (2)
1 , . . . ,σ

(2)
c together to the origin or we

have |T alg |/|T opt | ≥ 7/4.

Thus, from now on, we assume that Alg picks up all c requests σ (j )
1 , . . . ,σ

(j )
c before going to

the origin for j = 1, 2. Let t ′ ≥ 2t be the first time when Alg picks up all c requests σ (1)
i or all

c requests σ (2)
i . We have |T opt | = 4t and |T alg | ≥ t ′ + 3t . If t ′ ≥ 4t , then ρ ≥ |T alg |/|T opt | ≥ 7/4 as

claimed.
Otherwise, without loss of generality, we assume that the c requests σ (1)

i are picked up before

the c requests σ (2)
i . We introduce a new request σ (3) = (t , t ; t ′ + 1/7). For the new instance, we have

|T alg | ≥ t ′ + 5t , since at time t ′ + 1/7 Alg still needs to return to the origin to finish serving the c

requests it is currently transporting (no preemption), then serve the remaining requests σ (2)
i , σ (3) ,

and finally return to the origin. If t ′ ≤ 3t − 1/7, then we have |T opt | = 4t and, using t ′ ≥ 2t , we get

ρ ≥ |T
alg |
|T opt | ≥

t ′ + 5t

4t
≥ 7

4
,

as claimed. Now if t ′ > 3t − 1/7, then |T opt | = t ′ + 1/7 + t and ρ ≥ (t ′ + 5t )/(t ′ + 1/7 + t ), which
is monotonically decreasing in t ′ for t , t ′ ≥ 1. Since we have t ′ < 4t from above, we get ρ > 9/(5 +
1/7) = 1.75. �

7 THE OFFLINE PROBLEM

Psaraftis et al. [26] show that open offline TSP on the line with release dates can be solved in qua-
dratic time. For the closed variant they claim that the optimal tour has the structure [26, pp. 215–
216]:

waituntil(t ) ⊕ move(pR) ⊕ move(pL) ⊕ move(0)

or

waituntil(t ) ⊕ move(pL) ⊕ move(pR) ⊕ move(0).

Here the waiting time t at the origin is chosen maximally such that all requests are still served. We
contradict this claim by showing that an optimal server tour may need to turn around arbitrarily
many times.

Theorem 7.1. For every k ∈ N , there is an instance of closed TSP on the line such that any optimal
solution turns around at least 2k times.
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Proof. We analyze the following instance consisting of 2k + 1 requests with M := 2k (k + 1).

σi = (ai ; ri ) with ai = 0, 1,−1, 2,−2, 3,−3, . . . ,k,−k
and ri = M,M − 1,M − 3,M − 6,M − 10,M − 15, . . . ,k .

We show this instance has a unique optimal server tour with 2k turnarounds. Observe first, that the
difference between two consecutive release times ri − ri−1 is exactly the travel time of the server
between the two requested positions |ai − ai−1 |. Now consider the server tour T serving each of
the requests exactly at its release time, which is obviously feasible and also optimal, as it ends at
time M = 2k (k + 1), which is the release time of the request to position 0. By construction, the
server alternatively serves requests left and right of position 0 and thus turns around 2k times.

Now suppose there is another optimal server tour T ′. Then T ′ must serve the request at posi-
tion 0 at time M , as this is its release time as well as the makespan ofT ′. As we observed ri − ri−1 =

|ai − ai−1 |, the tour T ′ also serves the previous request exactly at its release time. Iteratively the
same must hold for all other positions. This shows any request is served exactly at its release time
and hence, the tour is exactly the one described above. �

Next, we derive a dynamic program that solves closed offline TSP on the line in quadratic
time. It is inspired by the one of Psaraftis et al. [26] for the open variant and a dynamic program
of Tsitsiklis [28] for the same problem with deadlines instead of release times. To describe
the dynamic program for the closed offline TSP problem on the line, we make the following
non-restrictive assumptions on the requests:

• Each position is requested at most once, as several requests to the same position can all be
fulfilled when the one with the largest release time is served.

• There is a request σ0 = (0; 0).
• The requests σi = (ai ; ri ) are labeled by increasing position, i.e., ai > ai−1, and requests

with ai < 0 have negative indices, while the other ones have a positive index. This yields a
sequence a−� < · · · < a−1 < a0 = 0 < a1 < · · · < ar .

Our dynamic program (Algorithm 5) relies on the fact that an optimal server tour has a “zigzag
shape” with decreasing amplitude. This holds, because we can assume any request is served the
last time the server visits this position. Then, an increase in amplitude means that on the smaller
amplitude part of the tour no request is served and thus this part of the tour can be omitted.

