On a theorem of Vignéras

Jan Hendrik Bruinier*

1 Introduction and statement of results

Let k be an integer, N a positive integer divisible by 4 and χ a Dirichlet character modulo N. Denote the space of modular forms of weight $k+1 / 2$ with respect to $\Gamma_{1}(N)$ by $M_{k+\frac{1}{2}}\left(\Gamma_{1}(N)\right)$ and the subspace of modular forms with respect to $\Gamma_{0}(N)$ and Nebentypus character χ by $M_{k+\frac{1}{2}}(N, \chi)$. Further, denote the corresponding subspaces of cusp forms by $S_{k+\frac{1}{2}}\left(\Gamma_{1}(N)\right)$ and $S_{k+\frac{1}{2}}(N, \chi)$. We abbreviate $e(z)=e^{2 \pi i z}$ and $\chi^{*}=\left(\frac{-1}{=}\right)^{k} \chi$.

If m and r are positive integers and ψ is a primitive Dirichlet character modulo r, then the Shimura theta function $\theta_{\psi, m}(z)=\sum_{n=-\infty}^{\infty} \psi(n) n^{\nu} e\left(n^{2} m z\right)$ (where $\nu \in\{0,1\}$ is defined by $\left.\psi(-1)=(-1)^{\nu}\right)$ lies in $M_{\frac{1}{2}}\left(4 r^{2} m,\left(\frac{m}{.}\right) \psi\right)$ if $\nu=0$ resp. in $S_{\frac{3}{2}}\left(4 r^{2} m,\left(\frac{-m}{.}\right) \psi\right)$ if $\nu=1$ (cf. [Sh]).

Let $S_{\frac{3}{2}}^{*}(N, \chi)$ denote the orthogonal complement (in $S_{\frac{3}{2}}(N, \chi)$ with respect to the Petersson inner product) of the subspace of $S_{\frac{3}{2}}(N, \chi)$, which is spanned by theta series $\theta_{\psi, m}$ with odd character ψ. By the work of Shimura [Sh], Niwa [Ni], Cipra [Ci] and Sturm [St] it is known that all elements of $S_{\frac{3}{2}}^{*}(N, \chi)$ and $S_{k+\frac{1}{2}}(N, \chi)$ for $k \geq 2$ map to cusp forms under the Shimura lifting.

Vignéras proved that for every non-zero modular form $f=\sum_{n \geq 0} a(n) e(n z)$ in $M_{k+\frac{1}{2}}\left(\Gamma_{1}(N)\right)$, which is not a linear combination of theta series of the above type, there exist infinitely many square-free integers d with $a\left(d m_{d}^{2}\right) \neq 0$ for an $m_{d} \in \mathbb{Z}$ (Thm. 3 in [Vi]).

The purpose of the present note is to give a simple new proof (in fact, a slight generalization) of her result.

We shall exploit the properties of various well known operators defined on modular forms to deduce the following fundamental

Lemma 1. Let $f=\sum_{n \geq 0} a(n) e(n z)$ be a non-zero element of $M_{k+\frac{1}{2}}(N, \chi), p$ a prime not dividing N and $\varepsilon \in\{ \pm 1\}$. Suppose that $a(n)=0$ whenever $\left(\frac{n}{p}\right)=$ $-\varepsilon$. Then f is an eigenform of the Hecke operator $T\left(p^{2}\right)$ with corresponding eigenvalue $\varepsilon \chi^{*}(p)\left(p^{k}+p^{k-1}\right)$.

Using a well known estimate for the Hecke eigenvalues, one obtains
Theorem 1. Let p, ε, be defined as in Lemma 1 and let $f \in M_{k+\frac{1}{2}}\left(\Gamma_{1}(N)\right)$ be a non-zero modular form with Fourier coefficients $a(n)$. i) If $k \geq 2$ or $k=1$

[^0]and $f \in \bigoplus_{\chi \bmod N} S_{\frac{3}{2}}^{*}(N, \chi)$, then there exists an $n \in \mathbb{N}$ such that $\left(\frac{n}{p}\right)=\varepsilon$ and $a(n) \neq 0$. ii) Suppose that $k=1$ and that f is not a cusp form. Assume that $p \equiv \varepsilon\left(\bmod N^{2}\right)$. Then there is an $n \in \mathbb{N}$ such that $\left(\frac{n}{p}\right)=\varepsilon$ and $a(n) \neq 0$.

By the Serre-Stark theorem [SeSt] every modular form in $M_{\frac{1}{2}}\left(\Gamma_{1}(N)\right)$ can be written as a linear combination of suitable theta series $\theta_{\psi, m}$ with even character ψ. Hence, if $f \in M_{k+\frac{1}{2}}(N, \chi$,$) is not a linear combination of Shimura theta$ series then $k \geq 1$ and the above corollary in particular implies the result of Vignéras.