We compute for each index pair −� − 1 ≤ i < j ≤ r + 1 the completion time of two tours. We
use C+i, j for the best tour serving all requests σk with k ≤ i or k ≥ j and ending at position aj .

This means the tour serves all requests to position aj and larger positions as well as all requests to
position ai and smaller positions. The timeC−i, j is the completion time of the best tour that serves

the same set of requests and ends at position ai .
We start by considering the two request sets {σ−� } and {σr }. By assumption, the release time ri

exceeds the travel time between start position 0 and requested position ai for each request. Thus,
the initial values areC+−�−1,r

= rr andC−−�,r+1
= r−� . We then compute by recursion the completion

time of the toursC−i,r+1 andC+−�−1, j
for the request sets {σ−�, . . . ,σi } and {σj , . . . ,σr }, respectively.

Then, we recursively computeC+i, j andC−i, j , starting with large difference d = j − i and iteratively

decreasing it. We output C+0,0 as the minimum completion time of a feasible server tour.
To prove the correctness of Algorithm 5, we use two lemmas. We first prove a structural result

about feasible server tours and then show that the recurrence we use in the dynamic program is
correct. Contrary to before, we assume without loss of generality that each request is served when
its requested position is visited for the last time in the tour.
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ALGORITHM 5: Dynamic Program for Closed Offline TSP on the line.

Input: A set of requestsσi = (ai ; ri ) with ri ≥ |ai | for −� ≤ i ≤ r andai < ai+1 for −� ≤ i < r .

Output: The minimum completion timeCmax of a tour.

C+−�−1,r
← rr .

C−−�,r+1
← r−� .

for i = −�, . . . , r do

C−i,r+1 ← max{ri ,C
−
i−1,r+1 + ai − ai−1}.

for j = r , . . . , � do

C+−�−1, j
← max{r j ,C

+
�−1, j+1

+ aj+1 − aj }.

for d = r + �, . . . , 0 do

for i = −�, . . . , r − d do

j ← i + d .

C−i, j ← max{ri ,min{C+i−1, j + aj − ai ,C
−
i−1, j + ai − ai−1}}.

C+i, j ← max{r j ,min{C+i, j+1 + aj+1 − aj ,C
−
i, j+1 + aj − ai }}.

return Cmax = C
+
0,0.

Lemma 7.2. At any time in a feasible server tour ending at position p, the set of served requests is
the union of two disjoint sets S1 = {σ�, . . . ,σi },ai ≤ p and S2 = {σj , . . . ,σr },p ≤ aj , both of which
are contiguous.

Proof. Suppose there is a time t , at which the set of requests does not have the claimed
structure. Then there is a request σ1 served until time t and a request σ2 served after t with
either p ≤ a1 < a2 or a1 < a2 ≤ p. Without loss of generality assume the first to be true. At
time t ′ > t , when request σ2 is served, the server is at position a2. The server tour ends at po-
sition p and thus passes position a1 at some time after t . This contradicts that request σ1 has been
served until time t , which was our assumption. �

Lemma 7.3. Given an instance of TSP on the line with requests σ�, . . . ,σr to positions a� < a�+1 <
· · · < ar and completion timesC+i, j+1,C

−
i, j+1,C

+
i−1, j andC−i−1, j for some indices � ≤ i ≤ j ≤ r ; then the

minimal completion times C+i, j and C−i, j are given by the following recurrence:

C+i, j = max{r j ,min{C+i, j+1 + aj+1 − aj ,C
−
i, j+1 + aj − ai }},

C−i, j = max{ri ,min{C+i−1, j + aj − ai ,C
−
i−1, j + ai − ai−1}}.

Proof. The completion timeC+i, j , we give is feasible, as it can be achieved by executing the tour

attainingC+i, j+1 or the tour attainingC−i, j+1 and then moving to position aj , waiting there until the

release time r j has passed.
By Lemma 7.2, the tour serving requests σ�, . . . ,σi and σj , . . . ,σr serves request σj last and

request σj+1 or σi immediately before. Thus, the completion time exceeds the minimum ofC+i, j+1 +

aj+1 − aj and C−i, j+1 + aj − ai . Furthermore, we cannot serve request σj before its release time r j .

Symmetrically the recursion for C−i, j is constructed. �

These two lemmas allow us to prove the correctness of Algorithm 5.

Theorem 7.4. Algorithm 5 computes the minimum completion time of a server tour for offline TSP
on the line in time O (n2).