Finally we consider a Hecke eigenform f. Here we can use the multiplicative properties of the coefficients combined with an inductive argument to find

Theorem 2. Let $f=\sum_{n \geq 0} a(n) e(n z)$ be an element of $S_{\frac{3}{2}}^{*}(N, \chi)$ or an element of $M_{k+\frac{1}{2}}(N, \chi)$ with $k \geq 2$. Suppose that f is a common eigenform of all Hecke operators $T\left(q^{2}\right)$. Let p_{1}, \ldots, p_{r} be distinct primes not dividing N and $\varepsilon_{1}, \ldots, \varepsilon_{r} \in\{ \pm 1\}$. Then there exist infinitely many square-free integers d with $a(d) \neq 0$ and $\left(\frac{d}{p_{j}}\right)=\varepsilon_{j}$ for $j=1, \ldots, r$.

By the work of Waldspurger [Wa], Kohnen and Zagier [KoZa, Koh2], Theorem 2 implies a non-vanishing result for the central critical values of twisted L-series attached to newforms of weight $2 k$. However, this also easily follows from the more general theorem of Friedberg and Hoffstein [FrHo] (see also [BFH], [MuMu] for related results).

Acknowledgement. The present paper is a short version of the main part of the authors diploma thesis [Br]. I would like to thank Winfried Kohnen for many useful suggestions and comments.

2 Proofs

Let f be a modular form in $M_{k+\frac{1}{2}}(N, \chi)$ with Fourier coefficients $a(n)$. We will need the following well known operators (cf. [Sh, SeSt]):
(i) The Fricke involution $W_{N}:\left(f \mid W_{N}\right)(z):=N^{-k / 2-1 / 4}(-i z)^{-k-1 / 2} f\left(\frac{-1}{N z}\right)$, $f \left\lvert\, W_{N} \in M_{k+\frac{1}{2}}\left(N,\left(\frac{N}{-}\right) \bar{\chi}\right)\right.$.
(ii) The shift $V_{m}(m \in \mathbb{N}):\left(f \mid V_{m}\right)(z):=f(m z), f \left\lvert\, V_{m} \in M_{k+\frac{1}{2}}\left(N m,\left(\frac{m}{.}\right) \chi\right)\right.$.
(iii) The projection $B_{m}(m \in \mathbb{N}):\left(f \mid B_{m}\right)(z):=\sum_{n \geq 0} a(n m) e(n m z), f \mid B_{m} \in$ $M_{k+\frac{1}{2}}\left(N m^{2}, \chi\right)$.
(iv) The twist with a Dirichlet character ψ modulo m :

$$
f_{\psi}(z):=\sum_{n \geq 0} \psi(n) a(n) e(n z), \quad f_{\psi} \in M_{k+\frac{1}{2}}\left(N m^{2}, \chi \psi^{2}\right)
$$

All these operators are linear and take cusp forms to cusp forms. Moreover, they can be defined as operation of certain elements of the group algebra $\mathbb{C}[G]$ of the metaplectic covering G of $G L_{2}^{+}(\mathbb{R})$. Therefore one can easily determine
their commutation relations. For a prime p not dividing N we will in particular use the identity

$$
\begin{equation*}
f_{\varphi} \mid W_{N p^{2}}=\chi^{*}(p)\left(p^{1 / 2} f\left|W_{N}\right| B_{p}-p^{-1 / 2} f \mid W_{N}\right) \tag{1}
\end{equation*}
$$

where φ denotes the primitive Dirichlet character defined by $\varphi(x)=\left(\frac{x}{p}\right)$ (cf. [Sh] §5).

Proof of Lemma 1. Since f can be considered as an element of $M_{k+\frac{1}{2}}\left(N^{2}, \chi\right)$, we may assume that N is a square. Put $\varphi=(\dot{\bar{p}})$ and $g=f \left\lvert\, W_{N} \in M_{k+\frac{1}{2}}(N, \bar{\chi})\right.$. By the assumption on f we have

$$
f \mid B_{p}=f-\varepsilon f_{\varphi}
$$

We consider the twist of g with φ and use (1):

$$
\begin{aligned}
g_{\varphi} & =\bar{\chi}^{*}(p)\left(p^{1 / 2} f \mid B_{p}-p^{-1 / 2} f\right) \mid W_{N p^{2}} \\
& =\bar{\chi}^{*}(p)\left(p^{1 / 2}\left(f-\varepsilon f_{\varphi}\right)-p^{-1 / 2} f\right) \mid W_{N p^{2}} \\
& =\bar{\chi}^{*}(p)\left(p^{1 / 2}-p^{-1 / 2}\right) f\left|W_{N p^{2}}-\varepsilon \bar{\chi}^{*}(p) p^{1 / 2} f_{\varphi}\right| W_{N p^{2}}
\end{aligned}
$$

Using $W_{N p^{2}}=p^{k+1 / 2} W_{N} V_{p^{2}}$ and (1) we find:

$$
g_{\varphi}=\bar{\chi}^{*}(p)\left(p^{k+1}-p^{k}\right) g\left|V_{p^{2}}+\varepsilon g-\varepsilon p g\right| B_{p}
$$

If we denote the Fourier coefficients of g by $b(n)$, we get an identity of power series

$$
\begin{align*}
\sum_{n \geq 0}\left(\frac{n}{p}\right) b(n) e(n z)= & \bar{\chi}^{*}(p)\left(p^{k+1}-p^{k}\right) \sum_{n \geq 0} b\left(n / p^{2}\right) e(n z) \\
& -\varepsilon(p-1) \sum_{n \geq 0} b(n) e(n z)+\varepsilon p \sum_{\substack{n \geq 0 \\
(n, p)=1}} b(n) e(n z) \tag{2}
\end{align*}
$$

Comparing Fourier coefficients we obtain

$$
b(n)= \begin{cases}\varepsilon\left(\frac{n}{p}\right) b(n) & \text { if }(p, n)=1 \tag{3}\\ 0 & \text { if }\left(p^{2}, n\right)=p \\ \varepsilon \bar{\chi}^{*}(p) p^{k} b\left(n / p^{2}\right) & \text { if } p^{2} \mid n\end{cases}
$$

Now put $g \mid T\left(p^{2}\right)=\sum_{n \geq 0} c(n) e(n z)$. It is known (see [Sh]) that

$$
c(n)=b\left(p^{2} n\right)+\bar{\chi}^{*}(p)\left(\frac{n}{p}\right) p^{k-1} b(n)+\bar{\chi}^{*}\left(p^{2}\right) p^{2 k-1} b\left(n / p^{2}\right)
$$

and by (3) we find

$$
c(n)=\varepsilon \bar{\chi}^{*}(p)\left(p^{k}+p^{k-1}\right) b(n)
$$

This shows that $g \mid T\left(p^{2}\right)=\varepsilon \bar{\chi}^{*}(p)\left(p^{k}+p^{k-1}\right) g$. By (3) we have $b(n)=0$ for all n with $\left(\frac{n}{p}\right)=-\varepsilon$. Thus we may apply the same argument with f replaced by g to prove the assertion.

Proof of Theorem 1. Let $k \geq 1$ and assume that $f \in M_{k+\frac{1}{2}}\left(\Gamma_{1}(N)\right)$ is a nonzero modular form with coefficients $a(n)$ such that $a(n)=0$ whenever $\left(\frac{n}{p}\right)=\varepsilon$. Further assume that $p \equiv \varepsilon\left(\bmod N^{2}\right)$ if $k=1$. First, we claim that f is a cusp form. Since

$$
M_{k+\frac{1}{2}}\left(\Gamma_{1}(N)\right)=\bigoplus_{\chi \bmod N} M_{k+\frac{1}{2}}(N, \chi)
$$

f can be uniquely written as a linear combination of modular forms with respect to $\Gamma_{0}(N)$ with Nebentypus character, and one easily sees that each form in this decomposition also has the property that its n-th coefficient vanishes if $\left(\frac{n}{p}\right)=\varepsilon$. Thus we may assume that $f \in M_{k+\frac{1}{2}}(N, \chi)$. (Recall that $f \neq 0$ implies that χ is even.)

According to Lemma 1 one has $f \mid T\left(p^{2}\right)=-\varepsilon \chi^{*}(p)\left(p^{k}+p^{k-1}\right)$. Comparing the constant terms we find

$$
a(0)\left(\varepsilon \chi^{*}(p) p^{k}+1\right)\left(\varepsilon \chi^{*}(p) p^{k-1}+1\right)=0
$$

Hence, one immediately deduces $a(0)=0\left(\right.$ note that $p \equiv \varepsilon\left(\bmod N^{2}\right)$ if $\left.k=1\right)$, i.e. f vanishes at the cusp ∞.

The proof of Lemma 1 (equation (3)) shows that $f \mid W_{N}$ also has the property that its n-th coefficient $b(n)$ vanishes if $\left(\frac{n}{p}\right)=\varepsilon$. Thus we may apply the same argument to infer $b(0)=0$, i.e. f vanishes at the cusp 0 .

If $u \in \mathbb{Z}$ then $f(z+u / N)$ is a modular form in $M_{k+\frac{1}{2}}\left(\Gamma_{1}\left(N^{2}\right)\right)$. The n-th coefficient of $f(z+u / N)$ obviously also vanishes if $\left(\frac{n}{p}\right)=\varepsilon$, and the above argument shows that $f(z+u / N)$ is zero at the cusp 0 . Hence, f vanishes at u / N. This proves the claim, since all cusps of $\Gamma_{0}(N)$ are known to be equivalent to a cusp of the form v / N. In particular this proves (ii).