Proof. By Lemma 7.2, the optimal server tour has the structure that it has served the union of
two disjoint contiguous sets at any fixed point in time. We start computing the best completion
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Fig. 1. Construction of a Dial-A-Ride instance for Theorem 7.6.

time of a tour for pairs of request sets containing one request each and increase the number of
contained requests r − � − d in each iteration by decreasing the parameterd . We end withd = 0 and
compute the earliest completion time of tours serving the complete request set in this iteration. The
recursion we use is correct by Lemma 7.3 and the computation order is feasible, as the recursion
formula only contains request set pairs of strictly smaller size.

The algorithm uses quadratic time for the two nested loops and all other steps take linear or
constant time. Hence the algorithm runs in time O (n2). �

Observation 3. The algorithm of Reference [26] for open TSP on the line can be obtained from
Algorithm 5 by changing the computation order of the completion times and returning the minimum
completion time of all possible end positions min−�≤i≤r C

+
i,i .

For the non-preemptive Dial-A-Ride problem on the line, we show that the open and closed
variant with release times are NP-hard. Without release times, we prove they are NP-hard for
capacity c ≥ 2. Our reductions are from the Circular Arc Coloring problem [14], which is also
used in a reduction for minimizing the sum of completion times of Dial-A-Ride on the line with
capacity c = 1 [11].

Definition 7.5 (Circular Arc Coloring). Let I be a family of intervals on a circle, and let k ∈
Z>0 be a fixed parameter. Decide, if a coloring of all intervals I ∈ I with k colors exists, such that
no two intervals of the same color overlap.

Theorem 7.6. The non-preemptive closed offline Dial-A-Ride problem on the line with capacity
c = 1 is NP-complete.

Proof. The problem is in NP, as we can decide whether or not a server tour completes before
a fixed deadline in polynomial time.

Let an instance of the Circular Arc Coloring problem be given by a circle with circumference
X , a set I of intervals I = [�, r ), �, r ∈ [0,X ), on the circle and coloring number k . Without loss of
generality, we can assume that there are exactly k intervals I 0

1 , . . . , I
0
k

overlapping 0. If there are
fewer, then we can add intervals [0, ε ) to the instance for sufficiently small ε . If there are more, then
the instance is trivial. We define the following set of requests for the Dial-A-Ride problem: For
each interval I 0

j = [�j , r j ), j ≤ k , we create two requests σj = (aj ,bj ; r j ) = (0, r j ; 2(j − 1)X ) and μ j =

(�j ,X ; 2(j − 1)X ). For any other interval I = [�, r ) define a request ψ = (�, r ; 0) and furthermore
define k requests ϕi = (X , 0; 0) for i = {1, . . . ,k }. The construction of requests with their start and
end position is displayed in Figure 1. Note that the server position increases from left to right and
that the release times are not displayed. The bold arrow with a double tip represents the k identical
requests ϕi .
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Any feasible server tour for this instance with start position 0 travels at least k times from 0 to
X and back to serve the k requests ϕi . Hence, any feasible tour has length at least 2kX . A tour of
exactly that length is closed and partitions the requests into k sets, each served during one trip
from 0 toX and back. Observe that requests σk and μk must be served on the last trip, because they
are released at time 2(k − 1)X . Then requests σk−1 and μk−1 must be served on the previous trip.
They cannot be served before because of their release time and they cannot be served on the last
trip as the server has capacity 1 and serves requests σk whose interval overlaps that of σk−1 and
also serves request μk whose interval overlaps that of μk−1. Iteratively, we deduce that requests
σj and μ j , j ≤ k, must be served on the same trip. This shows, that if we use the k-partitioning
induced by the tour to color the intervals on the circle, we get a feasible circular arc coloring.
Conversely, we can transform any circular arc coloring into a feasible server tour of length 2kX
by scheduling the requests corresponding to one color on the same trip from O to X . �

Remark 2. Note that we can extend this proof to the case c ≥ 1 if we add c − 1 requests from 0
to X for each release time 0, 2X , 4X , . . . , 2(k − 1)X . Then any feasible tour finishing at time 2kX
serves exactly c − 1 of these additional requests on each trip from 0 to X and thus still partitions
the other requests in the desired fashion. However, this result is subsumed by the next theorem.

Theorem 7.7. The non-preemptive closed offline Dial-A-Ride problem on the line with capac-
ity c ≥ 2 is NP-complete, even when all release times are 0.

Proof. The problem is in NP, as we can decide whether or not a server tour completes before
a fixed deadline in polynomial time.