For the proof of (i) we may now assume that $f \in S_{\frac{3}{2}}^{*}(N, \chi)$ or $k \geq 2$ and $f \in S_{k+\frac{1}{2}}(N, \chi)$. In view of Lemma 1 it suffices to show that the eigenvalues λ_{p} of the restriction of $T\left(p^{2}\right)$ on these spaces satisfy $\left|\lambda_{p}\right|<p^{k}+p^{k-1}$.

By the work of Shimura, Niwa, Cipra and Sturm, via Shimura-lifting λ_{p} is also an eigenvalue of the Hecke operator $T(p)$ on $S_{2 k}\left(N / 2, \chi^{2}\right)$. Here, we may for instance apply a simple argument due to Kohnen [Koh1] to infer the desired estimate.

Proof of Theorem 2. We use induction on r. Let $r=0$ and \mathcal{D} be the set of square-free d with $a(d) \neq 0$. Suppose that \mathcal{D} is finite. Then, using the multiplicative properties of the coefficients, one deduces that $a\left(d m^{2}\right)=0$ for all square-free d which are not in \mathcal{D} and all $m \in \mathbb{N}$. Let p_{0} be a prime with $\left(p_{0}, N\right)=1$ and $\left(\frac{d}{p_{0}}\right)=1$ for all $d \in \mathcal{D}$ (such a p_{0} clearely exists by Dirichlets theorem on arithmetic progressions). Then we have $a(m)=0$ for all $m \in \mathbb{N}$ with $\left(\frac{m}{p_{0}}\right)=-1$, a contradiction to Theorem 1 .

Now, let $r \geq 1, \varphi_{r}=\left(\dot{p_{r}}\right)$, and consider

$$
h:=f-f \mid B_{p_{r}}+\varepsilon_{r} f_{\varphi_{r}}=2 \sum_{\substack{n \geq 0 \\ \varphi_{r}(n)=\varepsilon_{r}}} a(n) e(n z) .
$$

According to Theorem 1, h is a non-zero element of $M_{k+\frac{1}{2}}\left(N p_{r}^{2}, \chi\right)$ for $k \geq 2$ resp. $S_{\frac{3}{2}}^{*}\left(N p_{r}^{2}, \chi\right)$ for $k=1$. Moreover, h is an eigenform of all $T\left(q^{2}\right)$. Hence, the assertion follows by induction.

References

[Br] J. H. Bruinier, Modulformen halbganzen Gewichts und Beziehungen zu Dirichletreihen, diploma thesis, University of Heidelberg (1997).
[BFH] D. Bump, S. Friedberg and J. Hoffstein, Nonvanishing theorems for L-functions of modular forms and their derivatives, Invent. Math. 102 (1990), 543-618.
[Ci] B. A. Cipra, On the Niwa-Shintani Theta-Kernel Lifting of modular forms, Nagoya Math. Journal 91 (1983), 49-117.
[FrHo] S. Friedberg and J. Hoffstein, Non-vanishing theorems for automorphic L-functions on $G L(2)$, Annals of Math. 142 (1995), 385-423.
[Koh1] W. Kohnen, A simple remark on eigenvalues of Hecke operators on Siegel modular forms, Abh. Math. Sem. Univ. Hamburg 57 (1986), 33-36.
[Koh2] W. Kohnen, Fourier coefficients of modular forms of half integral weight, Math. Ann. 271 (1985), 237-268.
[KoZa] W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip, Invent. Math. 64 (1981), 173-198.
[MuMu] M. R. Murty and V. K. Murty, Mean values of derivatives of modular L-series, Annals of Math. 133 (1991), 447-475.
[Ni] S. Niwa, Modular forms of half-integral weight and the integral of certain theta-functions, Nagoya Math. J. 56 (1975), 147-161.
[SeSt] J.-P. Serre and H. M. Stark, Modular forms of weight 1/2. In: Modular Functions of One Variable VI, pp. 27-67, Lecture Notes in Math. 627 (1977), Springer-Verlag.
[Sh] G. Shimura, On modular forms of half integral weight, Annals of Math. 97 (1973), 440-481.
[St] J. Sturm, Theta Series of Weight 3/2, Journal of Number Theory 14 (1982), 353-361.
[Vi] M.-F. Vignéras, Facteurs gamma et équations fonctionelles. In: Modular Functions of One Variable VI, pp. 79-103, Lecture Notes in Math. 627 (1977), Springer-Verlag.
[Wa] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures et Appl. 60 (1981), 375-484.

[^0]: *Universität Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany; E-mail: bruinier@mathi.uni-heidelberg.de