Let an instance of the Circular Arc Coloring problem be given by a circle with circumference
X , a set I of intervals I = [�, r ), �, r ∈ [0,X ), on the circle and coloring number k . Without loss
of generality, we can assume that there are exactly k intervals overlapping any point p on the
circle. If there are less, then we can add intervals [p,p + ε mod X ) to the instance. If there are
more, then the instance is trivial. Let the k intervals that overlap the point 0 be I 0

1 , . . . , I
0
k

. We

define the following set of requests for the Dial-A-Ride problem: For each interval I 0
j = [�j , r j ), j ∈

{1, . . . ,k }, we create two requests σj = (−j, r j ; 0) and μ j = (�j ,X + j; 0). For any other interval I =
[�, r ) define a requestψ = (�, r ; 0). Furthermore define for each j ∈ {1, . . . ,k } exactly c − 1 identical
requests νj = (−j,X + j; 0), for j ∈ {1, . . . ,k − 1} exactly c identical requests ϕ j = (X + j,−j − 1; 0)
and another c identical requests ϕk = (X + k,−1; 0). Contrary to before, let the start position of
the server be −1 for this instance. The set of requests with their start and end position is displayed
in Figure 2. In the figure, the server position increases from left to right and release times are not
displayed. We depict a set of c − 1 identical requests by a dashed thick arrow with a double tip,
and a set of c identical requests by a thick arrow with a double tip.

Let d be given by d = 2kX + 2
∑k

j=1 j. This is 2c times the total length of requests in positive

direction, because exactly k intervals overlap each point of the circle and there is one request
starting at−j and one ending atX + j for all j ≤ k . Furthermore for each j ∈ {1, . . . ,k } there are c −
1 requests from −j to X + j, so it is also 2c times the total length of requests in negative direction.
Thus, d is the minimum length of any feasible server tour. A server tour meeting this length bound
must travel with full capacity at any time. As the server capacity c is at least 2, the tour must start
with serving the c − 1 requests ν1, continue with serving requests ϕ1 and then serve νj and ϕ j for
increasing indices j = 2, . . . ,k . This tour leaves capacity 1 on each trip from−j toX + j for requests

from the set
⋃k

j=1{σj , μ j } and the requests of typeψ . Hence, any tour of length d yields a partition

of the requests σ , μ and ψ into k sets of non-overlapping requests. Moreover, requests σj and μ j

occur in the same set of the partition. Thus, assigning one color to each set of the partition yields
a feasible coloring of the circular arc instance. Conversely, we can use any circular arc coloring
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Fig. 2. Construction of a Dial-A-Ride instance for Theorem 7.7.

to design a server tour of length d . We serve requests ν and ϕ as described above and use for
the (j + 1)-st trip in positive direction all requests with the same color as request σj in the arc
coloring. �

Theorem 7.8. The non-preemptive open and closed offline Dial-A-Ride problem on the line are
NP-complete. For capacity c ≥ 2 this even holds when all release times are 0.

Proof. Theorems 7.6 and 7.7 show the statement for the closed problem variant. For the open
case, we show in the proof of Theorem 7.6, that deciding if there is a tour of length 2kX is hard.
Also for the open problem variant, any feasible tour has at least this length as a feasible server
tour starts at position 0 and travels at least k times fromX to 0 to serve the k requests ϕi . This also
shows that any tour attaining this bound is a closed tour.

In the proof of Theorem 7.7, we consider closed tours of full capacity. Again this shows that
there cannot be a smaller open tour and that all minimal open tours are closed. �

Remark 3. It is particularly interesting, that in the hardness reduction the server’s start posi-
tion is at one of the two extreme positions occurring in the tour. For the same problem allowing
preemption, Karp showed that it is solvable in polynomial time [19], while the hardness of the
problem with an arbitrary start position is not known.

Remark 4. Non-preemptive offline Dial-A-Ride on the line is known to be easy without re-
lease dates [11] and becomes hard if each request comes with a deadline in addition to its release
time [28]. Thus, the only complexity question remaining open is the case with unbounded capacity.

In the classification of closed dial-a-ride problems in Reference [11], offline TSP on the line is the
problem 1|s = t ,dj |line|Cmax (release dates are the symmetric case to deadlines). De Paepe et al. [11]
claim Tsitsiklis [28] shows a polynomial algorithm, but this is for the open version. We solve the
closed variant by giving a polynomial algorithm (Theorem 7.4) as well as a counterexample to the
algorithm of Psaraftis et al. [26]. Our Theorem 7.8 shows the problem 1, cap1|dj |line|Cmax in the
same classification scheme is NP-hard. While this is implicitly claimed in Reference [11], no proof
is given. For the generalization to arbitrary capacity but without release dates, 1| |Cmax, Guan [16]
showed hardness for capacity c = 2 and our new hardness proof handles any capacity c ≥ 2.
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